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Abstract  

The validation of approaches to predict the hygroscopicity of complex mixtures of organic components in 

aerosol is important for understanding the hygroscopic response of organic aerosol in the atmosphere. We 

report new measurements of the hygroscopicity of mixtures of dicarboxylic acids and amino acids using a 

comparative kinetic electrodynamic balance (CK-EDB) approach, inferring the equilibrium water content of 

the aerosol from close to a saturation relative humidity (100 %) down to 80 %. We show that the solution 

densities and refractive indices of the mixtures can be estimated with an accuracy of better than ±2 % using 

the molar refractive index mixing rule and densities and refractive indices for the individual binary organic-

aqueous solutions. Further, we show that the often-used mass, volume and mole-weighted mixing rules to 

estimate the hygroscopicity parameter  can over-estimate the hygroscopic parameter by a factor of as much 

as 3, highlighting the need to understand the specific non-ideal interactions that may arise synergistically in 

mixtures and cannot be represented by simple models. Indeed, in some extreme cases the hygroscopicity of a 

multicomponent mixture can be very close to that for the least hygroscopic component. For mixtures of similar 

components for which no additional synergistic interactions need be considered, the hygroscopicity of the 

mixed component aerosol can be estimated with high accuracy from the hygroscopic response of the binary 

aqueous-organic aerosol. In conclusion, we suggest that the hygroscopicity of multicomponent organic aerosol 

can be highly non-additive and that simple correlations of hygroscopicity with composition may often 

misrepresent the level of complexity essential to interpret aerosol hygroscopicity.  
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1. Introduction 

The extent of water uptake by ambient aerosol is critical to understanding the size distribution of aerosol 

particles and, consequently, the radiative balance of the Earth and the impact of aerosols on human health. The 

hygroscopic response of aerosol particles (the ability of a particle to absorb water) impacts climate directly via 

scattering and absorption of incoming solar radiation and indirectly by affecting cloud formation processes 

(i.e. cloud condensation nuclei activity) and lifetimes.1, 2 Hygroscopic growth can also lead to the co-

condensation of semi-volatile organic compounds leading to an increase in the partitioning of organic mass to 

the condensed aerosol phase.3 Upon inhalation, the penetration of ambient aerosol into the respiratory system 

is influenced by the aerosol hygroscopicity, with the potential to affect associated morbidity and mortality 

rates.4-7 In addition, the physicochemical properties of aerosol particles (e.g. viscosity, surface tension, optical 

properties) depend on the liquid water content.8, 9 

 

Ambient aerosols are complex in composition, containing a myriad of organic and inorganic species and 

continuously evolving in chemical composition through reactions, such as oxidation, oligomerisation and 

photochemistry,10, 11 and gas-particle partitioning. Fine aerosol mass (particle diameters <1 μm) is dominated 

by organic species with variable physical and chemical properties 12 covering a broad spectrum in molecular 

weight, level of oxidation and solubility. Understanding the behaviour of organic aerosol and quantifying their 

impacts on climate and human health is challenging because of the complex and evolving chemical 

composition. Laboratory-based hygroscopicity measurements have focused on using proxies of ambient 

aerosol (e.g. sodium chloride, dicarboxylic acids 13 and saccharides to mimic marine, organic or SOA 

respectively) or on measurements of laboratory generated SOA obtained from the chemical evolution of 

oxidised gaseous precursors in a smog chamber.14  

 

Petters and Kreidenweis introduced the hygroscopicity parameter kappa (κ) to represent the hygroscopic 

properties of a solute using a single value; κ was primarily introduced to allow aerosol hygroscopic properties 

to be easily included in global climate modelling.15 Frequently, values of κ are correlated with the O:C ratio of 

laboratory or field samples of unknown chemical composition 16, 17 in an attempt to establish simple 

relationships between the overall composition of complex aerosol systems and their hygroscopic properties. 

In laboratory experiments on multicomponent mixtures, the mass, mole and volume weightings of the single 

components κ can be used to determine the hygroscopicity of a mixture of solutes. However, the applicability 

of these mixing rules relies on the assumption of additive hygroscopic behaviour.15 

 

There are few systematic studies of the additivity of hygroscopic response for multicomponent mixtures of 

organic solutes with increasing mixture complexity. In fact, the available literature on the hygroscopicity of 

compositionally complex mixtures focuses on organic and inorganic mixtures and, in most examples, a 

Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) is used in the retrieval of the hygroscopic 

response.18-25 Sodium chloride or ammonium sulphate is often used as the inorganic component. Although 

soluble inorganic components may often contribute little to the total aerosol mass, they can play a significant 
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role in determining the activity of cloud condensation nuclei (see for example Roberts et al.),26 a clear indicator 

of the often non-additive nature of aerosol hygroscopic response. A number of authors have considered the 

hygroscopicity of mixed component aerosols containing mixtures of dicarboxylic acids27, 28 and mixtures of 

dicarboxylic acids with inorganic salts.29 Lui et al. determined the hygroscopicity of phthalic acid or 

levoglucosan combined with ammonium sulphate or ammonium nitrate using a HTDMA, with results in good 

agreement with predictions from E-AIM.20 Mikhailov and co-workers applied a mass-based hygroscopicity 

parameter interaction model to interpret experimental measurements obtained using a HTDMA.24 First, single 

component aqueous solutions were considered; then the mass based hygroscopicity parameter was applied to 

mixtures of ammonium sulphate and malonic acid. Marcolli and co-workers reported the water uptake 

properties and the deliquescence RH of droplets containing a five-component organic mixture containing 

malic, malonic, maleic, glutaric, and methyl-succinic acids using a HTDMA.25 They observed that the 

deliquescence RH was lowered for progressively complex mixtures and was further lowered upon the addition 

of sodium chloride to the organic mixture.  

 

In all the examples discussed above, measurements were made for accumulation mode particle sizes using an 

HTDMA. Measurements at high RHs using these approaches can be challenging, particularly at an RH above 

90%. Work by Suda and Petters introduced the use of ammonium sulphate aerosol as a probe system to 

determine the gas phase RH prior to a scan of a sample of unknown hygroscopicity.30 Whilst this affords 

improvement in RH determination, the time required for the probe aerosol scans and the frequency of these 

scans (approximately every 20 minutes) may not be able to account for fluctuations in the RH on shorter 

timescales.30 By contrast, the electrodynamic balance (EDB) and the comparative kinetics (CK) approach used 

in this work, validated in previous studies,31-33 allows very accurate determination of the RH experienced by a 

probe droplet (accuracy <±0.2% at 90% RH and above) and rapid retrieval of hygroscopic growth up to very 

high solution water activity (>0.995).The CK-EDB technique is used for accurate and reproducible 

measurement of the hygroscopicity of single, aqueous aerosol droplets composed of mixtures of organic 

compounds with systematically increasing complexity in chemical composition. The CK-EDB technique has 

significant advantages, including: rapid measurement time (< 20 s), precise determination of the RH within 

the trapping chamber, measurement of the equilibrium hygroscopic response of single aerosol particles at water 

activities close to saturation (>0.995) and unambiguous measurement of the solute effect without the need to 

correct for the Kelvin effect since the analysed droplets are in the micrometre size range. The validity of the 

CK-EDB technique in the determination of the hygroscopic response for both organic and inorganic solutes 

has been extensively evaluated in previous work.31-33 

 

Here, we progressively increase the compositional complexity of the organic solute mixture to gain insight 

into the intermolecular interactions which govern the physical properties of the aerosol, further developing a 

method used by us in previous work.34 We report measurements of the hygroscopic response of aerosol 

particles composed of the organic and amino acid mixtures shown in Table 1. Mixtures of these organic 

components were chosen for the following reasons. Firstly, the hygroscopicities of the binary aqueous mixtures 
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of the individual components in these mixtures have been measured in earlier work using the CK-EDB 

technique.29 The availability of the binary aqueous-organic hygroscopic response for every component in each 

mixture allows an examination of the reliability of mixing rules for hygroscopicity (e.g. mixing rules for the κ 

parameter). Secondly, the presence of amino acids allows for an examination of non-additive behaviour due 

to the presence of charged chemical species, without the use of inorganic salts that can dominate the 

hygroscopic response when present in a mixture with other less hygroscopic organic species. In addition, the 

compounds chosen are sufficiently soluble to allow bulk phase measurements of refractive index and density, 

and cover a wide range of O:C ratios from 0.57 to 1.6. We now review the methods used before reporting 

measurements of refractive index, density and hygroscopicity. 

2. Methods 

A comparative kinetics technique is applied using an electrodynamic balance to retrieve the hygroscopic 

response of single aerosol particles, with the instrument henceforth referred to as the CK-EDB. The operation 

of the CK-EDB and the extraction of the hygroscopic response has been extensively discussed in previous 

publications 31-36 and as such will only be briefly discussed here. Initially droplets are ~25 m in radius at the 

initial high water activity of the starting solution and evaporate to ~5 m at the lowest water activity of the 

measured hygroscopic response. Working with such large droplets provides a direct approach for retrieving 

the thermodynamic response of the equilibrium solution composition to change in water activity/relative 

humidity, without a requirement to correct for the Kelvin effect and surface curvature.31-33  A full schematic 

outlining the analysis procedure is shown in Scheme S1.  

 

The CK-EDB utilises two droplet-on-demand generators to sequentially generate, probe and sample droplets. 

During generation, droplets are imparted charge by an induction electrode on droplet formation and confined 

within an electrodynamic field generated between a set of concentric cylindrical electrodes. The temperature 

of the trapping chamber is controlled by fluid from a refrigerated circulator; all measurements presented in this 

work are at 293 K. The relative humidity is modified by altering the relative ratio of a dry and wet nitrogen 

flow. Confined droplets are illuminated with a 532 nm laser and their size estimated using the geometrics 

optics approximation with an accuracy in radius of ±100 nm (eq. S1).32, 37 The application of the geometric 

optics approximation relies on the knowledge of the refractive index of a droplet, which is calculated using the 

molar refraction mixing rule.38, 39 The application of the molar refraction mixing rule for complex mixtures 

such as those considered in this work is discussed in section 3.1.  

 

The gas phase RH, held steady over the course of a sequence of measurements, can be determined using a 

probe droplet of pure water at RHs > 80% (with accuracy higher than ±0.3%) or containing an aqueous solution 

of sodium chloride for RHs < 80% (with accuracy higher than ±1.2%).31 A semi-analytical treatment, first 

introduced by Kulmala and co-workers 40 and described in the supplementary information (SI), is used to model 

the mass flux of water evaporating from the water probe droplet and used to determine the RH. In the case of 
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sodium chloride probe droplets, the growth factor at the equilibrated radius is used to determine the RH. The 

Kulmala mass flux equation is then applied to the sample droplet (i.e. the droplet containing the solute of 

unknown hygroscopicity) evaporating into a known gas phase RH in order to extract its hygroscopic response 

by inferring the water content at all of the intervening water activities the droplet must transition through when 

equilibrating to a steady composition at the gas phase RH. The range of applicability of the Kulmala kinetics 

model and the full retrieval of the equilibrium hygroscopic properties from multiple droplets is discussed by 

Rovelli et al.27 The experimental approach has been benchmarked for a wide range of binary aqueous solution 

aerosol containing inorganic 31 and organic 33 solutes.  

 

Hygroscopicity measurements are compared with predictions (in terms of mass fraction of solute, MFS) from 

the web version of the Aerosol Inorganic-Organic Mixtures Functional Groups Activity Coefficients model 

referred to throughout as AIOMFAC-web and available at http://www.aiomfac.caltech.edu/index.html.41, 42 

Additionally, measurements of the hygroscopicity parameter, κ, are compared with predictions from the 

University of Manchester System Properties (UManSysProp) model available at http://vm-

woody009.itservices.manchester.ac.uk/.43 Both AIOMFAC-web and UManSysProp utilise Universal 

Quasichemical Functional Group Activity Coefficients (or UNIFAC groups) to segment and represent organic 

molecules in terms of their functional groups.44 The UNIFAC groups implemented for each mixture in this 

work are shown in the supplement (Table S4) and a full description of how molecules can be segmented into 

appropriate UNIFAC groups is available on the AIOMFAC-web help section.  

3. Results and Discussion 

3.1 Extension and Validation of the Molar Refraction Mixing Rule for Predicting the Refractive Index 

of Multi-Component Aqueous-Organic Mixtures  

We first provide an assessment of the accuracy of molar refraction for predicting the RI and density of 

compositionally complex mixtures containing multiple solute components based on comparison with 

measurements of bulk solutions under sub-saturated conditions. The dependence of the solution refractive 

index on the solute concentration is required for the accurate determination of the size of droplets with the 

geometric optics approximation (see section S1) and, thus, for accurate retrieval of the hygroscopic response. 

In addition, a parameterisation of solution density is required for the application of the molar refraction mixing 

rule and the extraction of the hygroscopic response. More generally, the predictions of these properties must 

be robust in order to relate mass concentrations to size distributions of ambient aerosols and to calculate the 

radiative impacts of atmospheric aerosols.45, 46 Thus, a rigorous assessment of estimation methods based on 

solutions of known properties is of considerable value. 

 

The molar refraction mixing rule, normally implemented for single solute aqueous solutions38 for the self-

consistent treatment of both density and refractive index, is defined by eq. 1, where R is molar refraction, n is 

refractive index, M is the molecular weight and ρM  is the mass density.  
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 𝑅 =  (
𝑛2−1

𝑛2+2
)

𝑀

𝜌𝑀
           (1) 

 

In the work of Cai et al., bulk measurements of density and refractive index up to the solubility limit were 

taken for ~ 70 organic compounds in aqueous solutions.39 These bulk data were used to parametrise density 

and refractive index across the entire mass fraction range (i.e. beyond the solubility limit). From Eq (1) the 

molar refraction mixing rule also requires parametrisation of solution density; Cai and co-workers determined 

that the best density parametrisation is dependent on the solubility of each compound. When the solute reaches 

its bulk solubility limit lower than a mass fraction of solute (MFS) of 0.4, ideal mixing is used to parametrise 

the solution density. When a solute has a bulk solubility MFS > 0.4, the density is best parametrised using a 

third order polynomial fit to M vs √MFS.  

 

Equations (2) to (4) can be used to estimate the molar refraction, density and molecular weight of the combined 

aqueous-organic solute mixture. The effective molar refraction Re of the solute mixture can be determined 

using eq. (2) using the sum of the molar refraction Ri weighted by respective mole fractions xi of each solute 

component i.  

 

𝑅𝑒  =  ∑ 𝑥𝑖𝑅𝑖  𝑖            (2) 

 

The effective density, ρ
em

, of the organic solute mixture can be predicted from the individual component 

densities using ideal mixing, defined in eq. (3), with the mass fraction of each solute, i, and the pure 

component melt density of each solute, i.  

1

𝜌𝑒𝑚
 =  ∑

𝜑𝑖

𝜌 𝑖
𝑖            (3) 

 

The effective molecular weight, Me, of the organic solute mixture can be determined using eq. (4) and it is 

defined as the sum of the mole fraction xi multiplied by the molecular weight Mi for each solute component i.  

 

𝑀𝑒  =  ∑ 𝑥𝑖𝑀𝑖𝑖            (4) 

 

Once values of 𝜌𝑒𝑚,  𝑀𝑒 and 𝑅𝑒  are obtained, the effective refractive index, 𝑛𝑒 , of a mixture containing 

multiple components can be determined using eq. (5), which is a rearrangement of eq. (1) to solve for 𝑛𝑒.  

 

𝑛𝑒  =  (
(2𝑅𝑒+(

𝑀𝑒
𝜌𝑒𝑚

))

((
𝑀𝑒

𝜌𝑒𝑚
)− 𝑅𝑒)

)

1/2

          (5) 
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We report here bulk measurements of density and refractive index for the multicomponent mixtures listed in 

Table 1 up to the bulk solubility limit (tabulated values available in Table S1). We compare three 

methodologies in the application of the molar refraction mixing rule to parameterise solution refractive index. 

 

1. From the data for the binary aqueous mixtures of organics collected by Cai et al.,39 predictions of 

molar refraction, refractive index and density for aqueous organic mixtures with multiple solute 

components are performed using the sets of equations described above. These calculated properties 

from parameterisations of bulk phase data for binary solutions of each component in the mixture are 

referred to as binary-predicted values and notated as ρpredicted and npredicted :  

• ρpredicted – density of mixture determined using binary parametrisations from Cai et al.; 

• npredicted – refractive index of mixture determined by application of multicomponent molar 

refraction. 

Note this approach requires no bulk data of density and refractive index for the actual multicomponent 

mixtures studied here. 

 

2. Bulk data of density and refractive index for the multicomponent mixtures studied here are used to 

parametrise across the entire mass fraction of solute (MFS) range for the specific fixed ratio of solutes. 

An ideal mixing treatment is used to parametrise the density of the aqueous solution. The fitting is 

performed using the same method as for binary solutions described by Cai et al.39 The notation used 

is: 

• ρideal – ideal mixing treatment of bulk measurements of mixture density; 

• nideal – refractive index determined using molar refraction where bulk measurements of mixture 

density have been treated using ideal mixing. 

 

3. Bulk data of density and refractive index for the multicomponent mixtures studied here are used to 

generate a parametrisation across the entire mass fraction of solute (MFS) range. A polynomial fit is 

used to parametrise density. The fitting is performed using the same method as for binary solutions 

described by Cai et al.39 The notation used is: 

• ρpoly – polynomial fitting to bulk measurements of mixture density;  

• npoly – refractive index determined using molar refraction where bulk measurements of mixture 

density have been treated using a polynomial fit.  

 

RIs and densities estimated from the binary-predicted values or from fits to bulk measurements for mixture 5 

are presented in Figure 1 as an example. The values of RI and density in the limit of pure solute (no water) are 

estimated using both methods 1 and 3, outlined above, with values for RI (1.464 and 1.463, respectively) and 

density (1.355 and 1.351 g cm-3, respectively) in good agreement. For fits to aqueous solutions, these values 

provide estimates for the sub-cooled melts, rather than the crystalline phase, and can be considerably less than 
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the values for the corresponding pure solids.39, 47, 48 A similar comparison is shown for mixture 7 in SI Figure 

S1, again with excellent agreement between the two methods across the entire MFS range.  

 

As described earlier, the solubility of the solutes determines which density treatment is most appropriate to 

predict behaviour of the entire solution range. Mixture 7 is the least soluble mixture of all considered here and 

reaches its solubility limit at an MFS of just 0.0394. Thus, only an ideal mixing density treatment can be 

justified when fitting the bulk measurements of density. It is clear from Figure 1 and Table 1 that Mixture 5 is 

the most soluble of all the mixtures considered, and therefore a third order polynomial was used to parametrise 

its solution density across the entire MFS range. For Mixtures 1, 2, 4 and 6, the bulk solubility limits were very 

close to an MFS of 0.4, the threshold at which the appropriate density treatment is chosen. The impact of the 

density treatment applied to the measurements is examined for Mixture 1 in Figure 2 (a) – (b) with remaining 

Mixtures, 2, 4 and 6 presented in Figure S2. The parametrisations of mixture solution density are generated by 

applying either the ideal mixing density treatment (blue line) or the polynomial fit (black line) to the measured 

bulk solution values of density. Finally, three RI parametrisations are determined from the molar refraction 

mixing rule, considering the three density treatments: the binary-predicted npredicted (purple dashed line); the 

ideal fit to the bulk mixture experimental density data, nideal; and a polynomial fit to the bulk mixture 

experimental density data, npoly. From Figure 2 it is evident that the chosen density treatment applied to the 

bulk measurements (3rd order polynomial or ideal mixing) gives pure solute (no water) melt densities and 

refractive indices that differ from the binary-predicted values for mixture 1 (and for mixtures 2, 4 and 6 shown 

in Figure S2). Therefore, it is important to establish to what extent the density treatment used influences the 

pure solute density and RI, their influence on the solution values, and their influence on the resulting 

hygroscopicity retrieved from the CK-EDB measurements for each of these mixtures. 

 

The differences between the parametrisations informed by the bulk mixture measurements and the binary-

predicted parametrisations are reported for the density and refractive index. First, the differences between the 

chosen density treatment applied to the bulk measurements (i.e. ideal mixing, ρideal, or 3rd order polynomial 

fitting, ρpoly) and the binary-predicted density (ρpredicted) are examined. Overall, Figure 3 (a) and (b) show that 

the ideal mixing density treatment for the mixture data gives larger density and refractive index values than 

the binary-predicted values. In contrast, when a polynomial fit is used to parametrise the measurements (Figure 

3 (c) and (d)), it is clear that the lower the solubility of the mixture, the larger the extrapolation in the 

polynomial fit and, therefore, the greater the disparity between ρpoly and ρpredicted  and also refractive index at 

high MFS (e.g. mixture 3).  

 

To establish how uncertainties in the density parametrisation influence the inferred hygroscopic behaviour 

from CK-EDB measurements, we have performed a sensitivity analysis on the retrieved hygroscopicity of 

Mixture 1, comparing the outcome using the different treatments for the refractive index and density. At lower 

RH, the error in density will have a more significant effect on the hygroscopic curve, reflecting the uncertainty 

of the pure component densities; on the other hand, at high water activities the density of water is well known 
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and, thus, the parametrisation is well constrained. The hygroscopicity data for mixture 1 was re-analysed using 

4 density treatments (Table S1) corresponding to upper and lower error of ±2% and ±5% on the pure 

component density of 1.352 gcm-3 (determined using a binary-predicted parametrisation from values in in Cai 

et al.),39 as shown in Figure 4. The shaded areas in Figure 4 represent the uncertainty in the retrieved 

hygroscopic response using the different density treatments. It is evident that both a ±2 and ±5% uncertainty 

in pure component density have minimal impact on the determined hygroscopic response. This conclusion 

agrees with a similar analysis that was conducted in a previous publication: Rovelli and co-workers 

demonstrated that a ±2% error in density did not impact significantly the estimated hygroscopicity for CK-

EDB measurements of ammonium sulphate aerosol.36 

 

In conclusion, Figure 4 demonstrates that bulk measurements of density and refractive index do not need to be 

performed for any further mixture combinations. In fact, parametrisations generated using information on the 

aqueous binary solutions of the individual compounds present in a mixture (binary-predicted) provide an 

adequate representation of the MFS dependence of density and refractive index, such that the hygroscopic 

measurement analysis is not compromised. The largest errors on the hygroscopicity retrieval have been 

discussed extensively in earlier work and are a result of the uncertainty in droplet sizing and on the 

thermophysical parameters implemented in the Kulmala equation, such as the gas phase diffusivity and thermal 

conductivity constants.49 Thus, the binary-predicted parametrisations have been used in the analysis of the 

hygroscopic response; the pure component values and parametrisations used are listed in Table 2. Recognising 

that the comparison of the accuracies of the parameterisations can only be made up to the solubility limits of 

the bulk measurements, we adopt the same cautious approach as assessed in our previous study of binary 

solutions.39 Using polynomial representations of the mixture density can lead to deviations and unphysical 

behaviour, particularly if the solubilities of the individual components are low. In our previous work,39 optical 

tweezers measurements were used to assess the accuracy of different polynomial treatments of density to very 

low water activity/high solute saturation. For consistency with this, we base our treatments of the solution 

density and refractive index on the use of the molar refraction model and simple binary solution density data.  

 However, we also recognise that the maximum deviation in solution density and RI for the mixtures studied 

here are typically no more than +/- 5% and +/- 5%, respectively.  

 

3.2 The Hygroscopic Response of Aqueous-Organic Mixtures  

The hygroscopic responses of all mixtures considered in this work are shown in Figure 5 (a) to (g). It is 

important to highlight that Mixtures 1 and 2 are characterised by similar O:C ratios, 0.8 and 0.77 respectively. 

This is relevant since the literature often reports correlations of O:C ratio with hygroscopicity or κ.16, 17 Perhaps 

surprisingly, the overall hygroscopicity for both Mixtures 1 and 2 is dominated by the least hygroscopic 

component in their mixture (glutaric acid in both cases), with Mixture 2 apparently even less hygroscopic than 

glutaric acid (showing a higher mass fraction of solute, which means a lower water content, at the same water 

activity). This suggests that the hygroscopicity of a mixture is not simply additive. In addition, despite having 
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similar O:C ratios, Mixtures 1 and 2 have different hygroscopic properties providing an example of the 

inadequacy of simple correlations of the hygroscopic properties of organic aerosol particles and their O:C ratio.  

 

In addition, at an RH lower than 80%, a kinetic limitation to water transport was observed for Mixture 2. The 

impact of high viscosity was evident in the processed hygroscopic curve; the viscosity, , of this mixture of 

organic components is high enough at lower than 80 % RH (η > 0.1 Pa·s, the threshold established by Marsh 

et al.)29 such that it influences the hygroscopicity measurement (shaded data points at RH < 80% reflect this). 

In addition to the non-additive hygroscopic behaviour observed for these mixtures, the increased viscosity of 

Mixture 2 also suggests that, whilst the binary aqueous-organic components do not have appreciable 

viscosity,50 the viscosity of the mixture is not simply additive. As such the hygroscopicity of further mixture 

compositions were measured and are presented at ≥ 80% RH to ensure the measurements are not compromised 

by a kinetic limitation on water loss.  

 

The hygroscopicity of Mixture 4 containing a mixture of amino acids (glycine and lysine) is shown in Figure 

5 (d). Again, the hygroscopicity of Mixture 4 does not appear to behave additively, with its hygroscopicity 

tending to that of lysine, the least hygroscopic component of the mixture. This is an important observation 

which may aid the interpretation of the behaviour of five component mixtures with four organic solutes and 

water (i.e. Mixtures 1 and 2). The non-ideal interactions observed for Mixtures 1, 2 and 4 could originate from 

the presence of the amino acids which are zwitterionic, where the dicarboxylic acid is deprotonated, and this 

proton donated to the amine group. These charge interactions could play a role in non-additive hygroscopic 

behaviour of the more compositionally complex mixtures. It should be noted that lysine (146 gmol-1) is a much 

larger molecule than glycine (75 gmol-1) and this may explain why the hygroscopicity tends to that of lysine; 

this effect will be investigated in section 3.3. The amino acids present in the compositionally complex Mixtures 

1 and 2, could be causing the non-additive hygroscopic behaviour observed. Mixture 1 is comprised of 

equimolar amounts of malonic and glutaric acids, glycine and lysine. To test the influence of amino acids on 

additivity, Mixture 6 should be considered. Although it is almost identical to Mixture 1, containing the same 

components, it contains double the molar amount of each of the amino acids, glycine and lysine, compared to 

malonic acid and glutaric acid. The hygroscopic response of Mixture 6 is shown in Figure 5 (f): it is evident 

that the hygroscopic response again tends to that of the least hygroscopic component (glutaric acid) even 

though the molar concentrations of amino acids, glycine and lysine (i.e. the most hygroscopic components), 

have been doubled. The doubling of the amino acid components and the resulting decrease in hygroscopicity 

further suggests that the presence of the zwitterionic amino acids is causing this non-additive hygroscopic 

behaviour. The hygroscopic response of Mixture 7 is presented in Figure 5 (g): clearly the hygroscopicity of 

the mixture is very similar to individual binary aqueous-organic constituents, which is unsurprising considering 

the similar hygroscopic response observed for its constituent components.  
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3.2.1 Potential Influence of Aerosol pH on Non-Additive Hygroscopic Behaviour 

The hygroscopic behaviour of mixtures containing amino acids is non-additive as shown in Figure 5. One 

potential reason for this is that amino acids are zwitterionic and, in some cases here, also have additional proton 

accepting amine groups (specifically, lysine and arginine). The influence of this charge effect can be 

investigated by measuring the pH (HI 8314 Hanna Instruments) of the bulk aqueous mixture solution; 

measured pH values and the solution MFS are reported in Table 1. Of note are the acidic pH (0.61) of Mixture 

3 containing oxalic and malonic acid and the alkaline pH (9.75) of Mixture 4 containing amino acids. As 

expected, it is clear from the measured pH values reported in Table 1 that, when amino acids are combined in 

aqueous solution with dicarboxylic acids, the pH of the resulting solutions (Mixtures 1, 2 and 6) are higher 

(i.e. more alkaline) than solutions containing dicarboxylic acids only. The amino acids act as proton acceptors 

and lead to an increase in pH. Indeed, lysine and arginine have one and three additional amine group(s), 

respectively. Importantly, aerosol droplets can become supersaturated with respect to solute concentration; 

thus, the pH of a droplet will differ from that of the starting bulk solution during evaporation (the values 

indicated in Table 1). Therefore, charge interactions and non-ideal behaviour would be exacerbated at low 

relative humidity and supersaturated solute concentrations in the droplet. For example, Rindelaub et al. 

measured the pH of droplets containing sulfuric acid impacted on a surface at humidities between 50-90% 

using Raman microscopy.51 On drying (RH range 90 to 50%) droplets containing sulfuric acid (initial bulk 

solution pH 0.44-1.99) decreased in pH by 0.5 – 1. The evolving pH of an aqueous droplet containing glutaric 

acid can be estimated from the Extended-Aerosol Inorganics Model (E-AIM model III): between 90 and 40 

RH%, the pH of the droplet increases from 2.05 to 3.3.52 This stresses the importance of direct in situ 

measurements of aerosol particle pH with varying water activity, something that is not possible in these 

measurements and is only now becoming possible in other instruments.51 

 

In the mixtures containing both acidic and basic components in supersaturated solution, charged species in 

solution could interact more strongly with their contact ion pairs than interactions via hydrogen bonding with 

water molecules, thereby supressing the hygroscopic response of the solute mixture.53 In conclusion, available 

modelling methods and current experimental methods cannot be used to determine the pH at supersaturated 

solute conditions for mixtures of dicarboxylic and amino acids. Refined models that account for the changes 

in activity coefficient for these non-ideal solutions with variation in water activity are required. Moreover, 

measurement of the evolving pH of evaporating droplets containing the solute mixtures discussed was not 

possible in this work. However, the evidence presented above suggests that charge interactions play a role in 

the observed hygroscopicity, although we recognise the potential role of the zwitterionic form of the amino 

acids is speculative. Further work is required to fully elucidate the nuances of potential pH effects on the 

hygroscopic behaviour of the aerosol.  
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3.3 Comparison of the Measured Hygroscopic Response with Predicted Hygroscopic Behaviour 

For each compound considered in this work, hygroscopic properties of the single component aqueous-organic 

solutions have been reported in Marsh et al.29 This work presents a unique opportunity to test whether mixing 

rules can be applied to predict the hygroscopic response using, for example, the mass, mole and volume 

weighted kappa hygroscopicity parameter (κ) as defined in eq. (6)-(8). Here, 𝜑𝑖, 𝑥𝑖 and 𝜀𝑖 represent mass, mole 

and volume fraction respectively, and 𝑖(𝑎𝑤) represents a water activity dependent kappa. The mass, 𝑚𝑖 and 

density, 𝜌𝑖 of the aqueous droplet can be used to determine the volume, 𝑣𝑖. The water activity dependent κ’s 

for the binary aqueous-organic compounds, as determined by Marsh et al.,29 were used with eq. (6)-(8) to 

predict the hygroscopic response of the mixtures studied in this work. 

𝑚𝑎𝑠𝑠  =  ∑ 𝜑𝑖𝑖(𝑎𝑤)  𝑖            (6) 

𝑚𝑜𝑙𝑒  =  ∑ 𝑥𝑖𝑖𝑖 (𝑎𝑤)           (7) 

𝑣𝑜𝑙  =  ∑ 𝜀𝑖𝑖(𝑎𝑤)𝑖 =  ∑
𝑚𝑖

𝜌𝑖
𝑖(𝑎𝑤)𝑖          (8) 

The experimentally measured hygroscopicity parameter κ is compared with predicted κ values determined 

using mass, mole and volume weightings and shown in Figure 6. The observed hygroscopic behaviour of 

Mixture 4 tends to that of the least hygroscopic component (lysine) consistent with Figure 5 (d). Glycine and 

lysine were combined in a 1 to 1 molar ratio; however, the molecular weight of lysine (146 gmol-1) is almost 

double that of glycine (75 gmol-1). Thus, in Figure 6 (d), the mass and volume weighted κ parametrisations are 

in better agreement with the experimental data than the mole weighted κ. However, the mass and volume 

weighted κ remain in poor agreement and this provides further evidence that the complex charge interactions 

between the zwitterionic amino acids could play a significant role in the observed hygroscopic behaviour.  

 

Indeed, the influence of complex charge interactions between zwitterionic amino acids could also explain why 

the mass, mole and volume weighted predicted kappa values significantly disagree with experimental 

measurements for Mixtures 1, 2 and 6, presented in Figure 6 (a), (b) and (f) respectively. In Figure 5 (g), the 

predicted κ is clearly identical to the measured values, because all three components of the mixture are 

structural isomers of one-another and behave similarly. The predicted mass, mole and volume weighted values 

of κ, overestimate the experimentally determined κ values in every example considered here. It is evident from 

Figure 6 (a) to (f) that the predicted values of κ have minimal/limited overlap with the experimental CK-EDB 

measurements. These simple mixing rules for κ are not  able to account for the solute concentration 

dependencies of the activity coefficients in the mixture and any synergistic interactions between different 

components in the mixture. As demonstrated in all examples in Figure 6, the results from the mixing rules 

highlight some significant discrepancies with the experimental data, especially in the low water activity range, 

even though they appear to somewhat capture the observed qualitative trends of complex mixtures. It should 

also be noted that the hygroscopicity “constant”  varies by as much as a factor of 3 over the water activity 

range 0.8 to ~1.0 studied here. The potential interplay of the resulting uncertainties in representing the degree 

of hygroscopic growth, the RH dependence of the refractive index, and the impact on optical growth factor 

must be more fully explored to better quantify uncertainties in radiative forcing efficiency.46 
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In addition to examining the agreement of the mixing rules for κ, UManSysProp has been used to predict the 

hygroscopicity parameter κ as a function of water activity, shown in Figure 7(a).43 For every mixture 

considered in this work, UManSysProp overpredicts the hygroscopic response (solid lines in Figure 6(a)). 

Figure 7(b) shows a correlation plot between either modelled κ from UManSysProp (solid symbols) or 

calculated κ using eq. (8) (open symbols) and the experimental measurement of the κ of each mixture (at 

aw=0.95). UManSysProp over predicts κ when compared with the experimental value; this is consistent with 

what was observed in the work of Marsh et al., 29 where κ values for the binary aqueous-organic mixtures were 

similarly, but less significantly, overestimated by UManSysProp. Importantly, the hygroscopic parameters 

calculated from the binary component mixture data (open symbols) in Figure 7 are in significantly better 

agreement with the experimentally determined κ. This demonstrates the importance of experimental 

measurement of binary aqueous-organic hygroscopicity: not only can such measurements provide accurate 

treatments of complex solution mixture properties (density and refractive index), but they allow a better 

estimation of the calculated κ of the organic mixtures by using a volume weighted mixing rule.   

 

AIOMFAC-web can also be used in the prediction of the hygroscopicity of mixtures; examples are shown in 

Figure 8 for Mixtures 3, 5 and 7. AIOMFAC-web was implemented for only these mixtures consistent with 

the applicability of the online version, i.e. AIOMFAC-web, which does not allow for the prediction of the 

amino acid species. AIOMFAC-web predictions for Mixtures 3 and 5 are in excellent agreement with 

experimental data. In contrast, experimental data for Mixture 7 is in less good agreement with the 

thermodynamic model prediction from AIOMFAC-web. In the work of Marsh et al.,29 the hygroscopicity of 

the binary aqueous-organic mixtures for oxalic, malonic and glutaric acids were in excellent agreement with 

predictions from AIOMFAC-web, whereas all components from Mixture 7 were not in good agreement with 

AIOMFAC-web. This suggests that if the hygroscopicity of the individual compounds comprised within the 

mixture are well predicted by AIOMFAC-web, then the mixture itself is also well predicted and vice versa. 

However, we recognise that some additional measurement on mixtures of aqueous dicarboxylic acids would 

be needed to further confirm this conclusion.  

4. Conclusions 

In this work, experiments were performed using the CK-EDB technique to progressively examine the 

hygroscopic response of increasingly complex mixtures of organic compounds and to test the often used, but 

little validated, models for predicting mixture properties based on single component data and 

parameterisations. The focus of this work was therefore on complex mixtures of organic species, including 

linear and branched dicarboxylic acids and amino acids. First, the molar refraction mixing rule and the 

representation of mixture densities as a function of solute concentration were successfully extended to consider 

aqueous multi-component mixtures of organic solutes. Moreover, we demonstrated that bulk measurements of 

density and refractive index are not required for each mixture for an accurate determination of the hygroscopic 
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properties of aerosol particles with CK-EDB experiments (providing bulk data or equivalent parameterisations 

are available for the individual binary solutions). In fact, the molar refraction mixing rule using ‘binary-

predicted’ parametrisations of density and refractive index is sufficient so as not to compromise hygroscopicity 

determination (i.e. agreement with parametrisations generated using bulk data lies within ±2%). A caveat 

should be noted here that, whilst this level of accuracy is sufficient for the determination of hygroscopicity of 

single particles with our experimental approach, the determination of optical properties of aerosol particles 

with the aim for example of estimating their radiative forcing potential may require greater levels of accuracy 

under certain conditions. However, more work is required to evaluate use of molar refraction for these 

purposes. As an example, it was estimated that an uncertainty of 0.2% in refractive index for ammonium 

sulphate aerosol can results in a 1% error in calculated radiative forcing.54 Therefore, further work is necessary 

to determine whether the molar refraction mixing rule is suitable for purposes other than the determination of 

the hygroscopic properties of single aerosol particles in CK-EDB experiments.  

 

In Sections 3.2 and 3.3, measurements of hygroscopicity for 7 compositionally complex mixtures were 

performed using the CK-EDB. Mass, volume and mole weighted mixing rules for κ resulted in a moderate 

overprediction of κ for Mixtures 1 to 6. However, volume weighted calculated κ were significantly closer to 

experimental observations than predictions from UManSysProp. This demonstrates the importance of 

laboratory measurements on binary mixtures of organic solutes in order to be able to represent adequately the 

properties of more complex mixtures and, also, to provide data to inform the available prediction tools. Such 

an understanding is also crucial to understanding temporal trends in aerosol hygroscopicity when measured in 

the field and any attempt to rationalise these trends in terms of chemical composition.  

 

The hygroscopicity of Mixtures 3 and 5 were well represented by their AIOMFAC-web predictions. The binary 

aqueous-organic hygroscopic properties of the constituent compounds of Mixture 3 and 5 (oxalic, malonic and 

glutaric acids) were well represented by AIOMFAC-web. In contrast, Mixture 7 was not well represented by 

the AIOMFAC-web model prediction, likely due to the poor prediction of the individual compounds present 

in Mixture 7 (pimelic, 2,2-dimethylglutaric and 3,3-dimethylglutaric acids). Generally, the mixtures 

represented well by thermodynamic model predictions were mixtures solely containing compounds whose 

binary aqueous-organic hygroscopic response (measured in Marsh et al.)29 were well represented by 

thermodynamic model predictions (i.e. Mixtures 3 and 5). 

 

Overall, this work has provided an assessment of the molar refraction mixing rule for multicomponent organic 

solute solutions, considered the efficacy of common mixing rules for κ and highlighted the non-additive 

hygroscopic behaviour of organic mixtures containing amino acids. Further research efforts are needed to 

better understand the non-ideality of complex mixtures and the impact of pH on their behaviour.   



 

15 

 

Note 

The authors declare that they have no conflict of interest. 

 

Data are available at the University of Bristol data repository, data.bris, at 

https://doi.org/10.5523/bris.3hfjvbpamxahs2p18s1qzligfv.  

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI: 

Further discussion of the experimental procedure including droplet sizing procedure and extraction of 

hygroscopic response; additional figures and tabulated values of experimental data; and UNIFAC 

groups for thermodynamic predictions. 

Acknowledgments  

AM acknowledges the EPSRC for support through DTA funding. JPR and GR acknowledge NERC through 

funding from grant NE/N013700/1. REHM, AM and JPR acknowledge support from NERC through grant 

NE/N006801/1.  

 

References 

1. Ravishankara, A. R.;  Rudich, Y.; Wuebbles, D. J. Physical Chemistry of Climate Metrics. Chem. Rev. 

2015, 115 (10), 3682-3703. 

2. Moise, T.;  Flores, J. M.; Rudich, Y. Optical Properties of Secondary Organic Aerosols and Their 

Changes by Chemical Processes. Chem. Rev. 2015, 115 (10), 4400-4439. 

3. Topping, D.;  Connolly, P.; McFiggans, G. Cloud droplet number enhanced by co-condensation of 

organic vapours. Nature Geosci. 2013, 6 (6), 443-446. 

4. Haddrell, A. E.;  Davies, J. F.; Reid, J. P. Dynamics of Particle Size on Inhalation of Environmental 

Aerosol and Impact on Deposition Fraction. Environ. Sci. Technol. 2015, 49 (24), 14512-14521. 

5. Hallquist, M.;  Wenger, J. C.;  Baltensperger, U.;  Rudich, Y.;  Simpson, D.;  Claeys, M.;  Dommen, 

J.;  Donahue, N. M.;  George, C.;  Goldstein, A. H. et al. The formation, properties and impact of secondary 

organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9 (14), 5155-5236. 

6. Pöschl, U.; Shiraiwa, M. Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing 

Climate and Public Health in the Anthropocene. Chem. Rev. 2015, 115 (10), 4440-4475. 

7. Ghio, A. J.;  Carraway, M. S.; Madden, M. C. Composition of Air Pollution Particles and Oxidative 

Stress in Cells, Tissues, and Living Systems. J. Toxicol. Env. Heal. B 2012, 15 (1), 1-21. 

8. Reid, J. P.;  Bertram, A. K.;  Topping, D. O.;  Laskin, A.;  Martin, S. T.;  Petters, M. D.;  Pope, F. D.; 

Rovelli, G. The viscosity of atmospherically relevant organic particles. Nat Commun. 2018, 9. 

9. Bzdek, B. R.;  Power, R. M.;  Simpson, S. H.;  Reid, J. P.; Royall, C. P. Precise, contactless 

measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 2016, 7 (1), 274-285. 

https://doi.org/10.5523/bris.3hfjvbpamxahs2p18s1qzligfv


 

16 

 

10. Poschl, U.; Shiraiwa, M. Multiphase Chemistry at the Atmosphere-Biosphere Interface Influencing 

Climate and Public Health in the Anthropocene. Chemical Reviews 2015, 115 (10), 4440-4475. 

11. Kalberer, M.;  Paulsen, D.;  Sax, M.;  Steinbacher, M.;  Dommen, J.;  Prevot, A. S. H.;  Fisseha, R.;  

Weingartner, E.;  Frankevich, V.;  Zenobi, R.; Baltensperger, U. Identification of polymers as major 

components of atmospheric organic aerosols. Science 2004, 303 (5664), 1659-1662. 

12. Jimenez, J. L.;  Canagaratna, M. R.;  Donahue, N. M.;  Prevot, A. S. H.;  Zhang, Q.;  Kroll, J. H.;  

DeCarlo, P. F.;  Allan, J. D.;  Coe, H.;  Ng, N. L. et al. Evolution of Organic Aerosols in the Atmosphere. 

Science 2009, 326 (5959), 1525-1529. 

13. Bilde, M.;  Barsanti, K.;  Booth, M.;  Cappa, C. D.;  Donahue, N. M.;  Emanuelsson, E. U.;  McFiggans, 

G.;  Krieger, U. K.;  Marcolli, C.;  Topping, D. et al. Saturation Vapor Pressures and Transition Enthalpies of 

Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex 

Mixtures. Chemical Reviews 2015, 115 (10), 4115-4156. 

14. Yuan, C.;  Ma, Y.;  Diao, Y. W.;  Yao, L.;  Zhou, Y. Y.;  Wang, X.; Zheng, J. CCN activity of secondary 

aerosols from terpene ozonolysis under atmospheric relevant conditions. J Geophys Res-Atmos 2017, 122 (8), 

4654-4669. 

15. Petters, M. D.; Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud 

condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961-1971. 

16. Rickards, A. M. J.;  Miles, R. E. H.;  Davies, J. F.;  Marshall, F. H.; Reid, J. P. Measurements of the 

Sensitivity of Aerosol Hygroscopicity and the κ. J. Phys. Chem. A 2013, 117, 14120−14131. 

17. Duplissy, J.;  DeCarlo, P. F.;  Dommen, J.;  Alfarra, M. R.;  Metzger, A.;  Barmpadimos, I.;  Prevot, 

A. S. H.;  Weingartner, E.;  Tritscher, T.;  Gysel, M.;  Aiken, A. C.;  Jimenez, J. L.;  Canagaratna, M. R.;  

Worsnop, D. R.;  Collins, D. R.;  Tomlinson, J.; Baltensperger, U. Relating hygroscopicity and composition 

of organic aerosol particulate matter. Atmos. Chem. Phys. 2011, 11 (3), 1155-1165. 

18. Wang, Y. Y.;  Jing, B.;  Guo, Y. C.;  Li, J. L.;  Tong, S. R.;  Zhang, Y. H.; Ge, M. F. Water uptake of 

multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts. J. Environ. Sci. 

2016, 45, 156-163. 

19. Wu, Z. J.;  Nowak, A.;  Poulain, L.;  Herrmann, H.; Wiedensohler, A. Hygroscopic behavior of 

atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium 

sulfate. Atmos. Chem. Phys. 2011, 11 (24), 12617-12626. 

20. Liu, Q. F.;  Jing, B.;  Peng, C.;  Tong, S. R.;  Wang, W. G.; Ge, M. F. Hygroscopicity of internally 

mixed multi-component aerosol particles of atmospheric relevance. Atmos. Environ. 2016, 125, 69-77. 

21. Peng, C.;  Jing, B.;  Guo, Y. C.;  Zhang, Y. H.; Ge, M. F. Hygroscopic Behavior of Multicomponent 

Aerosols Involving NaCl and Dicarboxylic Acids. J. Phys. Chem. A 2016, 120 (7), 1029-1038. 

22. Jing, B.;  Tong, S. R.;  Liu, Q. F.;  Li, K.;  Wang, W. G.;  Zhang, Y. H.; Ge, M. F. Hygroscopic 

behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate. Atmos. 

Chem. Phys. 2016, 16 (6), 4101-4118. 

23. Wang, X.;  Jing, B.;  Tan, F.;  Ma, J.;  Zhang, Y.; Ge, M. Hygroscopic behavior and chemical 

composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate. Atmos. 

Chem. Phys. 2017, 17 (20), 12797-12812. 

24. Mikhailov, E.;  Vlasenko, S.;  Rose, D.; Poschl, U. Mass-based hygroscopicity parameter interaction 

model and measurement of atmospheric aerosol water uptake. Atmos. Chem. Phys. 2013, 13 (2), 717-740. 

25. Marcolli, C.;  Luo, B. P.; Peter, T. Mixing of the organic aerosol fractions: Liquids as the 

thermodynamically stable phases. J. Phys. Chem. A 2004, 108 (12), 2216-2224. 



 

17 

 

26. Roberts, G. C.;  Artaxo, P.;  Zhou, J.;  Swietlicki, E.; Andreae, M. O. Sensitivity of CCN spectra on 

chemical and physical properties of aerosol: A case study from the Amazon Basin. J. Geophys. Res.-Atmos 

2002, 107, 8070. 

27. Moore, R. H.; Raymond, T. M. HTDMA analysis of multicomponent dicarboxylic acid aerosols with 

comparison to UNIFAC and ZSR. J. Geophys. Res.-Atmos 2008, 113, D04206. 

28. Lee, J. Y.; Hildemann, L. M. Comparisons between Hygroscopic Measurements and UNIFAC Model 

Predictions for Dicarboxylic Organic Aerosol Mixtures. Advances in Meteorology 2013, 2013, 897170. 

29. Choi, M. Y.; Chan, C. K. The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic 

Aerosols. Environ. Sci. Technol. 2002, 36, 2422-2428. 

30. Suda, S. R.; Petters, M. D. Accurate Determination of Aerosol Activity Coefficients at Relative 

Humidities up to 99% Using the Hygroscopicity Tandem Differential Mobility Analyzer Technique. Aerosol. 

Sci. Tech. 2013, 47 (9), 991-1000. 

31. Rovelli, G.;  Miles, R. E. H.;  Reid, J. P.; Clegg, S. L. Accurate Measurements of Aerosol Hygroscopic 

Growth over a Wide Range in Relative Humidity. J. Phys. Chem. A 2016, 120, 4376−4388. 

32. Davies, J. F.;  Haddrell, A. E.;  Rickards, A. M. J.; Reid, J. P. Simultaneous Analysis of the Equilibrium 

Hygroscopicity and Water Transport Kinetics of Liquid Aerosol. Anal. Chem. 2013, 85 (12), 5819-5826. 

33. Marsh, A.;  Miles, R. E. H.;  Rovelli, G.;  Cowling, A. G.;  Nandy, L.;  Dutcher, C. S.; Reid, J. P., 

Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, 

sugars and amino acids. Atmos. Chem. Phys. 2017, 17 (9), 5583-5599. 

34. Marsh, A.;  Rovelli, G.;  Song, Y. C.;  Pereira, K. L.;  Willoughby, R. E.;  Bzdek, B. R.;  Hamilton, J. 

F.;  Orr-Ewing, A. J.;  Topping, D. O.; Reid, J. P. Accurate representations of the physicochemical properties 

of atmospheric aerosols: when are laboratory measurements of value? Faraday Discuss 2017, 200, 639-661. 

35. Davies, J. F.;  Haddrell, A. E.; Reid, J. P. Time-Resolved Measurements of the Evaporation of Volatile 

Components from Single Aerosol Droplets. Aerosol. Sci. Tech. 2012, 46, 666-677. 

36. Rovelli, G.;  Miles, R. E. H.;  Reid, J. P.; Clegg, S. L. Hygroscopic properties of aminium sulfate 

aerosols. Atmos. Chem. Phys. 2017, 17 (6), 4369-4385. 

37. Glantschnig, W. J.; Chen, S.-H. Light scattering from water droplets in the geometrical optics 

approximation. Appl. Opt. 1981, 20 (14), 2499-2509. 

38. Liu, Y.; Daum, P. H. Relationship of refractive index to mass density and self-consistency of mixing 

rules for multicomponent mixtures like ambient aerosols. J. Aerosol Sci. 2008, 39 (11), 974-986. 

39. Cai, C.;  Miles, R. E. H.;  Cotterell, M. I.;  Marsh, A.;  Rovelli, G.;  Rickards, A. M. J.;  Zhang, Y.-H.; 

Reid, J. P. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive 

Index of Organic–Aqueous Aerosols. J. Phys. Chem. A 2016, 120 (33), 6604-6617. 

40. Kulmala, M.;  Vesala, T.; Wagner, P. An Analytical Expression For the Rate of Binary Condensational 

Particle Growth. Proc. R. Soc. London. A 1993, 441, 689-605. 

41. Zuend, A.;  Marcolli, C.;  Luo, B. P.; Peter, T. A thermodynamic model of mixed organic-inorganic 

aerosols to predict activity coefficients. Atmos. Chem. Phys. 2008, 8 (16), 4559-4593. 

42. Zuend, A.;  Marcolli, C.;  Booth, A. M.;  Lienhard, D. M.;  Soonsin, V.;  Krieger, U. K.;  Topping, D. 

O.;  McFiggans, G.;  Peter, T.; Seinfeld, J. H. New and extended parameterization of the thermodynamic model 

AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, 

carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 2011, 11 (17), 9155-

9206. 



 

18 

 

43. Topping, D.;  Barley, M.;  Bane, M. K.;  Higham, N.;  Aumont, B.;  Dingle, N.; McFiggans, G. 

UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric 

aerosol calculations. Geosci. Model Dev. 2016, 9 (2), 899-914. 

44. Fredenslund, A.;  Jones, R. L.; Prausnitz, J. M. Group-contribution estimation of activity coefficients 

in nonideal liquid mixtures. AIChE Journal 1975, 21 (6), 1086-1099. 

45. Barley, M. H.;  Topping, D. O.; McFiggans, G. Critical Assessment of Liquid Density Estimation 

Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science. J Phys Chem A 

2013, 117 (16), 3428-3441. 

46. Valenzuela, A.;  Reid, J. P.;  Bzdek, B. R.; Orr-Ewing, A. J. Accuracy Required in Measurements of 

Refractive Index and Hygroscopic Response to Reduce Uncertainties in Estimates of Aerosol Radiative 

Forcing Efficiency. J Geophys Res-Atmos 2018, 123 (12), https://doi.org/10.1029/2018JD028365. 

47. Clegg, S. L.; Wexler, A. S. Densities and Apparent Molar Volumes of Atmospherically Important 

Electrolyte Solutions. 1. The Solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4,NH4NO3, 

and NH4Cl From 0 to 50 °C, Including Extrapolations to Very Low Temperature and to the Pure Liquid State, 

and NaHSO4, NaOH, and NH3 at 25 °C. J. Phys. Chem. A 2011, 115, 3393−3460. 

48. Cai, C.;  Marsh, A.;  Zhang, Y.-H.; Reid, J. P. Group Contribution Approach to Predict the Refractive 

Index of Pure Organic Components in Ambient Organic Aerosol. Environ. Sci. Technol. 2017, 51, 9683−9690. 

49. Miles, R. E. H.;  Reid, J. P.; Riipinen, I. Comparison of Approaches for Measuring the Mass 

Accommodation Coefficient for the Condensation of Water and Sensitivities to Uncertainties in 

Thermophysical Properties. J. Phys. Chem. A 2012, 116 (44), 10810-10825. 

50. Song, Y. C.;  Haddrell, A. E.;  Bzdek, B. R.;  Reid, J. P.;  Bannan, T.;  Topping, D. O.;  Percival, C.; 

Cai, C. Measurements and Predictions of Binary Component Aerosol Particle Viscosity. J. Phys. Chem. A 

2016, 120 (41), 8123-8137. 

51. Rindelaub, J. D.;  Craig, R. L.;  Nandy, L.;  Bondy, A. L.;  Dutcher, C. S.;  Shepson, P. B.; Ault, A. P. 

Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with 

Relative Humidity. J. Phys. Chem. A 2016, 120 (6), 911-917. 

52. Clegg, S. L.;  Brimblecombe, P.; Wexler, A. S. Thermodynamic model of the system H+-NH4
+-Na+-

SO4
2--NO3

--Cl--H2O at 298.15 K. J. Phys. Chem. A 1998, 102 (12), 2155-2171. 

53. Guo, X.;  Shou, J. J.;  Zhang, Y. H.; Reid, J. P. Micro-Raman analysis of association equilibria in 

supersaturated NaClO4 droplets. Analyst 2010, 135 (3), 495-502. 

54. Zarzana, K. J.;  Cappa, C. D.; Tolbert, M. A. Sensitivity of Aerosol Refractive Index Retrievals Using 

Optical Spectroscopy. Aerosol. Sci. Tech. 2014, 48 (11), 1133-1144. 

55. Aristov, I. V.;  Bobreshova, O. V.; Strel'nikova, O. Y. Glycine and L-lysine ionization in a mixed 

aqueous solution. Russ. J. Electrochem.+ 2002, 38 (5), 567-569. 

 

  

https://doi.org/


 

19 

 

TABLES 

Table 1: Summary of the compounds in each mixture with the number of moles of that solute in brackets. An 

approximate solubility limit for each mixture is also reported, which is the maximum MFS at which solutes 

dissolved. The O:C ratio of each mixture and the solution mixture pH at the stated MFS are also reported. 

 

#Mixture Mixture 

1 

Mixture 

2 

Mixture 

3 

Mixture 

4 

Mixture 

5 

Mixture 

6 

Mixture 7 

Component 

1 

Glycine 

(1) 

Methyl 

Succinic 

Acid 

(1) 

Oxalic 

Acid 

(1) 

Glycine 

(1) 

Glutaric 

Acid 

(1) 

Glycine 

(2) 

3,3-Dimethyl 

Glutaric 

Acid 

(1) 

Component 

2 

Lysine 

(1) 

Arginine 

(1) 

Malonic 

Acid 

(1) 

Lysine 

(1) 

Malonic 

Acid 

(1) 

Lysine 

(2) 

2,2-Dimethyl 

Glutaric 

Acid 

(1) 

Component 

3 

Glutaric 

Acid 

(1) 

Glutaric 

Acid 

(1) 

   Glutaric 

Acid 

(1) 

Pimelic Acid 

(1) 

Component 

4 

Malonic 

Acid 

(1) 

 

Citric 

Acid 

(1) 

   Malonic 

Acid 

(1) 

 

 

Solubility 

Limit 

0.3858 0.3260 0.1657 0.3717 0.5288 0.3610 0.0394 

O:C Ratio 0.8 0.77 1.6 0.571 1 0.8 0.571 

Measured 

pH of Bulk 

Solution 

(MFS) 

3.44 

(0.13) 

3.16 

(0.08) 

0.61 

(0.08) 

9.75 

(0.08) 

1.38 

(0.08) 

4.49 

(0.16) 

2.35 

(0.03) 

Literature 

value of pH  

   9.52 55    

 

Table 2: Refractive index and density parametrisations, used in the analysis of mixtures presented in this work 

(ρ
sol

 is the density of the solution in kg·m-3 with φ representing the MFS). 

Mixture  RI 
Density / 

gcm-3 

ρ
sol

 = a + bφ1/2 + cφ + dφ3/2 

a b c d 

Mixture 1 1.5200 1.3526 998.2 43.803 67.102 241.45 

Mixture 2 1.52638 1.38503 997.94 47.53 68.84 269.91 

Mixture 3 1.48356 1.56608 997.95 158.03 -249 655.82 

Mixture 4 1.58407 1.35483 997.4 -26.81 457.33 -186.58 

Mixture 5 1.46387 1.35079 997.4 7.76 250.84 99.36 

Mixture 6 1.54016 1.35549 997.4 -27.04 439.76 -61.65 

Mixture 7 1.48947 1.22248 998.05 16.72 108.14 99.02 
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FIGURES 

 

 

Figure 1: Mixture 5 (a) density and (b) RI as a function of MFS. In both (a) and (b), bulk measurements of 

aqueous mixture density and refractive index are shown (black solid squares) alongside the parametrisation of 

measurements (black solid line). The binary-predicted values are also shown (purple dashed line). 

 

 

 

Figure 2: Mixture 1 (a) density and (b) RI as a function of MFS. In both (a) and (b), bulk measurements of 

aqueous mixture density and refractive index are shown (black solid squares) alongside the parametrisation of 

measurements using the two possible density treatments i.e. polynomial fitting (black line) and ideal mixing 

(blue line). The binary-predicted values are also shown (purple dashed line). 
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Figure 3: In (a) and (b) ρideal - ρpredicted values against MFS (solid lines) for all mixtures. In (c) and (d) ρpoly - 

ρpredicted values against MFS (dashed lines) for all mixtures. In (a) - (d) solid squares indicate the maximum 

solubility of bulk measurement taken for each mixture. 

 

 

 

 

Figure 4: In (a) density vs. MFS and (b) MFS vs. water activity for Mixture 1 (glycine, lysine, glutaric and 

malonic acids). Orange and yellow shaded areas correspond to a ± 2 and ± 5% errors in pure component 

density, respectively.  
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Figure 5: In (a)-(g) hygroscopicity represented in terms of MFS vs. water activity for Mixtures 1 - 7.   
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Figure 6: In (a) to (g), κ vs. water activity for all Mixtures 1-7. CK-EDB measurements (solid black squares) 

Are reported together with predicted κ using eq. 6, 7 and 8 for mass (black solid line), mole (red solid line) 

and volume (blue solid line) weighted individual components κ.  
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Figure 7: Hygroscopicity parameter κ against water activity for all mixtures. (a) CK-EDB measurements (data 

points) and UManSysProp thermodynamic predictions (solid lines). (b) Correlation plot of modelled κ, from 

UManSysProp (solid points) or volume weighted κ calculated from binary measurements (open symbols) both 

against measured experimental κ at aw = 0.95. Key for (a) and (b) provided in (b). 
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Figure 8: MFS vs. water activity CK-EDB measurements (black squares) for Mixture 3 (oxalic and malonic 

acid) in (a), Mixture 5 (glutaric and malonic acid) in (b) and Mixture 7 (pimelic, 2,2-dimethylglutaric and 3,3-

dimethylglutaric acids) in (c). In all panels AIOMFAC-web predictions are shown (solid black line). UNIFAC 

functional groups used to represent each mixture are listed in supplement Table S4.  
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