
Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.survophthal.2019.01.007

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at DOI: 10.1016/j.survophthal.2019.01.007. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
A Review and Update on the Ophthalmic implications of Susac Syndrome

LZ Heng¹,²; C.Bailey¹; R. Lee¹,²; A.D Dick¹,²; A Ross¹

¹ Bristol Eye Hospital, Bristol Royal Infirmary NHS Trust
Department of medical retina and uveitis
Bristol Eye Hospital
Lower Maudlin St, Bristol BS1 2LX

² National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital, University College London Institute of Ophthalmology, London, United Kingdom

Corresponding Author:
Mr Adam Ross
Consultant Ophthalmologist
Medical Retina Department
Bristol Eye Hospital
Email: adam.ross@bristol.ac.uk
Abstract

Susac syndrome is a rare condition presumed to be immune-mediated occlusion of small arterial vasculature principally of the brain, inner ear, and retina. Clinically the syndrome manifests as a pathognomonic triad of encephalopathy, hearing loss, and branch retinal artery occlusion. Early recognition and diagnosis is important as delayed treatment may be profound and result in deafness, blindness, dementia and other neurological deficits. The plethora of imaging technology, including magnetic resonance imaging, retinal fluorescein angiography, optical coherence tomography (OCT) and OCT-angiography allows deeper and more discrete anatomical-physiological correlation of underlying pathology, early diagnosis, and imaging biomarkers for early detection of relapse during follow up. We highlight the current clinical classification of Susac syndrome, available investigations, treatment and care pathways.

Keywords: Susac's Syndrome; Treatment; Branch Retinal Artery Occlusion; OCT angiography; Fluorescein angiography
A review and update on the Ophthalmic implications for Susac Syndrome

Introduction

Susac syndrome is a rare condition first described in 1979 by neurologist John Susac. There is no published incidence of Susac syndrome, but a period prevalence of 0.148 per 100 000 has been estimated in a central European population above the age of 19. The majority of published case reports and case series mainly involve Caucasians from Europe and North America. The age range of disease onset is between 7 to 70 years, with a mean age of 30.5 years, and the ratio between female and male is 3:1.

Susac syndrome is presumed to be immune mediated resulting in occlusion of small arteries, predominantly in the brain, inner ear, and retina, giving rise to the pathognomonic triad of encephalopathy, low to mid frequency sensory hearing loss and visual disturbances from branch retinal artery occlusion. Affected patients may develop either or all of the above features over weeks to months. A review of case reports have found that a complete triad is found only in 13 percent of diagnosed cases at the onset of disease. Hence, cases which do not fulfil the complete triad remain a diagnostic challenge.

The multifocal infarction of Susac syndrome may result in potentially irreversible end organ damage leading to neurological deficits, hearing loss, and visual impairment. Early recognition of pathognomonic signs and prompt treatment may help prevent permanent function loss. The development of imaging technology in modern medicine, including Magnetic resonance imaging, fluorescein angiography, optical coherence tomography (OCT) and OCT-angiography allows deeper and more discrete anatomical-physiological correlation of underlying pathology, early diagnosis and imaging biomarkers for early detection of relapse during follow up. We highlight the current clinical classification of Susac syndrome, available investigations, treatment and care pathway, with particular reference to the experience in a tertiary ophthalmic unit in the United Kingdom.

Pathophysiology

Although the exact pathophysiology of Susac syndrome remains unclear, it is thought most likely to be immune mediated, targeting endothelial cells of the brain eye and inner ear.

Endothelial cell injury is thought to be secondary to derivatives of complement-activating IgG1 subclass, anti–endothelial cell antibodies (AECAs). It is not known if AECAs
are a consequence or cause of the pathologic process of Susac syndrome. Clinically, there are no specific serological markers for Susac syndrome, and AECAs titres previously found to be higher in patients with Susac syndrome were only present in 25% of the disease study population in a study by Jarius and coworkers.35

Studies from brain biopsies have found unspecific changes of focal microangiopathic and/or gliotic changes such as arteriolar wall proliferation, lymphocytic infiltration and thickening of basal lamina 14; 29. Evidence that the pathological pathway of Susac Syndrome maybe associated with complement pathway was further disputed by brain biopsy series performed by Hardy and coworkers that did not show evidence to support complement deposition.29 In this study, only one out of three brain biopsies showed C4d deposition in microvasculature, but similar immunoreactivity was present in the control samples. Interestingly, all cases showed T-cell inflammation in small to medium sized vessels, which were also reported in previous cases. 21; 28; 29 This highlights the current prevailing trend of thought that the immune element of the disease is likely driven by T lymphocytes.

Other mechanisms, such as idiopathic vasospasm, hypercoagulopathy, and viral infection, have been proposed, but there has been no proven correlation. 9; 30; 52; 64

Clinical signs and symptoms

The clinical triad of Susac syndrome included acute encephalopathy, hearing loss and branch retinal artery occlusion (BRAO). A study by Jarius and coworkers of 20 patients diagnosed with Susac syndrome found that 72% of cases initially presented with encephalopathy, 20% with hearing loss, and 24% with visual disturbances. Of these, 64% had residual neurological deficits such as ‘mild psycho-organic syndrome’ ‘disorientation’ ‘fatigability’ ‘cognitive impairment ranging from mild to severe’ and ‘memory loss’. 24 % of patients had residual motor symptoms such as spasticity, paresis, ‘spastic hemi- or tetraparesis and brainstem symptoms such as dysarthria, dysphagia, internuclear ophthalmoplegia and ataxia. 84% had residual auditory deficits, including hyperacusis and tinnitus, and 72% had residual visual impairment in the form of scotomas. 35

Rennebohm and coworkers proposed two clinical subsets of the disease, one with predominant neurological symptoms and the second with recurrent BRAO, but without active neurological symptoms and minimal or no abnormalities on MRI. The second type may recur over periods of years without accruement of neurological deficits.57
There is a large variation in the presentation of natural history of Susac syndrome. The same authors also proposed three major clinical courses: (a) monocyclic; fluctuating disease which self limits after 2 years and does not recur; (b) polycyclic; relapsing disease beyond 2 years; (c) variation with severity of symptoms, with no clear remission. 59

Neurological characteristics

Typically, patients present with nonspecific neurological symptoms such as generalised or migraine-like headaches which may later progress to encephalopathy, with impaired cognition, vertigo, ataxia, dysarthria, hemiparesis, mood and cognitive deficits. Headache may occur up to 6 months before onset of the other symptoms. 75% of patients have neuropsychiatric symptoms such as personality changes and paranoia.[3]

Auditory Characteristics

Patients may present with nonspecific clinical symptoms such as tinnitus, hearing loss or peripheral vertigo. Low- to mid-frequency hearing loss is typical. 61

Ocular Characteristics

Patients present with symptoms associated with retinal ischemia secondary to branch retinal artery occlusion or vasculitis. This may manifest as visual field loss as an altitudinal defect or central or paracentral scotoma. Occasionally, if the infarct is in the far periphery of the retina, patients may be asymptomatic. Occasionally, patients may have visual aura with their migraine-like headaches. Some patients may be too ill with encephalopathy to notice or report visual symptoms, despite this, ocular assessment is paramount if Susac syndrome is suspected, even in asymptomatic patients.

Funduscopy may reveal Gass plaques (originally known as retinal arterial wall plaques). These are yellow refractile lesions, simulating emboli. It was thought that Gass plaques were caused by an immune mediated localized reaction in the retina artery wall. They may be present in any location along the retinal arteries, and are not limited to the arteriolar bifurcation (in comparison to the Hollenhorst plaque of cholesterol). Anecdotally Gass plaques are common in the acute stages of the disease and their appearance fluctuates with disease activity, with eventual disappearance; 15 however, Gass plaques are characteristic but not pathognomonic of Susac syndrome and may be seen in a few other rare retinal disorders such as Eale disease and lymphoma. (Figure 1)
In addition, affected retina may show sectoral whitening, typical of ischemia from BRAO, but such changes may be transient.16 Rarely, neovascularisation and vitreous haemorrhage may occur as a result of retinal ischemia.

Retinal peripheral arterio-arterial (A-A) collaterals is one of the newly described findings of Susac syndrome. A report of 11 patients with available funduscopic photographs found 10 patients with A-A and 1 with arterio-venous collaterals in and late in the disease course.17

Role of Imaging modalities

The plethora of imaging technology such as magnetic resonance imaging, fluorescein angiography, optical coherence tomography (OCT), and OCT-angiography can now deliver discrete information of the anatomical-physiological correlation of underlying disease pathology. This facilitates early diagnosis as well as monitoring of disease remission or detection of relapses.

Systemic

Susac and coworkers described a neuroimaging triad of 1. white matter lesions with involvement of the corpus callosum, 2. deep grey matter lesions, and 3. leptomeningeal enhancement. Typically, lesions on MRI using T2/fluid attenuated inversion recovery have been described as hyperintense, multifocal and round (snowball appearance). The lesions are caused by arteriolar infarction in the callosum, and over time cavitate and develop into the appearance of a ‘hole’.39 69

Pure-tone or speech audiogram may favour low- or mid-tone frequencies, and peripheral vertigo may be confirmed by caloric testing of the vestibular organ, vestibular evoked myogenic potentials, or nystagmography.39

Ophthalmic investigations

Fluorescein Angiography (FFA)/ Indocyanine Angiography (ICG)

FFA demonstrates characteristic changes of Susac syndrome in walls of arterial retinal vasculature with unexplainedencephalopathies, whereas ICG is normal. FFA typically reveals an unusual leakage pattern of arterial wall as demonstrated by hyperfluorescence (AWH) which may occur either far away from occluded arteriole or in normal vessels (Figure 1b). The prevalence of AWH in Susac syndrome is not known, but the presence of
AWH located away from a BRAO is pathognomic.15 A previous study by Mallam and coworkers demonstrated the persistence of AWH despite resolution of clinical symptoms, which suggest persistent subclinical activity. 46

Optos wide field fluorescein angiography may be used to monitor disease activity. In particular, wide field angiography allows monitoring of vasculitis, as a proxy of subclinical activity, in the far periphery. (Figure 2). All patients will require an FFA or wide field angiography if Susac syndrome is suspected even with normal funduscopy as this imaging modality is key in aiding diagnosis and future treatment monitoring.

OCT/OCT A

The use of OCT/OCTA for monitoring of disease

The advent of optical coherence tomography has allowed intricate evaluation of the anatomy of the retina down to 3\,um. Further, OCT angiography is a novel and non-invasive approach that allows volumetric retinal and choroidal blood flow analysis and hence allows detailed analysis of retinal microvasculature at discrete levels of the retina. This facilitates differentiation of various retinal vascular diseases from characteristic morphological patterns of injury to the inner retina.

The use of OCT in defining retinal nerve fibre layer (RNFL) abnormalities in other neurological diseases is well established. Studies have investigated the use of imaging markers using parameters such as RNFL thickness, macular volume (MV), and ganglion cell and inner plexiform retinal layer abnormalities as surrogate markers for evaluating disease activity and therapeutic response in multiple sclerosis.22; 56 For example, RNFL atrophy is more profound in secondary progressive MS than in relapsing remitting and clinically isolated syndrome.12; 31 OCT findings may therefore be complementary in demonstrating disease pathology and impact in varying time and space to assist in the confirmation of diagnosis of Susac syndrome when the clinical findings have resolved or have been equivocal.

Case reports analysing spectral domain OCTs in Susac syndrome have described thinning of discrete inner retina layers such as RNFL, inner nuclear layer layers and undulations of the outer plexiform layers, thought to be secondary to swelling of bipolar cells. In the same report, the authors have also described a characteristic bilateral temporal macular atrophy with thinning of the inner retinal layers.1 Outer retina findings were found to be normal.
Such changes were reported to persist even in recovery or in FFA and funduscopy negative patients. These observations suggest subclinical 'scarring' which persists despite inactive disease and successful treatment and may function as a complementary diagnostic modality to FFA. (Table 1)

Findings using spectral domain OCT (TR Vue XR, Avanti, Optovue, United Sates and DRI Swept source OCT triton, Topcon apan) revealed vascular hypoperfusion within macular area in both superficial and deep capillary retinal plexus which corresponded to clinical topography of BRAO both on funduscopy and FFA. Again, the choriocapillaris was normal. A study by Azevedo and coworkers demonstrated that, during the follow up of the patient, post treatment with pulsed intravenous steroids, the use of OCTA and documentation of vascular density index allowed subclinical analysis of disease activity and reinitiating of treatment prior to clinical onset.4

Differential Diagnosis

Susac syndrome often presents with variable symptoms at initial presentation.18; 35 Patients have been misdiagnosed with various conditions, for example, acute disseminated encephalomyelitis (ADEM), multiple sclerosis 20 and Behcet disease, therefore often delaying treatment. Although Susac syndrome is a vascular disorder and multiple sclerosis is a demyelinating disease, symptoms between the two disease often over-lap. Further, treatment for multiple sclerosis often involves disease-modifying therapies such as interferon beta, glatiramer acetate, teriflunomide, dimethyl fumarate, fingolimod, natalizumab or alemtuzumab and these will not treat Susac syndrome. Further, Interferon Beta has been shown to worsen Susac’s retinopathy.41 Conversely, TNF inhibitors such as infliximab which appeared to be beneficial in Susac’s syndrome may worsen the progression of multiple sclerosis, where they are contraindicated. 70

There are distinctive MRI findings between Susac syndrome, ADEM and MS. MRI lesions in ADEM and MS are found at the under surface and septal interface of the corpus callosum, whilst lesions in Susac syndrome are found in the centre of the corpus callosum. Lesions in MS are typically ovoid (Dawson’s fingers) and predominantly involves the white matter, but that of Susac’s syndrome are round (snowballs) on T2 and fluid-attenuated inversion recovery (FLAIR), ‘punched out holes’ on T1 hypointensity when chronic and involves both white and grey matter.69 Radial ‘icicle’ or ‘spoke’ lesions from roof of the callosum are also noted to be characteristic in Susac’s syndrome. 57 Punctate microinfarcts
described as ‘a string of pearls’ appearance in the internal capsule are also seen in Susac syndrome, but not in other diseases.32, 69

Spinal cord involvement is well established in MS, but only a single case has ever been reported in Susac syndrome, and the lesions in the case were distinguished by their paracentral and laterally position in the cord (instead of the usual posterolateral position common in MS secondary to demyelination).8, 33, 10

The use of OCT in differentiating diagnosis

OCT provides a noninvasive technique allowing instant differentiation between Susac syndrome and multiple sclerosis (MS). 2 case series comparing changes of Susac’s versus relapsing-remitting multiple sclerosis found significant changes in the two diseases. A large case series which evaluated 34 cases (17 with Susac syndrome) demonstrated patchy thinning of the retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, and outer plexiform layer in comparison to corresponding sectors in relapsing-remitting MS.6, 60 Another series published 3 patients at different stages of Susac syndrome: one in sub-acute stage, a second with treated chronic disease with minimal residual neurological deficits, and the last with severe untreated chronic disease and permanent neurological deficits. The patient with the chronic disease demonstrated most severe RNFL thinning. It was noted that 2 of the 3 patients had demonstrated loss of foveal contour on OCT. These findings were demonstrated despite normal visual fields testing. Comparatively, the loss of foveal contour has not ever been described in studies of OCT changes of patients with MS.6

Prognosis

Early recognition and treatment may sometimes reverse some of the encephalopathic and visual signs and symptoms, but hearing loss often remains permanent. A review of the outcome of Susac syndrome in 9 patients by Aubart-Cohen and coworkers found that all had permanent hearing loss with mean 34dB(range 15-7-dB).3 Although thought to be self-limiting after several years (range of period differs with individual patients), recurrence after 18 years of remission have been reported.52, 53 Hence, there is a need for life long monitoring.

Current Treatment
Systemic

There has been no randomized controlled trials (RCTs) for treatment of Susac syndrome, although 63 published case reports and series have suggested possible empirical treatment algorithms. Treatment is often dependent on the expertise and experience of treating clinician and unit. Treatment of CNS-predominant Susac syndrome is dependent on the severity of the disease (which is guided by severity of encephalopathy clinically, severity of ischemic lesions seen on MRI). In severe cases, patients may be treated with 1g pulsed methylprednisolone for 3-7 days followed by high dose oral steroids or Intravenous immunoglobulins. In extremely severe cases or refractory cases, pulsed cyclophosphamide, mycophenolate mofetil, tacrolimus or plasma exchange are alternative treatments.

Ophthalmic

In cases of Susac's retinopathy with CNS involvement, treatment of the CNS disease will take precedence and this often treats the BRAO; however, when patient presents with isolated Susac's retinopathy with BRAO, immunosuppressive treatment can be less aggressive and of shorter duration than that required for those with CNS disease. It is recommended that patients are treated with pulsed IV methylprednisolone 1g for 3 days, followed by oral prednisolone (usually over a course of 1 month). IVIG and Mycophenolate Mofetil (MMF) are started early as alternatives in severe or non-responding cases. Serial FFA is required during follow up (up to 3 weekly) and medication tapered once serial angiography has ruled out recurrence of active disease. IVIG and MMF should be continued for a minimum of 6 months. In patients who progress despite the use of corticosteroid, IVIG and MMF, Cyclophosphamide and rituximab could be used as an alternative.

Long term monitoring with FFA is recommended as BRAO may be recurrent, even when receiving ongoing treatment. Signs of retina ischemia such as vitreous hemorrhage and neovascularisation may also be sequelae. As a result, patients with residual retinal capillary drop out in the retinal periphery are closely observed for development of neovascularisation, which can be treated with laser photocoagulation.
The successful use of local intravitreal steroids (triamcinolone) to treat BRAOs in Susac syndrome prior to the start of systemic corticosteroids has also been described; however, the mainstay of treatment remains systemic immunosuppression.

A Proposed Care Pathway

With distillation of the literature, response to therapies and with contemporary ocular imaging we present a care management pathway we have adopted.

We monitor Susac syndrome with EDTRS letter charts, OCT spectris, and optos wide field angiography. We recommend all patients with newly diagnosed and active Susac syndrome commence high dose corticosteroids, at a minimum of prednisolone 60mg a day and monitored weekly with wide field angiography during acute phase. (Figure 2, 3) After 6 weeks, a patient is deemed refractory to treatment if there are no clinical improvements and, mycophenolate mofetil (1g BiD) will be added. Rituximab, cyclophosphamide, or IVIG will be considered as third line treatment after a further 6 weeks, and plasma exchange a final resort.

Maintenance therapy should be continued until MRI, FFA, and visual fields shows signs of stability with no new lesions and the patient remains clinically stable. Treatment can then be tapered over a period of 6 months (Figure 3). Patients will require life long monitoring for disease recurrence even when treatment has been eventually stopped. In cases where patients present with encephalopathy, CNS disease will need to take precedence and more aggressive treatment may be necessary from the outset.

Conclusion

We have highlighted the importance of early recognition of Susac syndrome, given its varied forms of presentation and the severe consequences of delayed treatment. Ophthalmologists play a pivotal role in assisting diagnosis with pathognomonic ophthalmoscopy and imaging findings such as Gass plaques and AWHs. The role of FFA, especially wide-field angiography, is crucial in the monitoring of ophthalmic disease as it is more sensitive than brain MRI in monitoring disease activity. New imaging modalities such as OCT/OCT angiography and wide field angiography allows for unprecedented detailed documentation of retinal involvement in Susac syndrome and monitoring patients for relapse and necessity for treatment.
Literature Search

This literature review of the current article, ‘A Review and Update on the Ophthalmic Implications for Susac’s Syndrome was performed using Pubmed, from 1975 to 2018, with the search words ‘Susac’s Syndrome’ and ‘treatment’, ‘imaging’, ‘fluorescein angiography’, ‘indocyanine angiography’ and ‘optical coherence tomography’. All case reports and series were included in the search. Non-peer reviewed articles and non English abstracts were excluded.

Disclosure

None of the authors (LZ Heng, R Lee, C Bailey, AD Dick and A Ross) have any financial disclosures, no commercial or similar relationships to members of families or products mentioned in the subject matter in relation to the article.

The article has not been submitted for publication elsewhere.

References

25. Gass: Stereoscopic atlas of macular diseases: diagnosis and treatment, mosby, St Louis 1987
70. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 53:457-465, 1999
<table>
<thead>
<tr>
<th>Study</th>
<th>Number of cases</th>
<th>FFA findings</th>
<th>OCT findings</th>
<th>OCTA findings</th>
<th>Suggested Implications</th>
</tr>
</thead>
</table>

Table 1. Comparison of ophthalmic imaging findings from published literature
<table>
<thead>
<tr>
<th>Argawal et al [27]</th>
<th>2</th>
<th>Active focal vascular leakage and occlusion of blood flow during the active stage of the disease. Fluorescein angiography performed at 1 year follow-up visit shows perfusion of all the vessels in the posterior pole.</th>
<th>Waviness in the outer plexiform layer (OPL) with atrophy of the inner retinal layers. The outer retina, retinal pigment epithelium, and external limiting membrane appear normal.</th>
<th>Outer plexiform layer undulations and nodularity though to represent ischemic swelling of bipolar cells. Long term implications for subclinical changes, ‘scarring effect’ and role of FFA for monitoring purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROISMAN[28]</td>
<td>1</td>
<td>Inner retinal thinning</td>
<td>Vascular hypoperfusion within the macular area in both superficial and deep capillary, corresponding to the topography of BRAO seen on FFA The OCTA segmentation s in the outer retina and choriocapillaris were</td>
<td>Retinal vasculitis could lead to a lower vascular flow because of the vessel narrowing. This lower vascular flow usually increases following the disease control. Gives indirect clue to disease activity</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Duration</td>
<td>Description</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ringelstein [33]</td>
<td>17</td>
<td>Reduction of almost all inner retinal layers from the RNFL to the OPL, ONL and PRL normal</td>
<td>Presence of permanent tissue damage, not seen on fundoscopy. OCT provides complementary diagnostic information to FA in particular in later and chronic disease stages, when there may be no more BRAOs or other vascular pathologies detectable by FFA.</td>
<td></td>
</tr>
<tr>
<td>Khan et al [72]</td>
<td>1</td>
<td>Leakage and reperfusion observed in inactive stages</td>
<td>Role of serial monitoring of treatment response using FFA.</td>
<td></td>
</tr>
</tbody>
</table>
Figure Legend for Figure 1

Figure 1a. Wide field fundus photo of the right retina of patient with Susac’s syndrome with Gass plaques and figure 1b demonstrates arterial wall hyperfluorescence in the late phase FFA.
Figure 2. Wide field Angiography images of patient with non-remitting Susac’s Syndrome showing widespread AWH

Figure 2. 32 year old Caucasian gentleman with known Susac’s syndrome presented to the ophthalmology clinic with multiple areas of right inferior vasculitis (a). Left eye was quiet. There was no anterior segment inflammation and no vitritis. He was started on high dose prednisolone. He did not respond to prednisolone and mycophenolate was started, with progression and involvement of inferior vasculitis in the left retina (b). He then developed confusion and, upon consultation with neurologist, decision was made to switch treatment to rituximab with tapering of steroids and mycophenolate. There was no response to rituximab and patient’s headaches and confusion worsened. He underwent plasma exchange and was reviewed 2 days after the treatment with improvements of vasculitis in both eye (c, d).