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Abstract—A novel approach to provide unequal error protec-
tion (UEP) using rateless codes over erasure channels, named
Expanding Window Fountain (EWF) codes, is developed and
discussed. EWF codes use a windowing technique rather than
a weighted (non-uniform) selection of input symbols to achieve
UEP property. The windowing approach introduces additional
parameters in the UEP rateless code design, making it more
general and flexible than the weighted approach. Furthermore,
the windowing approach provides better performance of UEP
scheme, which is confirmed both theoretically and experimentally.

I. I NTRODUCTION

Fountain codes, also called rateless codes, were investigated
in [1] as an alternative to the automatic repeat-request (ARQ)
schemes for reliable communication over lossy networks.
They enable the transmitter to generate a potentially infinite
stream of encoding symbols as random and equally impor-
tant descriptions of the message block of finite length. In
the case of a binary fountain code on the message block
x = (x1, x2, . . . , xk) ∈ F

k
2 of k input symbols, each encoding

symbolyj ∈ F2, j ∈ N is generated independently as a scalar
productyj = rj ·x, whererj is thej-th realization of a random
variableR on F

k
2 . Thus, one can describe a fountain code by

the probability mass function of random variableR.
The first practical capacity achieving fountain codes, Luby

Transform (LT) codes, were introduced in [2]. LT codes
assign the same probability to all the vectors inF

k
2 of the

same weight, and are thus described by a single distribution
Ω on the set of possible weights{0, 1, 2, . . . , k}, i.e., by
the output symbol degree distribution. For the appropriately
selected output symbol degree distribution, the encoding and
decoding complexity of LT codes is of the orderO(k log k) if
the suboptimal iterative belief propagation decoding algorithm
is used. Raptor codes [3] are a modification of LT codes
obtained by precoding the input message block by a high
rate low-density parity-check (LDPC) code, and by using a
constant average output symbol degree distribution. Raptor
codes were shown to have excellent performance and linear
encoding/decoding times. They are being adopted for large
scale multimedia content delivery in practical systems, such
as Multimedia Broadcast Multicast Services (MBMS) within
3GPP [4] and IP-Datacast (IPDC) within DVB-H [5].

LT and Raptor codes, as originally studied, provide equal
error protection (EEP) for all input symbols. However, there

are cases where not all of the input symbols require the
same protection. For example, in applications such as the
transmission of video or image files compressed with any of
the numerous layered coders (MPEG, H.264...), certain data
parts are considered to be more important. Additionally, in
video-on-demand systems, a portion of data needs to be recon-
structed prior to other parts. These applications, respectively,
call for the coding schemes with unequal error protection
(UEP) and unequal recovery time (URT) properties.

In this paper, we propose and investigate a novel class of
fountain codes which can be used to provide UEP and URT
properties by applying the idea of “windowing” the data set.
We will start by pointing to the relevant related work on
UEP fountain codes and windowing techniques used in the
construction of fountain codes.

II. RELATED WORK

Rahnavard et al. [6] studied a class of fountain codes which
provide UEP and URT properties. In their work, the message
block to be transmitted is partitioned into subsets of different
importance and probabilities of selecting input symbols from
different subsets are assigned. This is done in such a fashion
that input symbols from the more important subsets are more
likely to be chosen in forming the output symbols, resultingin
the UEP property. Therefore, this approach is a generalization
of LT codes in which the neighbors of an output symbol are
selected non-uniformly at random. We refer to this approach
as to the weighted approach.

Recently, different low-complexity approaches to fountain
coding were studied, where the set of input symbols is divided
into a number of overlapping subsets - windows, and only
input symbols from a predetermined window can be used in
forming each output symbol. To the best of our knowledge,
Studholme and Blake were the first to utilize windowing
approach in rateless codes, by introducing windowed erasure
codes [7]. Their approach aims for EEP fountain codes with
low encoding complexity and capacity achieving behavior
assuming maximum-likelihood decoding, and is particularly
suitable for short length codes. Targeting the real-time services
such as multimedia streaming, the sliding window fountain
codes were recently proposed in [8], which move the fixed-
sized window forward during the encoding process, following
the chronological ordering of data.



In following section, we describe our windowing fountain
approach for UEP applications.

III. E XPANDING WINDOW FOUNTAIN CODES

A. EWF Codes: Generalization of LT Codes

We consider the transmission of data partitioned into blocks
of k symbols over an erasure channel. For the sake of
simplicity, symbol alphabet is set toF2. Let us assume that
the numberss1, s2, . . . , sr, such thats1 + s2 + · · · + sr = k,
determine the partition of each block into classes of input
symbols of different importance to the receiver, such that
the first s1 input symbols in a block form the first class,
the next s2 input symbols form the second class etc. We
further assume that the importance of classes decreases with
the chronological ordering of the symbols, i.e. that thei-th
class is more important than thej-th class if i < j. This
partition determines a sequence of strictly increasing subsets
of the data set, which we call windows. Thei-th window
consists of the firstki =

∑i
j=1 sj input symbols, and thus

the most important symbols form the first window and the
entire block is the finalr-th window. Note that the input
symbols from thei-th class of importance belong to thei-
th and all the subsequent windows. We compactly describe
the division into importance classes using the generating
polynomialΠ(x) =

∑r
i=1 Πix

i, whereΠi = si

k . In addition,
it is useful to introduceΘi = ki

k =
∑i

j=1 Πj to our notation.
In contrast to standard LT codes, we propose a scheme that

assigns each output symbol to a randomly chosen window
with respect to the window distributionΓ(x) =

∑r
i=1 Γix

i,

where Γi is the probability that thei-th window is chosen.
Then, the output symbol is determined as if encoding is
performed only on the selected window with an LT code of
suitably chosen degree distribution. To summarize, EWF code
FEW (Π, Γ, Ω(1), . . . , Ω(r)) is a fountain code which assigns
each output symbol to thej-th window with probabilityΓj

and encodes the chosen window using the LT code with
distributionΩ(j)(x) =

∑kj

i=1 Ω
(j)
i xi. In the case whenr = 1,

we obtain a standard LT code for equal error protection.

B. Asymptotic Degree Distributions of EWF Codes

As the starting point for the density evolution analysis, we
derive the asymptotic degree distributions of EWF codes (as
k tends to infinity). We assume EWF codes with a fixed
reception overheadε, i.e., with a total of(1 + ε)k output
symbols collected at the receiver. The asymptotic degree
distributions are derived for each ofr different classes of input
and output symbols.

The set of output symbol degree distributions is given by
the code definition. We classify the set of output symbols in
r classes of symbols associated to different windows. The
asymptotic degree distribution of the output symbols in the
j-th class isΩ(j)(x). The average size of thej-th class is
Γj(1 + ε)k output symbols and the average degree of output
symbols in this class is equal toµj =

∑

i iΩ
(j)
i .

To derive the set of input symbol degree distributions,
we use the division of input symbols intor importance

classes of size{s1, s2, . . . , sr}. Each input symbol class is
described by the corresponding degree distribution from the
set {Λ(1), . . . , Λ(r)}, where Λ(m)(x) =

∑

i Λ
(m)
i xi. The

coefficientsΛ(m)
i can be calculated from the set of input sym-

bol degree distributions{λ(m)(x), λ(m+1)(x), . . . , λ(r)(x)},
whereλ(j)(x) =

∑

i λ
(j)
i xi is the degree distribution of the

input symbol nodes in thej-th window of sizekj , induced
only by the edges connected to the output symbols in thej-th
class. The coefficientsλ(j)

i can be found as

λ
(j)
i =

(

µjΓj(1 + ε)k

i

)(

1

kj

)i(

1 −
1

kj

)µjΓj(1+ε)k−i

,

(1)
resulting in the following expression forΛ(m)

i

Λ
(m)
i =

∑

Si

r
∏

j=m

λ
(j)
ij

, (2)

whereSi = {(im, im+1, . . . , ir) :
∑r

j=m ij = i}.
In general, using expressions (1) and (2) to obtainΛ(j)(x)

leads to tedious calculations. However, it is easy to obtain
the set of distributionsΛ(j)(x) starting from the distribution
Λ(r)(x) =

∑

i Λ
(r)
i xi =

∑

i λ
(r)
i xi, since this distribution

asymptotically tends to the Poisson distribution1 with the mean
µrΓr(1 + ε), denoted asP(µrΓr(1 + ε)). By sequentially
removing input symbol classes and their associated edges,
starting from the least importantr-th class of input symbols,
one can easily obtain the remaining set of the asymptotic input
symbol degree distributions as the following set of Poisson
distributions

Λ(j)(x) = P



(1 + ε)

r
∑

i=j

µiΓi

Θi



 (3)

The ensemble of EWF codesFEW (Π, Γ, Ω(1), . . . , Ω(r))
with a fixed reception overheadε is asymptotically described
with the number of windowsr, polynomialsΠ(x) andΓ(x),
and the set of degree distributions(Λ(i)(x), Ω(i)(x)).

C. And-Or Tree Analysis of EWF Codes

The degree distributions derived in the previous section
allow us to apply asymptotic and-or tree (density evolution)
analysis on EWF codes. As a result, we obtain the expressions
for asymptotic erasure probabilities afterl iterations of the
iterative message-passing decoding algorithm, for the input
symbols in each of the input symbol classes. The original
and-or tree analysis [9] is generalized in [6] for the weighted
approach, where different classes of OR nodes in and-or trees
are introduced and the associated and-or tree lemma is derived.
In a similar fashion, we further generalize the and-or tree
construction, introducing different classes of AND nodes,and
derive the corresponding version of an and-or tree lemma
suitable for analysis of EWF codes.

1The convergence towards the Poisson distribution is under the same
conditions as given in [6], Section III.



In our setting, the generalized and-or treeGTl,j is con-
structed usingr different classes of both AND and OR nodes.
Let the root node ofGTl,j belongs to thej-th class of OR
nodes and the tree is expanded for2l levels. Each AND and
OR node from them-th class hasi children with probabilities
βi,m and δi,m, respectively. However, to analyze the EWF
codes, we introduce a limitation that an AND node from
the m-th class can only have OR node children belonging
to the classes{1, 2, . . . , m}, with the associated probabilities
of choosing a child from the different OR classes being
{q

(m)
1 , q

(m)
2 , . . . , q

(m)
m }. Similarly, an OR node from them-

th class can only have AND node children from the classes
{m, m + 1, . . . , r}, with the associated AND children proba-
bilities {p

(m)
m , p

(m)
m+1, . . . , p

(m)
r }. Let the nodes from them-th

class at the tree depth2l be initialized as 0 with probability
y0,m, and 1 otherwise. It is assumed that OR nodes with no
children have a value equal to 0, whereas AND nodes with
no children have a value equal to 1. We state the following
generalized version of the and-or tree lemma:

Lemma 3.1: Let yl,j be the probability that the root of an
and-or treeGTl,j evaluates to 0. Then

yl,j = δj



1 −
r
∑

i=j

p
(j)
i βi

(

1 −
i
∑

m=1

q(i)
m yl−1,m

)



 (4)

whereδj(x) =
∑

i δi,jx
i andβj(x) =

∑

i βi,jx
i.

We skip the proof of our version of generalized and-or tree
lemma since it closely follows the proof of the original and-or
tree lemma [9].

From the asymptotic degree distributions of EWF codes
and the design rules for their construction, we can de-
rive polynomials δm(x) and βm(x) and the probabilities
{q

(m)
1 , q

(m)
2 , . . . , q

(m)
m } and {p

(m)
m , p

(m)
m+1, . . . , p

(m)
r }, for each

classm of input and output symbols. Similar to the derivation
in [6], βi,j , which is the probability that the output symbol
connected with a randomly selected edge has degreei + 1

given that it belongs to the classj, equalsβi,j =
(i+1)Ω

(j)
i+1

Ω′(j)(1)
,

i.e., that βj(x) = Ω
′(j)(x)

Ω′(j)(1)
. Similarly, it can be shown that

the probability δi,j that the variable node connected with
a randomly selected edge has degreei + 1, given that it

belongs to the classj, equalsδi,j =
(i+1)Λ

(j)
i+1

(1+ε)
∑

r
l=j

µlΓl
Θl

, i.e., that

δj(x) = e
(1+ε)

∑

r
l=m

µlΓl
Θl

(x−1)
. It is easy to show that for the

classm input symbols, the probability of having classj output

symbol as a children,m ≤ j ≤ r, equalsp(m)
j =

µjΓj

Θj
∑

r
i=m

µiΓi
Θi

.

Similarly, the classm output symbols have the classj input
symbol child,1 ≤ j ≤ m, with probabilityq

(m)
j =

sj

km
.

Substituting these results intoLemma 3.1, we obtain the
erasure probability evolution for input nodes of EWF codes
decoded iteratively, as stated in the following lemma.

Lemma 3.2: For an EWF codeFEW (Π, Γ, Ω(1), . . . , Ω(r)),
the probability yl,j that the input node of classj is not

recovered afterl iterations of message-passing algorithm for
the reception overheadε is

y0,j = 1 (5)

yl,j = e

(

−(1+ε)
∑

r
i=j

Γi
∑i

t=1
Πt

Ω
′(i)

(

1−

∑i
m=1 Πmyl−1,m

∑i
t=1

Πt

))

.

D. EWF Codes with Two Importance Classes

The particularly simple and important scenario is when the
set of input symbols is divided in two importance classes,
the class of more important bits (MIB) and less important
bits (LIB). We useLemma 3.2 to track the asymptotic erasure
probabilities of MIB and LIB. For an EWF codeFEW (Π1x+
Π2x

2, Γ1x + Γ2x
2, Ω(1), Ω(2)) we obtain the expressions for

the erasure probabilities of MIB and LIB afterl iterations,
yl,MIB and yl,LIB, respectively as in (6) and (7), forl ≥ 1
andy0,MIB = y0,LIB = 1.

We select the parameters of the erasure probabilities for-
mulae (6) and (7) in order to compare our results with the
results obtained in [6]. Therefore, we analyzeFEW (0.1x +
0.9x2, Γ1x + (1 − Γ1)x

2, Ω(1), Ω(2)) EWF codes with the
reception overheadε = 0.05 and the same output symbol
degree distributionΩS applied on both windows, adopted from
[6] (originally from [3]):

Ω(1)(x) = Ω(2)(x) = 0.007969x + 0.493570x2 +

+ 0.166220x3 + 0.072646x4 + 0.082558x5 +

+ 0.056058x8 + 0.037229x9 + 0.055590x19 +

+ 0.025023x64 + 0.003135x66 (8)
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Fig. 1. Asymptotic analysis of BER versusΓ1 for EWF codes

Figure 1 shows the dependence of the asymptotic erasure
probabilities,y∞,MIB (dotted line) andy∞,LIB (thin line),
on the first window selection probabilityΓ1. Note that by
varying Γ1 we change the probability of the input symbol
selection from different input symbol classes, similarly as it
is explicitly done with the parameterkM used in [6]. For an
extreme case ofΓ1 = 0, we have the EEP fountain codes,



yl,MIB = exp

(

−(1 + ε)

(

Γ1

Π1
Ω

′(1)(1 − yl−1,MIB) + Γ2Ω
′(2)(1 − Π1yl−1,MIB − Π2yl−1,LIB)

))

(6)

yl,LIB = exp
(

−(1 + ε)Γ2Ω
′(2)(1 − Π1yl−1,MIB − Π2yl−1,LIB)

)

(7)

whereas by increasingΓ1 we progressively add protection to
the MIB class.

The desirable point of local minimum ofy∞,MIB (where
y∞,LIB is still not significantly deteriorated) occurs in our case
for the first window selection probabilityΓ1 = 0.084, and is
equal toy

(min)
∞,MIB = 4.6 · 10−5. The equivalent point in [6]

occurs forkM = 2.077 wherey
(min)
∞,MIB = 3.8 · 10−5, which is

a slightly better performance than in the EWF case. This small
degradation suggests the negative effect of the windowing
approach, due to the fact that the output symbols based on
the MIB window do not contain any information about LIB.
However, in this example we did not exploit the positive
side of the EWF codes, namely, to use a different (stronger)
degree distribution on the smaller (MIB) window. In this work,
we use a simple method of “enhancing” the strength of the
MIB window distribution, by applying the “truncated” robust
solition distributionΩrs(krs, δ, c) [2] with a constant value of
krs (note that the size of the MIB windowΠ1k asymptotically
tends to infinity). The results forkrs = 100 (dashed line)
and krs = 500 (thick line) are presented in Figure 1. The
performance improvement of the EWF approach is obvious,
reaching an order of magnitude lower local minimum of
y
(min)
∞,MIB = 2.2 · 10−6.
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Fig. 2. Asymptotic analysis of BER versus the overheadε

Figure 2 illustrates the asymptotic erasure probability curves
of MIB and LIB classes as a function of the reception overhead
ε. We compare the EWF code with theΩrs(krs = 500, δ =
0.5, c = 0.03) distribution applied on the MIB window,
with the weighted UEP fountain codes from [6]. For the
EWF code, we use the first window selection probability
Γ1 = 0.084 which is optimized for the reception overhead

ε = 0.05, whereas for the weighted UEP fountain codes we
use parameter valuekM = 2.077 optimized for the same
reception overhead. Figure 2 clearly shows that the EWF codes
show stronger URT and UEP properties than the corresponding
weighted codes. It is significant to note that in most cases MIB
symbols can be decoded well before the reception ofk output
symbols, due to the fact that the decoder makes use of the
packets which contain only MIB-information. This manifests
in two “decoding avalanches” in the erasure probability curves
of the EWF codes. The URT properties become more notable
as we increaseΓ1 with a small loss in LIB performance. This
is illustrated in Figure 2 with the example of the EWF code
with the same design parameters, except that its first window
selection probability is increased to the valueΓ1 = 0.11.

IV. L OWER AND UPPER BOUNDS ON THEML DECODING

OF EWF CODES

A simple lower bound on the bit error rate of EWF codes
under the maximum likelihood decoding can be calculated for
each class of input symbol nodes separately, as a probability
that an input symbol node is not adjacent to any of the
output symbol nodes. Let us consider the input symbol nodes
in the i-th class. If the output symbol node is assigned to
the j-th window, wherej < i, then the input symbol node
in the i-th class cannot be adjacent to that output symbol
node. Otherwise, the probability that the input symbol node
in the i-th class is adjacent to the output symbol node in
the j-th class is1 −

µj

kj
, where µj is the average degree

of the distributionΩ(j)(x). After averaging over the window
selection distributionΓ(x), we obtain the lower bound on the
ML decoding of the input symbols in thei-th importance class
of FEW (Π, Γ, Ω(1), . . . , Ω(r)) as

pML
i (ε) ≥ (1 −

r
∑

j=i

Γjµj

kj
)k(1+ε). (9)

The upper bound on the bit error rate of the input symbols
from different importance classes of EWF codes is derived
similarily as for LT codes in [6]. More precisely, it is the
sum of probabilities that a vectorx ∈ F

k
2 , with a non-zero

element corresponding to the input symbol node in thei-th
class, belongs to the the dual space of the punctured generator
matrix G of the EWF code, over all possible arrangements of
non-zero elements in the vectorx. The upper bound on the
bit error rate of the input symbols in thei-th importance class
of an EWF codeFEW (Π, Γ, Ω(1), . . . , Ω(r)), for the reception



overheadε and under the ML decoding is given by

pML
i (ε)≤min

{

1,

k
∑

tr=1

· · ·

ti+1
∑

ti=1

ti−1
∑

ti−1=0

· · ·

t2
∑

t1=0

r
∏

p=1

(

kp − kp−1 − δ(p − i)

tp − tp−1 − δ(p − i)

)

·

(

r
∑

j=1

Γj

kj
∑

d=1

Ω
(j)
d

∑⌊d/2⌋
s=0

(

tj

2s

)(

kj−tj

d−2s

)

(

kj

d

)

)(1+ε)k}

. (10)

Figure 3 represents the bounds on the ML decoding for
r = 2, k = 500, k1 = 50, Γ1 = 0.11, andΩ(2) as given in
(8). The lower and upper bound become tight as the reception
overhead increases. We obtain similar results as in [6] when
Ω(1) is the robust soliton distributionΩrs(krs = 50, δ =
0.5, c = 0.03). As before, by modifying the output degree
distribution on the smaller window we can decrease the MIB
bound, while preserving the LIB bound effectively unchanged.
For example, ifΩ(1) is set to the robust soliton distribution
Ωrs(krs = 50, δ = 0.2, c = 0.03), the bounds on the ML
decoding decrease as shown in figure 3. This illustrates how
EWF codes may be improved by adapting distributionΩ(1).
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Fig. 3. Upper and lower bounds for the ML decoding of EWF codes

V. SIMULATION RESULTS

In order to verify the results of the developed asymptotic
and-or tree analysis, we performed simulations to determine
the BER performance of EWF codes with two importance
classes. We assume that the MIB class contains 500 input
symbols, out of the total number ofk = 5000 input symbols.
The simulations are performed for the same codes for which
the asymptotic results on the BER performances are analyzed
and presented in Figure 2 and at the receiver side, standard
iterative message-passing decoding algorithm was used. Figure
4 demonstrates that the simulated BER performance closely
corresponds to the results predicted by the asymptotic analysis.
Also, the results clearly show that EWF codes with the
parameterΓ1 = 0.084 outperform the weighted codes with
parameterkM = 2.077 [6] in terms of MIB BER. Increase in

Γ1, i.e. more frequent selection of the MIB window, further
decreases MIB BER but introduces slight deterioration in
terms of LIB BER.
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Fig. 4. Simulation results fork = 5000

VI. CONCLUSION

Coding applications such as reliable transmission of video
files compressed with a layered coder benefit from coding
schemes which offer better error protection to a certain,
predefined portion of the file. Since fountain codes are an
attractive solution for multicast transmission of such files, it
is worthwhile to consider fountain coding techniques which
offer UEP and URT properties. In this paper, we present an
alternative way to construct such UEP fountain codes, by
utilizing the idea of “windowing” the data set. Both analytical
techniques and extensive simulations are used to show that
the windowing approach introduces additional freedom in
the design of UEP rateless codes, thereby offering larger
flexibility and better performance than the previously studied
UEP fountain codes.
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