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TEMPLATES FOR BINARY MATROIDS∗

KEVIN GRACE† AND STEFAN H. M. VAN ZWAM†

Abstract. A binary frame template is a device for creating binary matroids from graphic or
cographic matroids. Such matroids are said to conform or coconform to the template. We introduce
a preorder on these templates and determine the nontrivial templates that are minimal with respect
to this order. As an application of our main result, we determine the eventual growth rates of
certain minor-closed classes of binary matroids, including the class of binary matroids with no minor
isomorphic to PG(3, 2). Our main result applies to all highly connected matroids in a class, not
just those of maximum size. As a second application, we characterize the highly connected 1-flowing
matroids.
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1. Introduction. Geelen, Gerards, and Whittle [2] recently announced a struc-
ture theorem describing the highly connected members of any proper minor-closed
class of matroids representable over a given finite field. In this paper we study some
consequences of their result. To state a first, rough version of their result, we need
the following definitions.

A matroid M is vertically k-connected if, for each partition (X,Y ) of the ground
set of M with r(X) + r(Y ) − r(M) < k − 1, either X or Y is spanning. We denote
the unique prime subfield of F by Fprime. We say that a matroid M2 is a rank-(≤ t)
perturbation of a matroid M1 if there exist matrices A1 and A2 over F such that
r(M(A1 −A2)) ≤ t and such that M1

∼= M(A1) and M2
∼= M(A2).

We now restate [2, Theorem 3.3]. Its proof is forthcoming in a future paper by
Geelen, Gerards, and Whittle.

Theorem 1.1. Let F be a finite field and let m0 be a positive integer. Then
there exist k, n, t ∈ Z+ such that, if M is a matroid representable over F such that
M or M∗ is vertically k-connected and such that M has an M(Kn)-minor but no
PG(m0 − 1,Fprime)-minor, then M is a rank-(≤ t) perturbation of a frame matroid
representable over F.

Let us consider a very simple example of a rank-1 perturbation. Let A1 be the
binary matrix ⎡

⎢⎢⎣
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎦ ,
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and let A2 be the binary matrix⎡
⎢⎢⎣
0 1 1 1 1 1 1 0 0 0
1 0 1 1 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎦ .

Note that A2 is the result of adding the rank-1 matrix⎡
⎢⎢⎣
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦

to A1. Therefore, the vector matroid M(A2) is a rank-1 perturbation of M(A1).
Theorem 1.1 is essentially a simplified version of a much more complex structure

theorem [2, Theorem 4.2]. Geelen, Gerards, and Whittle introduced the concept of a
template as a tool to capture much of this complexity.

Our focus in this paper is on the binary case. Roughly speaking, a binary frame
template can be thought of as a recipe for constructing a representable matroid from
a graphic or cographic matroid. A matroid constructed in this way is said to conform
or coconform to the template.

In the example above, we may think of M(A2) as the matroid obtained from the
vector matroid of the following matrix by contracting the element indexing the final
column. Note that the large submatrix on the bottom left is A1:⎡

⎢⎢⎢⎢⎣
1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 0 0 1
0 1 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 0 1 0 1 0
0 0 0 1 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎦ .

In fact, for any matrix A of the following form, where v and w are arbitrary binary
vectors, the matroid M(A)/c conforms to the template ΦCX , which we will define in
section 3:

c
v 1

incidence matrix of a graph w

Let M(Φ) denote the set of matroids representable over a field F that conform to
a frame template Φ. Theorem 1.2 below is a slight modification of [2, Theorem 4.2].
The modification is explained in section 2.

Theorem 1.2. Let F be a finite field, let m be a positive integer, and let M be a
minor-closed class of matroids representable over F. Then there exist k, l ∈ Z+ and
frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such that

• M contains each of the classes M(Φ1), . . . ,M(Φs),
• M contains the duals of the matroids in each of the classes M(Ψ1), . . . ,M(Ψt),

and
• if M is a simple vertically k-connected member of M with at least l elements

and with no PG(m− 1,Fprime) minor, then either M is a member of at least
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256 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

one of the classes M(Φ1), . . . ,M(Φs), or M∗ is a member of at least one of
the classes M(Ψ1), . . . ,M(Ψt).

Our contribution is to shed some light on how these templates are related to
each other. We define a preorder on the set of frame templates. Our main result,
Theorem 3.19, is a list of nontrivial binary frame templates that are minimal with
respect to this preorder.

One application of this result involves growth rates of minor-closed classes of
binary matroids. The growth rate function of a minor-closed class M is the function
whose value at an integer r ≥ 0 is given by the maximum number of elements in a
simple matroid in M of rank at most r. We prove that a minor-closed class of binary
matroids has a growth rate that is eventually equal to the growth rate of the class of
graphic matroids if and only if it contains all graphic matroids but does not contain the
class of matroids conforming to a certain template. The class of matroids conforming
to this template is exactly the class of matroids having an even-cycle representation
with a blocking pair. Geelen and Nelson also proved this result in [6]. We also prove
the following theorem. Here, EX (F ) denotes the class of binary matroids with no
F -minor. If f and g are functions, we write f(r) ≈ g(r) if f(r) = g(r) for all but
finitely many r.

Theorem 1.3. The growth rate function for EX (PG(3, 2)) is

hEX (PG(3,2))(r) ≈ r2 − r + 1.

Note that r2 − r + 1 is the growth rate of the class of even-cycle matroids.
Our main result goes beyond growth rates because it gives information about

all highly connected matroids in a minor-closed class, not just the maximum-sized
matroids. This is illustrated by our second application, involving 1-flowing matroids.
The 1-flowing property is a generalization of the max-flow min-cut property of graphs.
We prove the following.

Theorem 1.4. There exist k, l ∈ Z+ such that every simple, vertically k-connected,
1-flowing matroid with at least l elements is either graphic or cographic.

We use templates to study a minor-closed class M by describing the highly con-
nected matroids in the class. This analysis follows a certain pattern:

1. Find a matroid N not in M.
2. Find all templates such that N is not a minor of any matroid conforming to

that template.
3. If all matroids conforming to these templates are in M, then the analysis is

complete.
4. Otherwise, repeat step (1).

From the definition of conforming to a template, which we will give in section 2,
it will not be difficult to see that for each binary frame template Φ, there are integers
t1 and t2 such that every matroid conforming to Φ is a rank-(≤ t1) perturbation of a
graphic matroid and every matroid coconforming to Φ is a rank-(≤ t2) perturbation
of a cographic matroid. Thus, by Theorem 1.2, the highly connected matroids in a
minor-closed class of binary matroids are “close” to being graphic or cographic. In
this regard, the work regarding templates resembles work done by Robertson and
Seymour concerning minor-closed classes of graphs. In [10, Theorem 1.3], Robertson
and Seymour showed that highly connected graphs in a minor-closed class are in some
sense “close” to being embeddable in some surface.
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Section 2 of this paper repeats the necessary definitions found in [2]. In section 3,
we prove our main result, as well as giving some machinery leading up to it. Section 4
applies our result to growth rates of minor-closed classes of binary matroids, and in
section 5, we prove Theorem 1.4.

2. Preliminaries. We repeat here several definitions concerning highly con-
nected matroids which can be found in Geelen, Gerards, and Whittle [2]. Although
the results found in [2] are technically about matrices rather than matroids, it suffices
for our purposes to state the results in terms of their immediate matroid consequences.

Let A be a matrix over a field F. Then A is a frame matrix if each column of A
has at most two nonzero entries. We let F× denote the multiplicative group of F. Let
Γ be a subgroup of F×. A Γ-frame matrix is a frame matrix A such that the following
hold:

• Each column of A with a nonzero entry contains a 1.
• If a column of A has a second nonzero entry, then that entry is −γ for some
γ ∈ Γ.

In the case where Γ is the multiplicative group of one element, a matrix is a Γ-frame
matrix if and only if it is the signed incidence matrix of a graph, with possibly a
row removed. In particular, a binary matroid is graphic if and only if it can be
represented by a matrix over GF(2) in which no column has more than two nonzero
entries.

To facilitate the description of their structure theorem, Geelen, Gerards, and
Whittle capture much of the complexity with the concept of a “template.” Let F be
a finite field. A frame template over F is a tuple Φ = (Γ, C,X, Y0, Y1, A1,Δ,Λ) such
that the following hold:1

(i) Γ is a subgroup of F×.
(ii) C, X , Y0, and Y1 are disjoint finite sets.
(iii) A1 ∈ FX×(C∪Y0∪Y1).
(iv) Λ is a subgroup of the additive group of FX and is closed under scaling by

elements of Γ.
(v) Δ is a subgroup of the additive group of FC∪Y0∪Y1 and is closed under scaling

by elements of Γ.
Let Φ = (Γ, C,X, Y0, Y1, A1,Δ,Λ) be a frame template. Let B and E be finite

sets, and let A′ ∈ FB×E . We say that A′ respects Φ if the following hold:
(i) X ⊆ B and C, Y0, Y1 ⊆ E.
(ii) A′[X,C ∪ Y0 ∪ Y1] = A1.
(iii) There exists a set Z ⊆ E− (C ∪Y0 ∪Y1) such that A′[X,Z] = 0, each column

of A′[B −X,Z] is a unit vector, and A′[B −X,E − (C ∪ Y0 ∪ Y1 ∪ Z)] is a
Γ-frame matrix.

(iv) Each column of A′[X,E − (C ∪ Y0 ∪ Y1 ∪ Z)] is contained in Λ.
(v) Each row of A′[B −X,C ∪ Y0 ∪ Y1] is contained in Δ.
Figure 1 shows the structure of A′.
Suppose that A′ respects Φ and that Z satisfies (iii) above. Now suppose that

A ∈ FB×E satisfies the following conditions:
(i) A[B,E − Z] = A′[B,E − Z].
(ii) For each i ∈ Z there exists j ∈ Y1 such that the ith column of A is the sum

of the ith and the jth columns of A′.
We say that any such matrix conforms to Φ.

1The authors of [2] divided our set X into two separate sets which they called X and D. Their
set X can be absorbed into Y0, and therefore we omit it.
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258 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Z Y0 Y1 C

X columns from Λ 0 A1

Γ-frame matrix unit columns
rows
from Δ

Fig. 1.

Let M be a matroid representable over F. We say that M conforms to Φ if there
is a matrix A that conforms to Φ such that M is isomorphic to M(A)/C\Y1.

Let M(Φ) denote the set of matroids representable over F that conform to Φ.
Recall that a matroid M is vertically k-connected if, for each partition (X,Y ) of the
ground set of M with r(X) + r(Y ) − r(M) < k − 1, either X or Y is spanning. We
denote the unique prime subfield of F by Fprime. Geelen, Gerards, and Whittle will
prove Theorem 1.2 in a future paper. This theorem is actually a slight modification of
the theorem found in [2]. In that paper, there is no mention of the requirement that
a matroid have size at least l. However, Geelen [1] has stated that this is necessary
to ensure that adding a finite number of matroids to the class M does not add any
templates to the list Φ1, . . . ,Φs,Ψ1, . . . ,Ψt.

Although the term coconform does not appear in [2], we define it in the following
obvious way.

Definition 2.1. A matroid M coconforms to a template Φ if its dual M∗ con-
forms to Φ.

To simplify the proofs in this paper, it will be helpful to expand the concept of
conforming slightly.

Definition 2.2. Let A′ be a matrix that respects Φ, as defined above, except that
we allow columns of A′[B − X,Z] to be either unit columns or zero columns. Let
A be a matrix that is constructed from A′ as described above. Thus, A[B,E − Z] =
A′[B,E − Z], and for each i ∈ Z there exists j ∈ Y1 such that the ith column of A is
the sum of the ith and the jth columns of A′. Let M be isomorphic to M(A)/C\Y1.
We say that A and M virtually conform to Φ and that A′ virtually respects Φ. If M∗

virtually conforms to Φ, we say that M virtually coconforms to Φ.

We will denote the set of matroids representable over F that virtually conform to
Φ by Mv(Φ) and the set of matroids representable over F that virtually coconform
to Φ by M∗

v(Φ).
The following notation will be used throughout this paper. We denote an empty

matrix by [∅]. We denote a group of one element by {0} or {1} if it is an additive or
multiplicative group, respectively. If S′ is a subset of a set S and G is a subgroup of
the additive group FS , we denote by G|S′ the projection of G into FS′

. Similarly, if
x̄ ∈ G, we denote the projection of x̄ into FS′

by x̄|S′.
Unexplained notation and terminology will generally follow Oxley [9]. One ex-

ception is that we denote the vector matroid of a matrix A by M(A), rather than
M [A].
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3. Reducing a template. In this section, we will introduce reductions and
show that every template reduces to one of several basic templates.

Since templates are used to study minor-closed classes of matroids, a natural
question to ask is whether the set of matroids conforming to a particular template is
minor-closed. The answer is no, in general. For example, if |Y0| = 1, then a matroid
conforms to the following binary frame template if and only if it is a graphic matroid
with a loop:

({1}, ∅, ∅, Y0, ∅, [∅], {0}, {0}).

Clearly, this is not a minor-closed class.
Another question to ask is whether there might be some sort of minor relationship

between a pair of templates, where every matroid conforming to one template is a
minor of a matroid conforming to the other. These questions motivate the following
discussion.

Definition 3.1. A reduction is an operation on a frame template Φ that produces
a frame template Φ′ such that M(Φ′) ⊆ M(Φ).

Proposition 3.2. The following operations are reductions on a frame template
Φ:

(1) Replace Γ with a proper subgroup.
(2) Replace Λ with a proper subgroup closed under multiplication by elements

from Γ.
(3) Replace Δ with a proper subgroup closed under multiplication by elements

from Γ.
(4) Remove an element y from Y1. (More precisely, replace A1 with A1[X,Y0 ∪

(Y1 − y) ∪C] and replace Δ with Δ|(Y0 ∪ (Y1 − y) ∪C).
(5) For all matrices A′ respecting Φ, perform an elementary row operation on

A′[X,E]. (Note that this alters the matrix A1 and performs a change of basis
on Λ.)

(6) If there is some element x ∈ X such that, for every matrix A′ respecting Φ,
we have that A′[{x}, E] is a zero row vector, remove x from X. (This simply
has the effect of removing a zero row from every matrix conforming to Φ.)

(7) Let c ∈ C be such that A1[X, {c}] is a unit column whose nonzero entry is in
the row indexed by x ∈ X, and let either λx = 0 for each λ ∈ Λ or δc = 0 for
each δ ∈ Δ. Let Δ′ be the result of adding −δcA1[{x}, Y0 ∪ Y1 ∪ C] to each
element δ ∈ Δ. Replace Δ with Δ′, and then remove c from C and x from
X. (More precisely, replace A1 with A1[X − x, Y0 ∪ Y1 ∪ (C − c)], replace Λ
with Λ|(X − x), and replace Δ with Δ′|(Y0 ∪ Y1 ∪ (C − c)).)

(8) Let c ∈ C be such that A1[X, {c}] is a zero column and δc = 0 for all δ ∈ Δ.
Then remove c from C. (More precisely, replace A1 with A1[X,Y0∪Y1∪ (C−
c)], and replace Δ with Δ|(Y0 ∪ Y1 ∪ (C − c)).)

Proof. Let Φ′ be the template that results from performing one of operations
(1)–(8) on Φ.

For (1)–(3), every matrix A′ respecting Φ′ also respects Φ.
For (4), let A′ be a matrix respecting Φ′, and let M be the matroid M(A)/C\Y1,

where A is a matrix conforming to Φ′ that has been constructed from A′ respecting
Φ′ as described in section 2. Since Y1 is deleted to produce M , the only effect of Y1

on M is that for each i ∈ Z there exists j ∈ Y1 such that the ith column of A is the
sum of the ith and the jth columns of A′. But each j ∈ Y1 in the template Φ′ is also
contained in Y1 in the template Φ. Therefore, A conforms to Φ, as does M .
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For (5) and (6), elementary row operations and removing zero rows produce iso-
morphic matroids.

Operations (7) and (8) have the effect of contracting c from M(A)\Y1 for every
matrix A conforming to Φ. Since all of C is contracted to produce a matroid M
conforming to Φ, the matroids we produce by performing either of these operations
still conform to Φ.

For i ∈ {1, . . . , 8}, we call operation (i) above a reduction of type i.
The operations listed in the definition below are not reductions as defined above,

but we continue the numbering from Proposition 3.2 for ease of reference.

Definition 3.3. A template Φ′ is a template minor of Φ if Φ′ is obtained from
Φ by repeatedly performing the following operations:

(9) Performing a reduction of type 1-8 on Φ.
(10) Removing an element y from Y0, replacing A1 with A1[X, (Y0 − y) ∪ Y1 ∪C],

and replacing Δ with Δ|((Y0 − y) ∪ Y1 ∪ C). (This has the effect of deleting
y from every matroid conforming to Φ.)

(11) Let x ∈ X with λx = 0 for every λ ∈ Λ, and let y ∈ Y0 be such that
(A1)x,y 
= 0. Then contract y from every matroid conforming to Φ. (More
precisely, perform row operations on A1 so that A1[X, {y}] is a unit column
with (A1)x,y = 1. Then replace every element δ ∈ Δ with the row vector
−δyA1[{x}, Y0 ∪ Y1 ∪ C] + δ. This induces a group homomorphism Δ → Δ′,
where Δ′ is also a subgroup of the additive group of FC∪Y0∪Y1 and is closed
under scaling by elements of Γ. Finally, replace A1 with A1[X −x, (Y0 − y)∪
Y1∪C], project Λ into FX−x, and project Δ′ into F(Y0−y)∪Y1∪C. The resulting
groups play the roles of Λ and Δ, respectively, in Φ′.)

(12) Let y ∈ Y0 with δy = 0 for every δ ∈ Δ. Then contract y from every matroid
conforming to Φ. (More precisely, if A1[X, {y}] is a zero vector, this is the
same as simply removing y from Y0. Otherwise, choose some x ∈ X such
that (A1)x,y 
= 0. Then for every matrix A′ that respects Φ, perform row
operations so that A1[X, {y}] is a unit column with (A1)x,y = 1. This induces
a group isomorphism Λ → Λ′ where Λ′ is also a subgroup of the additive
group of FX and is closed under scaling by elements of Γ. Finally, replace A1

with A1[X − x, (Y0 − y) ∪ Y1 ∪ C], project Λ′ into FX−x, and project Δ into
F(Y0−y)∪Y1∪C. The resulting groups play the roles of Λ and Δ, respectively,
in Φ′.)

Let Φ′ be a template minor of Φ, and let A′ be a matrix that virtually respects
Φ′. Let A be a matrix that virtually conforms to Φ′, and let M be a matroid that
virtually conforms to Φ′. We say that A′ weakly respects Φ and that A and M weakly
conform to Φ. LetMw(Φ) denote the set of matroids representable over F that weakly
conform to Φ, and let M∗

w(Φ) denote the set of matroids representable over F whose
duals weakly conform to Φ. If M ∈ M∗

w(Φ), we say that M weakly coconforms to Φ.

Lemma 3.4. If a matroid M weakly conforms to a template Φ, then M is a minor
of a matroid that conforms to Φ.

Proof. Let Φ′ be a template minor of Φ. As we can see from Definition 3.3, every
matroidM weakly conforming to Φ′ is a minor of a matroid virtually conforming to Φ.
It remains to analyze the case where M virtually conforms to Φ; so M is isomorphic to
M(K)/C\Y1, where K is built from a matrix K ′ that virtually respects Φ. Consider
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the following matrix A′ obtained from K ′ by adding a row r and a column c.

c Z Y0 Y1 C

X 0 columns from Λ 0 A1

0 Γ-frame matrix 0 unit columns
rows
from Δ

r 1 0 1 · · · 1 0 0

From A′, we can obtain a matrix A conforming to Φ such that M is isomorphic
to M(A)/C\Y1/c. So M is a minor of a matroid conforming to Φ.

An easy consequence of Lemma 3.4 is that Theorem 1.2, which deals with minor-
closed classes, can be restated in terms of weak conforming.

Corollary 3.5. Let F be a finite field, let m be a positive integer, and let M be
a minor-closed class of matroids representable over F. Then there exist k, l ∈ Z+ and
frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such that

• M contains each of the classes Mw(Φ1), . . . ,Mw(Φs),
• M contains the duals of the matroids in each of the classes Mw(Ψ1), . . . ,

Mw(Ψt), and
• if M is a simple vertically k-connected member of M with at least l elements

and with no PG(m− 1,Fprime) minor, then either M is a member of at least
one of the classes Mv(Φ1), . . . ,Mv(Φs) or M∗ is a member of at least one
of the classes Mv(Ψ1), . . . ,Mv(Ψt).

Proof. Let Φ1, . . . ,Φs,Ψ1, . . . ,Ψt be the templates whose existence is implied by
Theorem 1.2. For Φ ∈ {Φ1, . . . ,Φs}, Lemma 3.4 implies that any matroid M ∈
Mw(Φ) is a minor of a matroid N ∈ M(Φ). Since M contains M(Φ) and is minor-
closed, M contains Mw(Φ) as well. Similarly, M contains the duals of the matroids
in each of the classes Mw(Ψ1), . . . ,Mw(Ψt). The third condition above holds since
every matroid conforming to a template also virtually conforms to it.

If Mw(Φ) = Mw(Φ
′), we say that Φ is equivalent to Φ′ and write Φ ∼ Φ′. It is

clear that ∼ is indeed an equivalence relation.

Definition 3.6. Let TF be the set of all frame templates over F. We define a
preorder � on TF as follows. We say Φ � Φ′ if Mw(Φ) ⊆ Mw(Φ

′). This is indeed
a preorder since reflexivity and transitivity follow from the subset relation. We may
obtain a partial order by considering equivalence classes of templates, with equivalence
as defined above. However, the templates themselves, rather than equivalence classes,
are the objects we work with in this paper.

Let Φ0 be the frame template with all groups trivial and all sets empty. We call
this template the trivial template. In general, we say that a template Φ is trivial if
Φ � Φ0. It is easy to see that for any template Φ, we have Φ0 � Φ. Therefore, if
Φ � Φ0, then actually Φ ∼ Φ0.

Our desire is to find a collection of minimal nontrivial templates. For the remain-
der of this paper, we restrict our attention to binary frame templates: those frame
templates where F = GF(2) and Γ is the group of one element.
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Definition 3.7.
• Let ΦC be the template with all groups trivial and all sets empty except that

|C| = 1 and Δ ∼= Z/2Z.
• Let ΦX be the template with all groups trivial and all sets empty except that

|X | = 1 and Λ ∼= Z/2Z.
• Let ΦY0 be the template with all groups trivial and all sets empty except that

|Y0| = 1 and Δ ∼= Z/2Z.
• Let ΦCX be the template with Y0 = Y1 = ∅, with |C| = |X | = 1, with

Δ ∼= Λ ∼= Z/2Z, with Γ trivial, and with A1 = [1].
• Let ΦY1 be the template with all groups trivial, with C = Y0 = ∅, with |Y1| = 3

and |X | = 2, and with A1 = [ 1 0 1
0 1 1 ].

It is not too difficult to see that the Fano matroid F7 virtually conforms to each of
ΦC , ΦX , ΦCX , ΦY0 , and ΦY1 . Therefore, these templates are nontrivial. In fact, one
can see that M(ΦY0) is the set of graft matroids, that M(ΦC) is the class of matroids
obtained by closing the set of graft matroids under minors, and that M(ΦX) is the
class of even-cycle matroids. In Lemma 4.5, we will show that Mv(ΦY1) is the class
of matroids having an even-cycle representation with a blocking pair.

Our goal in defining reductions and weak conforming was essentially to perform
operations on matrices while leaving the Γ-frame submatrix intact. The following
lemma does not contribute to that goal; so we will only make occasional use of
it.

Lemma 3.8. The following relations hold:
(1) ΦY1 � ΦX ,
(2) ΦY1 � ΦC ,
(3) ΦY0 � ΦC ,
(4) ΦC � ΦCX ,
(5) ΦX � ΦCX .

Proof. For (1), note that any simple matroid M of rank r virtually conforming
to ΦY1 is a restriction of the vector matroid of a matrix A of the following form:

0
1 0 1 1 · · · 1 0 · · · 0 1 · · · 1
0 1 1 0 · · · 0 1 · · · 1 1 · · · 1

Γ-frame matrix 0 I I I

If we label the sets of rows and columns of A as B and E, respectively, and the
first row as x, then we see that A[B − x,E] is a Γ-frame matrix. If we let X = {x},
then we see that M conforms to ΦX .

For (2), consider the matrix A above. Note that it is obtained by contracting c
in the following matrix:

c

0
0 0 1 0· · · 0 0· · · 0 1· · · 1 1
1 0 0 1 · · · 1 0 · · · 0 0 · · · 0 1
0 1 0 0 · · · 0 1 · · · 1 0 · · · 0 1

Γ-frame matrix 0 I I I 0

Removing c from this matrix, we obtain a Γ-frame matrix. Therefore, M conforms
to ΦC .
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For (3), any matroid M conforming to ΦY0 is the vector matroid of a matrix of
the following form, where v is an arbitrary column vector:

Γ-frame matrix v

Let A be the matrix below. Label its sets of rows and columns as B and E,
respectively, and let c be the last column with C = {c}.

0 1 1

Γ-frame matrix 0 v

Note that M is isomorphic to M(A)/C. Since A[B,E − C] is a Γ-frame matrix,
we see that M conforms to ΦC .

For (4), let A be a matrix conforming to ΦC and let M = M(A)/C be the
corresponding matroid conforming to ΦC . If the column of A indexed by C is a zero
column, then construct the matrix Ā by adding a unit row, indexed by X , whose
nonzero entry is in the column indexed by C. One readily sees that Ā conforms to
ΦCX and that the corresponding matroid M(Ā)/C is equal to M . Otherwise, if the
column of A indexed by C has a nonzero entry, then one readily sees that A conforms
to ΦCX by considering the row containing the nonzero entry to be indexed by X .

For (5), any matroid M conforming to ΦX is the vector matroid of a matrix of
the following form, where v is an arbitrary row vector:

v

Γ-frame matrix

Consider the following matrix A, whose last column is indexed by {c} = C:

v 1
0 1

Γ-frame matrix 0

The matroid M is isomorphic to M(A)/c, which conforms to ΦCX .

Lemma 3.9. Let Φ be a template with y ∈ Y1. Let Φ′ be the template obtained
from Φ by removing y from Y1 and placing it in Y0. Then Φ′ � Φ.

Proof. Any matrix respecting Φ′ virtually respects Φ by adding column y only to
the zero Z column. Thus, any matroid conforming to Φ′ weakly conforms to Φ.

We call the operation described in Lemma 3.9 a y-shift.

Definition 3.10. Let Φ = (Γ, C,X, Y0, Y1, A1,Δ,Λ) be a frame template over a
finite field F. We say that Φ is in standard form if there are disjoint sets C0, C1, X0,
and X1 such that C = C0 ∪ C1, such that X = X0 ∪X1, such that A1[X0, C0] is an
identity matrix, and such that A1[X1, C] is a zero matrix.
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Z Y0 Y1 C0 C1

X0 columns from Λ|X0 0 ∗ I ∗
X1 columns from Λ|X1 0 0

Γ-frame matrix unit or zero columns
rows
from Δ

Fig. 2. Standard form.

Figure 2, with the stars representing arbitrary matrices, shows a matrix that
virtually respects a template in standard form. Note that if Φ is in standard form,
|C0| = |X0|. Also note that any of C0, C1, X0, or X1 may be empty. Finally, note
that we have defined standard form for frame templates over any finite field, not just
binary frame templates.

Lemma 3.11. Every frame template Φ = (Γ, C,X, Y0, Y1, A1,Δ,Λ) is equivalent
to a frame template in standard form.

Proof. Choose a basis C0 for M(A1[X,C]), and let C1 = C − C0. Repeatedly
perform operation (5) to obtain a template Φ′, where A1[X,C0] consists of an identity
matrix on top of a zero matrix. Each use of operation (5) results in an equivalent tem-
plate; therefore, Φ ∼ Φ′. Let X0 ⊆ X index the rows of the identity matrix, and let
X1 ⊆ X index the rows of the zero matrix. Since C0 is a basis for M(A1[X,C]),
the matrix A1[X1, C1] must be a zero matrix as well. Thus, Φ′ is in standard
form.

Throughout the rest of this paper, we will implicitly use Lemma 3.11 to assume
that all templates are in standard form. Also, the operations (1)–(12) to which we will
refer throughout the rest of this paper are the operations (1)–(8) from Proposition 3.2
and (9)–(12) from Definition 3.3.

Lemma 3.12. If Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ) is a binary frame template with
Λ|X1 nontrivial, then ΦX � Φ.

Proof. Perform operations (2) and (3) on Φ to obtain the following template,
where λ is an element of Λ with λx 
= 0 for some x ∈ X1:

({1}, C,X, Y0, Y1, A1, {0}, {0, λ}).

On this template, repeatedly perform operation (7), then (8), then (4), and then (10)
until the following template is obtained:

({1}, ∅, X1, ∅, ∅, [∅], {0}, {0, λ}).

On this template, repeatedly perform operation (5) to obtain a template that is
identical to the previous one except that the support of λ contains only one element
of X1. On this template, repeatedly perform operation (6) to obtain the following
template, where x ∈ X1:

({1}, ∅, {x}, ∅, ∅, [∅], {0},Z/2Z).

This template is ΦX .

Lemma 3.13. If Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ) is a binary frame template, then
either ΦC � Φ or Φ is equivalent to a template with C1 = ∅.
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Proof. Suppose there is an element δ ∈ Δ|C that is not in the row space of
A1[X,C]. Repeatedly perform operations (4) and (10) on Φ until the following tem-
plate is obtained:

({1}, C,X, ∅, ∅, A1[X,C],Δ|C,Λ).
On this template, perform operations (2) and (3) to obtain the following template:

({1}, C,X, ∅, ∅, A1[X,C], {0, δ}, {0}).

Every matrix virtually respecting this template is row equivalent to a matrix virtually
respecting a template that is identical to the previous template except that there is
the additional condition that δ|C0 is a zero vector. Note that δ|C1 is nonzero since,
in the previous template, δ was not in the row space of A1[X,C]. Now, on the
current template, repeatedly perform operation (7) and then operation (6) to obtain
the following template:

Φ′ = ({1}, C1, ∅, ∅, ∅, [∅], {0, δ|C1}, {0}).

Now, any matroid M conforming to Φ′ is obtained by contracting C1 from M(A),
where A is a matrix conforming to Φ′. By contracting any single element c ∈ C1,
where δc = 1, we turn the rest of the elements of C1 into loops. So C1 − c is deleted
to obtain M . Thus, M conforms to the template

({1}, {c}, ∅, ∅, ∅, [∅],Z/2Z, {0}),

which is ΦC . Similarly, the converse is true that any matroid conforming to ΦC

conforms to Φ′. Thus, ΦC ∼ Φ′ � Φ.
Now suppose that every element of Δ|C is in the row space of A1[X,C]. Thus,

contraction of C0 turns the elements of C1 into loops, and contraction of C1 is the
same as deletion of C1. By deleting C1 from every matrix virtually conforming to Φ,
we see that Φ is equivalent to a template with C1 = ∅.

Lemma 3.14. If Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ) is a binary frame template, then
one of the following is true:

• ΦC � Φ.
• Φ is equivalent to a template with Λ|X1 nontrivial and ΦX � Φ.
• Φ is equivalent to a template with Λ|X0 nontrivial and ΦCX � Φ.
• Φ is equivalent to a template with Λ trivial and C = ∅.

Proof. By Lemmas 3.12 and 3.13, we may assume that Λ|X1 is trivial and that
C1 = ∅.

First, suppose there exist elements δ ∈ Δ|C0 and λ ∈ Λ|X0 such that there are
an odd number of natural numbers i with δi = λi = 1. Thus, Λ|X0 is nontrivial.
Repeatedly perform operations (4) and (10) on Φ until the following template is
obtained:

({1}, C0, X, ∅, ∅, A1[X,C0],Δ|C0,Λ).

On this template, repeatedly perform operation (6) to obtain the following template:

Φ′ = ({1}, C0, X0, ∅, ∅, A1[X0, C0],Δ|C0,Λ|X0).

Perform operations (2) and (3) on Φ′ to obtain the following template:

({1}, C0, X0, ∅, ∅, A1[X0, C0], {0, δ}, {0, λ}).
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Any matroid conforming to this template is obtained by contracting C0. If δ is in the
row labeled by r and λ is in the column labeled by c, then when C0 is contracted, 1
is added to the entry of the Γ-frame matrix in row r and column c. Otherwise, the
entry remains unchanged when C is contracted. We see then that this template is
equivalent to ΦCX , where 1’s are used to replace δ and λ.

Thus, we may assume that for every element δ ∈ Δ|C0 and λ ∈ Λ|X0, there are an
even number of natural numbers i such that δi = λi = 1. This implies that contraction
of C has no effect on the Γ-frame matrix. So Φ is equivalent to a template with Λ|X0

trivial. Therefore, since Λ|X1 is trivial, we see that Λ is trivial. Note that operation
(7) is a reduction that produces an equivalent template, since C must be contracted to
produce a matroid that conforms to a template. By repeatedly performing operation
(7), we obtain a template equivalent to Φ with C = ∅.

Lemma 3.15. If Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ) is a binary frame template with
Λ trivial and with C = ∅, then either ΦY0 � Φ or Φ is equivalent to a template with
Δ trivial.

Proof. First, suppose there is an element δ ∈ Δ that is not in the row space of
A1 = A1[X1, (Y0∪Y1)]. Recall that a y-shift is the operation described in Lemma 3.9.
Repeatedly perform y-shifts to obtain the following template, where Y ′

0 = Y0 ∪ Y1:

({1}, ∅, X, Y ′
0, ∅, A1,Δ, {0}).

On this template, perform operation (3) to obtain the following template:

({1}, ∅, X, Y ′
0, ∅, A1, {0, δ}, {0}).

Choose a basis B′ for M(A1). By performing elementary row operations on every
matrix virtually respecting Φ, we may assume that A1[X,B′] consists of an identity
matrix with zero rows below it and that δ|B′ is the zero vector. By assumption, there
is some element y ∈ (Y ′

0 − B′) such that δy is nonzero. Thus, we can repeatedly
perform operation (10) to obtain the following template:

({1}, ∅, X,B′ ∪ y, ∅, A1[X,B′ ∪ y], {0, δ|(B′ ∪ y)}, {0}).

Now, we can repeatedly perform operation (6) and then operation (12) to obtain the
template

({1}, ∅, ∅, {y}, ∅, [∅],Z/2Z, {0}),

which is ΦY0 .
Now suppose that every element δ ∈ Δ is in the row space ofA1 = A1[X, (Y0∪Y1)].

Since Λ is trivial, by performing elementary row operations on every matrix virtually
respecting Φ, we obtain a template equivalent to Φ with Δ trivial.

Lemma 3.16. Let Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ) be a binary frame template
with Λ and Δ trivial. If M(A1[X1, (Y0 ∪ Y1)]) has a circuit Y ′ with |Y ′ ∩ Y1| ≥ 3,
then ΦY1 � Φ.

Proof. Any matroid conforming to Φ is obtained by contracting C. Since Λ and Δ
are trivial, we may assume that C = X0 = ∅ and therefore that X = X1. Repeatedly
perform operation (4) and then operation (10) on Φ to obtain the following template:

({1}, ∅, X, Y0 ∩ Y ′, Y1 ∩ Y ′, A1[X,Y ′], {0}, {0}).
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Choose any 3-element subset of Y ′ ∩ Y1 and call it Y ′′. Repeatedly perform y-shifts
to obtain the following template:

({1}, ∅, X, Y ′ − Y ′′, Y ′′, A1[X,Y ′], {0}, {0}).

On this template, repeatedly perform operation (11) to obtain the following template:

({1}, ∅, X ′, ∅, Y ′′, A1[X
′, Y ′′], {0}, {0}),

whereX ′ is the subset ofX that remains after Y ′−Y ′′ is contracted. On this template,
repeatedly perform operations (5) and (6) to obtain the following template, where X ′′

is a 2-element subset of X ′:

({1}, ∅, X ′′, ∅, Y ′′,
[
1 0 1
0 1 1

]
, {0}, {0}).

This template is ΦY1 .

Lemma 3.17. If Φ is a frame template with Δ trivial, then Φ is equivalent to
a template Φ′, where A1[X,Y1] is a matrix with every column nonzero and where
no column is a copy of another. Moreover, if Φ is a binary frame template, then
M(A1[X,Y1]) is simple.

Proof. Let A be a matrix that virtually conforms to Φ. Since Δ is trivial, the
columns of A indexed by elements of Z are formed by placing a column of A1[X,Y1]
on top of a unit column or a zero column. These columns can be made using any
copy of the same column of A1[X,Y1]; so only one copy is needed. If any column
of A1[X,Y1] is a zero column, then any column indexed by an element of Z that is
made with this zero column can also be made as a column indexed by an element of
E − (Z ∪ Y0 ∪ Y1 ∪ C) and choosing for the element of Λ the zero vector. Thus, no
zero columns of A1[X,Y1] are needed.

In the binary case, M(A1[X,Y1]) has no parallel elements because any such el-
ements index copies of the same column. Also, M(A1[X,Y1]) has no loops because
every column of A1[X,Y1] is nonzero. Therefore, M(A1[X,Y1]) is simple.

Lemma 3.18. Let Φ be a binary frame template. Then at least one of the following
is true:

(i) Φ0 ∼ Φ.
(ii) Φ′ � Φ for some Φ′ ∈ {ΦX ,ΦC ,ΦCX ,ΦY0 ,ΦY1}.
(iii) Φ is equivalent to a template where C = ∅, where Λ and Δ are trivial, and

where A1 is of the following form with Y0 = V0 ∪ V1, with L an arbitrary
binary matrix, and with each column of H containing at most two nonzero
entries:

Y1 V0 V1

I 0 H
0 I L

.

Proof. Suppose neither (i) nor (ii) holds. By Lemma 3.14, we may assume that
Λ is trivial and C = ∅. By Lemma 3.15, we may assume that Δ is trivial. By
Lemma 3.16, every dependent set of M(A) = M(A1[X1, (Y0∪Y1)]) has an intersection
with Y1 with size at most 2. So by elementary row operations, we may assume that
A1 is of the following form, where Y0 = V0∪V1, where L is an arbitrary binary matrix,
where K consists of unit and zero columns, and where each column of H contains at
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most two nonzero entries:
Y1 V0 V1

I K 0 H
0 0 I L

.

However, by Lemma 3.17, we may assume that K is an empty matrix. Thus, (iii)
holds.

Theorem 3.19. Let Φ be a binary frame template. Then at least one of the
following is true:

(i) Φ0 ∼ Φ.
(ii) Φ′ � Φ for some Φ′ ∈ {ΦX ,ΦC ,ΦCX ,ΦY0 ,ΦY1}.
(iii) There exist k, l ∈ Z+ such that no simple, vertically k-connected matroid with

at least l elements either virtually conforms or virtually coconforms to Φ.

Proof. Suppose for contradiction that none of outcomes (i)–(iii) hold for Φ. By
Lemma 3.18, outcome (iii) of that lemma holds. Note that any simple matroid N
virtually conforming to Φ is a restriction of a matroid M represented by a matrix of
the following form, where Z = Z0 ∪ Z1, where Y0 = V0 ∪ V1, and where the Γ-frame
matrix has n rows and has a vector matroid isomorphic to the cycle matroid of the
graph Kn+1:

Z0 Z1 V0 V1

X 0

1 · · · 1

I 0 H
1 · · · 1

· · ·
1 · · · 1

0 0 I L
Γ-frame matrix I I · · · I 0 0 0

Also recall from the definition of conforming to a template that Y0 ⊆ E(N).
We see that

λN (Y0 ∪ (Z1 ∩ E(N))) ≤ λM (Y0 ∪ Z1)

= rM (Y0 ∪ Z1) + rM (E − (Y0 ∪ Z1))− r(M)

= |V0|+ |Y1|+ |Y1|+ n− (|Y1|+ |V0|+ n)

= |Y1|.

Note that each column of the above matrix, except possibly those columns indexed
by V1, has at most two nonzero entries. Thus, M is graphic and Φ is trivial if V0 = ∅.
Since (i) does not hold, Φ is nontrivial. Therefore, V0 
= ∅, and E(N) − (Y0 ∪ Z1)
is not spanning. Thus, if k > |Y1| + 1, then N is not vertically k-connected unless
Y0 ∪ (Z1 ∩ E(N)) is spanning in N . This implies that n = 0; in that case, N is only
simple if the Γ-frame matrix is a 0× 0 matrix. This implies that |E(N)| ≤ |Y0 ∪ Y1|.
So if l > |Y0 ∪ Y1|, then no simple, vertically k-connected matroid with at least l
elements virtually conforms to Φ.

Now, consider a simple matroid N∗ which virtually coconforms to Φ. Then N
is a restriction of M with Y0 ⊆ E(N). Since a matroid and its dual have the same
connectivity function, we have λN∗(Y0 ∪ (Z1 ∩E(N)) ≤ |Y1|. So if k > |Y1|+ 1, then
N∗ is not vertically k-connected unless either Y0 ∪ (Z1 ∩E(N)) or E(N)− (Z1 ∪ Y0)
is spanning in N∗, implying that either E(N) − (Z1 ∪ Y0) or Y0 ∪ (Z1 ∩ E(N)) is
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independent in N . If E(N)− (Z1 ∪ Y0) is independent in N , then

|E(N)− (Z1 ∪ Y0)| = rN (E(N)− (Z1 ∪ Y0))

≤ rM (E(M)− (Z1 ∪ Y0))

= |Y1|+ n.

By the formula for corank, we have

rN∗(E(N)− (Z1 ∪ Y0)) ≤ rM∗(E(N) − (Z1 ∪ Y0))

= |E(N)− (Z1 ∪ Y0)|+ rM (Z1 ∪ Y0)− r(M)

≤ |Y1|+ n+ |Y1|+ |V0| − (|Y1|+ |V0|+ n)

= |Y1|.

Since N∗ is simple and binary, we have |E(N) − (Z1 ∪ Y0)| ≤ 2|Y1| − 1. This implies
that |E(N)| ≤ 2|Y1|− 1+ |Y1|+ |Y0|. Thus, if we set l greater than this value, then no
simple, vertically k-connected matroid with at least l elements virtually coconforms
to Φ unless Y0 ∪ (Z1 ∩ E(N)) is independent in N . Since (iii) does not hold, this
must be true for some matroid N . In particular, Y0 = V0 ∪ V1 is independent in N ,
implying that H is a linearly independent matrix.

Let P denote the matrix

P =

⎡
⎢⎢⎣

1 0
0 1
0 1
1 1

⎤
⎥⎥⎦ .

Suppose A1[X,V1] has P as a submatrix, with the first three rows of P contained in H
and the last row of P contained in L. Then A1 contains the following submatrix, with
the first three columns contained in A1[X,Y1] and the last two contained in A1[X,V1]:

⎡
⎢⎢⎣

1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦ .

After contracting all other elements of Y1 by repeatedly performing y-shifts and oper-
ation (12), the columns of this submatrix form a circuit in M(A1) whose intersection
with Y1 has size 3. However, we have already deduced by Lemma 3.16 that this is
impossible. Therefore, A1 does not contain P as a submatrix, with the first three
rows of P contained in H and the last row of P contained in L. We will refer to this
fact by saying that A1 has no P -configuration.

Let {1, 2, . . . ,m} be the rows of L. (So |V0| = m.) Let Si be the submatrix of H
obtained by restricting H to the columns j such that Li,j = 1. Recall that H , and
therefore Si, contain at most two nonzero entries per column. Also, since H is linearly
independent, each column has at least one nonzero entry, and no column is a copy of
another. Suppose a column e of Si contains exactly two nonzero entries. Since A1 has
no P -configuration, all other columns of Si must contain a nonzero entry in exactly
one of the same rows as e. Suppose that there are columns f and g in Si such that f
contains a nonzero entry in one of the same rows as e, but g contains a nonzero entry
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in the other row. Then Si contains the following submatrix:

e f g[ ]
1 1 0
1 0 1

.

Since H is a linearly independent matrix, f or g (say, f) must have an additional
nonzero entry in H . To avoid f and g forming a P -configuration, g must have an
additional nonzero entry in the same row as f . Therefore, Si contains the following
submatrix:

e f g[ ]
1 1 0
1 0 1
0 1 1

.

Since each column of H contains at most two nonzero entries, {e, f, g} is a dependent
set of columns, contradicting the assumption that H is linearly independent.

Therefore, we deduce that each Si either consists entirely of unit columns or
contains a row si consisting entirely of 1s. Note that each Si is the incidence matrix
of a star, with possibly one row removed. We will call si the star center of row i. If
Si consists entirely of unit columns, then we define its star center to be si = ∅.

If the sets of columns of all the Si are pairwise disjoint, then by adding each
row i to its star center si, we see that every matroid virtually conforming to Φ can
be represented by a matrix with at most two nonzero entries per column. Thus, Φ
is trivial, contradicting the assumption that (i) does not hold. Also, if i and j are
distinct rows of L with distinct star centers si and sj, then Si and Sj can have at
most one column in common because otherwise, the columns they have in common
form a linearly dependent set in H .

Now suppose there are Si and Sj with si = sj . Also, suppose that neither Si

nor Sj is a submatrix of the other. Then A1 contains the following submatrix. In
fact, after repeatedly performing y-shifts, operation (11), and operation (10), we may
assume that A1 is the following matrix, with the first three columns indexed by Y1,
the next two indexed by V0, and the last three by V1:⎡

⎢⎢⎢⎢⎣
1 0 0 0 0 1 1 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦ .

Add the fourth row to the first, and swap the fourth and sixth columns to obtain the
following matrix: ⎡

⎢⎢⎢⎢⎣
1 0 0 0 0 1 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦ .

The last two columns of this matrix contain a P -configuration.
Now suppose there are matrices Si and Sj so that Sj is a submatrix of Si. Then

A1 contains a submatrix obtained by deleting columns from a matrix of the following
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form, where the left portion comes from the set V0, the upper-right portion comes
from the matrix H , the lower-left portion comes from the matrix L, and x is 1 or 0
depending on whether or not the last column is contained in Sj :⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 · · · 1 1 · · · 1 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 0 1 0
...

...
. . .

...
0 0 1 0
1 0 1 · · · 1 1 · · · 1 1
0 1 0 · · · 0 1 · · · 1 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose any column contained in Sj and perform row operations so that this
column becomes a unit column with nonzero entry in L. Then we obtain the following
matrix: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1 0 0 · · · 0 x+ 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 1 0 1 · · · 1 x
0 0 1 0
...

...
. . .

...
0 0 1 0
1 1 1 · · · 1 0 · · · · · · 0 x+ 1
0 1 0 · · · 0 1 · · · · · · 1 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, by swapping the appropriate columns, we obtain the following:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 · · · 1 1 0 · · · 0 x+ 1
0 0 1 0
...

...
. . .

...
0 0 1 0
0 0 1 1 · · · 1 x
0 0 1 0
...

...
. . .

...
0 0 1 0
1 0 1 · · · 1 1 0 · · · 0 x+ 1
0 1 0 · · · 0 1 · · · · · · 1 x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We see that in this new matrix, Si and Sj have only one column in common and
si 
= sj . The last column is in Si if x = 0 and Sj if x = 1. Thus, this case reduces to
the final case that remains to be checked: for all i and j, we have si 
= sj , and Si and
Sj have at most one column in common. Since each column of H contains at most
two nonzero entries, and since all Si have distinct star centers, we see that a column
of H can be contained in at most two Si. By adding each row i to its star center
si, one can see that every matrix virtually conforming to Φ can be rewritten so that
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every column contains at most two nonzero entries. Therefore, Φ is trivial, and (i)
holds.

This completes the contradiction and proves the result.

Outcome (iii) of Theorem 3.19 only occurs in very specific situations. In fact, due
to connectivity considerations, it is not needed in order to use Corollary 3.5.

Definition 3.20. Let M be a minor-closed class of binary matroids, and suppose
there exist k, l,m ∈ Z+ and a set TM = {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt} of binary frame
templates such that

• M contains each of the classes Mw(Φ1), . . . ,Mw(Φs),
• M contains the duals of the matroids in each of the classes Mw(Ψ1), . . . ,

Mw(Ψt),
• if M is a simple vertically k-connected member of M with at least l elements

and with no PG(m− 1, 2) minor, then either M is a member of at least one
of the classes Mv(Φ1), . . . ,Mv(Φs) or M∗ is a member of at least one of the
classes Mv(Ψ1), . . . ,Mv(Ψt), and

• for each template Φ ∈ TM, either Φ is trivial or Φ′ � Φ for some Φ′ ∈
{ΦX ,ΦC ,ΦCX ,ΦY0 ,ΦY1}.

We say that TM describes M.

By combining Corollary 3.5 with Theorem 3.19, one can observe that every proper
minor-closed class M of binary matroids can be described by a set of templates.
Moreover, that set is nonempty if and only if M contains all graphic matroids or all
cographic matroids.

Corollary 3.21. Let M be a minor-closed class of binary matroids, and let
{Φ1, . . . ,Φs,Ψ1, . . . ,Ψt} be a set of templates describing M. If any of these templates
is nontrivial, then M contains M(ΦY0), M(ΦY1), M∗(ΦY0), or M∗(ΦY1).

Proof. Let Φ be a nontrivial template in the set {Φ1, . . . ,Φs}. By Definition 3.20
and Lemma 3.8, either ΦY0 � Φ or ΦY1 � Φ. If ΦY0 � Φ, then

M(ΦY0) ⊆ Mv(ΦY0) ⊆ Mv(Φ) ⊆ M,

where the first containment holds because every matroid conforming to a template
also virtually conforms to it, the second containment holds by definition of �, and
the third containment holds by Definition 3.20. In the case where ΦY1 � Φ, a similar
argument shows that M(ΦY1) ⊆ M.

If Ψ is a nontrivial template in the set {Ψ1, . . . ,Ψs}, a similar argument shows
that either M∗(ΦY0) ⊆ M or M∗(ΦY1) ⊆ M.

4. Growth rates. LetM be a minor-closed class of matroids. Let hM(r) denote
the growth rate function of M: the function whose value at an integer r ≥ 0 is given
by the maximum number of elements in a simple matroid in M of rank at most r.
For a matroid M , we denote by ε(M) the size of the simplification of M , that is, the
number of rank-1 flats of M . By combining the main result in [5] with earlier results
of Geelen and Whittle [4] and Geelen and Kabell [3], Geelen, Kung, and Whittle
proved the following.

Theorem 4.1 (growth rate theorem). If M is a nonempty minor-closed class
of matroids, then there exists c ∈ R such that either

(1) hM(r) ≤ cr for all r,
(2)

(
r+1
2

)
≤ hM(r) ≤ cr2 for all r and M contains all graphic matroids,
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(3) there is a prime-power q such that qr−1
q−1 ≤ hM(r) ≤ cqr for all r and M

contains all GF(q)-representable matroids, or
(4) hM is infinite and M contains all simple rank-2 matroids.

If outcome (2) of the growth rate theorem holds for a minor-closed class M, then
M is said to be quadratically dense. In this section, we will consider growth rates of
some quadratically dense classes of binary matroids. Let EX (F ) denote the class of
binary matroids with no F -minor. If f and g are functions, we write f(r) ≈ g(r) if
f(r) = g(r) for all but finitely many r.

Since the growth rate function for the class of graphic matroids is
(
r+1
2

)
, the

growth rate theorem implies that, if F is a nongraphic binary matroid,

hEX (F )(r) ≥
(
r + 1

2

)
.

Kung et al. [7] pose the following question: For which nongraphic binary matroids F
of rank 4 does equality hold above for all but finitely many r? Geelen and Nelson
answer this question in [6]. Let N12 be the matroid formed by deleting a three-element
independent set from PG(3, 2). The nongraphic binary matroids F of rank 4 for which
hEX (F )(r) ≈

(
r+1
2

)
are exactly the nongraphic restrictions of N12. We present here an

alternate proof. Both proofs allow us to answer the question when F is a matroid of
any rank, not just rank 4. We will prove the following theorem after proving several
lemmas.

Theorem 4.2. Let M be a minor-closed class of binary matroids. Then hM(r) ≈(
r+1
2

)
if and only if M contains all graphic matroids but does not contain Mv(ΦY1).

Our proof of Theorem 4.2 will depend on the following theorem, proved by Geelen
and Nelson in [6].

Theorem 4.3. Let M be a quadratically dense minor-closed class of matroids and
let p(x) be a real quadratic polynomial with positive leading coefficient. If hM(n) >
p(n) for infinitely many n ∈ Z+, then for all integers r, s ≥ 1 there exists a vertically
s-connected matroid M ∈ M satisfying ε(M) > p(r(M)) and r(M) ≥ r.

An even-cycle matroid is a binary matroid of the form M = M
(
w
D

)
, where

D ∈ GF(2)V×E is the vertex-edge incidence matrix of a graph G = (V,E) and
w ∈ GF(2)E is the characteristic vector of a set W ⊆ E. The pair (G,W ) is an
even-cycle representation of M . The edges in W are called odd edges, and the other
edges are even edges. An odd cycle of (G,W ) is a cycle of G with an odd number of
odd edges. A blocking pair of (G,W ) is a pair of vertices u, v of G so that every odd
cycle passes through at least one of these vertices. Resigning at a vertex u of G occurs
when all the edges incident with u are changed from even to odd and vice-versa. It
is easy to see that this corresponds to adding the row of the matrix corresponding to
u to the characteristic vector of W . Therefore, resigning at a vertex does not change
an even-cycle matroid. It is also easy to see that if an even-cycle representation has
a blocking pair, then we can resign so that every odd edge is incident with at least
one vertex in the blocking pair. For our purposes, it will be convenient to think of a
blocking pair in this way.

For r ≥ 2, let Ar be the following binary matrix, where we choose for the Γ-
frame matrix the matrix representation of M(Kr−1), so that the identity matrices are
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(r − 2)× (r − 2) matrices.

0
1 0 1 1 · · · 1 0 · · · 0 1 · · · 1
0 1 1 0 · · · 0 1 · · · 1 1 · · · 1

Γ-frame matrix 0 I I I

Note that M(Ar) is the largest simple matroid of rank r that virtually conforms to
ΦY1 .

Definition 4.4. Let Xr be the largest simple matroid of rank r that virtually
conforms to ΦY1 . Equivalently, X1 = U1,1, and for r ≥ 2, we have Xr = M(Ar).

Lemma 4.5. The class Mv(ΦY1) is the class of matroids having an even-cycle
representation with a blocking pair. This class is minor-closed.

Proof. Any simple matroid M virtually conforming to ΦY1 is a restriction of Xr

for some r.
Label the rows of Ar as 1, . . . , r. Add to the matrix row r+1, which is the sum of

rows 2, . . . , r. This does not change the matroid Xr. We see that Xr is an even-cycle
matroid (G,W ), where row 1 is the characteristic vector of W and rows 2, . . . , r + 1
form the incidence matrix of G. Moreover, every edge in W is incident with the vertex
corresponding to either row 2 or row r+1. Thus, every matroid virtually conforming to
ΦY1 has an even-cycle representation with a blocking pair. Conversely, every matroid
that has an even-cycle representation with a blocking pair {u, v} virtually conforms
to ΦY1 , by making u correspond to the second row and making v correspond to row
r + 1, which can be removed without changing the matroid.

By resigning whenever we wish to contract an element represented by an odd edge,
it is not difficult to see that the class of matroids having an even-cycle representation
with a blocking pair is minor-closed.

Lemma 4.6. Any simple, rank-r matroid M that is a minor of a matroid virtually
conforming to ΦY1 is a restriction of Xr.

Proof. From the preceding lemma, M is a restriction of some Xr′ . So M has an
even-cycle representation (G,W ) with a blocking pair {u, v}. Let w be the character-
istic vector of W . There are r′ − r rows in the matrix Ar′ [(V ∪ w)− v, E(M)] whose
deletion does not alter the matroid M . After these rows are deleted, the resulting
matrix is a submatrix of Ar.

Lemma 4.7. Every matroid virtually conforming to ΦY1 is a minor of a matroid
conforming to ΦY0 .

Proof. By Lemma 3.8, we have ΦY1 � ΦC . Every matroid conforming to ΦC is
obtained by contracting an element from a matroid conforming to ΦY0 .

Lemma 4.8. Let k be a positive integer. Then there are at most finitely many in-
tegers r such that the complete graphic matroid M(Kr+1) is a rank-(≤ k) perturbation
of a cographic matroid.

Proof. Let N be a cographic matroid. Observe that adding a rank-1 matrix to
a matrix representation of a binary matroid N changes ε(N) by a factor of at most
2. This occurs when, in every rank-1 flat of N , there is at least one nonloop element
indexing a column that is changed by adding the rank-1 matrix and at least one
nonloop element indexing a column that remains unchanged when the rank-1 matrix
is added. Thus, if M is a rank-(≤ t) perturbation of N , we have ε(M) ≤ 2tε(N).

D
ow

nl
oa

de
d 

03
/2

0/
19

 to
 1

37
.2

22
.1

90
.1

73
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TEMPLATES FOR BINARY MATROIDS 275

Let r = r(M). Recall that a cographic matroid N has ε(N) ≤ 3r(N) − 3.
Therefore, ε(M) ≤ 2t(3r(N)− 3) ≤ 2t(3(r+ t)− 3). For fixed t and sufficiently large
r, this expression is less than

(
r+1
2

)
= ε(M(Kr+1)).

Lemma 4.9. Let M be a quadratically dense minor-closed class of matroids rep-
resentable over a given field F. Let {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt} be a set of templates
describing M. For sufficiently large r, the growth rate hM(r) is equal to the size
of the largest simple matroid of rank r that virtually conforms to any template in
{Φ1, . . . ,Φs}.

Proof. Let h′
M(r) denote the size of the largest simple matroid of rank r that

virtually conforms to any template in {Φ1, . . . ,Φs}. So hM(r) ≥ h′
M(r). The size of

the largest simple matroid of rank r that virtually conforms to any particular template
is a quadratic polynomial in r. Thus, for sufficiently large r, the function h′

M(r) is a
quadratic polynomial as well.

By Definition 3.20, there exist k, l ∈ Z+ so that every simple vertically k-connected
member of M with at least l elements either weakly conforms to a template in
{Φ1, . . . ,Φs} or weakly coconforms to some template in {Ψ1, . . . ,Ψt}. Suppose, for
contradiction, that hM(r) > h′

M(r) for infinitely many r. Theorem 4.3, with h′
M(r)

playing the role of p(r), implies that there is a sequence M1,M2, . . . of vertically
k-connected matroids in M such that ε(Mi) > h′

M(i) and r(Mi) ≥ i. Thus, in this
sequence, there are infinitely many matroids that are vertically k-connected and have
size at least l. Since these matroids are too large to virtually conform to any tem-
plate in {Φ1, . . . ,Φt}, there is at least one nontrivial template Ψ ∈ {Ψ1, . . . ,Ψt} such
that infinitely many vertically k-connected matroids in M coconform to Ψ. However,
since M contains all graphic matroids and since every complete graphic matroid has
infinite vertical connectivity (hence vertical k-connectivity), we have that infinitely
many complete graphic matroids coconform to Ψ. For some t depending on Ψ, every
matroid coconforming to Ψ is a rank-(≤ t) perturbation of a cographic matroid. This
contradicts Lemma 4.8. By contradiction, the result holds.

Proof of Theorem 4.2. First, suppose hM(r) ≈
(
r+1
2

)
. By the growth rate theo-

rem, M contains all graphic matroids. For r ≥ 1, we have |Xr| =
(
r−1
2

)
+ 3r − 3,

which for r > 2 is greater than
(
r+1
2

)
. Thus, M does not contain Mv(ΦY1).

Now, suppose M contains all graphic matroids but does not contain Mv(ΦY1).
SinceM contains all graphic matroids, there is a nonempty set {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt}
of binary frame templates describing M. By Lemma 4.9, hM(r) is equal to the size of
the largest simple matroid of rank r that conforms to any template in {Φ1, . . . ,Φs}.
Suppose Φ is a nontrivial template in {Φ1, . . . ,Φs}. By Corollary 3.21, either ΦY0 � Φ
or ΦY1 � Φ. SinceM does not containMv(ΦY1), we must have ΦY0 � Φ. However, by
Lemma 4.7, this implies Mv(ΦY1) ⊆ M. Therefore, we conclude that hM(r) ≈

(
r+1
2

)
,

completing the proof.

Corollary 4.10. Let F be a simple, binary matroid of rank r. Then hEX (F )(r) ≈(
r+1
2

)
if and only if F is a nongraphic restriction of Xr.

Proof. By Theorem 4.2, hEX (F )(r) ≈
(
r+1
2

)
if and only if EX (F ) contains all

graphic matroids but does not contain Mv(ΦY1). The condition that EX (F ) con-
tains all graphic matroids is equivalent to the condition that F is nongraphic. By
Lemma 4.6, the condition that EX (F ) does not contain Mv(ΦY1) is equivalent to the
condition that F is a restriction of Xr.

Note that X4 = N12; so this answers the question posed in [7].
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We now consider the growth rate of EX (PG(3, 2)). We will prove Theorem 1.3,
which we restate below.

Theorem 4.11. The growth rate function for EX (PG(3, 2)) is

hEX (PG(3,2))(r) ≈ r2 − r + 1.

We will use the following.

Lemma 4.12. Let TEX (PG(3,2)) = {Φ1, . . .Φs,Ψ1, . . . ,Ψt}. If Φ ∈ {Φ1, . . .Φs},
then either Φ = ΦX or Φ is a template with C = ∅ and with Λ and Δ trivial.

Proof. The class of matroids conforming to ΦX is exactly the class of even-cycle
matroids. This class is minor-closed. The largest simple, even-cycle matroid of rank r
has an even-cycle representation obtained from the graph Kr by adding to each even
edge an odd edge in parallel as well as adding one odd loop to the graph. Therefore,
the class of even-cycle matroids has growth rate 2

(
r
2

)
+ 1 = r2 − r + 1. So the largest

simple, even-cycle matroid of rank 4 has size 13. Since PG(3, 2) has size 15, we have
M(ΦX) ⊆ EX (PG(3, 2)). Therefore, we may assume that ΦX ∈ TEX (PG(3,2)).

Since Φ0 � ΦX , we may assume that Φ0 /∈ {Φ1, . . .Φs}. Let

Φ = ({1}, C,X, Y0, Y1, A1,Δ,Λ)

be a nontrivial template such that Φ 
= ΦX and Φ ∈ {Φ1, . . .Φs}. Consider the graft
matroid M(K6, V (K6)). A straightforward computation shows that, by contracting
the nongraphic element, we obtain PG(3, 2). Therefore, ΦY0 � Φ. By Lemma 3.8, we
also have ΦC � Φ and ΦCX � Φ.

Now, we may assume that Φ is in standard form. Since ΦC � Φ, by Lemma 3.13
we may assume that C1 = ∅. Also, by Lemma 3.14, since ΦCX � Φ and ΦC � Φ,
either Λ|X1 is nontrivial and ΦX � Φ or Λ is trivial and C = ∅.

First, suppose that Λ is trivial and C = ∅. Since ΦY0 � Φ, Lemma 3.15 implies
that Φ is equivalent to a template with Δ trivial. So we may assume

Φ = ({1}, ∅, X, Y0, Y1, A1, {0}, {0}),

which is one of the possible conclusions of the lemma.
Thus, we may assume that Λ|X1 is nontrivial and ΦX � Φ. Suppose |Λ|X1| > 2.

On the template
Φ = ({1}, C0, Y0, Y1, A1,Δ,Λ),

perform operation (3) and then repeatedly perform operations (4) and (10) to obtain
the template

({1}, C0, X, ∅, ∅, A1[X,C0], {0},Λ).
Then repeatedly perform operation (7) to obtain

({1}, ∅, X1, ∅, ∅, [∅], {0},Λ|X1).

Since Λ|X1 has characteristic 2 and size greater than 2, it contains a subgroup Λ′

isomorphic to (Z/2Z)× (Z/2Z). Perform operation (2) to obtain the template

({1}, ∅, X1, ∅, ∅, [∅], {0},Λ′);

then repeatedly perform operations (5) and (6) to obtain

({1}, ∅, X ′, ∅, ∅, [∅], {0},Λ′′),
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where |X ′| = 2 and Λ′′ is the additive group generated by [ 10 ] and [ 01 ]. One readily
sees that PG(3, 2) conforms to this template. Therefore, |Λ| = 2. We may perform
row operations so that Λ is generated by [1, 0 . . . , 0]T . Let Σ be the element of X such
that Λ|{Σ} is nonzero.

Now, suppose there is an element x̄ ∈ Δ that is not in the row space of A1.
Perform operations (2) and (3) on Φ to obtain

({1}, C0, X, Y0, Y1, A1, {0, x̄}, {0}).

Now, by a similar argument to the one used in the proof of Lemma 3.15, we have
ΦY0 � Φ. Since we already know this is not the case, we deduce that every element
of Δ is in the row space of A1.

Let x̄ ∈ Δ|C0 and ȳ ∈ Λ be such that there are an odd number of natural
numbers i such that x̄i = ȳi = 1. Then we call the ordered pair (x̄, ȳ) a pair of odd
type. Otherwise, (x̄, ȳ) is a pair of even type. Suppose (x̄, ȳ) is a pair of odd type with
ȳ|X1 a zero vector. By performing operations (2) and (3) and repeatedly performing
operations (4) and (10), we obtain

({1}, C0, X, ∅, ∅, A1[X,C], {0, x̄}, {0, ȳ}),

which is equivalent to ΦCX . We already know this is not the case. Therefore, for
every pair (x̄, ȳ) of odd type, ȳ|X1 = [1, 0, . . . , 0]T .

Suppose x̄ ∈ Δ|C and ȳ1, ȳ2 ∈ Λ are such that ȳ1|X1 = ȳ2|X1 = [1, 0, . . . , 0]T ,
such that (x̄, ȳ1) is a pair of odd type, and such that (x̄, ȳ2) is a pair of even type.
Then (ȳ1 + ȳ2)|X1 is a zero vector, and (x̄, ȳ1 + ȳ2) is a pair of odd type. Therefore,
either all pairs (x̄, ȳ) ∈ Δ|C × Λ are of even type, in which case Φ is equivalent to a
template with Λ|X0 trivial and C = ∅, or if (x̄, ȳ) is a pair of odd type, then (x̄, z̄)
is of odd type for every z̄ ∈ Λ with z̄|X1 nonzero. In this case, consider any matrix
virtually conforming to Φ. After contracting C, we can restore the Γ-frame matrix
by adding Σ to each row where the Γ-frame matrix has been altered. Therefore, Φ is
equivalent to a template with Λ|X0 trivial and C = ∅.

So we now have that

Φ = ({1}, ∅, X, Y0, Y1, A1,Δ,Λ)

with Λ generated by [1, 0 . . . , 0]T and with every element of Δ in the row space of A1.
We will now show that, in fact, Φ is equivalent to a template with Δ trivial. On Φ,
perform y-shifts to obtain the following template, where Y ′

0 = Y0 ∪ Y1:

Φ′ = ({1}, ∅, X, Y ′
0 , ∅, A1,Δ,Λ).

By repeatedly performing operation (5) and then operation (6) on this template, we
may assume that A1 has the following form, with the star representing an arbitrary
binary matrix and v̄ representing an arbitrary row vector:[

0 · · · 0 v̄
I|X|−1 ∗

]
.

Also, since Λ|(X − {Σ}) is trivial, we may perform row operations on every matrix
conforming to Φ′ to obtain a template

Φ′′ = ({1}, ∅, X, Y ′
0, ∅, A1,Δ

′′,Λ),
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so that every element of Δ′′ has 0 for its first |X | − 1 entries. Since every element
of Δ was in the row space of A1, the only possible nonzero element of Δ′′ is the row
vector with 0 for its first |X |− 1 entries and whose last |Y ′

0 |− |X |+1 entries form the
row vector v̄. Note that operations (5) and (6) and the row operations we performed
on every matrix conforming to Φ′ each changes a template to an equivalent template.
Thus, we may assume that v̄ is nonzero and that Δ′′ = {0,v̄} because otherwise, Φ is
equivalent to a template with Δ trivial. So, for some y ∈ Y ′

0 , we have v̄y = 1. On the
template Φ′′, repeatedly perform operation (11) and then operation (10) to obtain
the following template:

Φ′′′ = ({1}, ∅, {Σ}, {y}, ∅, [1],Z/2Z,Z/2Z).

The following matrix conforms to Φ′′′:⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

By contracting y, we obtain PG(3, 2). Thus, we have shown that Φ must be equivalent
to a template with Δ trivial. So we may assume

Φ = ({1}, ∅, X, Y0, Y1, A1, {0},Λ)

with Λ generated by [1, 0, . . . , 0]T .
Now, let us consider the structure of the matrix A1. By repeated use of operation

(5), we may assume that A1 is of the following form, with the top row indexed by
Σ, with ∗ representing an arbitrary row vector, with Y0 = V0 ∪ V1, and with each Li

representing an arbitrary binary matrix:

Y1 V0 V1

0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 ∗
I L0 L1 0 L2

0 0 0 I L3

Suppose either L0 or L1 has a column with two or more nonzero entries. Let
y be the element of Y1 that indexes that column, and let Y ′ be the union of {y}
with the subset of Y1 that indexes the columns of the identity submatrix of A1[X,Y1].
Repeatedly perform operations (4) and (10) on Φ to obtain

({1}, ∅, X, ∅, Y ′, A1, {0},Λ).

On this template, repeatedly perform y-shifts, operation (11), and operation (6) to
obtain ⎛

⎝{1}, ∅, X ′, ∅, Y ′′,

⎡
⎣0 0 x
1 0 1
0 1 1

⎤
⎦ , {0},Λ

⎞
⎠ ,

where x = i if y indexes a column of Li and where X ′ and Y ′′ index the set of rows

and columns, respectively, of the matrix
[
0 0 x
1 0 1
0 1 1

]
.
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The following matrix conforms to this template. By contracting the columns
printed in bold, we obtain PG(3, 2):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 x x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This shows that L0 and L1 consist entirely of unit and zero columns. Thus, by
Lemma 3.17, L0 is an empty matrix and L1 consists entirely of distinct unit columns.
Therefore, A1 is of the following form:

Y1 V0 V1

0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 ∗
I 0 I 0 Q1

0 I 0 0 Q2

0 0 0 I Q3

with each Qi representing an arbitrary binary matrix.
Let M be any matroid conforming to Φ with rank and connectivity functions

r and λ, respectively. Let r′ be the rank of the submatrix of A1 consisting of Q1,
Q2, and the row vector we have denoted with a star. Then r(Y0) = |V0| + r′ and
r(E(M) − Y0) = r(M) − |V0|. Thus, λ(Y0) = r′. So if k > r′ + 1, then M is not
vertically k-connected unless Y0 or E(M) − Y0 is spanning. If Y0 is spanning in M ,
then the Γ-frame matrix used to construct M has 0 rows. Thus, M is not simple
unless |E(M)| ≤ |Y0|+ |Y1|+1 with the 1 coming from the element [1, 0, . . . , 0]T of Λ.
Thus, if we set l > |Y0|+ |Y1|+1, then no simple, vertically k-connected matroid with
at least l elements conforms to Φ unless E(M)− V0 is spanning in M . Therefore, we
have V0 = ∅.

Let Q be the submatrix of A1 consisting of Q1 and Q2. If every column of Q has
at most two nonzero entries, then Φ � ΦX , and as we deduced above, we may assume
Φ = ΦX . Therefore, we assume that Q has a column c, indexed by the element y ∈ Y0

with three or more nonzero entries.
Repeatedly perform operation (10) on Φ to obtain the template

Φ′ = ({1}, ∅, X, {y}, Y1, A1[X,Y1 ∪ {y}], {0},Λ).

Let c = [ c1c2 ], with c1 a column of Q1 and c2 a column of Q2. Consider the following
cases:

Case 1. The vector c1 has three nonzero entries.
Case 2. The vector c1 has two nonzero entries, and c2 has one nonzero entry.
Case 3. The vector c1 has one nonzero entry, and c2 has two nonzero entries.
Case 4. The vector c2 has three nonzero entries.
In Case i, repeatedly perform y-shifts and operation (11) to obtain the template

Φ′′
i = ({1}, ∅, X ′, {y}, Y ′

1 , A1,i, {0},Λ),

where A1,i is the matrix defined below with rows indexed by X ′ and columns indexed
by Y ′

1 ∪ {y}. In each case, the last column is indexed by y, and it turns out that the
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value of x does not matter.

A1,1 =

⎡
⎢⎢⎣

0 0 0 1 1 1 x
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1

⎤
⎥⎥⎦ A1,2 =

⎡
⎢⎢⎣

0 0 0 1 1 x
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 0 0 1

⎤
⎥⎥⎦

A1,3 =

⎡
⎢⎢⎣

0 0 0 1 x
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1

⎤
⎥⎥⎦ A1,4 =

⎡
⎢⎢⎣

0 0 0 x
1 0 0 1
0 1 0 1
0 0 1 1

⎤
⎥⎥⎦

In Case i, the matrix below virtually conforms to Φ′′
i . By contracting the columns

printed in bold, we obtain PG(3, 2).
Case 1: ⎡

⎢⎢⎢⎢⎣
1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 x
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Case 2:⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 x
0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Case 3:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 x
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Case 4:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 x
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1
0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

By contradiction, this completes the proof.
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Proof of Theorem 1.3. LetM = EX (PG(3, 2)), and let TM = {Φ1, . . .Φs,Ψ1, . . . ,
Ψt}. By Lemma 4.9, for sufficiently large r, we have hM(r) equal to the size of
the largest simple matroid of rank r that virtually conforms to any template in
Φ ∈ {Φ1, . . .Φs}. If Φ ∈ {Φ1, . . .Φs}, then by Lemma 4.12 either Φ = ΦX or Φ
is of the form ({1}, ∅, X, Y0, Y1, A1, {0}, {0}) for some matrix A1 and some sets X , Y0,
and Y1. Moreover, by operation (5), we may assume that A1 is of the following form
with Y0 = V0 ∪ V1 and with the stars representing arbitrary binary matrices:

Y1 V0 V1

I ∗ 0 ∗
0 0 I ∗

.

The largest simple matroid of rank r that virtually conforms to Φ is obtained
by taking for the Γ-frame matrix a matrix representation of M(Kn+1), where n =
r− r(M(A1[X,Y1]))− |V0|. Thus, the largest simple matroid of rank r that virtually
conforms to Φ has size

(
n+1
2

)
+|Y1|n+|Y1|+|Y0|. Substituting r−r(M(A1[X,Y1]))−|V0|

for n, one sees that for sufficiently large r, this expression is less than r2−r+1. Since
the class of matroids virtually conforming to ΦX is the class of even-cycle matroids,
which has growth rate r2 − r + 1, the result holds.

5. 1-flowing matroids. In this section, we prove Theorem 1.4. The 1-flowing
property is a generalization of the max-flow min-cut property of graphs. See Seymour
[11] or Mayhew [8] for more of the background and motivation concerning 1-flowing
matroids. We follow the notation and exposition of [8].

Definition 5.1. Let e be an element of a matroid M . Let cx be a nonnegative
integral capacity assigned to each element x ∈ E(M) − e. A flow is a function f
that assigns to each circuit C containing e a nonnegative real number fC with the
constraint that for each x ∈ E − e, the sum of fC over all circuits containing both e
and x is at most cx. We say that M is e-flowing if, for every assignment of capacities,
there is a flow whose sum over all circuits containing e is equal to

min

{ ∑
x∈C∗−e

cx

∣∣∣∣∣C∗ is a cocircuit containing e

}
.

If M is e-flowing for each e ∈ E(M), then M is 1-flowing.

The matroid T11 is the even-cycle matroid obtained from K5 by adding a loop and
making every edge odd, including the loop. In [11], Seymour showed the following.

Proposition 5.2. The class of 1-flowing matroids is minor-closed. Moreover,
AG(3, 2), U2,4, T11, and T ∗

11 are excluded minors for the class of 1-flowing matroids.

Seymour [11] conjectured that these are the only excluded minors.

Conjecture 5.3 (Seymour’s 1-flowing conjecture). The set of excluded minors
for the class of 1-flowing matroids consists of AG(3, 2), U2,4, T11, and T ∗

11.

Since U2,4 is an excluded minor for the class of 1-flowing matroids, all such ma-
troids are binary. Therefore, the results in this paper apply to 1-flowing matroids.
We will now prove Theorem 1.4, which we restate below.

Theorem 5.4. There exist k, l ∈ Z+ such that every simple, vertically k-connected,
1-flowing matroid with at least l elements is either graphic or cographic.
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Proof. The matroid AG(3, 2) conforms to ΦY1 since it is a restriction of N12.
Indeed, consider the matrix representing N12 that virtually conforms to ΦY1 . Add
the rows labeled by X in this matrix to one of the other rows. Then we can see the
matrix representation [I4|J4 − I4] of AG(3, 2) as a restriction of N12. Also, it is not
difficult to see that AG(3, 2) can be obtained from a matroid conforming to ΦY0 by
contracting Y0. Thus, EX (AG(3, 2)) contains neither M(ΦY0) nor M(ΦY1). Since
AG(3, 2) is self-dual, EX (AG(3, 2)) does not contain M∗(ΦY0), or M∗(ΦY1) either.
Therefore, by Corollary 3.21, EX (AG(3, 2)) is described by the trivial template. Thus,
since AG(3, 2) is an excluded minor for the class of 1-flowing matroids, there exist
k, l ∈ Z+ such that every simple, vertically k-connected, 1-flowing matroid with at
least l elements either conforms or coconforms to the trivial template. The result
follows.
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tions that improved the manuscript, including one that greatly simplified the proof
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