
Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.rmed.2017.12.015

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://doi.org/10.1016/j.rmed.2017.12.015 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Title: Physiological predictors of hypoxic challenge testing (HCT) outcomes in Interstitial Lung Disease (ILD).

Article Type: Research paper

Section/Category: Interstitial Lung Disease

Keywords: Interstitial lung disease, hypoxic challenge test.

Corresponding Author: Dr. Shaney Louise Barratt, BMedSci, MRCP, BmBs
Corresponding Author's Institution: North Bristol NHS Trust

First Author: Shaney Louise Barratt, BMedSci, MRCP, BmBs

Order of Authors: Shaney Louise Barratt, BMedSci, MRCP, BmBs; Jonathon Shaw, MD, PhD; Rachel Jones, MD; Anna Bibby, MD; Huzaifa Adamali, PhD; Naveed Mustfa, MD; Ian Cliff, MD; Helen Stone, MD; Nazia Chaudhuri, MD, PhD

Abstract: Background: Pre-flight risk assessments are currently recommended for all Interstitial Lung Disease (ILD) patients. Hypoxic challenge testing (HCT) can inform regarding the need for supplemental in-flight oxygen but variables which might predict the outcome of HCT and thus guide referral for assessment, are unknown.

Methods: A retrospective analysis of ILD patients attending for HCT at three tertiary care ILD referral centres was undertaken to investigate physiological variables that might predict a hypoxaemic response to HCT. Concordance between HCT and existing predictive equations for prediction of in-flight hypoxia was also explored.

Results: A total of 106 ILD patients (69 of whom (65%) had Idiopathic Pulmonary Fibrosis (IPF)) underwent HCT. Of these, 54 (51%) patients (of whom 37 (69%) had IPF) failed HCT and were recommended supplemental in-flight oxygen. Existing predictive equations were unable to accurately predict the outcome of HCT. ILD patients who failed HCT had significantly lower resting SpO2, baseline PaO2, reduced walking distance, FEV1, FVC and TLCO, but higher GAP index than those who passed HCT.

Conclusions: TLCO >50% predicted and PaO2 >9.42kPa were independent predictors for passing HCT. Using these discriminators, a novel, practical pre-flight algorithm for evaluation of ILD patients is proposed.

Suggested Reviewers: Robina Coker MD
Honorary Clinical senior lecturer and respiratory Consultant, Respiratory medicine, National heart and lung Institute and Hammersmith hospital
robina.coker@imperial.ac.uk
World renowned researcher in air travel and the lung
Kevin McKinlay MD
Consultant Respiratory Physician, Respiratory Medicine, Hampshire Hospitals Trust
Kevin.McKinlay@hhft.nhs.uk
Member of the British Thoracic Society air travel and lung disease group.
October 2017

Dear Editing team,

Re: Physiological predictors of hypoxic challenge testing (HCT) outcomes in Interstitial Lung Disease (ILD)

Thank you for taking the time to consider the manuscript detailed above. The manuscript reports the results of a multi-centre study analysing the use of physiological variables to predict a hypoxaemic response to hypoxic challenge testing (HCT) in patients with Interstitial Lung Disease (ILD). We present an algorithm using physiological variables to assist clinicians in their pre-flight assessment of ILD patients to decide when supplemental in-flight is or not required, and when further assessment with HCT should be used.

We think this will be of interest to your readership due to its relevance to clinical practice. As the largest study of its kind, we believe it will highly cited in the future as an important article in this field.

This manuscript is not in consideration in any other journal. All authors have read and agreed to the final manuscript submitted.

Kind regards

Shaney Barratt

Consultant Respiratory Physician and Specialist in Interstitial Lung Disease.
Honorary Associate Researcher – University of Bristol
Conflict of Interest Statement

None declared.
Title: Physiological predictors of hypoxic challenge testing (HCT) outcomes in Interstitial Lung Disease (ILD).

Authors and affiliations
Shaney L Barratt1,2, Jonathon Shaw3, Rachel Jones1, Anna Bibby1,2, Huzaifa Adamali1, Naveed Mustfa4, Ian Cliff4, Helen Stone4 and Nazia Chaudhuri3

1North Bristol NHS Trust, Bristol, UK.
2University of Bristol, Bristol, UK.
3University Hospital of South Manchester, Wythenshawe Hospital, Manchester, UK.
4University Hospitals of North Midlands, Stoke on Trent, UK.

Corresponding author:

Dr Shaney L Barratt
North Bristol NHS Trust
Respiratory Department
Brunel Building Gate 10, level 6
Southmead Hospital
BS105NB
Secretary: 0117 4142012

Shaney.Barratt@nbt.nhs.uk

Conflicts of interest: None declared.

\textbf{Take home message}: A novel algorithm is proposed to guide pre-flight assessment of patients with interstitial lung disease.
Abstract

Background: Pre-flight risk assessments are currently recommended for all Interstitial Lung Disease (ILD) patients. Hypoxic challenge testing (HCT) can inform regarding the need for supplemental in-flight oxygen but variables which might predict the outcome of HCT and thus guide referral for assessment, are unknown.

Methods: A retrospective analysis of ILD patients attending for HCT at three tertiary care ILD referral centres was undertaken to investigate physiological variables that might predict a hypoxaemic response to HCT. Concordance between HCT and existing predictive equations for prediction of in-flight hypoxia was also explored.

Results: A total of 106 ILD patients (69 of whom (65%) had Idiopathic Pulmonary Fibrosis (IPF)) underwent HCT. Of these, 54 (51%) patients (of whom 37 (69%) had IPF) failed HCT and were recommended supplemental in-flight oxygen. Existing predictive equations were unable to accurately predict the outcome of HCT. ILD patients who failed HCT had significantly lower resting SpO₂, baseline PaO₂, reduced walking distance, FEV₁, FVC and TLCO, but higher GAP index than those who passed HCT.

Conclusions: TLCO >50% predicted and PaO₂ >9.42kPa were independent predictors for passing HCT. Using these discriminators, a novel, practical pre-flight algorithm for evaluation of ILD patients is proposed.

Keywords
Interstitial lung disease, hypoxic challenge test, Idiopathic Pulmonary Fibrosis

Introduction

Hypobaric hypoxia arises during air travel because of the inverse relationship between the partial pressure of oxygen and altitude, observed as a fall in total ambient pressure during ascent. Commercial airlines commonly cruise at 38000 feet to improve fuel economy, typically pressurizing air cabins to a maximum of altitude of 8000 feet (2438m), reducing the effective altitude to which passengers are exposed¹. This pressurisation is equivalent to breathing approximately 15% oxygen at sea level,
but the precise cabin altitude can vary according to the aircraft design and exact aircraft altitude, which may be exceeded to avoid adverse weather conditions\(^2\).

In healthy individuals, increased minute ventilation, heart rate and cardiac output compensate, such that little physiological impact is experienced by most individuals at typical cabin altitudes\(^3,4\). Clinical manifestations of hypobaric hypoxia include headache, euphoria, impairment of judgement or memory and in more severe cases peripheral visual field defects, unconsciousness and death\(^5,6\).

The British Thoracic Society (BTS) currently recommends risk assessment of all interstitial lung disease (ILD) patients prior to air travel to predict the likelihood of respiratory problems and to identify those requiring supplemental in-flight oxygen\(^3\).

Hypoxic challenge testing (HCT)\(^7\) is the method of choice to identify patients who might require supplemental in-flight oxygen, based on its ability to reliably identify patients requiring supplemental oxygen when compared to hypobaric chamber, its widespread availability and relative low cost\(^8,9\). Arbitrary cut-offs of \(\text{PaO}_2\) of <6.6kPa or \(\text{SpO}_2\) <85% are positive indicators of the need for supplemental in-flight oxygen\(^10\). The evidence surrounding which ILD patients to refer for HCT is currently lacking.

Predictive equations are alternatives that have been developed for use in clinical practice, to predict \(\text{PaO}_2\) at altitude\(^7, 11-15\), but have been developed almost exclusively using patients with COPD and their role in patients with ILD has not been fully defined.

The aim of this study was to explore the correlation and concordance between HCT and predictive equations for prediction of in-flight hypoxia in ILD patients and secondly to identify physiological variables that might be used to predict the outcome of HCT in patients with ILD.

Methods

This study was approved by the Health Research Authority, United Kingdom (UK) (Reference 17/HRA/0007). The clinical records of 106 consecutive ILD patients presenting to three UK secondary care ILD centres for routine HCT (between January 2010 and March 2017), were retrospectively analysed. All patients had an
ILD multidisciplinary team (MDT) consensus diagnosis. Baseline demographic data, oxygen saturations (SpO₂) using pulse oximetry and capillary ear lobe partial pressure of oxygen (PaO₂) were collected. Spirometry, transfer factor for carbon monoxide (TLCO) and 6-minute walk tests (6MWT), performed according to BTS guidelines¹⁶ and within 6 months of the HCT, were also evaluated. The GAP index¹⁷ (gender, age and lung physiology index) was calculated from the collated information.

HCT was undertaken using the Ventimask method, whereby 100% nitrogen was delivered through a 40% Ventimask at a designated flow rate of 10.0 l/min, resulting in an equivalent inspired fraction of oxygen (FiO₂) of 15% O₂¹⁸. A fall of PaO₂ to <6.6kPa during the test indicated that the individual should be recommended supplemental in-flight oxygen (Failed HCT), according to BTS guidelines³.

The predicted partial pressure of oxygen at altitude (PaO₂ Alt) was calculated by applying the collated data to four published predictive equations (Supplemental Table 1). Supplemental in-flight oxygen requirement predictions were compared to the actual HCT results.

Physiological variables were compared between patients requiring supplemental in-flight oxygen, as determined by the HCT, compared to those who did not. Patients were either compared as a single group of ILD patients or stratified into Idiopathic Pulmonary Fibrosis (IPF) versus non-IPF.

Statistical analyses were performed using Graphpad Prism 7.0 software (CA, USA), with multivariable analysis using STATA data analysis and statistical software (Texas, USA). The sensitivity and specificity of existing published predictive equations as compared to actual HCT results were calculated using a cut-off of PaO₂ of <6.6kPa.

Categorical variables were presented as counts, whilst continuous variables were presented as means +/- standard deviation (S.D.). Univariable logistic regression analysis was used to compare physiological variables in a) ILD patients and b) IPF patients referred for hypoxic challenge testing (HCT) and the outcome of HCT in a priori statistical analysis plan. Results were presented as Odds Ratios (OR) with 95% confidence intervals (CI).
Receiver operating characteristics (ROC) curve analyses were performed on correlating variables with the identification of optimum cut-off points (decision point) for each variable, identified using the maximum Youden’s index (J), where J max = Sensitivity + Specificity - 1. Multivariable logistic regression analysis was performed to identify factors independently predicting the outcome of HCT, with results presented as ORs with 95% CI. A P value of <0.05 was considered statistically significant.

Results

Patient characteristics

A total of 106 ILD patients underwent HCT in 3 UK centres. Table 1 demonstrates baseline demographic data and diagnostic subgroups of ILD patients. The majority of patients were male (70%, n=74), with a mean age of 69.25 years. Mean baseline FVC % predicted (76.40 ± 20.73), TLCO (46.89 ± 13.96) and GAP Index of (3.87 ± 1.47) suggests that the population had at least moderate ILD. Approximately two-thirds of the group had a MDT consensus diagnosis of IPF (65%, n=69).

Fifty-four (51%) patients failed HCT, of whom 37 (69%) had IPF, and were recommended supplemental in-flight oxygen.

Concordance of predictive equations with outcome of actual Hypoxic Challenge Testing

Table 2 demonstrates the sensitivity, specificity, positive and negative predictive values of existing predictive equations compared to actual HCT outcomes. Based on the availability of complete data required for these equations in 101 patients (n= 51 Failed HCT, n=50 Passed) and using the previously defined cut-off of PaO₂ <6.6kPa, predictive equations 2 and 3 were shown to be highly specific (100%); no patient who passed HCT was predicted to require supplemental in-flight oxygen using these equations. The sensitivity of both equations was poor however, leading to a failure of supplemental in-flight oxygen provision to 41 and 47 patients respectively who were deemed to need it by HCT. Predictive equation 1 was the most sensitive of the models resulting in a failure to provide supplemental in-flight oxygen to only 5
patients who required it, but resulting in the supply of supplemental in-flight oxygen erroneously to an additional 30 patients who passed their HCT.

Comparison of physiological variables and outcome of HCT

Univariable logistic regression of physiological variables in the cohort of 106 ILD patients, revealed that patients who failed HCT (n=54/106) had significantly lower resting SpO₂, baseline PaO₂, reduced walking distance, FEV1, FVC and TLCO, but higher GAP index than those who passed HCT (Supplementary Table 2). Interestingly, 27.8% of patients with SpO₂ ≥ 96% failed HCT.

Similarly, in the IPF subgroup, patients who failed HCT (n=30/61) had significantly lower baseline PaO₂, FEV1, FVC and TLCO % predicted, but higher GAP index than those who passed HCT. Additionally, the IPF subgroup demonstrated lower minimum SpO₂ on 6MWT compared to the overall ILD group (Supplementary Table 3).

Multivariable logistic regression analysis was applied to the results of 86 patients with ILD and 49 IPF patients who had complete data sets. Baseline PaO₂ was also found to be an independent predictor of failing HCT in both ILD patients (n=86) and IPF for both groups (Tables 3 and 4).

ROC curve analysis suggested that TLCO % predicted and baseline PaO₂ gave the highest area under the curve (AUC) values for all variables studied, 0.7343 and 0.8206 respectively (Figure 1). Using the maximum Youden’s index for each variable, FEV1 >85.0% predicted, FVC % predicted >81.50% predicted, TLCO % predicted >50% predicted, resting SpO₂ >95.5%, GAP index <0.45 and 6MWT >333.0m were identified as the optimum cut-offs for predicting a ‘Passed HCT’ (Supplementary Table 4).

Multivariable logistic regression for passed HCT in ILD patients (n=86 with complete data sets) using significant variables from univariable logistic regression and optimum cut-offs as determined from ROC curve analysis identified that TLCO >50% predicted and baseline PaO₂ >9.42 kPa were independently related to the outcome of
HCT (Table 5). GAP index was excluded from the analysis as 84/86 of the ILD patients in this data set had a GAP index of >0.45.

ILD pre-flight algorithm
Based on these analyses a pre-flight algorithm was developed using baseline PaO\textsubscript{2} and TLCO % predicted as key determinants to evaluate whether supplemental in-flight oxygen was recommended, whether the patient could fly without oxygen or whether advice was given for further pre-flight assessment with HCT (Figure 2). This algorithm had a sensitivity of 86% and specificity 84% when all patients with complete datasets for this information (n=88) were individually tested. Thirty-five patients (40%) would have been advised to have pre-flight HCT. Four patients were misclassified as not requiring supplemental in-flight oxygen (mean PaO\textsubscript{2} 10.41kPa ± 0.64 and mean TLCO 58.25% predicted ± 5.32) and 4 patients would have received supplemental in-flight oxygen inappropriately (mean PaO\textsubscript{2} 8.94kPa ± 0.18 and mean TLCO 36.00% predicted ± 3.56).

Discussion
Large numbers of patients with respiratory disease use commercial air-travel every year without adverse effect19, but the potential serious manifestations of hypobaric hypoxia are well described5,6 and as such, the BTS recommends risk assessment of all ILD patients prior to travel to assess the likelihood of complications and to identify those requiring supplemental in-flight oxygen3. Whilst HCT is the method of choice to identify those patients in need of supplemental in-flight oxygen8,9, it is not always readily available, particularly in primary care. The use of a predictive equation or algorithm that may help identify which ILD patients require supplemental in-flight oxygen or those that require referral for HCT would be of considerable value in this population.

Several predictive equations are available in the published literature but they have been developed almost exclusively from patients with COPD and their role in ILD has not been fully defined. Our results suggest that although the predictive equations
tested7,14 would provide a relatively cheap and easily accessible method of determining the estimated PaO\textsubscript{2} at altitude, they cannot be used in isolation to accurately predict the need for supplemental in-flight oxygen in ILD patients. Equations 1 and 4, using baseline sea-level PaO\textsubscript{2} as the main discriminator, overestimated the need for supplemental in-flight oxygen in 30 and 11 patients in our cohort respectively. Inclusion of FEV\textsubscript{1} measurements (predictive equations 2 and 3), as a second discriminator, improved specificity at the expense of sensitivity, failing to predict the need for supplemental in-flight oxygen in 41 and 47 patients respectively. These findings are consistent with those from small cohorts of ILD patients12,20.

In our cohort, 27.8\% patients fulfilled criteria for supplemental in-flight oxygen despite SpO\textsubscript{2} > 95\%. Taken together with the findings from above, our results are consistent with previous studies of small cohorts of ILD patients and mixed respiratory disease, suggesting that neither resting SpO\textsubscript{2} or FEV\textsubscript{1} reliably predict HCT hypoxaemia3,18,21-25.

According to our results, PaO\textsubscript{2} and TLCO (% predicted) independently correlated with outcome of HCT in patients with ILD. To the current authors’ knowledge this is the largest retrospective multi-centre observational study of ILD patients and the physiological parameters that might predict the requirement for supplemental in-flight oxygen, as determined by HCT. The present study is also unique in that a well-defined cohort of 69 IPF patients was examined as part of this study.

It has previously been suggested that a pre-flight PaO\textsubscript{2} >9.3kPa is sufficient for air travel without the need for supplemental in-flight oxygen26 but several studies have subsequently refuted its usefulness in predicting in flight hypoxaemia in COPD patients2,27. According to our own results, ILD patients with PaO\textsubscript{2} >9.42kPa in conjunction with TLCO >50\% predicted, can travel safely without supplemental in-flight oxygen. Conversely, we suggest that patients with PaO\textsubscript{2} \leq 9.42kPa in conjunction with TLCO \leq 50\% predicted, require supplemental in-flight oxygen. Patients with equivocal results should be referred for HCT prior to travel. Further assessment of this algorithm is required in a prospective validation cohort.
An algorithm incorporating pulse oximetry at rest and during 6MWT, was found to be a useful tool for discerning COPD patients who can travel without supplemental in-flight oxygen, those who need supplemental in-flight oxygen and those who require further assessment with HCT28. Furthermore, PaO\textsubscript{2} during maximal exercise has also been strongly correlated with the PaO\textsubscript{2} during hypoxic challenge test in cystic fibrosis29 and COPD patients21,27. Our results demonstrate that in this ILD cohort desaturation during exercise is non-discriminatory, in that 8 (20%) patients who passed HCT and 10 (30%) of those who failed HCT desaturated to \(\leq 84\%\) SaO\textsubscript{2} on 6MWT. This supports the findings of others suggesting that light exercise may aggravate hypoxaemia under hypoxic conditions22,28. It is our opinion therefore, that further work is required to identify a potential role for exercise testing as part of the HCT in patients with ILD.

There are several limitations to the current study, including those inherent to retrospective analyses and potential bias related to missing data. The HCT has advantages over predictive equations or algorithms in that it also allows determination of the flow rate of supplemental in-flight oxygen required. HCT is not however an absolute gold standard as it only simulates one aspect of altitude exposure, namely the inhalation of a low inspired fraction of oxygen (FiO\textsubscript{2}) and disregards the potential effect of decreased barometric pressure9. Indeed, discrepancies between SpO\textsubscript{2} obtained during HCT and actual in-flight SpO\textsubscript{2} have been reported30. Furthermore, the present authors accept further validation is required in a larger prospective cohort of ILD patients.

In summary, the present authors have undertaken the largest retrospective multicentre analysis of ILD patients to study the relationship between the development of hypoxia during HCT and physiological variables. The correlation between existing predictive equations and the actual outcome of HCT was also explored. Existing predictive equations are not sufficiently accurate to predict individual hypoxic responses during HCT in ILD patients when used in isolation. This is perhaps unsurprising given the numerous biological and cellular variables that control oxygen homeostasis and the physiological response to hypoxia.
Our findings suggest a correlation between resting PaO$_2$ and TLCO % predicted and the outcome of HCT. We propose a novel clinically relevant and practical algorithm for assessment of the requirement of supplemental in-flight oxygen in ILD patients (Figure 2). This algorithm stratifies ILD patients into those that do /do not require supplemental in-flight oxygen and those that require HCT for further assessment. This algorithm will require further validation in large prospective ILD cohorts.

Acknowledgements
We would also like to thank Paul White, University West of England, Bristol, UK for his advice on statistical analysis for this manuscript. RJ, JS, NM, IC collated the data. SLB, NC, HA, HS all contributed to the study conception. AB and SB undertook data analysis. All authors contributed to the writing of the manuscript.

References

Figure legends

Table 1: Demographic data (ILD: Interstitial lung disease, CTD-ILD: Connective tissue disease related ILD, CPFE: Combined Pulmonary Fibrosis and Emphysema, COP: Cryptogenic Organising Pneumonia).
Table 2: Sensitivity and specificity of predictive equations in determining the need for supplemental in-flight oxygen compared to actual HCT results with calculated positive (PPV) and negative predictive values (NPV) in a) ILD patients b) IPF subgroup.

Figure 1: Receiver operating characteristics (ROC) curve analysis of physiological variables for the outcome of HCT. A) FEV1 % predicted, B) FVC % predicted, C) TLCO % predicted, D) baseline PaO$_2$ (kPa), E) Resting SaO$_2$ (%) and F) GAP index. AUC = area under the curve.

Table 3: Multivariable logistic regression for failed HCT test in ILD (only patients with complete data sets used n=86). 6MWT variables not included as large number of patients had missing data for this variable. P value = significance level, CI = confidence interval.

Table 4: Multivariable logistic regression for failed HCT in IPF (n=49 patients with complete data). 6MWT variables not included as large number of patients had missing data for this variable. P value = significance level, CI = confidence interval.

Table 5: Multivariable logistic regression for passed HCT in ILD patients (n=86 with complete data sets) using significant variables from univariable logistic regression and optimum cut-offs as determined from ROC curve analysis.

Figure 2: ILD pre-flight algorithm. ILD patients with PaO$_2$ >9.42kPa in conjunction with TLCO >50% predicted can travel safely without supplemental in-flight oxygen. Patients with PaO$_2$ ≤9.42kPa in conjunction with TLCO ≤50% predicted require supplemental in-flight oxygen. Patients with equivocal results should be referred for further assessment with HCT prior to travel. ILD- Interstitial lung disease, PaO$_2$ – partial pressure of oxygen, TLCO – transfer factor for carbon monoxide, kPa – kilo pascals.
Table 1: Demographic data (ILD: Interstitial lung disease, CTD-ILD: Connective tissue disease related ILD, CPFE: Combined Pulmonary Fibrosis and Emphysema, COP: Cryptogenic Organising Pneumonia).

<table>
<thead>
<tr>
<th></th>
<th>Mean ± S.D.</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>69.25 ± 8.85</td>
<td>106</td>
</tr>
<tr>
<td>Gender</td>
<td>74M: 32F</td>
<td></td>
</tr>
<tr>
<td>FEV1 (litres)</td>
<td>2.05 ± 0.62</td>
<td>105</td>
</tr>
<tr>
<td>FEV1 % predicted</td>
<td>78.22 ± 19.47</td>
<td>105</td>
</tr>
<tr>
<td>FVC (litres)</td>
<td>2.52 ± 0.79</td>
<td>106</td>
</tr>
<tr>
<td>FVC % predicted</td>
<td>76.40 ± 20.73</td>
<td>106</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>81.21 ± 6.96</td>
<td>105</td>
</tr>
<tr>
<td>TLCO</td>
<td>3.78 ± 1.31</td>
<td>93</td>
</tr>
<tr>
<td>TLCO % predicted</td>
<td>46.89 ± 13.96</td>
<td>93</td>
</tr>
<tr>
<td>KCO</td>
<td>1.10 ± 0.33</td>
<td>92</td>
</tr>
<tr>
<td>KCO % predicted</td>
<td>83.02 ± 23.03</td>
<td>92</td>
</tr>
<tr>
<td>Baseline PaO₂ (kPa)</td>
<td>9.34 ± 1.41</td>
<td>101</td>
</tr>
<tr>
<td>Resting SpO₂ (%)</td>
<td>94.79 ± 2.85</td>
<td>105</td>
</tr>
<tr>
<td>GAP index</td>
<td>3.87 ± 1.47</td>
<td>101</td>
</tr>
<tr>
<td>6MWT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-actual distance (m)</td>
<td>339.51 ± 103.77</td>
<td>73</td>
</tr>
<tr>
<td>-%theoretical distance (%)</td>
<td>70.56 ± 2.32</td>
<td>71</td>
</tr>
<tr>
<td>-minimum SpO₂ (%)</td>
<td>86.80 ± 5.44</td>
<td>73</td>
</tr>
<tr>
<td>-maximum heart rate (bpm)</td>
<td>111.71 ± 15.24</td>
<td>47</td>
</tr>
<tr>
<td>Diagnoses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Idiopathic Pulmonary Fibrosis</td>
<td>-</td>
<td>69</td>
</tr>
<tr>
<td>-Non-specific interstitial pneumonia</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>-CTD-ILD</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>-Sarcoidosis</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>-Hypersensitivity pneumonia</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>-CPFE</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-Asbestosis</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-Drug induced ILD</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-COP</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>-Smoking related ILD</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>-Unclassifiable ILD</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Sensitivity and specificity of predictive equations in determining the need for supplemental in-flight oxygen compared to actual HCT results with calculated positive (PPV) and negative predictive values (NPV) in a) ILD patients b) IPF subgroup.

<table>
<thead>
<tr>
<th>Predictive equation</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1</td>
<td>90</td>
<td>60</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>Equation 2</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>Equation 3</td>
<td>8</td>
<td>100</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td>Equation 4</td>
<td>75</td>
<td>78</td>
<td>78</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictive equation</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1</td>
<td>92</td>
<td>59</td>
<td>63</td>
<td>81</td>
</tr>
<tr>
<td>Equation 2</td>
<td>19</td>
<td>100</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td>Equation 3</td>
<td>8</td>
<td>100</td>
<td>100</td>
<td>49</td>
</tr>
<tr>
<td>Equation 4</td>
<td>78</td>
<td>78</td>
<td>80</td>
<td>76</td>
</tr>
<tr>
<td>Variable</td>
<td>Odds ratio</td>
<td>p value</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>FEV1 % predicted</td>
<td>0.937</td>
<td>0.151</td>
<td>0.857 to 1.024</td>
<td></td>
</tr>
<tr>
<td>FVC % predicted</td>
<td>1.044</td>
<td>0.291</td>
<td>0.964 to 1.132</td>
<td></td>
</tr>
<tr>
<td>TLCO % predicted</td>
<td>0.915</td>
<td>0.130</td>
<td>0.816 to 1.299</td>
<td></td>
</tr>
<tr>
<td>KCO predicted</td>
<td>0.987</td>
<td>0.671</td>
<td>1.048 to 2.074</td>
<td></td>
</tr>
<tr>
<td>Baseline PaO₂ (kPa)</td>
<td>0.205</td>
<td><0.001</td>
<td>0.090 to 0.471</td>
<td></td>
</tr>
<tr>
<td>Resting SpO₂ (%)</td>
<td>0.866</td>
<td>0.299</td>
<td>0.880 to 1.513</td>
<td></td>
</tr>
<tr>
<td>GAP Index</td>
<td>0.974</td>
<td>0.958</td>
<td>0.387 to 2.718</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Multivariable logistic regression for failed HCT test in ILD (only patients with complete data sets used n=86). 6MWT variables not included as large number of patients had missing data for this variable. P value = significance level, CI = confidence interval.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>P value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 % predicted</td>
<td>0.950</td>
<td>0.425</td>
<td>0.837 to 1.078</td>
</tr>
<tr>
<td>FVC % predicted</td>
<td>1.000</td>
<td>0.982</td>
<td>0.878 to 1.136</td>
</tr>
<tr>
<td>TLCO % predicted</td>
<td>0.897</td>
<td>0.240</td>
<td>0.749 to 1.075</td>
</tr>
<tr>
<td>KCO predicted</td>
<td>1.018</td>
<td>0.739</td>
<td>0.916 to 1.131</td>
</tr>
<tr>
<td>Baseline PaO₂ (kPa)</td>
<td>0.165</td>
<td>0.003</td>
<td>0.749 to 1.075</td>
</tr>
<tr>
<td>Resting SpO₂ (%)</td>
<td>0.823</td>
<td>0.484</td>
<td>0.476 to 1.420</td>
</tr>
<tr>
<td>GAP index</td>
<td>0.446</td>
<td>0.251</td>
<td>0.112 to 1.771</td>
</tr>
</tbody>
</table>

Table 4: Multivariable logistic regression for failed HCT in IPF (n=49 patients with complete data). 6MWT variables not included as large number of patients had missing data for this variable. P value = significance level, CI = confidence interval.
<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 % predicted >85.0</td>
<td>1.004</td>
<td>0.995</td>
<td>0.247 to 4.091</td>
</tr>
<tr>
<td>FVC % predicted >81.5</td>
<td>2.667</td>
<td>0.175</td>
<td>0.646 to 11.013</td>
</tr>
<tr>
<td>TLCO % predicted >50.5</td>
<td>3.481</td>
<td>0.025</td>
<td>1.170 to 10.353</td>
</tr>
<tr>
<td>Baseline PaO2 (kPa) >9.42</td>
<td>8.331</td>
<td><0.001</td>
<td>2.547 to 27.253</td>
</tr>
<tr>
<td>Resting SpO2 (%) >95.5</td>
<td>1.040</td>
<td>0.945</td>
<td>0.338 to 3.204</td>
</tr>
</tbody>
</table>

Table 5: Multivariable logistic regression for passed HCT in ILD patients (n=86 with complete data sets) using significant variables from univariable logistic regression and optimum cut-offs as determined from ROC curve analysis.
Figure 1

A FEV1 % predicted

B FVC % predicted

C TLCO % predicted

D Baseline PaO₂ (kPa)

E Resting SpO₂ (%)

F GAP index
Figure 2

Patient with ILD

PaO₂ ≤ 9.42kPa
- TLCO ≤50% predicted
 - Supplemental in-flight oxygen required

PaO₂ > 9.42kPa
- TLCO >50% predicted
 - Equivocal – Hypoxic challenge test recommended
- TLCO ≤50% predicted
 - No supplemental in-flight oxygen required

Click here to download high resolution image
Supplementary Data
Click here to download Supplementary Data: Supplementary Tables.docx