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Abstract 

Purpose of review: Metabolomics directly measure substrates and products of biological processes 

and pathways.  Based on instrumentation and throughput advances, the use of metabolomics has 

only recently become feasible at the population level.  This has led to an intense interest in using the 

new information in combination to genomics, and other –omics technologies, to give biological 

context to the rapidly accumulating associations between genes and diseases or their risk factors. 

Recent findings:  The use of metabolomics-genomics associations for the metabolic characterisation 

of genes of interest have confirmed known pathways and permitted the identification of new ones.  

These include the unknown metabolite X12063 linking satins to myopathies, the role of 

glycerophospholipids in cholesterol metabolism, the structure of lipoprotein (a), the LPL-

independent effect of APOC3 and the role of branched chain amino acids in the antagonistic co-

regulation of high density lipoproteins and triglyceride levels. 

Summary: The findings reviewed illustrate the importance of integrating metabolomics and 

genomics for the greater understanding of biological mechanisms.  The limitations of the current 

approaches are also discussed together with what will be required in order to make the most of the 

current multi-omics data available. 
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Introduction 

Metabolomics is the study of the quantitative complement of small molecules in biological systems.  

The metabolic measures obtained are mostly organic compounds involved in the biochemical 

reactions of the organism and represent the final stage of the flow of information from the genome 

to the transcriptome and then to the proteome before it reaches the biological phenotype 1.  Unlike 

the genes and proteins though, that can be subjected to epigenetic or post-translational changes, 

the metabolites provide a direct signature of biochemical activity and a snapshot of the underlying 

state of the organism or specific biological system sampled 2.  In the case of lipids, lipidomics, a 

subfield of metabolomics, can measure not only the larger groupings of lipids, commonly assessed in 

the clinic,, such as high density lipoproteins (HDL), low density lipoproteins (LDL), triglycerides (TG) 

and total cholesterol, but also their specific subclasses both in terms of concentration and 

composition, as well as a large number of other lipid compounds involved in numerous physiological 

processes or biological structures.  The measurements obtained from the metabolomics approaches 

can be used to study the relationships between the metabolites or used to better characterise a 

complex biological mechanism. 

Genomics study the function of the genome and its role in the manifestation of the organism’s 

characteristics or risk of disease.  The genome can be divided in a protein coding part, known as the 

exome, and a non-coding part.  Changes in both have been associated with a number of diseases or 

phenotypic changes in humans and other organisms.  Very large efforts have focused on cataloguing 

all functional variation present in the genome, either in coding 3, 4 or non-coding regions 5.  Despite 

these efforts and the large number of data currently available, in the majority of cases, we are still 

unsure on how a DNA change results in changes in the observed phenotype. 

Since metabolomics represent phenotyping at the molecular level that extends closer to the 

biological processes taking place in the organism, which are mostly coded by the genome, the 



integration of the two levels of information can provide the opportunity to better study biological 

mechanisms and how they result in a final phenotypic change or disease. 

 

Metabolic traits genome wide association 

The most straightforward method to combine metabolomics with genomics is the use of a metabolic 

traits genome wide association study (mGWAS).  Unlike studies trying to uncover associations with a 

risk factor or disease endpoint, mGWAS usually identify associations that point directly to specific 

underlying biological mechanisms 6.  Commonly multiple metabolites are tested in parallel mGWAS, 

either based on a preselection of a small number of metabolites or using the whole set available.  

Trying to identify endogenous molecules and genetic factors affecting lean mass, Korostishevsky et 

al 7 performed an association analysis between a lean muscle phenotype and an array of 

metabolomics measures.  They then selected the top 3, explaining 11% of the variation of the trait, 

to run the mGWAS.  One of the three metabolites used, X12063, was found to be associated with 

polymorphisms in the CYP3A5 and SLCO1B1 genes.  Both loci have previously been associated with 

statins uptake and efficacy and statins are known for their muscle related side-effects 8.  

Unfortunately, X12063 is currently an unknown metabolite but based on its associations with the 

two genes we will hopefully soon be able to identify it and further understand the link between 

statins and myopathies.   

 

Characterising the metabolic impact of genes 

A more common use of mGWAS is to provide a functional characterisation of specific genes and 

allow us to better understand the relevant pathways.  This is closer to what is commonly described 

as a phenome scan, in this case metabolome scan, where a locus of interest is tested for association 

with multiple phenotypes, here metabolites or metabolomics measures.  In an illustrative example, 



using results from 129 mGWAS, Draisma et al 9, found 31 loci associated with 85 different 

metabolites.  The FADS1-3 gene cluster showed the highest number of associations, with 12 SNPs in 

the locus associated with 47 of the metabolites tested, all of which were glycerophospholipids.  SNPs 

in the locus have also been associated with LDL, HDL, total cholesterol and TG levels in plasma 10, 11, 

as well as polygenic dyslipidemia 12.  The function of the genes in the cluster is to introduce double 

bonds during the desaturation of fatty acids in a well characterised pathway.  The 

glycerophospholipids measured were both up- and down-stream of the enzymatic action of the gene 

products and their changes reflected the known metabolic pathway steps 13.  According to these 

results, the balance between glycerophospholipids and the availability of polyunsaturated long-chain 

fatty acids with four and more double bonds has the potential to alter the levels of cholesterol, TG 

and associated lipoproteins.  Furthermore, the close agreement between what is known for the 

function of the FADS1-3 cluster of genes from biochemical studies and the metabolomics results 

obtained from population samples, through the combination of genetic and metabolomics data, 

provides a perfect illustration of the power of this method to gain insights into biological processes 

in vivo which were otherwise hidden from observational epidemiology at this level.  

Insights in Lipoprotein (a) composition 

In another example of mGWAS use, Kettunen et al 14 tested the genome wide associations of 123 

metabolic measures focusing on the characterisation of the LPA gene.  LPA codes for Lipoprotein (a) 

(Lp(a)) a well-established coronary heart disease (CHD) risk factor 15.  Elevated levels of Lp(a) are 

believed to increase the risk of cardiovascular disease through the inhibition of fibrinolysis and the 

promotion of coagulation 15.  Except the already known associations with LDL, total cholesterol and 

TG, the analysis of the metabolomics measures revealed strong associations with the diameter and 

concentration levels of the larger very low density lipoprotein (VLDL) particles 14, 16.  Using a gene 

score, accounting for 45% of the Lp(a) variance in the sample used, to summarise the total effect of 

the associated LPA polymorphisms on Lp(a) protein, the authors repeated the analysis of the 



metabolomics measures obtaining similar results, with the diameter of the VLDL particles being the 

top signal.  Comparing the pattern and estimates of the associations of the Lp(a) protein levels to the 

metabolites and the associations of the LPA polymorphisms on the same metabolites suggested a 

causal effect of Lp(a) on the relevant VLDL measures.  Based on these results, the authors suggested 

that the apoB-containing lipoprotein particle, which covalently binds to apo(a) for the formation of 

Lp(a), may also be a poorly lipidated VLDL-type of particle, challenging the idea that Lp(a) is just an 

apo(a) component added to LDL particles 14. 

The function of APOC3 and its LPL independent role 

The use of metabolomics to characterise rare genetic variants altering the structure or function of 

the coded protein, provides us with an even better direct view of the relevant biological mechanisms 

operating in the organism.  The APOC3 protein is involved in a number of intra- and extra- cellular 

mechanisms including the production and clearance of triglyceride rich lipoproteins.  Polymorphisms 

in the APOC3 gene locus have been previously robustly associated with levels of plasma TG, HDL and 

VLDL as well as risk of CHD 17-22.  A rare loss of function mutations in the gene, rs138326449 

(IVS2+1G>A), significantly lowers the risk of CHD by approximately 40% 18, 20.  The same mutations 

was tested against 225 metabolomics measures including the size and composition of 14 lipoprotein 

subclasses in 13,285 participants from two European population cohorts 23.  In addition to the 

previously reported associations, the variant was also strongly associated with VLDL and HDL 

composition measures, other cholesterol measures and fatty acids.  The effect of APOC3 on lipids is 

believed to operate through the inhibition of triglyceride rich lipoproteins hydrolysis by LPL which in 

turn lowers their uptake from hepatocytes.  Under this model, the decrease in VLDL and increase of 

HDL concentrations were due to the loss of function mutation permitting a faster LPL mediated rate 

of hydrolysis.  To test this hypothesis, the common LPL single nucleotide polymorphism (SNP), and 

leading GWAS association SNP in the locus, rs12678919 was tested for association with the 225 

measures.  The results confirmed that the two polymorphisms, from APOC3 and LPL, had the same 



general pattern of associations, providing additional support for the standard model.  Mathematical 

modelling of the individual SNP-measures associations though, revealed that this is not true for all of 

the lipid traits tested.  The triglyceride content of very large and medium VLDL particles was lower 

than expected if the effect was solely through LPL inhibition.  VLDL is produced in the hepatocytes 

through a complex process, not yet fully understood, where APOB-100 is combined with triglyceride 

and other apolipoproteins and cholesteryl esters 24, 25.  In cell cultures and model organisms under 

insulin resistance or hypertriglyceridemia, APOC3 facilitates the binding of triglycerides to pre-VLDL 

molecules.  Specific changes in the APOC3 protein affect the composition of larger VLDL particles but 

not the less TG rich smaller VLDL 25.  Although the metabolomics associations in this case refer to 

changes in the plasma VLDL composition, it is evident that they reflect the end-product of an 

intracellular process affecting the assembly and secretion of the larger VLDL particles.  The results 

also suggest that the role of APOC3 in the cell, although noticeable under specific conditions during 

which the liver is trying to remove stored TG, is continuously active.  Though, the contribution of the 

LPL-independent pathway to the overall levels of VLDL and TG is rather limited under normal 

conditions in comparison to the LPL-dependent pathway.  The same intra-cellular APOC3 mechanism 

might also contribute to the effect of the APOC3 antisense oligonucleotide inhibitor ISIS 304801 

which showed promising results for the lowering of TG levels in severe hypertriglyceridemia patients 

and familial chylomicronemia syndrome sufferers 26, 27. 

 

Metabolomics in multi-omics approaches 

The greatest promise of metabolomics lies in taking into account the organisation of the metabolites 

in defined pathways or groups and combining this information with genomics or other –omics 

technologies.  Various methods are currently in use on metabolomics that consider metabolites, not 

in isolation, but organised in pathways.  These can be based on previous information from the 

available pathway databases (for example KEGG 28), data that can be used to infer the functional 



relationship of the metabolites, or a combination of known information and new results 29.  The 

pathway information can then be used to test for association with a gene, or group of genes, 

describing the biological mechanism of interest.  An example of such as approach can be found in 

Ried et al 30 which used a phenotype set enrichment analysis to test for over-representation of sets 

of metabolites at genes.  Their results suggested that genes of the cytochrome P450 family 4 are 

involved in reactions that include glycerolipids and fatty acids as substrates, haeme as a cofactor and 

carnitines as related compounds.  Even more information on the underlying molecular mechanism 

can be obtained from metabolomics and genomics data by incorporating additional –omics results.  

Recently, Bartel et al 31 combined whole blood transcriptomics with metabolomics and used the 

genomic information to test the causal effects between transcripts and metabolites.  Further 

integration with external database information allowed the identification of systematic signatures of 

lipid, energy and amino acid metabolic reactions.  Using the derived functional categories in a 

network representation of the system, revealed pathways that are activated in a coordinated 

manner.  Finally the measured metabolites, transcripts, metabolic pathways and gene annotation 

terms were used to identify novel associations between the molecular mechanisms inferred and the 

common CHD risk factors of HDL, LDL and TG.  An antagonistic pattern of associations between HDL 

and TG was observed for parts of the model where co-regulation was evident.  Interestingly, a 

regulatory mechanism involving the sterol regulatory element-binding genes was found to link HDL, 

TG and branched chain amino acids at a transcriptional level.  A negative association between HDL 

and the “gamma-glutamyl metabolism” pathway was also found, which was similar to what was 

observed through the association of a GLUL gene polymorphism, encoding for the glutamine-

synthase enzyme, to HDL 32.  The later though was seen only in those with type-2-diabetes, so the 

proposed mechanism might actually be more complex than we think and might involve other 

metabolites and higher order interactions. 

 



Present challenges and limitations 

The integration of metabolomics with other –omics data, and most importantly genomics, is key to 

the fulfilment of the metabolomics promise for precision medicine 33.  The data allowing such 

multilevel approaches, have only recently started to become available in a scale that permits well 

powered epidemiological studies with independent replication.  Though, a number of limitations are 

starting to also become obvious.  There is no reliable estimate on how big the human metabolome 

is.  We are currently able to measure and provide quantification for hundreds of known metabolites 

and relative quantification for thousands known and unknown measures from biological samples 

such as blood and urine 33.  The Human Metabolome Database (http://www.hmdb.ca/) has 

catalogued 42,003 metabolites with just 5,701 linked to protein sequences and more are expected 

to exist.  Currently, there is no single method that can provide a comprehensive measurement of all 

the known metabolites.  The identification of the large number of unnamed metabolites is still an 

issue which requires substantial effort.  Methods to predict what a unnamed metabolite is are 

available, but they still require laboratory verification which is not easy 34.  There is also significant 

fragmentation in the laboratory and computational methods used to obtain, interpret and quantify 

raw metabolomics data.  The majority of these are protected behind intellectual property rights 35 

that make the standardisation difficult.  A recent effort to compare 43 common metabolites from 

two platforms in the same individuals found that their mean correlation was just 0.44, though some 

showed very high agreement and some almost none 36.  All this issues are expected to be resolved in 

the next few years as the metabolomics technology matures and a standard emerges or prevails.   

 

Conclusions 

Despite the limitations, the integration of metabolomics with genomics has already provided a 

wealth of new information on the function of genes that have been previously associated with 

important diseases and the pathways through which they exert their effects.  Use of additional –

http://www.hmdb.ca/


omics to further enriched the available information will be the key for the complete understanding 

of the biological mechanisms maintaining human health.  This multi-omics view though will also 

require sustained cross-field collaborations and a new generation of scientists that can communicate 

across fields as diverse as chemistry, epidemiology and computer science.  Only when the 

integration of the data is supported by an equal integration of ideas we will start to translate the 

current abundance of data to patients benefit. 

Key points 

• Metabolomics measure the molecular phenotype of the biological processes taking place in the 

organism 

• Parallel metabolic trait genome wide association analyses are currently used to describe the 

function mechanism of genes and elucidate the corresponding pathways. 

• Multi-omics approaches make use of metabolomics in combination with genomics and 

transcriptomics to present a system wide picture of the relationships between metabolites. 

• A number of challenges, mainly around the part of the metabolome captured and the 

compatibility of the measures obtained from different platforms, remain in the field and affect 

the use of the data. 
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