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ABSTRACT 

The thickness dependency of trans-laminar fracture toughness was studied in centre-

notched quasi-isotropic IM7/8552 carbon/epoxy laminates with central double 0° plies 

with thicknesses between 1 and 8 mm. A reduction in trans-laminar fracture toughness 

with thickness was measured experimentally in the specimens with a 25.4 mm notch. For 

specimens with a shorter 12.7 mm notch, no significant dependency on specimen thickness 

was found. The thickness dependency was captured in detailed Finite Element models with 

cohesive interface elements for sub-critical damage and a Weibull criterion for fibre 

breakage. The reason for the thickness dependency is explained through the damage states 

of the individual plies which determine whether or not premature fracture occurs before 

the damage process zone is fully developed. 
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1. INTRODUCTION 

Trans-laminar fracture toughness is an important material property for composite 

structures. Composite components are often thick, but laboratory composite coupons are 

typically cut from thin plates. For metallic materials, fracture toughness depends on 

specimen thickness, with thick specimens being less tough [1, 2]. This is because the 

constraint provided by the thick specimen promotes a plane-strain stress state, leading to 

a smaller plastic zone than that in thin specimens [3]. For composite materials, the 

specimen thickness effect is not clear. ASTM standards are available for the 

measurement of fracture toughness [4, 5]. The ASTM E399 standard [4] specifies the 

minimum specimen thickness for metallic coupons. By comparison, the ASTM E1922 

standard [5] does not specify the specimen thickness for composite materials, and only 

suggests that a thickness as small as 2 mm works well [5]. In fact, there is no mention of 

whether the measured trans-laminar fracture toughness may depend on the laminate 

thickness. 

Few experimental studies have been conducted on the laminate-thickness 

dependency of trans-laminar fracture toughness. Harris and Morris [6] compared the 

fracture toughness values for T300/5208 graphite/epoxy quasi-isotropic laminates of 

different thicknesses with a fixed crack-to-width ratio of 0.5 and a 25.4 mm centre 

notch. They concluded that the trans-laminar fracture toughness is lower for thicker 

compared with thinner specimens, with a transition between 32 and 64 plies. The 

thickness effect was attributed to the constraint from the laminate thickness which can 

suppress delaminations and reduce the size of the damage process zone. Li et al. [7] 

reported a similar trend, i.e. a decrease in trans-laminar fracture toughness of IM7/8552 

carbon/epoxy [45/90/-45/0]ns quasi-isotropic laminates with a 33 mm edge notch, but in 
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this case a reduction between 16 plies and 32 plies. Neither thicker 64-ply laminates nor 

thinner 8-ply laminates were tested. Li et al. [7] also reported a slight decrease of 

fracture energy for [0/90]ns cross-ply laminates between 16 plies and 32 plies. It was 

concluded that the thickness effect on both dispersed and blocked ply cases could not be 

easily explained and further investigations were needed. Laffan et al. [8] tested 

T300/920 carbon/epoxy cross-ply laminates of two thicknesses with a 26 mm edge 

notch. They found that the 34-ply [(90/0)8/90]s laminate is tougher than the 66-ply 

[(90/0)16/90]s laminate. No firm conclusion was drawn regarding the thickness 

dependency. 

In this paper, trans-laminar fracture toughness is measured in centre-notched 

quasi-isotropic IM7/8552 carbon/epoxy laminates with central double 0° plies with two 

notch lengths. The specimen thicknesses vary between 8 plies (1 mm) and 64 plies (8 

mm). A laminate-thickness dependency of trans-laminar fracture toughness has been 

found with a 25.4 mm notch, which is consistent with the findings in the literature [6-8]. 

The thickness effect has been influenced by the current stacking sequence which has 

double 0° plies at the specimen mid-plane, and the fact that the damage process zone is 

fully developed before ultimate failure with a 25.4 mm notch. By comparison, no 

significant laminate-thickness dependency was found with the shorter 12.7 mm notch, 

because of early unstable fracture occurring before the damage process zone is fully 

developed. The effect of laminate thickness in these sharp notched quasi-isotropic 

laminates has been successfully predicted. To the authors’ best knowledge, this has not 

been done in the past. The reasons were explained through the predicted sub-critical 

damage including 0° splits.  
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Previous studies [7, 9, 10] focused on in-plane strength scaling in quasi-isotropic 

IM7/8552 carbon/epoxy laminates with a constant laminate thickness of 4 mm. The 

current experimental and numerical work also covers different laminate thicknesses at 

various specimen sizes and notch lengths, which is key for demonstrating the failure 

prediction capability for large and thick composite structures. A coherent explanation of 

the thickness effect has been provided. The current results are compared to those 

reported by Harris and Morris [6].  

2. EXPERIMENTAL STUDY 

2.1 Test configuration 

A series of centre-notched quasi-isotropic IM7/8552 carbon/epoxy specimens as 

shown in Figure 1 with different specimen thicknesses were tested under tension. 

Another set of larger specimens with doubled centre-notch length and specimen width 

were also tested, leaving the notch-to-width ratio constant at 0.2. The tested specimen 

dimensions are summarized in Table 1. The crack tips are the same for all specimens, 

which were sharpened manually with 0.25 mm-wide piercing saw blades. The 25.4 mm 

centre-notched specimens have their gauge length of 254 mm kept the same as the 12.7 

mm centre-notched specimens. For the shorter specimens, the closer boundaries in the 

length direction were previously proven not to affect the stress distribution near the 

notches [9].  

The material used for all experiments was Hexcel’s HexPly® IM7/8552 

carbon/epoxy pre-preg with a nominal ply thickness of 0.125 mm. Four quasi-isotropic 

stacking sequences were tested with a 25.4 mm notch, which are 8-ply [45/90/-45/0]s, 16-

ply [45/90/-45/0]2s, 32-ply [45/90/-45/0]4s and 64-ply [45/90/-45/0]8s. The nominal 

laminate thicknesses are consequently 1 mm, 2 mm, 4 mm and 8 mm respectively, 



5 

 

which are very close to the measured specimen thicknesses. For the specimens with a 

12.7 mm notch, four thicknesses with the same stacking sequences, namely, 8-ply, 16-ply, 

32-ply and 64-ply were also tested. Hydraulically driven test machines were used for the 

experiments under displacement control at a rate of 2 mm/min.  

2.2 Test results 

The load vs. cross-head displacement curves are linear prior to sudden final failure 

in all tests. A small load drop could be seen in some tests prior to final failure due to 

sub-critical damage. The failure load was taken from the peak load in all tests. The 

Mode I trans-laminar fracture toughness is determined according to Equation 1.  
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where KC is the trans-laminar fracture toughness, ơn is the average nominal gross section 

failure stress, 1.02/ == WC  is the half notch-to-width ratio, C is the initial notch length, 

W is the specimen width and )sec()(  =f  is a geometrical parameter to account for the 

effect of finite width and is equal to 1.025 for this case [11].  

This equation was used for convenience, and is fine for comparison purposes, although 

it has been shown that the size of the damage process zone should really be accounted 

for in determining the true trans-laminar fracture toughness [12]. 

Table 2 presents the test results. The measured trans-laminar fracture toughness 

decreases from the thinnest laminates with a 25.4 mm notch to the thickest laminates by 

12%. The difference is statistically significant with a 95% level of confidence based on the 

Student’s t-test. In contrast, the measured fracture toughness does not show a significant 

thickness dependency for the 12.7 mm notch.  
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3. NUMERICAL STUDY 

3.1 Ply-by-ply detailed FE analysis with cohesive interface elements 

A detailed FE analysis with the explicit software LS-Dyna was conducted to 

investigate the laminate-thickness effects. Individual plies were modelled with cohesive 

interface elements to model potential splits within plies and the delaminations between 

adjacent plies. The splits and delaminations can significantly influence the trans-laminar 

fracture toughness. The nominal ply thickness of 0.125 mm is represented by one 8-node 

continuum element through the specimen thickness. A typical in-plane FE mesh is shown 

in Figure 2. It was reported in Ref. [13] that if the tip radius is smaller than 0.5 mm in 

quasi-isotropic IM7/8552 carbon/epoxy laminates, the crack is sharp enough to not 

affect measured trans-laminar fracture toughness. A triangular shaped sharp notch tip 

could therefore be modelled, with the much smaller tip radius than in the tests not expected 

to affect the results.  

Previously, it was found that multiple potential split paths need to be pre-defined in 

the 0° plies, to simulate the progressive damage process zone development at the notch tip 

[10]. If the 0° split spacing is not larger than 1 mm, the results are not sensitive to the split 

spacing [10]. There was only a single pre-defined potential split path in the plies with other 

orientations (±45° and 90°), starting from each notch tip. This was previously shown to be 

adequate, with the notched behaviour predicted satisfactorily for 32-ply (4 mm) laminates 

as fibre breakage was confined within the initial splits [10].  The previous study also 

showed that when the mesh size at the notch tips is no more than 0.2 mm, the results are 

not very sensitive to the mesh size [10]. 

In the current FE models, there are a total of 9 pre-defined potential 0° split paths 

(marked in red) over a distance of 4 mm from the notch tip in the typical FE mesh in 
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Figure 2. The consequent split spacing is 0.5 mm. A minimum mesh size of about 0.1 mm 

was arranged near the notch tips within the ±45° lines to simulate the progressive damage 

process zone development. A slightly coarser mesh was used outside this region. The 

properties for the detailed ply-by-ply modelling listed in Table 3 [14] were measured from 

independent characterisation tests except for the strengths of the cohesive interface 

elements, which are not critical, as shown later. The mixed-mode traction separation 

relationship for the cohesive interface elements is shown in Figure 3 [15]. 

A criterion based on Weibull statistics has been used to simulate fibre failure [16]. 

Assuming equal probability of survival between the model and a unit volume of material, 

we have Equation 2 [17], which is checked at each time step in the explicit FE analysis.  

  (2) 

where, ơi is the elemental centroidal stress in the fibre direction, Vi is the elemental 

volume,  ơunit = 3131 MPa  is the tensile strength of a unit volume of material and m = 41 is 

the Weibull modulus of the material [14].  

When Equation 2 is satisfied, the element with the maximum fibre-direction elemental 

stress loses its load carrying capability and its contribution is removed. The process repeats 

and interacts with the development of  multiple 0° splits, which can represent the 

progressive fibre breakage process within the damage process zone [10]. 

3.2 Damage states in detailed FE models 

By combining the cohesive interface elements and the Weibull fibre failure criterion, 

the current detailed models can predict closely the damage states within the individual 

plies in the laminates with different thicknesses from 1 mm to 8 mm. Taking a 4 mm-thick 

12.7 mm centre-notched model for example, the damage states in the individual plies 

including splitting, delamination and fibre fracture before ultimate failure agree well with 
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the X-ray Computed Tomography (CT scan) images taken at 95% of the average failure 

load, as shown in Figure 4. The same detailed modelling technique was also used to model 

the centre-notched specimens with different specimen thicknesses and different notch 

lengths.  

The predicted damage states are different between the outboard single 0° plies and 

the central double 0° ply. For example, in the 4 mm-thick 12.7 mm centre-notched model 

in Figure 4, the damage in the central double 0° ply (Figure 4(a)) is greater than that in the 

outboard single double 0° ply (Figure 4(b)) in terms of the extent of splitting and the shape 

of delamination. The predicted maximum split lengths in the 0° plies of the different 

models just before ultimate failure are summarised in Table 4. On average, the predicted 

maximum 0° split lengths is about 33% lower in the single compared with double 0° plies. 

The predicted maximum 0° split lengths in all plies are similar between the 4 mm-thick 

12.7 mm centre-notched model and 25.4 mm centre-notched model.  

The central double 0° ply was found to break later than the outboard single 0° plies 

due to longer double 0° splitting e.g. in the 3.2 mm centre-notched tests, no fibre breakage 

was observed in the central double 0° ply at 95% of the average failure load with the 

outboard single 0° plies already broken [9]. Therefore, the ultimate failure of the centre-

notched laminate is postulated to be triggered by the unstable fracture propagation in the 

double 0° ply. Hence, the damage state including splitting in the double 0° ply is a 

particular focus of  the current study. 

3.3 Notch length effects 

The unstable fracture of the central double 0° ply is affected by the 0° splitting, 

which depends on the notch length. If the 0° split lengths are normalised by the notch 

lengths, the normalised maximum 0° split lengths are much larger in the 4 mm-thick 12.7 
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mm centre-notched model (0.87 in the double 0° ply) than in the 25.4 mm centre-notched 

model (0.42 in the double 0° ply) as listed in Table 4. This has some important 

implications for the different thickness dependency between the 12.7 mm  and 25.4 mm 

centre-notched models, as discussed later. 

According to Ref. [10], the growth of the 0° splits is driven by the available energy, 

and the Stress Concentration Factors (SCFs) decrease with increasing normalised 0° split 

lengths. This is now demonstrated by a simpler 12.7 mm centre-notched model without 

considering fibre fracture as shown in Figure 5. The purpose is to address the effect of the 

central double 0° splits on equavilent SCFs. In Figure 5, the maximum fibre-direction 

elemental stress in the central double 0° plies is converted to an equivalent value for the 

laminate by dividing a factor of 2.61 which is the ratio between the stress in the 0° ply and 

the average stress in the laminate according to Classical Laminate Theory (CLT). Then the 

equivalent stress in the laminate is divided by the applied gross-section stress to calculate 

the equivalent SCFs. As the applied load and hence the available energy increases, the 

central double 0° splits grow and the equivalent SCFs decrease as shown in Figure 5. As 

demonstrated by the two schematics in Figure 5, the rate of equivalent SCF reduction also 

decreases as the normalised 0° splits grow, until the equivalent SCFs no longer change 

significantly in the central double 0° ply. The two normalised split lengths of the 

schematics are from the predicted maximum central double 0° split lengths in Table 4 

(0.42 for the 25.4 mm notch and 0.87 for the 12.7 mm notch). 

Using the curve from Figure 5 together with the schematics in Figure 6, we can 

qualitatively describe how equivalent SCFs change after effective crack increments in the 

0° plies of the current detailed FE model. When the stress is high enough at the notch tip, 

fibre failure will occur in the 0° plies. Then the extended crack arrests after gaining an 
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effective crack increment of Δa, and a new secondary 0° split grows at the newly formed 

crack tip. The new secondary 0° split is predicted to be longer than the initial 0° split after 

the crack increment (S1 > S0).  But the crack length has also increased. The important point 

is what happens to the normalised 0° split (secondary 0° split length S1 divided by the 

notch length a1) as the crack grows further. With a longer 25.4 mm notch according to 

Figure 6(a), this can result in stable fracture at the same applied load because the 

equivalent SCF is lower at a larger nominalised split length (SCF1 < SCF0). As a result, the 

damage process zone can grow stably until it approaches its full size. It was previously 

defined that the damage process zone is the area where the 0° plies are broken, but some 

±45° plies are intact, with size determined from the distance between the last 0° split at the 

newly formed crack tip and the initial notch tip [9]. When all the 0° and ±45° plies break, 

the damage process zone is fully developed [18]. This was previously confirmed when it 

was found that the damage process zone approaches a constant size before ultimate failure 

in the specimens with a centre notch of at least 25.4 mm [9]. In the current study, the 

predicted damage process zone is similarly believed to reach its full size with a 25.4 mm 

centre notch. It is also because some -45° plies are predicted to break before ultimate 

failure. After the damage process zone is fully developed, Δa is equal to the size of the 

fully developed damage zone. Fracture through the full thickness will occur unstably with 

further crack increments. 

We can also qualitatively explain the reason why ultimate failure can sometimes 

occur even before the damage process zone is fully developed. With a shorter 12.7 mm 

notch as shown in Figure 6(b), the equivalent SCF is no longer significantly reduced (SCF1 

≈ SCF0) when the already long normalised 0° split grows further after the crack increment 

(S1 > S0). Having a similar equivalent SCF (SCF1 ≈ SCF0) as the crack grows further can 
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lead to unstable crack propagation at the same applied load. This occurs when the new 

secondary 0° split is still growing, but before the damage process zone is fully developed. 

The effect will be even more pronounced for smaller notches where the normalised split 

lengths will be even greater. This explains why if the specimen is too small, premature 

failure occurs before the damage process zone is fully developed and the apparent trans-

laminar fracture toughness is lower. 

3.4 Specimen thickness effects 

Because the detailed FE models capture closely the different damage states in the 

individual plies of the centre-notched models, the FE results correlate with the 

experimental results, as shown in Figure 7. The predicted and measured notch strengths 

decrease significantly as the specimen thicknesses increase in the 25.4 mm centre-notched 

specimens. In contrast, the predicted notched strengths remain approximately constant for 

the 12.7 mm centre-notched specimens. The predicted trans-laminar fracture toughness 

values are calculated according to Equation 1 based on the predicted notch strengths. They 

are compared against the measured values in Table 5. 

For the laminates with a 25.4 mm notch, the damage process zone was found to 

approach its full size [9], and there is a laminate-thickness dependency of the trans-laminar 

fracture toughness. The central double 0° ply tends to be tougher than the outboard single 

0° plies because of more sub-critical damage i.e. longer central 0° splits which lead to 

lower equivalent SCFs or more stress blunting as shown in Figure 6(a). This results in a 

tougher response in the thinner specimens which have a relatively larger proportion of 

double 0° plies. For example, a 1 mm-thick laminate has 100% double 0° plies. But as the 

specimen gets thicker, the central double 0° ply represents a relatively smaller proportion, 

e.g. only 12.5% in an 8 mm-thick laminate, and so their contribution gradually reduces. 
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The notched strength of very thick specimens therefore is determined mainly by the single 

0° plies and becomes independent of the laminate thickness.  

In contrast, in the 12.7 mm centre-notched model, the normalised double 0° splits 

are much longer than those in the 25.4 mm centre-notched model as shown in Table 4. 

Due to the longer 0° splits relative to the notch length, further increasing the split length 

in the central double 0° dominated thin model can no longer effectively reduce the 

equivalent SCFs, i.e. longer central double 0° splits do not necessarily lead to lower 

equivalent SCFs nor more stress blunting as shown in Figure 6(b). The approximately 

constant equivalent SCF after further crack growth can lead to unstable crack propagation 

in the central double 0° ply. This results in early unstable fracture in the double 0° 

dominated thin model with a 12.7 mm notch before the damage process zone is fully 

developed, which undermines the thickness dependency seen with the 25.4 mm notch. 

The predicted strength increases slightly from 1 to 2 mm thickness in the 12.7 mm 

centre-notched model because the 1 mm-thick model sees premature unstable failure 

with only one central double 0° ply through the model thickness. The instability existing 

in the central double 0° ply before the damage process zone is fully developed may also 

explain the larger experimental scatter in the thin-laminate tests. 

4. DISCUSSION 

Harris and Morris [6] reported that thicker 25.4 mm centre-notched quasi-

isotropic laminates have lower trans-laminar fracture toughness values, as shown in 

Figure 8. It was concluded that the thickness effect is caused by the constraint on the 

damage process zone in the thick specimens, minimizing internal delaminations and 

limiting the size of the damage process zone. It may be plausible for the [0/±45/90]ns 

stacking sequence, as there are 0° plies on the surfaces where the sub-critical damage is 
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the most and the constraint is the least. However, it cannot explain the laminate-

thickness effect in the current IM7/8552 carbon/epoxy [45/90/-45/0]ns laminates, 

because the sub-critical damage in the 0° plies is also very large at the specimen centre 

where any constraint due to the specimen thickness is expected to be the greatest. 

Alternatively, if the thickness effect is explained based on the damage states in the 

individual plies, the results for both the current layup and the previous stacking 

sequence used in Harris and Morris [6] can be explained coherently. The sub-critical 

damage in the surface 0° ply which has less constraint from the adjacent plies will 

behave similarly to that in the central double 0° ply which has more energy available to 

drive splits and delaminations. Different proportions of the surface 0° plies with greater 

sub-critical damage in specimens of different thicknesses lead to the laminate-thickness 

effects. Our observed trend is consistent with these findings in Ref. [6], all based on 

quasi-isotropic 25.4 mm centre-notched specimens. 

Laffan et al. [8] found the same thickness dependency with thinner cross-ply 

laminates being tougher (28% at initiation and 14% at propagation), but no explanation 

was given. It should be noted that the cross-ply laminates behave differently from the 

quasi-isotropic laminates in terms of the damage process zone development. For example, 

Harris and Morris [6] stated that cross-ply laminates are more susceptible to 0° splitting. 

Compared to quasi-isotropic laminates, cross-ply laminates also do not contain ±45° plies 

which influence the damage zone development [18]. Therefore, further work is required to 

establish the more general thickness dependency. 

The parameters in Table 3 have been previously applied to different FE model 

configurations (e.g. open-hole, centre-notched and over-height compact tension 

specimens), widths (16 to 254 mm) and thicknesses (1 to 8 mm) [10, 14, 17] and shown to 
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be valid. The predicted centre-notch tensile strength is not sensitive to the strengths of the 

cohesive interface elements, because it is controlled by damage propagation rather than 

initiation, which occurs early on due to the stress concentration at the notch tip. For 

instance, when a strength combination of 111 MPa for Mode I and 120 MPa for Mode II 

[19] is used instead of 60 MPa for Mode I and 90 MPa for Mode II, the predicted tensile 

strength for 4 mm-thick 12.7 mm centre notch is only 0.6% lower.  

Some recommendations can be given for trans-laminar fracture toughness testing for 

composite laminates in addition to those in ASTM E1922 standard [5]. First, the notch 

length should be large enough to be able to generate a fully developed damage process 

zone, so that the measured trans-laminar fracture toughness can represent a material 

property. For the current IM7/8552 carbon/epoxy material and layup with the centre-notch 

specimen configuration, the notch length should be at least 25.4 mm. Second, the specimen 

should be thick enough to be able to generate a trans-laminar fracture toughness value that 

is independent of the specimen thickness and conservative. For the current configuration, 

the minimum specimen thickness should be 4 mm.   

5. CONCLUSIONS 

The Mode I trans-laminar fracture toughness measured using 25.4 mm centre-

notched specimens demonstrates a laminate-thickness dependency from 8-ply laminates (1 

mm) to 64 plies (8 mm) for IM7/8552 carbon/epoxy [45/90/-45/0]ns laminates. The 

thinner laminates are tougher than the thicker ones. In contrast, the measured trans-laminar 

fracture toughness from the test results with a 12.7 mm notch does not show the same 

thickness dependency, and the trans-laminar fracture toughness values are lower than with 

the longer notch. 
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The thickness dependency of Mode I trans-laminar fracture toughness for the centre-

notched specimens was successfully captured by the detailed FE models with cohesive 

interface elements for delamination and splitting and a Weibull failure criterion for fibre 

breakage. The laminate-thickness dependency of trans-laminar fracture toughness was 

explained through the detailed damage states in the individual plies. For the current quasi-

isotropic stacking sequence, the double 0° ply at the specimen mid-plane promotes more 

sub-critical damage such as splits and delaminations. Consequently, the double 0° splitting 

can significantly blunt the stress concentrations.  This leads to a tougher response of the 

central double 0° ply provided the damage process zone is fully developed before ultimate 

failure, which is the case with a 25.4 mm notch. Specimens of different thicknesses have 

different proportions of the central double 0° ply, which results in the laminate-thickness 

dependency of trans-laminar fracture toughness.  

The lack of significant thickness dependency in the 12.7 mm notched tests was also 

successfully captured by the detailed FE models. This is because the 12.7 mm centre-

notched models have much greater normalised 0° split lengths than the 25.4 mm centre-

notched models. The additional stress blunting effect due to the longer normalised central 

double 0° splits is no longer significant with further split growth after crack increments. 

This can lead to unstable fracture of the central double 0° ply, and hence early unstable 

fracture in the central double 0° ply dominated thin laminates before the damage process 

zone is fully developed. Consequently, the thickness dependency seen with a 25.4 mm 

notch does not arise with a 12.7 mm notch. This also explains more generally why 

specimens with small notches may fail before the damage process zone is fully developed, 

and therefore exhibit lower apparent trans-laminar fracture toughness. 
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The same thickness dependency has been reported in other quasi-isotropic stacking 

sequences with surface 0° plies. This can be explained according to the current study 

because the surface 0° plies which lack constraint from the adjacent plies have the same 

influence on trans-laminar fracture toughness as the double central 0° ply. Some cross-ply 

laminates have also demonstrated similar thickness dependency, but further studies are 

required to understand the effects more generally in other laminates. 

DATA AVAILABILITY 

The data required to support the conclusions are provided in the results sections of 

this paper. 
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Figure 1. Schematics of the centre-notched specimen (C = 12.7 mm).  

 

 

Figure 2. Typical in-plane mesh for detailed FE models in LS-Dyna with pre-defined 0° split paths for 

cohesive interface elements marked in red. 
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Figure 3. Mixed-mode traction separation relationship for cohesive interface elements [15]. 

 

Figure 4. Damage states in individual plies in 4 mm-thick 12.7 mm centre-notched model just before 

ultimate failure vs. CT scan images taken at 95% of the average failure load (Sub-critical damage marked in 

red in the model and fibre breakage in adjacent 0° ply beneath marked in black).  
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Figure 5. Equivalent SCFs decrease with normalised split lengths in the simpler model without fibre 

fracture. 

 

(a) Long notch 

 

(b) Short notch 

Figure 6. Failure analysis of the detailed FE models with two different notch lengths. 
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a) 25.4 mm centre-notched tests b) 12.7 mm centre-notched tests 

Figure 7. Detailed modelling results correlate to experimental results with different notch lengths and 

laminate thicknesses. 

 

 

Figure 8. Specimen-thickness dependency of trans-laminar fracture toughness reported in Ref. [6].   
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Table 1. In-plane dimensions of centre-notched specimens [mm]. 

Specimens Notch length  Gauge width  Gauge length  End tab length  

Small 12.7 63.5 254.0 100.0 

Large 25.4 127.0 254.0 100.0 

 

 

Table 2. Summary of test results. 

Notch length 

[mm] 

Stacking sequence No. of specimens 

Tensile strength 

[MPa] (CV%) 

Fracture toughness 

[MPa·m1/2] 

12.7 

8-ply [45/90/-45/0]s 4 474 (8.9) 69 

16-ply [45/90/-45/0]2s 5 464 (4.9) 67 

32-ply [45/90/-45/0]4s 5 456 (0.9) [9] 66 

64-ply [45/90/-45/0]8s 5 464 (1.4) 67 

25.4 

8-ply [45/90/-45/0]s 4 396 (8.6) 81 

16-ply [45/90/-45/0]2s 4 398 (7.1) 81 

32-ply [45/90/-45/0]4s 4 349 (2.7) [9] 71 

64-ply [45/90/-45/0]8s 4 348 (6.3) 71 
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Table 3. Input parameters for detailed FE models [14]. 

Properties of cohesive interface elements 

GIC [N/mm] GIIC [N/mm] σI
max [MPa] σII

max [MPa] 

0.2 1.0 60 a 90 a 

Properties of continuum elements 

E11 [GPa] E22=E33 [GPa] G12=G13 [GPa] G23 [GPa] m 

 161 11.4 5.17 3.98 41 

σ11
max [MPa] α22= α33 [°C-1] α11 [°C-1] υ12=υ13 υ23 

3131 b 310-5 0.0 0.320 0.436 

a The strengths of the cohesive interface elements are assumed. 

b 3131 MPa is for a unit volume of material. 

 

Table 4. Predicted maximum 0° split length just before ultimate failure [mm]. 

 25.4 mm notch 12.7 mm notch 

Laminate 

thickness 

Double 0° 

splitting 

Single 0° 

splitting 

Difference 

Double 0° 

splitting 

Single 0° 

splitting 

Difference 

1 mm 12.4 - - 11.4 - - 

2 mm 10.1 6.6 35% 11.5 8.4 27% 

4 mm 10.2 6.9 32% 10.9 6.8 38% 

8 mm 9.7 6.6 32% 10.3 6.6 36% 

Mean 10.6 6.7  11.0 7.3  

Normalised 0.42 a 0.26 a  0.87 a 0.57 a  

a The average 0° split lengths are normalised by notch lengths. 
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Table 5. Results comparison between experiment and FE analysis. 

Notch length 

[mm] 

Stacking sequence 

Fracture toughness 

from experiment 

[MPa·m1/2] 

Fracture toughness 

from FE analysis 

[MPa·m1/2] 

 

12.7 

8-ply [45/90/-45/0]s 69 65  

16-ply [45/90/-45/0]2s 67 68  

32-ply [45/90/-45/0]4s 66 68  

64-ply [45/90/-45/0]8s 67 67  

25.4 

8-ply [45/90/-45/0]s 81 88  

16-ply [45/90/-45/0]2s 81 82  

32-ply [45/90/-45/0]4s 71 75  

64-ply [45/90/-45/0]8s 71 75  

 


