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Composite laminate stiffened panels are often used in aircraft fuselage design because of

their favourable properties. To assess the failure load of these thin-walled structures and to

exploit their reserves, a reliable simulation capability for their postbuckling behaviour is often

necessary. To perform a realistic failure analysis and to accurately detect final collapse, mate-

rial degradation should be considered. Global-local approaches are computationally efficient

techniques to perform a progressive failure analysis and to examine localized damaged areas in

detail. In this paper, a two-way coupling global-local approach is presented, including a com-

bination of different damage modes, such as matrix cracking, fiber damage and skin-stringer

debonding. An accurate exchange of information concerning the damage state between global

and refined local models is performed. From the global to the local model, the displacements

are transferred through a submodeling procedure. Afterwards, the degraded material prop-

erties obtained from the local model analysis are returned to the global model with a special

mapping technique that accounts for the different mesh sizes at the two levels. The two-way

coupling procedure is applied to the progressive failure analysis of a one-stringer composite

panel loaded in compression. Finally, the numerical results of the procedure are compared

with experimental results.

I. Nomenclature

A = area

C = material stiffness matrix

d = damage variable for cohesive element

df = damage variable for the fibre degradation by Linde

dm = damage variable for the matrix degradation by Linde
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δ = maximum relative displacement

E = Young’s modulus

F = force

ff = fibre failure condition for Linde criterion

fm = matrix failure condition for Linde criterion

G = shear stiffness

G f = fracture energy of fibre

Gm = fracture energy of matrix

GIc = total critical energy release rate in mode I

GI Ic = total critical energy release rate in mode II

GI , GI I , GI I I = energy release rates in mode I, II and III

K = interface stiffness matrix

K0 = initial interface stiffness

L = length

LC = characteristic element length

SA = axial shear strength

ST = transverse shear strength

t = thickness

w = width

XC = longitudinal compressive strength

XT = longitudinal tensile strength

YC = transverse in-plane compressive strength

YT = transverse in-plane tensile strength

II. Introduction

Theextensive use of fiber-reinforced composite laminates in the aircraft application for light-weight structures

during the last decades is explained by their excellent material properties such as high strength and stiffness

ratios. However, composite structures demonstrate great advantages, the numerical assessment and experimental

validation involve high costs. A finite element global-local coupling approach is a widely applied methodology in failure

analysis of structures that aims at reducing computational efforts on the one hand and at accurately examining critical

areas where damage occurs on the other.
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A. Global-Local Coupling Methods

Within the context of coupling approaches, one-way and tight coupling methods prevail. One-way coupling is a term

used to describe a transfer of information in one direction between separated models, i.e. from the global to the local

level or visa versa. Tight coupling means that global and local models are not separated and systems of equations are

solved simultaneously. An overview of these methods can be found in Hühne et al. [1]. Certain two-way methods are

available that can treat global and local models separately. The multiscale projection method by Löhnert and Belytschko

[2] simulated fracture and crack propagation using XFEM to investigate the effect of macrocracks and microcracks

interactions leading to damage. The adaptive progressive damage modelling technique by Labeas et al. [3] was used

for the prediction of damage initiation and evolution in composite structures. Their approach combines a progressive

damage modelling technique with the submodeling method. The homogenization-based iterative two-way multiscale

approach by Chrupalla et al. [4] accounted for the effects of local damage on the global behavior of composite structures.

The main difference between the aforementioned approaches is the way the degraded properties are transferred back

from the local to the global level. An efficient local-global transfer technique for composite structures proposed by

Hühne et al. [1], which includes matrix and fiber failure, was based on calculation of effective material properties and is

extended in the current research. The present technique is different from the ones used in other works. A more accurate

homogenization scheme is used than the simplified procedure of averaging the local engineering constants performed by

Labeas et al. [3]. Another advantage of the present approach is that it is non-intrusive in the sense that it can be directly

combined with standardly available commercial finite element codes.

Skin-stringer debonding in composite panels has been considered by several authors. A loose one-way coupling

analysis was performed by Reinoso et al. [5]. In this approach, information was transferred from the global to the local

level and cohesive elements were utilized for the local model. Orifici et al. [6] performed global-local analysis with ply

degradation and a method for capturing interlaminar crack growth based on multi-point constraints controlled using the

Virtual Crack Closure Technique. The creation of the local models was based on monitoring a strength-based criterion

in the skin–stiffener interface. An optimization technique employing a genetic algorithm was proposed by Faggiani and

Falzon [7], which aimed at minimizing debonding damage in the postbuckling regime of stiffened panels by optimizing

the laminate stacking sequence. A global-local method was applied in the analysis of a panel with I-shaped stiffeners

in order to make the application of the optimization procedure feasible. The non-intrusive global-local technique by

Gendre et al. [8] examined separately a global linear model of the whole structure and a local nonlinear submodel

representing the critical area. After each iteration loop, a residual force vector was calculated from the difference

between global and local reaction forces at the border of these models. This load vector was applied to the nodes

of the global model in order to provoke the deformation of the global model, transferring the influence of the local

nonlinearities. Vescovini et al. [9] performed a one-way coupling analysis. Shell elements were used for the global and

local models, while cohesive elements were applied to model interface layer at the local level. The main limitations
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of existing coupling approaches are associated with their efficiency in detecting critical areas at the global level and

their accuracy in information exchange between global and local levels, in particular their capability to account for

mutual interaction. In the current work, a transition of degraded properties from the local to the global level assures that

damage propagation is appropriately represented within a progressive failure analysis at the global level.

B. Developed Global-Local Two-way Loose Coupling Approach

In the global-local coupling procedure for composite stiffened panels developed by Hühne et al. [1] and enhanced later

by Akterskaia et al. [10], intralaminar damage (fibre and matrix damage) was analysed. Akterskaia et al. subsequently

developed a new global-local approach for progressive failure in stiffened panels with skin-stringer separation [11]. In

the present paper, the limitation of the previous works where only one type of damage was considered is overcome. The

debonding damage between skin and stringer and intralaminar damage are examined together, so that various important

failure modes are incorporated in the approach. It is important to note that matrix and fiber damage as well as debonding

are principal failure modes as observed during experiments conducted for laminated stiffened panels [12]. Skin-stringer

separation is recognized as a crucial damage mode that can lead either to a final collapse of the structure, or in the case

of good bonding between the skin and the stringer, it could trigger other damage mechanisms, such as delaminations in

adjacent layers and fiber failure in the stringer [5], [13], [14]. The main idea of the loose coupling procedure proposed

in the current work [10], [11] is demonstrated in Fig. 1, where the procedure is shown only for the case of skin-stringer

debonding.

The flowchart of the two-way loose coupling procedure [1] is shown in Fig. 2. A global analysis is conducted,

followed by local model calculations and local-global transfer of reduced properties. Afterwards the global analysis is

repeated to check whether the stress redistribution induced by degraded material properties results in the appearance of

new critical areas or an extension of existing ones which is shown in the flowchart in the diamond called "New local

damage?". The global-local procedure is performed until no new intralaminar damage initiation or no new skin-stringer

separation onset is detected at the prescribed displacement level under consideration. When this “iteration loop” is

completed, the load at the global level is increased and thereby the next “coupling loop” is started. The procedure is

performed until final failure of the structure occurs. The proposed global-local method was developed for structures

experiencing localized damage. Hence, an assumption has been formulated stating that limited amount of coupling

loops are required to reach a state of the final failure. In the present paper, this procedure is applied for the case, in

which skin-stringer debonding and intralaminar damage occur simultaneously, as happens in realistic experimental tests.

The main advantage of the presented approach is that no preliminary knowledge is required about the location and

the size of the intralaminar damage and the skin-stringer debonding as the damage initiation is monitored at the global

level. Another important aspect is the exchange of the damage information from the local to the global level through the

reduced material properties which allows for the performing of the progressive failure analysis until the final collapse.
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Fig. 1 Two-way loose coupling procedure for skin-stringer debonding: application to a one-stringer stiffened
panel. The grey area around connector element corresponds to the nodal area of this connector element

III. Detailed Methodology: Two-Way Loose Coupling Approach with Interlaminar and
Intralaminar Failure

The progressive failure analysis (using the commercial finite element (FE) software Abaqus) is carried out until

global failure of the structure takes place. The skin and the stringer of the panel in the global model are represented

by 4-node laminated shell elements using reduced integration (S4R elements). The adhesive layer is regarded as a

structural connection and was modelled with connector elements of Cartesian type available in Abaqus. These elements

were selected, since the prediction of debonding initiation in the adhesive layer requires knowledge of the normal and

shear stress, whereas application of 3D solid elements is not recommended because of their inappropriate aspect ratio.

The model at the global level is used to identify the areas where matrix or fibre failure are expected to occur by applying

the Linde criterion [15], which stems from the Puck criterion and distinguishes between fibre and matrix damage as well

as between compressive and tensile stresses. The material damage model performs a gradual degradation of material

properties using the fracture energies of fibre and matrix. In the following, XT and XC denote the longitudinal tensile
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Fig. 2 Flowchart of two-way loose coupling procedure for intralaminar failure and skin-stringer debonding.

and compressive strength, respectively, and YT and YC are the transverse in-plane tensile and compressive strength,

respectively, whereas SA is the axial shear strength and Ci j are the components of the stiffness matrix. Damage initiates

in the matrix when the index fm exceeds the failure strain perpendicular to the fiber direction in tension and calculated

as YT /C22 and fibre damage occurs when the index ff exceeds XT /C11 which is the failure strain in the fiber direction in

tension, see Eqs. 1 and 2:

fm =

√√√
YT
YC
(ε22)2 +

(
YT −

Y2
T

YC

)
ε22

C22
+

(
YT
SA

)2
ε2
12 >

YT
C22

(1)

ff =

√√√
XT

XC
(ε11)2 +

(
XT −

X2
T

XC

)
ε11

C11
>

XT

C11
(2)
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where the strain components εi j correspond to the local material coordinates related to the orientation of the fibers, index

1 refers to the fibre direction, whereas index 2 (in-plane) and index 3 (out-of-plane) refer to the transverse directions.

The damage parameters dm and df introduced by Linde correspond to the partial matrix and fiber degradation:

dm = 1 − YT
fm

e−
(
C22YT ( fm−YT )Lc

Gm

)
(3)

df = 1 − XT

ff
e
−
(
C11XT ( ff −XT )Lc

Gf

)
(4)

The characteristic element length LC is used to reduce the mesh dependency of the degradation model. The matrix

and fiber strengths are Gm and G f , respectively. The undamaged elasticity tensor is Ci j (where i,j=1,6). The effective

elasticity tensor Cd used by Linde [15] is defined as:

C =

©«

(1 − df )C11 (1 − df )(1 − dm)C12 (1 − df )C13 0 0 0

(1 − dm)C22 (1 − dm)C23 0 0 0

C33 0 0 0

(1 − df )(1 − dm)C44 0 0

symmetric C55 0

C66

ª®®®®®®®®®®®®®®®®®®®¬

(5)

It is worth mentioning that the presented global-local strategy is not restricted to the particular intralaminar failure

criterion used and other criteria such as LaRC04 by Pinho et al. [16] or developed later by Pinho et al. [17] could be

applied. A good overview of existing failure criteria and their comparison have been performed during the effort of

three stages of World Wide Failure Exercise (WWFE), see Hinton et al. [18], Kaddour and Hinton [19], Kaddour et al.

[20] and Kaddour et al. [21]. Material degradation models are reviewed in [22] and more recently in [23]. However, the

particular choice of the Linde criterion is explained by the aim to obtain reliable results at a relatively low computational

costs with an accurate material model, but also with a reasonably simple model that is not excessively demanding in

terms of material model parameters required. The Linde criterion is an appropriate criterion for our current purposes.

The relative simplicity of the implementation and the possibility of combining it with the material degradation model by

Linde are convenient. It is noted, that other failure criteria can also be used within the current implementation of the

global-local framework. Since the criterion distinguishes between matrix and fibre failure, it retains the possibility of a

validation with experimental results.

The regions of the interface layer where the onset of debonding between skin and stringer may take place are
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determined by means of a quadratic stress criterion, expressed by the following relation:

(
< σ33 >

Nmax

)2
+

(
σ13

Smax

)2
+

(
σ23

Tmax

)2
≥ 1 (6)

Here <. . . > represents Macauley brackets operator, σ33 is a stress in the pure normal mode, σ13 and σ23 are nominal

stresses acting in the first and second shear directions and Nmax , Smax , Tmax are the maximum corresponding stresses.

The normal and two transverse shear stresses σ33 and σ13, σ23 respectively are calculated based on the total forces:

σi3 =
Fi

Ael
, i = 1, 2, 3 (7)

where Fi is a force and index i denotes 1- longitudinal, 2- transverse and 3- normal axis respectively, Ael is an area of

applied force. Ael is equal to the full in-plane area of the shell element for interior connectors or to half of this area

corresponding to the case when connectors tie the edges. There are also connectors applied to the corner nodes of the

panel at both edges respectively. However, these corners do not represent regions of interest and, hence, they are not

checked for the damage initiation.

After completion of the global analysis, the required number of local models is created based on the information

about the size and the location of critical areas determined by the failure initiation criteria discussed earlier. The

detailed model with refined mesh density at the local level allows for considering the influence of the damaged region at

the global level. An advantage of interface cohesive elements technique over another common method, the Virtual

Crack Closure Technique (VCCT), is their ability not only to observe the evolution of the damage through the interface,

but also to predict the onset of the layer separation. These elements have already been successfully applied by other

researchers [24], [25]. However, preliminary studies are required related to the accuracy of the mesh refinement, since a

higher number of cohesive elements compared to the structural elements is needed in order to ensure reliable results

[5], [26]. In the present study, the evolution of the debonding is assumed to be described through the Benzeggagh and

Kenane fracture criterion [27] extended to 3D cases. The mixed mode critical energy release rate Gc is supposed to be

equal to the area under the curve in the traction – separation diagram, see Fig. 3, and is calculated by:

Gc = GIc + (GI Ic − GIc)
(

GI I + GI I I

GI + GI I + GI I I

)η
(8)

where GIc and GI Ic are mode I and II critical energy release rates and GI , GI I , GI I I are single mode energy release

rates corresponding to fracture modes I, II and III and their sum is the total energy release rate. The parameter η is

determined empirically [27] and is assumed to be 2.284 [24].
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Fig. 3 Bilinear traction-separation law.

The initial stiffness of each discrete interface element is defined as follows:

K0 =
E A
t

(9)

where E is the Young’s modulus of the corresponding interface material, A and t are in-plane nodal area and thickness

in the normal direction of the interface element, respectively.

The linear degradation of the adhesive element stiffness is described by:

Ke f f = (1 − d)K0 (10)

where the scalar parameter d varies from 0 for an undamaged element to 1 for a complete crack opening and K0 is the

initial stiffness. The intralaminar material properties of the skin and the stringer are degraded according to the material

degradation model discussed in [1]. Averaged local stiffness was proposed to be calculated [11] for each area that

corresponds to one connector element:

Klocal =

N∑
i=1

Klocal,i

N
=

N∑
i=1
(1 − di)Klocal,0

N
= Klocal,0

©«
1 −

N∑
i=1

di

N

ª®®®®®®¬
(11)

where N is the number of local continuum interface elements corresponding to one global discrete interface element.

Afterwards, the multiplication coefficient of the right term that is based on the averaged damage variable parameter d is

used to obtain the degraded global interface stiffness:

Kglobalj = Kglobalj,0

©«
1 −

N∑
i=1

di

N

ª®®®®®®¬
, j = 1..Nglobal (12)
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where Nglobal is the number of global adhesive elements.

This approach allows an independent calculation of the multiplication coefficient for each global element. It is also

important to note that only those global elemental stiffnesses are degraded during the next coupling loop that correspond

to the local cohesive elements in the softening regime. Other global adhesive elements keep their initial stiffness.

The required number of coupling loops described in Fig. 2 is carried out until the global panel failure occurs.

Comparisons are conducted first with a full reference model with a mesh size, that is comparable to the local model,

where solid elements are used for the skin and the stringer and cohesive elements are applied for the interface layer.

Secondly, the numerical predictions of the global-local method are compared to the experimental results of a one-stringer

panel.

Another interlaminar damage mechanism such as delamination of the adjacent layers is not considered within the

presented approach. On the one hand, this type of damage was not reported as critical to the structural collapse as the

final failure in stiffened panels under compression usually takes place due to the initiation and growth of matrix damage

and skin-stringer separation finishing by final fiber failure. On the other hand, within the current framework of the

global-local method it is not directly possible to predict the delamination onset with conventional elements at the global

level. However, in cases when it is known in advance at which position a delamination is expected to occur, the initial

model could make use of stacked shell elements and our current debonding procedure could be used.

IV. Application of the Two-Way Loose Coupling Procedure to a One-Stringer Composite
Panel

First, the method is applied to a stiffened panel with one T-shaped stringer. This panel is demonstrated in Fig. 4,

geometrical and material characteristics are listed in Table 1 and Table 2, respectively. The material “1-direction”

corresponds to the longitudinal axis of the panel. The unidirectional layers are of 0.25 mm thickness each with a

symmetric composite layup [0; 90]s. Progressive damage was examined under the following boundary conditions: a

fully clamped transverse edge is used and the opposite transverse edge is constrained in all directions except for the

longitudinal direction, in which compressive load is imposed as prescribed displacement. Longitudinal edges are free to

deform.

A. Reference Model

In order to evaluate the results of the coupling approach, a 3D reference model was created. Linear 8-nodes solid

elements (C3D8) with a nominal element edge length of 1 mm were employed for modelling the skin and the stringer,

one element per layer resulting in 4 elements through thickness. Non-zero thickness cohesive elements with bilinear

traction-separation law replaced the connector elements in the adhesive area. The adhesive properties are summarized

in Table 3. Four cohesive elements per side of one solid element were chosen after performing convergence studies to
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Table 1 Geometry of stiffened composite panel.

Description Value
Panel length, l (mm) 100
Panel width, w (mm) 40
Stringer width, b (mm) 20
Stringer height, h (mm) 8
Laminate thickness, tskin, tblade (mm) 1
Adhesive thickness, tadh (mm) 0.2

Table 2 Material data for composite and adhesive.

Stiffness properties Value
Young’s modulus in 1-direction, E11 (GPa) 146.5
Young’s modulus in 2-direction, E22 (GPa) 9.7
Shear modulus in 12-plane, G12 (GPa) 5.1
Poisson’s ratio, ν12 0.28
Tensile failure stress in 1-direction, XT (MPa) 2583
Compressive failure stress in 1-direction, XC (MPa) 1483
Tensile failure stress in 2-direction, YT (MPa) 92
Compressive failure stress in 2-direction, YC (MPa) 270
Shear failure stress in 12-plane, SA (MPa) 106
Fracture energy of fiber, G f (N/mm) 12.5
Fracture energy of matrix, Gm (N/mm) 1.0
Young’s modulus of adhesive, Eadh (GPa) 3.0
Poisson’s ratio of adhesive νadh 0.4
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Fig. 4 Geometry of the tested one-stringer stiffened panel.

Table 3 Material data for cohesive elements, adhesive type FM300 from [6].

Cohesive element properties Value
Interface element stiffness before the damage onset, K (N/mm3) 106

Interfacial strength, mode I, τI (MPa) 61
Interfacial strength, mode II and III, τI I, τI I I (MPa) 68
Fracture toughness, mode I, GIc (N/mm) 0.243
Fracture toughness, mode II and III, GI Ic,GI I Ic (N/mm) 0.514

estimate the minimum required number of cohesive and solid elements. The total number of elements was defined

after the preliminary mesh convergence studies: 68,800 elements in total, from which 38,400 are cohesive elements.

To connect different mesh sizes of the skin and the foot of the stringer to the larger number of adhesive elements, the

Abaqus *TIE constraint was used, with special attention to the choice of the master and slave surface [5]. The master

surface corresponds to a skin or a stringer surface, slave surfaces correspond to the cohesive elements.

The material degradation model by Linde [15] was implemented through the Abaqus user-defined material subroutine

(UMAT) to account for intralaminar damage. Interlaminar damage was examined with cohesive elements with the

bilinear traction-separation law. An imperfection with the shape of the first eigenmode obtained from the linear buckling

analysis was applied, similar to the global analysis.

B. Global Model: Linear Elastic Material

The global model consists of 280 4-node shell elements of 5 mm nominal element edge size using reduced integration

(Abaqus S4R elements). A user-defined material subroutine (UMAT) was utilized to define the global material properties
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obtained from the local level calculations. An adhesive layer between the skin and the foot of the stringer was modelled

with connector elements. The axial compressive displacement was applied to the transverse edge and a static nonlinear

analysis in Abaqus Standard was performed. The first eigenmode was chosen to trigger the buckling deformation of the

panel. For the post-processing of the global model results, two Python scripts were used. The first one was developed

previously by Hühne et al. [1] to determine the critical global areas through the damage initiation criterion for matrix

and fibre by Linde [28] discussed above. The same criterion is also applied to a local model. The second python script

was developed with the goal of identification of critical regions due to the debonding onset by the quadratic stress

criterion (Eq. 6) applied to the connector elements.

Four global-local coupling loops were performed with a consequent increase of the applied displacement: u=0.56 mm,

0.60 mm, 0.63 mm and 0.67 mm until the final failure was detected. An example of damaged areas detected during

the global analysis of the first coupling step is demonstrated in Fig. 5. At the applied displacement of 0.56 mm, the

post-processing tool detected the potential areas of matrix damage and debonding initiation between the skin and the

stringer. Based on these critical regions, two local models were created, Local model 1 and Local model 2, respectively.

Fig. 5 Coupling loop 1, global level. Elements where damage onset was predicted are displayed in red. (a)
First critical global areas related to matrix failure, (b) first critical connector elements.

C. Local Models: Material Non-Linearity and Cohesive Debonding

The local models are created automatically for the critical areas identified during the global simulation by using a

MATLAB preprocessor. Input parameters for this script are the location and the respective size of the local model, while

the obtained output files contain nodes and elements. The size of the local model is designed such that it should cover

one neighboring element in-plane additional to damaged ones in case of the intralaminar damage as suggested in earlier

work [10]. The reason is that the paths of the matrix and fibre damage growth are unknown in advance. Although it

should be noted, that as the displacements from the global model correspond to the displacement load when the failure
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criterion was just satisfied, the damage is not expected to evolve outside of these boundaries. As for the interlaminar

damage, the local models include only the connector elements detected by the failure criterion as it is expected that the

skin-stringer debonding propagates towards the stringer blade, in this buckling shape, transversely to the longitudinal

direction. When the damaged regions from the intralaminar and interlaminar damage overlap one local model is created

that covers both areas. Only the damaged parts of the panel are included in the local model in order to decrease the

computational costs. Thus, the local models contained the skin and the foot of the stringer until the fourth coupling loop

where the stringer was also damaged and consequently incorporated into the local models. The only required parameter

is the position within the global model. Displacements from the global analysis are utilized as kinematic boundary

conditions at the edges of the local model through the submodeling procedure. The same mesh density and material

parameters as for the reference model are implemented for the sake of consistency. This means that for the local model

the same number (namely four) of cohesive elements per in-plane side of solid element is employed. Intralaminar

damage effects are accounted for through the material degradation model by Linde [15].

The damaged local model created based on the global results of the first coupling loop (Fig. 5) is shown in Fig. 6.

Matrix damage developed in the region of the stringer, cohesive elements are degraded according to the global model

predictions – near the longitudinal edges of the stringer foot. It might be also noticed that some cohesive elements at

the edges are not deleted as it might be physically expected. Cohesive elements in Abaqus [29] are prevented from

being deleted under pure compression to prevent interpenetration of the surrounding layers. In this case the degradation

parameter of this element is equal to 1 and during the recalculation of the global stiffness it corresponds to the fully

damaged element.

Fig. 6 Coupling loop 1, Local model 2, in red: (a) Matrix damage, (b) Cohesive elements degradation.
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Fig. 7 Reference model, displacement u=0.56 mm, in red: (a) Matrix damage, (b) Cohesive elements degrada-
tion.

D. Local-Global Transfer of Updated Properties

Different mesh densities at local and global levels are used. The homogenization-based technique for matrix and

fibre damage proposed by Hühne et al. [1] was used to determine equivalent properties corresponding to each global

element. In the current studies, these effective material properties are calculated for each laminate layer of a global

element independently.

Stiffness degradation of the connector elements is performed using Eq. 12 and applied during the next global analysis

step making use of the Abaqus *FIELD option. Hence, the original material properties of the connector elements

are used at the global level until the increment at which damage is detected. From that increment, degraded material

properties (degraded stiffness) are applied. With an increase of the loading, a degradation of material properties at the

global level is performed subsequently.

E. Coupling Results

The load-displacement curves shown in Fig. 8 demonstrate a comparison of the reference model results and of the

global-local coupling loops where matrix and fibre damage and debonding between skin and stringer were considered.

A good agreement between the reference results and the coupling loops can be observed. After local buckling in both

analyses, the coupling curves remain straight until the first failure was predicted. The discrepancy of the first failure

prediction between the reference and coupling curves can be explained by the fact that determination of the failure was

performed at the global level with a coarse mesh, which again confirms the necessity of a local model with refined mesh

15



to be examined. During the first coupling loop, the global model is loaded with 0.56 mm of compressive displacement.

Both matrix cracking at the stringer basement and debonding onset at the free edge were detected. Based on these results,

two local models were created and demonstrated both types of damage initiation and evolution, see Fig. 5 and Fig. 6.

The locations of the intralaminar damage and skin-stringer debonding in the reference model at the corresponding

applied displacement of 0.56 mm are shown in Fig. 7 with relatively good agreement to the same prediction in the local

model. The updated material properties were transferred back to the global level. Here, the coupling load-displacement

curve decreased load due to sudden degradation of the properties and ensuing stress redistribution. However, the

reference solid model demonstrates a smoother softening behavior which is explained by the fact that the material

properties of the reference model are degraded gradually during the numerical analysis. For the coupling simulations, a

sudden drop of the load-displacement curve is provoked by the sudden degradation of the material stiffness parameters.

The subsequent increase of the compressive displacement up to 0.60 mm demonstrated the evolution of the matrix

damage and debonding at both critical areas identified at the first step. The compression was further increased until a

displacement of 0.63 mm where due to the debonding growth two local models join into one. Finally, the displacement

increase up to 0.67 mm provoked the spreading of fibre and matrix damage across the structure. The panel was severely

damaged at that stage, corresponding to a large drop in the load-carrying capacity, see Fig. 8, and final failure occurred.

Fig. 8 Load-displacement curve of the coupling and references analyses.

Global, local and reference models analyses were carried out under the same computational characteristics. The total

calculation times are 168 s for the first and 265 s for the last global model steps respectively, and 191,084 s for the full 3D
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Table 4 Computational characteristics of models.

Model Number of Number of Degrees of Total
nodes elements freedom computational

time, s
Reference model 192,136 68,800 463,980 191,084
Global model, 1st coupling loop 756 385 2,331 168
Global model, 4th coupling loop 756 385 2,331 265
Local model 1, 1st coupling loop 40,510 21,608 99,906 23,601
Local model 1, 2nd coupling loop 40,510 21,608 99,906 42,594
Local model 1, 3rd coupling loop 7,750 6,480 23,250 21,816
Local model 1, 4th coupling loop 10,440 8,680 31,320 5,445

reference model. Material nonlinearity is included in both global and reference models. However, the reference model

numerical analysis described previously allows for the incremental degradation of the stiffness parameters, whereas the

stiffness update in the global model is performed only four times according to the number of steps. It is important to

note that the total computational time required for the global-local procedure is the sum of the analysis time of global

and local model analysis. It includes four coupling analyses for the global model, with relatively low computational

effort, see Table 4 where only global time for the first and last coupling loops are presented to demonstrate the value

range. The computational time for local models varies from 23,601 s for the local model of the first coupling step to

42,594 s for the second coupling step. During the third and fourth coupling steps, cohesive damage was recognized as

not being significant at the local level and was not accounted for. Hence, the computational time was reduced for local

models during the fourth step to 5,445 s for the first local model, for example. It can be concluded that for this test

case the computational time of the global-local analysis is comparable with the computational time of the reference

model due to relatively large areas of damage. In Table 4, numerical parameters of these models are represented to

give an overview of the order of difference between the reference, local and global-local analyses. In this Table the

computational time of the first local model is shown for each coupling loop. It is expected that due to the fact that both

local models could be calculated independently and, thus, in parallel, only the largest computational time of the two

models during the same coupling loop is important.

V. Comparison with Experimental Results
Finally, a comparison of the numerical calculations of the extended global-local approach with existing experimental

results is carried out. The chosen specimen was examined within the COCOMAT project in [6] and was denoted

as D1 in these studies, see Fig. 9. The global-local method was previously validated for this case considering only

matrix and fibre damage modes [1] with some differences in behaviour when reaching the failure load. Following
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the observations during the experimental procedure, a separation between skin and stringer also took place. For this

reason, it is interesting to compare the experimental results with the coupling calculations including the combination of

skin-stringer debonding and intralaminar failure.

Geometric data and the stacking sequence corresponding to skin and stringer and their resulting total thickness are

summarized in Table 5. The unidirectional CFRC material IM7/8552 UD was used for manufacturing the skin and the

stringer of the panel and FM 300 for the adhesive, see Table 6 for the material properties. The mechanical properties of

the adhesive layer were utilized as for the previous analysis; see Table 2, they correspond to the FM 300 material.

Fig. 9 Geometry of D1 stiffened panel (from [6]).

A. Reference Model

A reference model is created with linear solid elements (C3D8 of Abaqus) utilized for skin and stringer of the

composite panel and the nonlinear material degradation model is included in the analysis. The cohesive elements

discussed earlier with bilinear traction-separation law are applied to model skin-stringer separation with four cohesive

elements per side of one solid element. Mesh convergence studies were performed in order to choose an in-plane solid

element length of 1 mm. One element through the thickness represents one composite layer. Finally, the mesh of the

reference model consists of 678,800 brick and 198,400 cohesive elements. The first eigenmode is used as an initial

imperfection to trigger the postbuckling shape. The geometry and boundary conditions of the composite panel are

created with reference to the experimental data presented in Fig. 9. One of the transverse edges is fully clamped at the
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Table 5 Geometry data of a D1 stiffened panel (from [6]).

Description Value
Total length, L (mm) 400
Free length, L f (mm) 300
Width, b (mm) 64
Stiffener width, w (mm) 32
Stiffener height, h (mm) 14
Ply thickness, t (mm) 0.125
Skin lay-up [90,±45, 0]s
Stiffener lay-up [(±45)3, 06]s
Ply thickness, tskin (mm) 1.5
Stringer flange thickness, t f lange (mm) 1.5
Stringer web thickness, tskin (mm) 1.0

Table 6 Material data for composite layer of D1 stiffened panel (from [6]).

Stiffness properties Value
Young’s modulus in 1-direction, E11 (MPa) 147000
Young’s modulus in 2-direction, E22 (MPa) 11800
Shear modulus in 12-plane, G12 (MPa) 6000
Shear modulus in 31-plane, G31 (MPa) 6000
Shear modulus in 23-plane, G23 (MPa) 4000
Poisson’s ratio, ν12 0.3
Tensile failure stress in 1-direction, XT (MPa) 2583
Compressive failure stress in 1-direction, XC (MPa) 1483
Tensile failure stress in 2-direction, YT (MPa) 92
Compressive failure stress in 2-direction, YC (MPa) 270
Shear failure stress in 12-plane, SA (MPa) 106
Fracture energy of fiber, G f (N/mm) 12.5
Fracture energy of matrix, Gm (N/mm) 1.0
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end, in all degrees of freedom, except the displacement in the longitudinal direction, are constrained at the opposite edge.

B. Global Model: Linear Elastic Material

The global model consists of 2800 linear shell elements (S4R) with an in-plane element size equal to 4 mm

which means 100 elements in longitudinal direction and 909 connector elements for the adhesive layer. The boundary

conditions are similar to the reference solid model. The stiffness of the connector elements is degraded consequently

during the coupling procedure with regard to the degradation at the local level. The linear elastic material model is

defined by means of a user-defined subroutine (UMAT) and the material properties are decreased .

C. Local Models: Material Non-Linearity and Cohesive Debonding

The local models are created with the same mesh density and the same type of solid element (C3D8 of Abaqus) as

the reference solid model. The size and position of the local models are defined based on the critical areas observed at

the global level.

Fig. 10 Iteration 1. Critical global areas for the fibre damage in the blade of the stiffener (left) and overlay plot
of two corresponding local models (right) for the intact panel D1.

D. Coupling Results

During the experimental tests, the D1 specimen demonstrated all types of damage instantaneously, such as skin-

stringer separation, fiber fracture in the stringer and matrix cracking around the skin-stringer interface [6] not allowing

for a proper definition of the damage sequence. The final failure happened due to intralaminar damage near the loaded

or clamped edges. In accordance with the experimental results, the numerical analysis of the global-local coupling

loops and the reference solid model both demonstrated sudden initiation and evolution of the damage in the blade of the

stiffener, and separation between skin and stringer together with extensive matrix damage at the foot of the stringer.
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Fig. 11 Iteration 1. Critical global areas for the skin-stringer debonding (left) and overlay plot of two corre-
sponding local models (right) for the intact panel D1.

One coupling loop at the displacement load level of 1.9 mm was performed and it was observed that the damage

had already started at a slightly lower level. After three iterations of coupling loops, the simulation of the damage

propagation in the global model resulted in a final collapse of the panel. At the displacement level of around 1.89 mm,

the fiber damage started symmetrically at the stringer blade in the regions close to the potting system. Two local

models were created that account for the material damage evolution in the stringer, corresponding to Regions 1 and

2 in Fig. 10. Approximately at the same load level, the debonding between skin and stringer were detected, see Fig.

11. The evolution of the damage in blades of the stringer after the second iteration required an increase of the local

models’ sizes which is illustrated in Fig. 12. The intralaminar damage in the reference model shown in Fig. 13 also

occurred in two areas similarly to the global model predictions. Although it should be noted that the damage in the

blade of the reference model developed differently than in the local models. This difference might be explained by the

submodeling procedure which only transfers displacements without satisfying the equilibrium requirements. As the

damage started at both sides of the stringer, two types of local models creation approaches were compared: one full local

model covering both sides and two separate local models. The aim was to choose the computationally most effective

approach without important loss in accuracy of the degradation prediction. Finally, it was concluded that two separate

local models, located as shown in Fig. 11 symmetrically to the stringer and covering the damaged Regions 3 and 4, are

sufficiently accurate. The damage in cohesive elements from these local models is demonstrated in Fig. 14 and agrees
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Fig. 12 Matrix and fiber damage of local model 1 for the intact panel D1 (Iterations 1–3) In red: new local
damage.

sufficiently well with the damage in the reference model at the displacement of 1.9 mm. The load-displacement curves

for three experimental results [14] and numerical simulations obtained from the coupling procedure and reference solid

model are shown in Fig. 15. The initial structural stiffness of the numerical simulations correlates well with one of the

experimental measurements, while the slight discrepancy with the other two experimental results could be explained by

the applied material properties that were suggested by Orifici et al. [14]. The developed global-local strategy accords to

experimental solution in terms of the location and sequence of detected damage events as well as in the final collapse.

Similarly to the previous case, numerical parameters of the global, local and reference models are presented in Table

7. The computational time is shown for the first local model that was created to account for the damage in the blade of

the stringer, see Fig. 10, as the maximum computational time during the iteration loops for local models. Thus, the

total computational time to complete the global-local coupling analysis took 964,806 s, whereas for the full reference

model this time was 1,932,780 s. The decrease of the computational time by around 50% obtained by the global-local

simulation compared to the full 3D modeling is a significant achievement of the developed method.
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Fig. 13 Matrix and fiber damage of reference model for the intact panel D1 at the displacement of 1.9 mm.

The comparison of the coupling method results with experimental observations and the reference solid model

analysis revealed, that the coupling method was able to predict realistic damage modes and to account for their growth.

The occurrence of fiber damage in the blade of the stringer was predicted as in the earlier global-local analysis in [1]

including intralaminar damage only, but unlike the results in [1], in the current simulations the fiber damage propagated

over a considerably larger region during the global-local analysis. This increase of the damaged area can be attributed to

the consideration of the skin-stringer debonding in the current analysis and the corresponding stress redistribution over

the structure. The results of the global-local coupling analysis compare reasonably well with the experimental results;

there is a deviation of less than 10% in the prediction of the final failure load.

VI. Conclusion
In this paper, a two-way loose coupling approach for progressive failure analysis was presented for the combination

of intralaminar and debonding damage modes. Inclusion of both damage mechanisms in the global-local strategy allows

for observation of progressive damage evolution similar to that shown in actual structures. The creation of separate

global and local models allows the evolution of damage in the local models to be considered, while the material linearity
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Fig. 14 Cohesive element damage of reference model and local models 3 and 4 for the intact panel D1 at the
displacement of 1.9 mm.

Fig. 15 Load-displacement curve of the D1 stiffened panel.
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Table 7 Computational characteristics of models for the intact panel D1.

Model Number of Number of Degrees of Total
nodes elements freedom computational

time, s
Reference model 1,166,160 857,600 4,272,111 1,932,780
Global model, 1st iteration 3,030 3,709 22,878 323
Global model, 2nd iteration 3,030 3,709 22,878 742
Global model, 3rd iteration 3,030 3,709 22,878 709
Global model, 4th iteration 3,030 3,709 22,878 2089
Local model 1, 1st iteration 82,198 54,144 241,419 271,937
Local model 1, 2nd iteration 82,198 54,144 241,419 268,128
Local model 1, 3rd iteration 108,918 72,192 396,039 420,878

and standard mesh with shell elements of the global model ensures a fast computational time. One of the advantages of

using separate models is the fact that the position of the local model can be easily adjusted based on the increase of the

critical area at the global level. The studies performed in particular assess the effect of skin-stringer debonding growth

on the global panel failure while including intralaminar damage (matrix and fibre damage). The local models obtain

interpolated displacements as boundary conditions from the global model through a submodeling procedure. In turn,

the global model uses the decreased material properties transferred from the local model to simulate the degradation of

the material at the global level and can thus carry out a progressive failure analysis.

The method was illustrated for one-stringer composite panels. First, a numerical simulation of the coupling

procedure was compared with the results of a reference model with 3D elements. For another test case, the numerical

calculations of the two-way coupling approach were compared with existing experimental results. A reasonable

agreement for load-displacement curves between reference model and global-local coupling analysis in the first case,

and between experimental data and the coupling approach in the second case was obtained. A reduction of about 50%

in computational time achieved by the global-local method demonstrates a significant potential for this approach. The

global-local analysis for debonding damage can be further enhanced by also considering the mixed-mode damage

evolution in the debonding analysis.
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