Combined Spatially Resolved Optical Emission Imaging and Modeling Studies of Microwave-Activated H\textsubscript{2}/Ar and H\textsubscript{2}/Kr Plasmas Operating at Powers and Pressures Relevant for Diamond Chemical Vapor Deposition

Edward J.D. Mahoney,1,2, Sohail Mushtaq,1 Michael N.R. Ashfold 1*
and Yuri A. Mankelevich 3

1 School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
2 Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Gibbet Hill Road, Coventry, U.K., CV4 7AL
3 Skobel’tsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia
TOC graphic
Abstract

Microwave (MW) activated H₂/Ar (and H₂/Kr) plasmas operating under powers and pressures relevant to diamond chemical vapor deposition have been investigated experimentally and by 2-D modeling. The experiments return spatially and wavelength resolved optical emission spectra of electronically excited H₂ molecules and H and Ar/(Kr) atoms for a range of H₂/noble gas mixing ratios. The self-consistent 2-D(r, z) modeling of different H₂/Ar gas mixtures includes calculations of the MW electromagnetic fields, the plasma chemistry and electron kinetics, heat and species transfer and gas–surface interactions. Comparison with the trends revealed by the spatially resolved optical emission measurements and their variations with changes in process conditions help guide identification and refinement of the dominant plasma (and plasma emission) generation mechanisms and the more important Ar–H, Ar–H₂ and H–H₂ coupling reactions. Noble gas addition is shown to encourage radial expansion of the plasma, and thus to improve the uniformity of the H atom concentration and the gas temperature just above the substrate. Noble gas addition in the current experiments is also found to enhance (unwanted) sputtering of the copper base plate of the reactor; the experimentally observed increase in gas phase Cu* emission is shown to correlate with the near substrate ArH⁺ (and KrH⁺) ion concentrations returned by the modelling, rather than with the relatively more abundant H₃⁺ (and H₃O⁺) ions.
1. Introduction

Microwave (MW) plasma-enhanced chemical vapour deposition (PE CVD) is a favoured route for growing diamond films from gas mixtures comprising hydrogen and a small amount of a hydrocarbon precursor (typically methane).1-4 Adding Ar to the CH\textsubscript{4}/H\textsubscript{2} plasma has variously been reported to influence the film growth rate,5,6 its surface morphology and the average crystallite size.7-9 Synthesis of (ultra)nanocrystalline diamond films has even been reported from MW-activated gas mixtures involving just CH\textsubscript{4} and Ar as process gases.10,11 Small additions of Ar have been used as an actinometer for estimating relative H atom concentrations in CH\textsubscript{4}/H\textsubscript{2} plasmas.12-15 Larger additions of Ar (and other noble gases) substantially affect the relative intensities of the various features in the optical emission spectrum of the plasma, as a result of changes in gas temperature and the plasma chemistry.16-21

Successful CVD of high-quality diamond depends on the availability of suitable concentrations of both H atoms and CH\textsubscript{x} (x = 0-3) radicals, particularly CH\textsubscript{3} radicals, in the gas phase adjacent to the growing surface. H atom production is dominated by thermal dissociation of H\textsubscript{2} in the hot plasma region, so the benefits of replacing some H\textsubscript{2} in the process gas mixture by, for example, Ar might not be obvious. However, Ar is much heavier than H\textsubscript{2}. Any substantial addition of Ar will thus reduce the thermal conductivity of the gas, and increase the gas temperature and the thermal dissociation of H\textsubscript{2} in the hot plasma core. Thus, as we demonstrate below, the H atom mole fraction (X(H)) may be maintained or even enhanced, notwithstanding the reduction in H\textsubscript{2} input mole fraction (X\textsubscript{0}(H\textsubscript{2})) that accompanies an increase in the Ar input mole fraction, X\textsubscript{0}(Ar).

We recently reported spatially and wavelength resolved optical emission imaging studies of MW-activated hydrogen plasmas operating with input powers, gas pressures, and gas and electron temperatures (T\textsubscript{g} and T\textsubscript{e}, respectively) relevant to contemporary diamond CVD reactors.22 Complementary self-consistent two-dimensional (2-D) modeling of the various plasma-chemical, transport and electromagnetic processes allowed characterisation of the dominant plasma and plasma emission generation mechanisms, and served to highlight the importance of associative ionization and quenching reactions involving electronically excited hydrogen atoms (H*) and molecules (H\textsubscript{2}*) with the alternate ground state species in establishing the observed emission intensities, I\textsubscript{em}, their spatial distributions, and their sensitivity to process conditions.
Here we extend the use of spatially resolved optical emission imaging methods to explore the effects of progressive additions of noble gas R (Ar and, less extensively, Kr) to such H\textsubscript{2} plasmas. In addition to affecting \(T_g\), the introduction of noble gas atoms opens new energy transfer pathways, including quenching of H* and H\textsubscript{2}* emissions and the excitation and ionization of H and H\textsubscript{2} by collision with excited noble gas species – all of which processes can modify the (spatially dependent) electron energy distribution function (EEDF) of the plasma. These data illustrate the potential shortcomings of monitoring optical emission from a single location within such reactors. Emissions from the R atoms constitute another observable, and the variations in their emission intensities and spatial distributions upon changing process conditions offers another point of comparison with the self-consistent 2-D plasma modeling. Such comparisons provide a particularly clear illustration of the mass-dependent thermal diffusion prevailing in mixtures comprising light and heavy gas species and large temperature gradients and help to establish the relative importance of the various noble gas enabled plasma processes. Additionally, we note the observation of emissions from electronically excited Cu* atoms at high noble gas input mole fractions, \(X_0(R)\), and consider likely mechanisms by which such species are released into the gas phase from the reactor base plate.

2. Experimental

The CVD reactor, MW power supply, process gas regulation and optical emission imaging set-up have all been described previously.22 \(\text{H}_2\), Ar and Kr were all sourced from BOC (stated purities 6N, 5N and 5N, respectively) and used as supplied. These gas purities, plus the finite vacuum achievable in reactors of this type, mean that the process gas necessarily contains a few parts per million (ppm) of air – which is included in the later modeling. Base conditions for the present experiments were chosen as: total pressure \(p = 150\) Torr and applied MW power \(P = 1.5\) kW. The substrate (a 32 mm diameter, 3 mm thick, cylindrical disc of (generally) tungsten, though a molybdenum substrate was used for the measurements involving Kr additions) was mounted axi-symmetrically on a 0.01” thick annular Mo spacer wire on a water-cooled oxygen-free electronic grade copper sample stage. Indicative substrate temperature (\(T_{\text{sub}}\)) values were obtained by one and/or two color optical pyrometry though, we recognise that near infrared emissions from H\textsubscript{2}* species can distort such temperature measurements.22 Gas mixing ratios were varied in either of two ways: (i) by matching any increase in the noble gas flow rate \(F(R)\) by a corresponding decrease in \(F(H_2)\) such that the
total flow rate $F_{\text{total}} = F(H_2) + F(R) = 300$ standard cm3 per minute (sccm), and (ii) by increasing $F(R)$ while holding $F(H_2) = 300$ sccm and adjusting the pumping rate to maintain the required gas pressure. Given sufficient time for re-equilibration after any change in process conditions, the two methods demonstrate the same trends in emission intensities, I_{em}, their spatial distributions, and their sensitivity to $X_0(R)$.

Emissions from the plasma were monitored using a Czerny-Turner spectrograph with a 50 mm focal length, f/16 objective lens. The H$_2^*$, Ar* and Cu* emissions in the H$_2$/Ar plasma studies were dispersed using a 700 grooves mm$^{-1}$ grating (a 400 grooves mm$^{-1}$ grating was used for the H$_\alpha$ measurements and for all measurements involving H$_2$/Kr plasmas) and detected on a cooled CCD detector with an overall spatial magnification of \sim0.08. These choices yielded resolutions of ≈0.04 nm/pixel and ≈0.06 nm/pixel (with the 700 and 400 grooves mm$^{-1}$ gratings, respectively) at $\lambda = 600$ nm when using a 10 μm entrance slit, and a spatial (vertical) resolution of better than 0.5 mm. Each image was accumulated for (or scaled to an equivalent accumulation time of) 640 s. Given the small lens aperture employed, we assume that emission from the entire depth of the plasma is being sampled (i.e. that we are reporting column integrated line intensities).

3. Results and Discussion

As in our recent spatially resolved optical emission imaging studies of MW-activated hydrogen plasmas22 it is appropriate to report the experimental observations and the plasma chemical modeling – both as functions of process conditions and location within the reactor – in sequence, and then conclude by summarising areas where experiment and model agree well, and areas where discrepancies remain. For conciseness, the narrative uses a considerable number of acronyms. Each is defined when it first appears but, to aid readers, these are also all collected in Table S1 of the Supporting Information (SI).

3.1 Experimental Results

Spatially resolved emission was imaged throughout the 250-950 nm wavelength range, under a range of operating conditions. The images report wavelength (λ) resolved column integrated emission intensities as a function of height (z) above the substrate surface. Analyses at fixed z return $I_{\text{em}}(\lambda)$ spectra, which allow identification of characteristic H$_2^*$, H$_\alpha$, Ar*, Kr* and Cu* emissions used in this work, which are detailed in Table 1. Illustrative images of H$_2$(d–a), H$_\alpha$ and Ar* emissions are shown in Figures S1 and S2 of the SI, while
Figure S3 shows the key excited states of H₂*, H*, Ar* and Kr* plotted on a common energy scale.

Vertical cuts through the images at the appropriate wavelength yield the spatial profile \(I_{em}(z) \) of the emission of interest. Figure 1 shows \(I_{em}(z) \) plots for (a) the H₂* d–a (Fulcher band), \(v'=0-v''=0 \), Q(3) transition, (b) the H* (Balmer-α) transition and (c) and (d) the Ar* 696.54 and 811.5 nm emissions, as a function of \(X_0(\text{Ar}) \). For the data shown in Figures 1(a) and 1(b), \(F(\text{H}_2) \) and \(P \) were held fixed at, respectively, 300 sccm and 1.5 kW, \(F(\text{Ar}) \) was progressively increased from 0 to 300 sccm and the pumping speed adjusted to maintain \(p = 150 \) Torr. Experiments using the same \(X_0(\text{Ar}) \) but maintaining \(F_{\text{total}} = 300 \) sccm returned the same spatial profiles and trends with changes in process conditions. The \(I_{em}(\text{Ar}^*) \) profiles shown in Figures 1(c) and 1(d) were taken using this alternative strategy.

The H₂* emission profile for the pure H₂ plasma (i.e. \(X_0(\text{Ar}) = 0 \)) shown in Figure 1(a) peaks at small \(z \) (~ 2 mm) and declines to near zero by \(z \sim 20 \) mm, as reported previously.\(^{22}\) Increasing \(X_0(\text{Ar}) \) causes a decrease in \(I_{em}(\text{H}_2^*) \), most noticeably at larger \(z \); the decline in \(I_{em}(\text{H}_2^*) \) is \(z \) dependent. The \(I_{em}(\text{H}_2^*) \) profile in the presence of Ar still peaks at small \(z \), but the overall \(I_{em}(\text{H}_2^*) \) signal decreases faster than the decline in \(X_0(\text{H}_2) \). \(I_{em}(\text{H}_2^*) \) profiles monitored via the G–B emission (Figure S4(a)) showed essentially identical trends with increasing \(X_0(\text{Ar}) \). The longer wavelength H₂* e–a emission reported in our recent studies of MW-activated H₂ plasmas \(^{22}\) proved less useful when viewed in the presence of the (relatively much more intense) noble gas emissions.

The \(I_{em}(\text{H}_\alpha) \) emission profile for the pure H₂ plasma operating at base conditions peaks at \(z \sim 7.5 \) mm, i.e. in the core region, and extends to \(z \sim 20 \) mm.\(^{22}\) Upon introducing Ar, \(I_{em}(\text{H}_\alpha) \) in the core region declines roughly proportionally with \(X_0(\text{H}_2) \) but, as Figure 1(b) shows, a secondary maximum becomes increasingly evident nearer the substrate. Equivalent data for the H_β and H_γ transitions are also included in Figure S4. \(I_{em}(\text{H}_\alpha) \) declines less steeply than \(I_{em}(\text{H}_2^*) \) with increasing \(X_0(\text{Ar}) \).

Figure 1(c) shows the spatial profiles of the Ar* emission at 696.54 nm recorded for different \(X_0(\text{Ar}) \) values. The displayed data in this case were obtained at a constant \(F_{\text{total}} \); each increase in \(F(\text{Ar}) \) was compensated by a matching decrease in \(F(\text{H}_2) \). As noted above, however, each of these spatial profiles was indistinguishable from that obtained by adding the appropriate \(F(\text{Ar}) \) to a constant \(F(\text{H}_2) = 300 \) sccm and increasing the pumping speed to maintain \(p = 150 \).
Torr. The \(X_0(\text{Ar})\) dependent profiles of the \(I_{\text{em}}(\text{Ar}^*)\) emissions at 811.53 and 826.45 nm are shown as Figure S5. Both are indistinguishable from those shown in Figure 1(c). This is noteworthy. As Table 1 shows, the 696.54 and 826.45 nm emissions share a common upper level (the 2p2 level in Paschen notation), but the former terminates on a metastable \((J = 2)\) level arising from the \(\ldots\ldots 3p^5(2^2P^{3/2})4s^1\) configuration (the 1s5 level in Paschen notation). In principle, therefore, the former emission must be more susceptible to self-absorption, but the very similar \(X_0(\text{Ar})\) dependences displayed by all three \(\text{Ar}^*\) lines indicates that such effects are not important under the prevailing experimental conditions, even when \(X_0(\text{Ar}) = 0.5\). Figure 1(d) shows an alternative presentation of the \(I_{\text{em}}(\text{Ar}, 811.53 \text{ nm})\) data in which each profile is scaled to a common maximum peak intensity. All peak at \(z \sim 2\) mm and decline to zero by \(z \sim 20\) mm but the profile is clearly \(X_0(\text{Ar})\) dependent: the relative intensity at small \(z\) increases with increasing \(X_0(\text{Ar})\). The very different \(z\) dependent spatial and \(X_0(\text{R})\) dependences of \(I_{\text{em}}(\text{H}_2^*), I_{\text{em}}(\text{H}_\alpha)\) and \(I_{\text{em}}(\text{R}^*)\) are summarised in the \(I_{\text{em}}(z = 2\) mm) and \(I_{\text{em}}(z = 7.5\) mm) vs \(X_0(\text{R})\) plots shown in Figure 2. This figure also serves to highlight that ‘traditional’ OES measurements that view just a localised region of such plasmas through an optical fibre could return very different \(I_{\text{em}}(\text{H}_2^*), I_{\text{em}}(\text{R}^*)\) and, particularly, \(I_{\text{em}}(\text{H}_\alpha)\) vs. \(X_0(\text{R})\) dependences simply according to the choice of \(z\).

Figure 3 shows sample data from similar (albeit less extensive) studies of MW activated \(\text{H}_2/\text{Kr}\) plasmas. The changes in the profiles and intensities of the \(I_{\text{em}}(\text{H}_2^*, \text{d–a})\) and \(I_{\text{em}}(\text{H}_\alpha)\) emissions with increasing \(X_0(\text{Kr})\) are broadly similar to those observed when increasing \(X_0(\text{Ar})\) – as is also summarized in Figure 2. Equivalent \(I_{\text{em}}(\text{H}_\gamma)\) versus \(X_0(\text{Kr})\) data are shown in Figure S6. The variations in \(I_{\text{em}}(\text{Kr}^*, 431.96 \text{ nm})\) with \(X_0(\text{Kr})\) (Figure 3(c)) are very reminiscent of that observed with Ar. Similar data for the \(\text{Kr}^*\) emissions at 427.40 and 437.61 nm are also included in Figure S6. The two shorter wavelength transitions terminate on a metastable level of Kr, whereas the 437.61 nm transition does not; again, the observed insensitivity to the choice of probe transition implies that self-absorption effects are not important under the prevailing experimental conditions.

As noted previously, increasing the Ar or Kr fraction in the process gas reduces the thermal conductivity of the plasma and increases \(T_\text{g}\) in the core, and \(T_{\text{sub}}\). The latter increase is evident by eye – the substrate becomes visibly red upon increasing the Ar (Kr) fraction – and by
pyrometry. These changes, which are detailed in Table S2, are paralleled by the appearance of additional features in the optical emission image which are attributable to electronically excited neutral copper atoms. Figure 4(a) shows spatial profiles of the 324.75 nm emission from Cu* atoms measured for different MW activated H2/Ar mixtures operating under base conditions of p and P, at $F_{\text{total}} = 300$ sccm. Identical profiles were recorded for the (weaker) 327.40 nm emission feature. All peak at $z \sim 2$ mm and decline to zero by $z \sim 16$ mm. $I_{\text{em}}(\text{Cu}^*)$ increases rapidly with increasing $X_0(\text{Ar})$, as shown in Figures 4(b) and 4(c). The source of the copper must be the water-cooled base plate on which the W or Mo substrate sits. Discussion of likely mechanism(s) by which Cu enters the gas phase is reserved until section 3.3.3, pending consideration of the changes in H2 plasma chemistry and composition induced by the progressive addition of noble gas.

3.2 Modeling the MW activated H2/Ar plasma

The present study employed the self-consistent 2-D(r, z) model used in our recent studies of MW activated hydrogen plasmas,22 where r and z are, respectively, the radial and axial distances from the center of the substrate surface as shown in Figure S7. This model, which contains specific blocks that address the plasma-chemical and electron kinetics, heat and species transfer, gas-surface interactions, and Maxwell’s equations to calculate the MW electromagnetic fields, was tuned to capture the various effects of Ar additions on the transport processes, the plasma parameters and the plasma-chemical and electron (e) kinetics. This required re-calculation of the electron energy distribution functions (EEDFs) for all cells in the (r, z) grid, using sets of e-H, e-H2, e-Ar, e-H2O and e-ion collision cross-sections (for different gas mixture compositions, reduced electric fields and T_e) to provide the necessary rate coefficients for the plasma-chemical kinetics and the MW electromagnetic field blocks. Comparing the model outputs with the spatially resolved OES data recorded at different $X_0(\text{Ar})$ then allows investigation of the sources and sinks of the H*, H2* and Ar* excited states and identification of the more important production and loss reactions for these species. Base conditions for the modeling were as close as possible to those used in the experimental study, i.e., $p = 150$ Torr, $P = 1.5$ kW and Ar/H2 gas mixtures with different $X_0(\text{Ar})$ in the range 0–0.4 and an air impurity in the range ~4–12 ppm. As in our recent studies of MW activated hydrogen plasmas, any O2 impurity will be converted to H2O molecules under the prevailing reactor conditions (i.e. high T_e and high H atom mole fraction, X(H)), which then activate the inter-conversion between H3+ and H3O+ ions.22
Four gas mixtures were explored to trace the effects of adding Ar to a hydrogen plasma and to compare with the spatially resolved OES measurements. The total pressure and MW power were held fixed (at $p = 150$ Torr $P = 1.5$ kW) in each of these simulations, but the mixtures were distinguished by the respective argon input mole fractions, $X_0(\text{Ar}) = 0, 0.07, 0.33, \text{and 0.4}$, and the associated level of air contamination (4.5, 5.7, 10.3 and 11.5 ppm). For completeness, a pure (i.e. zero air contamination) H_2/Ar mixture with $X_0(\text{Ar}) = 0.33$ but assuming otherwise identical process conditions was investigated also. The model outputs presented in this paper are all for the air-contaminated mixtures defined above. Outputs for the uncontaminated H_2/Ar mixture are reserved for the SI, but any significant differences caused by the air contamination are highlighted at the relevant points in the text. The substrate temperatures for these four $X_0(\text{Ar})$ regimes were calculated to be $T_{\text{sub}} = 900, 925, 1080$ and 1110 K, from a balance of plasma heating (by conductive heat transfer through the gas and H atom addition and abstraction reactions at the substrate surface) and cooling. Substrate cooling in the present reactor is by conductive heat transfer from the base of the substrate through the gas gap to the reactor base plate and is thus moderated by increasing the Ar fraction in the process gas mixture. The predicted increases in T_{sub} match experimental observation, though the absolute temperatures returned by the modeling are lower than those returned by optical pyrometry (as illustrated in Table S2). The most important effects of adding Ar to a hydrogen plasma are now described, with particular emphasis on the emitting gas phase species.

3.2.1 The effects of Ar addition on the electron energy distribution, MW power absorption and transport processes.

Any significant addition of Ar to a hydrogen plasma will change the plasma parameters and transport coefficients. For example, the thermal conductivity and diffusion coefficient of H atoms in a 25% Ar in H$_2$ mixture are, respectively, \sim38% and \sim20% smaller than in a pure hydrogen plasma.23,24 The combined effects of thermodiffusion transfer 25 and the thermal dissociation of H$_2$ ensure that the Ar mole fraction $X(\text{Ar})$ in the hot plasma core (where $T_g \sim 3000$ K) is significantly less than in the input gas mixture. For example, $X(\text{Ar})$ in the plasma core is calculated to be \sim0.25 for a 40% Ar in H$_2$ input mixture, and only \sim0.035 in the core of the plasma from a 7% Ar in H$_2$ mixture. The rate coefficient for electron–Ar elastic collisions ($k_{\text{elas}}(e-\text{Ar})$) is lower than $k_{\text{elas}}(e-\text{H}_2)$ under the conditions prevailing in the plasma core, e.g. $k_{\text{elas}}(e-\text{Ar})/k_{\text{elas}}(e-\text{H}_2) \sim 0.3$ and ~ 0.4 for 3.5%Ar/12%H/H$_2$ and 25%Ar/12%H/H$_2$
mixtures, respectively. The decrease in electron collision frequency upon Ar addition affects the absorption of MW power and the electromagnetic \((E, H)\) fields and thus the EEDF, \(f(\varepsilon)\).

As shown in our recent hydrogen plasma studies,\(^{22}\) the EEDF depends on the reduced electric field, \(|E|/(N \times a)\), \(T_g\), the population distribution in the rovibrational \((\nu, J)\) levels of the ground \((X)\) state \(\text{H}_2\) molecules, the mole fractions of \(H(a = 1)\) atoms, \(X(\text{H})\), and, additionally for the present study, \(X(\text{Ar})\). Here \(|E|\) is an absolute value of the electric field averaged over the MW period, \(N\) is the total gas concentration, and \(a = (1+\omega^2/\nu^2)^{0.5}\), where \(\omega = 2\pi f\) (with \(f = 2.45 \times 10^9 \text{ s}^{-1}\)) and \(\nu\) are the MW and electron collision frequencies, respectively. The Boltzmann kinetic equations are solved numerically\(^{22,26}\) in the different \((r, z)\) cells for various plasma conditions and gas compositions of interest, and with proper inclusion of all important electron impact induced processes including excitation and de-excitation of population in the various rotational and vibrational levels of \(\text{H}_2\).

As in an \(\text{H}_2\) plasma,\(^{22}\) the EEDFs in these \(\text{H}_2/\text{Ar}\) plasmas show two temperature components, with the general form \(f(\varepsilon) = c_1 \times \exp(-\varepsilon/T_1)\) for the energy range \(2 \leq \varepsilon \leq 10.2 \text{ eV}\) and a high energy tail described by \(f(\varepsilon) = c_2 \times \exp(-\varepsilon/T_{\text{tail}})\) for \(\varepsilon \geq 10.2 \text{ eV}\) and respective temperature \(T_{\text{tail}}\). EEDFs were calculated for an array of \(|E|/(N \times a)\), \(T_g\), \(X(\text{H})\) and \(X(\text{Ar})\) values in order to determine process-dependent rate coefficients \(k_i = \int \nu \sigma_i(\varepsilon)f(\varepsilon)\varepsilon d\varepsilon/\int f(\varepsilon)\varepsilon d\varepsilon\), where \(\nu = (2\varepsilon/ m_e)^{0.5}\) and \(m_e\) are the electron velocity and mass, respectively, and \(\sigma_i(\varepsilon)\) is the (energy dependent) cross-section for process \(i\). Figure 5 shows a selection of normalized EEDFs, \(f(\varepsilon)/n_e\) (where \(n_e = \int f(\varepsilon)\varepsilon d\varepsilon\) is the electron concentration), \(T_{\text{tail}}\) and average electron temperature \(T_e\) (i.e. effectively \(T_1\)) values for a constant reduced electric field (\(|E|/(N \times a) \sim 33.4 \text{ Td}\)) and H atom mole fraction \((X(\text{H}) = 0.12)\) but different Ar mole fractions \(x\) in \(x\text{Ar}/12\%\text{H}/\text{H}_2\) mixtures. The slope of the tail of the EEDF \((T_{\text{tail}})\) is essentially invariant: upon substituting (some) \(\text{H}_2\) by Ar, electron impact excitation (EIE) and electron impact ionization (EII) of Ar atoms compensates for the EIE and EII of the replaced \(\text{H}_2\). \(T_e\) increases upon replacing \(\text{H}_2\) by Ar, however, because electron energy loss through rovibrational state changing collisions with \(\text{H}_2\) is reduced.

Previous studies of the effect of higher Ar fractions in, for example, plasmas derived from \(\geq 75\%\text{Ar}/\text{CH}_4/\text{H}_2\) input gas mixtures identified substantially higher \(T_e\) values.\(^{18}\) For lower Ar dilutions (e.g. the \(\leq 40\%\text{Ar}/\text{H}_2\) input gas mixtures modelled here), however, increasing \(X(\text{Ar})\) at constant reduced electric field does not imply a similar change in \(T_e\) when comparing MW
activated H₂/Ar and H₂ plasmas. This is because, as Figure 6 shows, substituting Ar for some of the H₂ leads to a reduction in the reduced electric fields in the plasma core (by 10-15% upon increasing X₀(Ar) from 0.07 to 0.33), with the net result that Tₑ is little changed. This change in X₀(Ar) also leads to a ~30% reduction in the absorbed power density jE (averaged over the period of the MW field) in the plasma core. This decrease in jE is accommodated by a radial expansion of the plasma core (Figure 6(b)); the plasma size in the z direction barely changes (Figure 6(a)).

The radial expansion of the plasma core with increasing X₀(Ar) is also evident in the radial distributions of ne, Tₖ and [H] shown in Figure 7(a), and from the axial column power density distributions shown in Figure S8 in the SI. We return to compare the data shown in Figure 7(a) with the corresponding ne, Tₖ and [H] distributions at z = 0.5 mm (i.e. close above the substrate surface, Figure 7(b)) in section 3.3.1. The quantity plotted in Figure S8 – the calculated axial power density weighted by the area of the annulus associated with the cell at radius r, i.e. the quantity 2πrdr×|jE(r,z)|dz with dr = 0.1 cm – clearly shifts to larger r with increasing X₀(Ar). Figure S8 also serves to illustrate another important conclusion relating to the ‘size’ of the plasma volume. One (visible) measure would be the radial extent of the glowing plasma region which, in the present context, is reasonably modelled as the volume within which the concentrations of emitting species are within an order of magnitude of their maximal values. The horizontal bars in Figure 7(a) illustrate the radial extents of the H₂/Ar plasma volumes with X₀(Ar) = 0, 0.07 and 0.33 according to this definition, using the excited state concentrations shown in Figure 8. However, as Figure S8 also shows, ~30-35% of the input power in these H₂ and H₂/Ar plasmas is absorbed outside this region, i.e. in a large, ‘cool’ (Tₑ < 1 eV) peripheral volume where ne is still in the range ~10⁹-10¹¹ cm⁻³ (Figure 8). Proper recognition of this electron concentration in the ‘cool’ plasma is important for any correct partitioning of the absorbed power in the ‘hot’ and ‘cool’ plasma regions.

3.2.2 H₂/Ar plasma-chemical kinetics, including the effects of inter-conversion between ions and air contamination.

Kinetic schemes involving charged species and excited states of atomic hydrogen (H*), molecular hydrogen (H₂*) and argon (Ar*) were developed on the basis of previous experimental and theoretical studies.17,18,26-34 Table 2 lists the most important reactions involving excited and charged species, along with the associated rates and rate coefficients. A
longer list of the more important reactions (with parameterized reactions and rate coefficients used in the present modeling and a longer reaction list (with parameterized rate coefficients and details of the data sources) can be found in Table S3. The H(n = 6) state (with an excitation energy of 13.22 eV) is included simply to illustrate the possible effects of near resonant energy transfer with Ar(3p 54p) states (2p i states in Paschen notation, with excitation energies in the range 12.9-13.5 eV for i = 1-10), henceforth denoted simply as Ar(4p). Our recently reported H2 plasma kinetics scheme 22 was used with minor modifications, e.g. use of H2(a 3Σg+) instead of H2(B 1Σu+) in the H(n = 1) + H2* → H(n = 3) + H2(X) coupling reaction, thermochemical data for the important ions H3+, H3O+ and ArH+ from ref. 35 and experimental cross-sections for the respective electron–ion recombination reactions.36-38

A. Charged Species: We start by considering the balances between the various charged species and the charged species distributions and how these influence the plasma chemistry. The electron and ion concentrations in the hot plasma core are determined by the balance of the main sources (EII (reactions (20)-(22) in Table 2) and associative ionization (reactions (23) and (24)) and sinks (ambipolar diffusive transfer to the substrate and out of the plasma core, and dissociative recombination (DR) of molecular ions with electrons (reactions (17)-(19))). As Table 2 shows, ionization of argon is minor compared to hydrogen (H and H2) ionization and, as in the pure hydrogen plasma,22 the associative ionization reaction H(n = 2) + H2 → H3+ + e dominates. The electron and ion concentrations in the ‘cool’ plasma regions, in contrast, are determined by the balance between the main sources (ambipolar diffusion of charged species from the plasma core) and sinks (DR processes). The rate coefficients kDR for dissociative recombination over the wide range of plasma conditions (e.g. their variation with T_e and T_g) relevant to the present study remain a subject of controversy.36-39 At low gas temperatures (e.g. room temperature) kDR is inversely proportional to T_e b0 (i.e. kDR=k0DR/T_e b0) with exponent b0 ~ 0.5-0.7.39 Higher values (b0 ~ 1-2) have been suggested at higher T_g (e.g. at T_g >1000 K)39 and it has also been suggested that kDR may be sensitive to T_g (e.g. kDR = k0DR/(T_e 0.5T_g)).40 Both alternatives were probed in our previous study 22 and k0DR varied so as to achieve the best match with the measured I_em profiles – encouraging use of the T_g dependent function in the systematic calculations. Now we have calculated kDR directly using the literature DR cross-sections (see Table S3) and the appropriate local EEDF resulting in kDR ~ k0DR/T_e b0 dependence with b0 ~0.5. In addition, we explored the T_g dependence of the rate coefficient for DR assuming a ~1/T_g b1 functional form while conserving the same
optimal k_{DR} values in the plasma core. The value $b_1 = 0$ (i.e. assuming no T_g dependent reduction of the DR coefficient) was found to provide a slightly better correlation with the measured I_{em} profiles. As Table 2 shows, this analysis reveals rate coefficients $k_{DR}(\text{ArH}^+) << k_{DR}(\text{H}_3^+) < k_{DR}(\text{H}_3\text{O}^+)$ (reactions (17)-(19)) under the process conditions of interest and a total DR rate that is very sensitive to the local concentrations of the respective ions. For completeness, we note that Table 2 allows an ambiguity regarding the products of reactions (17) and (18), since neither is a significant source of any of the suggested products. DR involving H_2^+ ions is not listed in Table 2 as the maximal calculated $[\text{H}_2^+]$ in the hot core region is three orders of magnitude lower than that of $[\text{H}_3^+]$.

Redistribution between the dominant ions is driven by fast ion interconversion reactions (e.g. (43) and (44)), that depend on the respective neutral species concentrations and T_g (the ion temperature T_i is close to T_g at the prevailing pressures and reduced electric fields). Ar^+ ions formed by EII (reaction (22)) are converted efficiently to ArH^+ ions via the exothermic reaction $\text{Ar}^+ + \text{H}_2 \leftrightarrow \text{ArH}^+ + \text{H}$, thus ensuring that $[\text{ArH}^+] >> [\text{Ar}^+]$. However, the ArH^+ concentration is determined by the balance of the fast forward (exothermic, with reaction enthalpy $\Delta H_{43} \sim -0.55\pm0.05$ eV) and reverse (endothermic) reactions $\text{ArH}^+ + \text{H}_2 \leftrightarrow \text{H}_3^+ + \text{Ar}$ (reactions (43) and (−43), respectively).\(^{41}\) These reactions are in local equilibrium throughout the whole reactor ensuring $[\text{ArH}^+] \approx k_{−43}[\text{H}_3^+][\text{Ar}]/(k_{43}[\text{H}_2])$. The forward reaction rate coefficient is reasonably well defined ($k_{43} = 6.3\times10^{-10}$ (ref. 30), 8×10^{-10} cm3 s$^{-1}$ (ref. 41)) but $k_{−43}$ has been controversial \(^{30}\) and its determination in the current context is complicated by the need for $k_{−43}(T_g)$ values over a wide range of temperatures (from ~300 to ~3000 K). $k_{−43}(T_g)$ was estimated from the temperature dependent heat capacities, entropies and enthalpies of Ar, H_2, ArH^+ and H_3^+ (ref. 35) and found to be a rapidly rising function of T_g that is reasonably approximated in Arrhenius form: $k_{−43}(T_g)$ / cm3 s$^{-1}$ $\approx 6.5\times10^{-9}\times\exp(−6830/T_g)$; yielding $k_{−43}(T_g = 300 \text{ K}) \approx 10^{-18}$ cm3 s$^{-1}$ and $k_{−43}(T_g = 2700 \text{ K}) \approx 5\times10^{-10}$ cm3 s$^{-1}$. This analysis provides the relationships $[\text{ArH}^+] \approx [\text{H}_3^+]\times[\text{Ar}]/[\text{H}_2]$ in the hot plasma core (i.e. at $T_g \sim3000$ K) and $[\text{ArH}^+] < 2\times10^{-3}\times[\text{H}_3^+]\times[\text{Ar}]/[\text{H}_2]$ in peripheral regions of the reactor (with $T_g \sim800$ K). We return to discuss this latter relationship in the context of the observed Cu* emissions in section 3.3.3.

An analogous relationship between H_3O^+ and H_3^+ ions ([H$_3$O$^+$] $\approx k_{44}[\text{H}_3^+][\text{H}_2\text{O}]/(k_{−44}[\text{H}_2])$) is valid in hot regions only, i.e. where $T_g > 2500$ K and the forward exothermic (44) and reverse
endothermic (−44) reactions are in approximate balance. Given the high endothermicity of reaction (−44) ($\Delta H_{-44} \approx 2.74 \pm 0.04$ eV), the k_{-44} coefficient calculated from the available thermochemical data becomes too low in cold regions where H$_2$O$^+$ ions accumulate and start to dominate the ion distribution. This coefficient can also be approximated in Arrhenius form: $k_{-44}(T_g) / \text{cm}^3 \text{s}^{-1} \approx 2.3 \times 10^{-12} T_g \times \exp(-29300/T_g)$. In contrast to reactions (43) and (44), the role of reactions 45 and (−45) (with deduced rate coefficient $k_{-45}(T_g) \approx 7.4 \times 10^{-14} T_g^{1.4} \times \exp(-34500/T_g)$ and reaction enthalpy $\Delta H_{-45} \approx 3.3 \pm 0.1$ eV) in facilitating interconversion between the various ions is negligible under the prevailing conditions (Table 2). The radial (at $z = 10.5$ mm) and axial (at $r = 0$) profiles of the electron concentration is not explicitly shown in Figures 8 and 9 but can be obtained as $n_e \approx [\text{[H}_3^+]+[\text{H}_2\text{O}^+]+[\text{ArH}^+]]$. Again, the selective radial expansion of the plasma upon increasing the Ar content (discussed in section 3.2.1) is evident from comparing the r and z profiles of the total ion concentration shown in Figures 8 (and 9) and, more clearly, by viewing the same total ion (or the n_e) density profiles plotted on a linear scale (Figure S10).

Plots analogous to those shown in Figs. 8(b) and 9(b) for a H$_2$/Ar plasma with X_0(Ar) = 0.33 and zero air contamination are shown in Figure S9. Comparing these data shows that the assumed air contamination has minimal effect on n_e or its spatial dependence but substitutes the H$_3^+$ (and ArH$^+$) ions at the periphery of the plasma by H$_2$O$^+$ ions and causes a modest (<10-20%) change in the concentrations of H(n=3) and other excited species in the plasma core.

B. Electronically Excited Species: The modeling returns the following picture of the balances and couplings involving electronically excited species. We identify three reservoirs of excited species (H*, H$_2$* and Ar*, with respective excitation energies $E_{H} \geq 10.2$, $E_{H2} \geq 11.3$ and $E_{Ar} \geq 11.57$ eV). The primary pumping mechanism for each of these reservoirs is EIE of the corresponding ground state species, $i.e.$ H(n = 1), H$_2$ and Ar. In what follows, we analyze the local balance of excited state production and loss reactions in the region of maximal EIE rates ($i.e.$ at $z \approx 3.5$ mm and $r = 0$). Key parameters for this region of an H$_2$/Ar plasma with X_0(Ar) = 0.33 and base p (150 Torr) and P (1.5 kW) are: $T_g = 2713$ K, $|E|/(N\times a) = 34$ Td, X(Ar) = 0.188 and X(H) = 0.083. The present modeling returns the following total EIE rates: $R_{EIE}(H) \sim 6 \times 10^{16}$ cm$^{-3}$ s$^{-1}$, $R_{EIE}(H_2) \sim 1.83 \times 10^{17}$ cm$^{-3}$ s$^{-1}$ and $R_{EIE}(Ar) \sim 1.2 \times 10^{16}$ cm$^{-3}$ s$^{-1}$ (Figure 10). Contributions from the many higher excited states neglected in the modeling will
ensure that each of these values slightly underestimates the total EIE rates. We also note that the H₂ dissociation rate in the plasma region following EIE to the unstable H₂(b³Σ_u⁺) state (reaction (6) in Table 2), \(R_{EID}(\text{H}_2) = 2.44 \times 10^{18} \text{ cm}^{-3} \text{ s}^{-1} \), far exceeds the sum of all other EIE rates and thus treat this electron impact dissociation (EID) as a separate (and important) pathway. As shown in Table 2 and Figure 10, the EII rates \(R_{EII}(\text{H}, \text{H}_2 \text{ and Ar}) \) are 2-3 orders of magnitude lower than \(R_{EIE} \).

The total excitation rate (\textit{i.e.} the sum of all \(R_{EIE} \) values) is balanced by the rates of:

(i) reactive quenching (\(R_{RQ} \)) and radiative decay (\(R_{rad} \)) of the \(\text{H}^* \), \(\text{H}_2^* \) and \(\text{Ar}^* \) excited states, including the following major loss contributions (Table 2):

\[R_{RQ}(\text{H}_2^* + \text{H}_2 \rightarrow 2\text{H} + \text{H}_2) \sim 10^{17} \text{ cm}^{-3} \text{ s}^{-1}, \]

\[R_{RQ}(\text{H}(n = 2) + \text{H}_2 \rightarrow 3\text{H}) \sim 6.1 \times 10^{16} \text{ cm}^{-3} \text{ s}^{-1}, \]

\[R_{RQ}(\text{Ar}^* + \text{H}_2 \rightarrow 2\text{H} + \text{Ar}) \sim 1.1 \times 10^{16} \text{ cm}^{-3} \text{ s}^{-1}, \]

\[R_{rad}(\text{H}_2(b^3\Sigma_u^+ \rightarrow X^1\Sigma_g^+) + h\nu) \sim 4.2 \times 10^{16} \text{ cm}^{-3} \text{ s}^{-1}, \]

\[R_{rad}(\text{H}_2(a^3\Sigma_g^+ \rightarrow b^3\Sigma_u^+) + h\nu) \sim 4.3 \times 10^{16} \text{ cm}^{-3} \text{ s}^{-1}, \]

and

(ii) excitation transfer (\(R_{ET} \)) between these reservoirs (reactions (25)-(34) in Table 2).

These rates illustrate the transformation of electronic excitation energy and the balances between the various excited state production and loss mechanisms. About 72\% of the total electronic excitation (\textit{i.e.} the sum of all \(R_{EIE} \) rates for the three reservoirs apart from the (major) contribution associated with EID of \(\text{H}_2 \) in the plasma (reaction (6))) is expended on \(\text{H}_2 \), with ~23\% used in exciting \(\text{H} \) atoms and only ~5\% on exciting \(\text{Ar} \) atoms. Most (~66\%) of this total excitation is balanced by reactive quenching (reactions (39)-(42)), leading to \(\text{H}_2 \) dissociation. The remainder is accommodated radiatively, with dominant contributions from \(\text{H}_2(b^3\Sigma_u^+) \) and \(\text{H}_2(a^3\Sigma_g^+) \) emission (reactions (36) and (37)). Including the full diversity of possible excitation transfer pathways in any model of \(\text{H}_2/\text{Ar} \) plasmas would be a huge challenge. Fortunately, the energy transfer rates (\(R_{ET} \)) between the \(\text{H}^* \), \(\text{H}_2^* \) and \(\text{Ar}^* \) excited states are much lower than their production rates (by EIE), and any model-dependent variations of these exchange rates would have only limited impact on the spatial profiles of the excited state column densities.

At this point it is worth re-emphasizing that only a very minor part of the absorbed MW power is utilized in the EIE processes probed by OES experiments. Even in the region of maximal EIE rates (Table 2 and Figure 10), the power density going into excited species (~0.5 W cm⁻³) is only ~1\% of the total absorbed power density (51 W cm⁻³). The vast majority of the MW energy absorbed by the electrons is expended on gas heating – indirectly
(via vibrational and rotational excitation of H\textsubscript{2} molecules followed by vibrational-translational (V-T) and rotational - translational (R-T) relaxation of H\textsubscript{2}(v, J) on H atoms), and directly via the elastic collision of electrons with heavy particles.17,18,26 [Note that the last column in Table 3 in ref. 17 contains a typographical error: The 70.2 entry should read 7.02].

Table 2 provides more details regarding the distribution of excitation rates within each reservoir and shows that the dominant (typically >90\%) \textit{R}_{\text{EIE}} contributions are to the lower excited states of each species, \textit{i.e.} to H\textit{H}(n = 2), H\textsubscript{2}(B\Sigma\textsubscript{u}+), H\textsubscript{2}(a\Sigma\textsubscript{g}+), H\textsubscript{2}(c\Pi\textsubscript{u}), Ar(1S\textsubscript{3,5}) and Ar(1S\textsubscript{2,4}). A more detailed description of the balance of production and loss reactions for separate H* and H\textsubscript{2}* states was presented in the recent study of MW activated hydrogen plasmas.22 Similar balances are observed for the Ar* states. For example, the local balance of the emitting Ar(4p) states explicitly included in this study is largely determined by EIE of ground state Ar atoms (\textit{R}_{\text{EIE}} \sim \text{1.4x10}^{15} \text{ cm}^{-3} \text{ s}^{-1}) and loss via both radiative decay (\textit{R}_{\text{rad}} \sim \text{1.1x10}^{15} \text{ cm}^{-3} \text{ s}^{-1}) and excitation transfer reactions with H\textit{H}(n = 1) and H\textsubscript{2}. As found also for H and H\textsubscript{2},22 EIE of excited state Ar atoms is unimportant (\textit{cf.} EIE of ground state Ar atoms); the concentrations of Ar* species (even in the lowest metastable states) are just too low. The present modeling returns [Ar*]/[Ar] ratios <10-8 under the prevailing plasma conditions.

The local production and loss rates of the excited state species are in strong balance and the radial and axial concentration profiles shown in Figures 8 and 9 for H\textsubscript{2}/Ar plasmas with \textit{X}_{0}(Ar) = 0.07 and 0.33 are closely related to the spatial profiles of the sources and the quenching rates of the respective species.

3.3 Comparing the model outputs with experimental \(I_{\text{em}}(z)\) profiles

3.3.1 H*, H\textsubscript{2}* and Ar* emissions

The H and H\textsubscript{2} plasma kinetics scheme described in ref. 22, supplemented with the additional H*/H\textsubscript{2}*/Ar* reactions (including the more important reactions summarized in Tables 2 and S3), was used to simulate the various \textit{X}_{0}(Ar) dependences identified experimentally. As Figures 11(a) and 11(b) show, the 2-D modeling succeeds in capturing the roughly proportional decline in \(I_{\text{em}}(H_{\alpha})\) and the greater than linear decrease in \(I_{\text{em}}(H_{2}^{*})\) observed with increasing \textit{X}_{0}(Ar) (\textit{i.e.} with decreasing \textit{X}_{0}(H\textsubscript{2})). The measured \(I_{\text{em}}(Ar^{*}, 696.54 \text{ nm})\) intensity grows near linearly with \textit{X}_{0}(Ar). The \(I_{\text{em}}(Ar^{*}, 696.54 \text{ nm}; z)\) profile is determined by \{Ar(2p\textsubscript{2})\}, the column density of the emitting state. The present modeling assumes that
{Ar(2p_2)} behaves in a similar manner to the total column density associated with all ten 2p_i states derived from the 3p^54p configuration, i.e. to {Ar(4p)}, given the likely strong mixing of the different 2p_i states through collisions with H_2(v, J) molecules. Test calculations involving just the Ar(2p_2) state, with its individual EIE cross-section rather than a total cross-section for the Ar + e \rightarrow Ar(4p) + e process,\(^{32}\) show some differences in the relative {Ar(2p_2)} and {Ar(4p)} profiles – reflecting differences in the respective rates of EIE, ET, radiative and reactive quenching. Given the number of possible, but as yet only poorly characterised, ET, quenching and mixing processes for the various Ar(2p_i) states,\(^{27}\) we simply note the good qualitative correlations between the calculated column densities {Ar(4p)}(z) and measured \(I_{em}(Ar^*, z)\) profiles at the various \(X_0(Ar)\) (Figure 11(c)). Arguably the most serious discrepancy between the modeling and observation is the much smaller predicted increase in {Ar(4p)} at low z at high \(X_0(Ar)\).

Similar shortcomings limit the extent to which the modeling replicates the measured \(I_{em}(H_\alpha)\) and \(I_{em}(H_2^*)\) profiles at different \(X_0(Ar)\). Figures 11(a) and 11(b), for example, show that the model returns relatively greater declines in \{H(n = 3)\} and \{H_2(d^3Π_u)\} at \(X_0(Ar) \geq 0.33\) than the observed reductions in \(I_{em}(H_\alpha)\) and \(I_{em}(H_2(d-a))\). An overestimation of the contributions from excitation transfer (ET) processes (27) and (28) in the case of H(n = 3) atoms and an underestimation of contributions from ET processes in the case of H_2(d^3Π_u) (for which the current modeling includes no allowance for any coupling with high lying, near resonant states of Ar) may be responsible for these discrepancies. One indirect hint in support of this suggestion is provided by the calculated behaviour of \{H_2(e^5Σ_u^+)\}, for which the ET process (34) has a net positive effect: the predicted \{H_2(e); X_0(Ar) = 0.4\}/\{H_2(e); X_0(Ar) = 0\} ratio is about twice the \{H_2(d); X_0(Ar) = 0.4\}/\{H_2(d); X_0(Ar) = 0\} ratio. Figure 11 also shows that the 2-D modeling fails to correctly describe the observed \(I_{em}(z)\) profiles at small z.

The modeling succeeds in reproducing many of the trends observed when replacing a progressively greater H_2 fraction by Ar, including the spatially non-uniform decrease of \(I_{em}(H_\alpha)\) and \(I_{em}(H_2^*),\) the shift in the centre of gravity of the \(I_{em}(H_\alpha)\) and \(I_{em}(H_2^*)\) distributions to smaller z and the comparative insensitivity of the peak of the \(I_{em}(Ar^*, z)\) distribution to changes in \(X_0(Ar)\). Several of the points of disagreement between the present observations and model outputs were also noted in our study of hydrogen plasmas,\(^{22}\) and several possible contributory factors were proposed. For example, the modeling neglects non-local effects like diffusive transfer of electron energy and electron conduction, and any
imbalance in the ionization and electron-ion recombination rates is accommodated by the
diffusional transfer of charged species to the substrate and the adjacent walls of the reactor. In
the present context, we also note the limited number of species included in Table 2, and the
fact that their associated kinetic schemes are far from complete.

The plasma emission is brighter at the periphery of the substrate (most notably at higher
X_0(Ar)). This indicates a local maximum in the EM field that is confirmed by the present 2-D
modeling, which predicts a more than order of magnitude increase in the charged species
density near the substrate edge. By way of illustration, Figure 7(b) showed the electron
concentration profile $n_e(r, z = 0.5 \, \text{mm})$ for H$_2$/Ar mixtures with X_0(Ar) = 0.07 and 0.33.
However, the magnitudes of the predicted increases are not sufficient to reproduce the
observed increase in the line-of-sight emission intensities at small z. The modeling also
reveals another possible source of near edge emission – the formation of excited species in
electron-ion dissociative recombination reactions (e.g. OH* products from reaction (18)), but
the wavelength selective nature of the present experiments means that such emissions cannot
contribute to the $I_{em}(z)$ intensities and profiles reported here.

The calculated radial profiles of [H] and T_g just above the substrate surface (at $z = 0.5 \, \text{mm}$)
shown in Figure 7(b) for H$_2$/Ar plasmas with X_0(Ar) = 0, 0.07 and 0.33 highlight the way Ar
additions reduce the radial variations of both quantities. For example, the predicted radial
variations in the near substrate H atom density, [H]$_{ns}$, and the near substrate gas temperature,
T_{ns}, are effectively halved upon increasing X_0(Ar) from 0 to 0.33, yet the absolute [H]$_{ns}$
density is barely compromised (because of the associated increase in the absolute value of
T_{ns}). This ‘smoothing’ of the radial variations in [H]$_{ns}$ and T_{ns} are a consequence of the
plasma expansion that accompanies Ar addition (recall section 3.2.1). Our recent H$_2$ plasma
studies showed that increasing the MW power offered one means of enhancing the uniformity
at the gas-substrate interface (reflecting the plasma volume $V_p \sim P$ dependence). The present
work suggests that strategic Ar additions could offer similar benefits with regard to achieving
more uniform processing of the substrate area, e.g. more uniform rates of diamond CVD in
optimized CH$_4$/H$_2$/Ar mixtures, as illustrated in recent growth studies at similar process
pressures ($p \sim 150 \, \text{Torr}$) by Yamada et al.

3.3.2. H$_2$/Kr plasmas
H₂/Kr plasmas have not been investigated so extensively – experimentally or theoretically – and here we concentrate on highlighting differences between H₂/Kr and H₂/Ar plasmas that derive from the properties of the two noble gases. Kr has a higher atomic mass (M_{Kr} = 83.8 u, cf. M_{Ar} = 39.9 u), a lower ionization potential (IP_{Kr} = 14 eV, cf. IP_{Ar} = 15.76 eV), a lower energy first excited state (E_{Kr} = 9.9 eV, cf. E_{Ar} = 11.55 eV) and a lower thermal conductivity (λ_{Kr} = 0.09 mW cm⁻¹ K⁻¹, cf. λ_{Ar} = 0.17 mW cm⁻¹ K⁻¹ at 1 atm and 0 °C). These differences should ensure that, for any given X₀(R), the H₂/Kr plasma will be hotter and will involve a greater noble gas contribution to the total ionization. The former prediction is confirmed by substrate temperature measurements: the present study finds a greater relative increase in T_{sub} for a given X₀(R) when R = Kr, as did a previous comparative study of Ar- and Kr-rich methane/hydrogen plasmas (X₀(R) > 0.93) for growth of ultrananocrystalline diamond (UNCD).¹⁷ Even for these Ar- and Kr-rich plasmas, however, the process parameters for convenient UNCD deposition, the deposition rates and the crystallite sizes were rather similar, though the measured H(n = 2) and H(n = 3) column densities were an order of magnitude lower in the Kr-rich plasma.¹⁷ This difference reflects efficient quenching in the near resonant reactions H(n = 2) + Kr → H(n = 1) + Kr(4p⁵5s¹) and H(n = 3) + Kr → H(n = 1) + Kr(4p⁵5p¹) for which – because of its different energy level structure – there are no analogues when R = Ar.¹⁷

Such differences are of less importance in the H₂-rich plasmas featured in the present study, wherein the dominant reactions of H(n = 2, 3) atoms are with H₂ molecules (reactions (25) and (41)) rather than R atoms. Thus the important associative ionization reaction (23) and thus the reduced electric field, Tₑ and the other plasma parameters will all vary reasonably smoothly and coherently upon adding either Ar or Kr to the present H₂-rich plasma. The plasma core remains H₂-rich, even for the highest X₀(R) (~0.5–0.66) because of the thermodiffusive transfer of heavy species from the hot plasma core. The most striking differences in the present experimental findings for the H₂/Ar and H₂/Kr plasmas are the more pronounced reductions of I_{em}(H₂*) and I_{em}(H*) (Figure 2) and the relatively greater Cu* emissions (see Section 3.3.3) upon any given X₀(R) addition when R = Kr. Both observations can be traced to differences in the ionic component within the plasma. Namely, the fraction of KrH⁺ ions ([KrH⁺]/nₑ) in the total distribution of ions should be much higher (especially in the cooler regions) than the ArH⁺ fraction ([ArH⁺]/nₑ) due to the more favorable thermochemistry of KrH⁺ formation and the respective ionization potentials of Kr and Ar. Kr has a higher proton affinity (PA_{Kr} = 4.41 eV, cf. PA_{Ar} = 3.85 eV) and a lower enthalpy for
forming KrH⁺ (ΔH²⁹⁸(KrH⁺) = 11.5 eV, cf. ΔH²⁹⁸(ArH⁺) = 12.1 eV). As a result, the key charge transfer reaction

\[\text{H}_3^+ + \text{Kr} \leftrightarrow \text{KrH}^+ + \text{H}_2 \] \hspace{1cm} (46)

is almost thermoneutral (ΔH₄₆ ~ 0, cf. ΔH₄₃ ~ −0.55 eV) and the equilibrium is shifted in favor of the products: \(k_{46}/k_{-46} \approx 15 \) and \(k_{46} > 10^{10} \text{ cm}^3 \text{s}^{-1} \) (ref. 42) and thus supports much higher [KrH⁺]/[H₃⁺] (cf. [ArH⁺]/[H₃⁺]) ratios, especially in the cooler regions (including near the reactor base plate). Two further factors merit note. The higher [KrH⁺] concentration (>>[ArH⁺]), and the concomitant reduction in [H₃⁺], should be expected to result in a lower total rate of DR in the H₂/Kr plasma. The higher ionization rate of Kr (cf. Ar, reflecting the lower IP of the former) will lead to a higher total ionization rate in a H₂/Kr plasma. Both these factors will act to decrease the reduced electric field \(|E|/(N \times a) \) and \(T_e \) values in a H₂/Kr plasma in order to accommodate similar absorbed powers and \(n_e \) values in both plasmas at any given \(X_0(R) \). Such expectations are supported by test 2-D model calculations involving KrH⁺ ions for \(X_0(\text{Kr}) = 0.07 \) and 0.33: \(T_e \) drops by ~10% and the rates of EII of Kr increase by roughly an order of magnitude, resulting in a faster decline of H* and H₂* with Kr addition (cf. an equivalent Ar addition) – in accord with the OES measurements (Figure 2).

3.3.3 Cu* emissions

The following description is largely focused on H₂/Ar plasmas but, as shown in section 3.3.2, similar (more advanced) effects operate in the case of H₂/Kr plasmas also. The base plate on which the substrate sits is the only source of copper in the proximity of the hot plasma. The observed Cu* emissions peak at low \(z \) and are observed only at higher Ar (and Kr) mole fractions (e.g. at \(X_0(\text{Ar}) > 30\% \), Figure 4). These observations hint at sputtering (etching) of the Cu base plate by low energy heavy ions (e.g. ArH⁺) and may have some parallels with previous studies demonstrating that an incident flux of H atoms substantially increases the Ar⁺-ion induced sputter yield (and reduced the threshold sputtering energies) of a-C:H films.⁴³ We suggest that a similar synergetic interaction of radicals (H atoms), vacuum ultraviolet radiation from the distant H₂/Ar plasma core ⁴⁴ and low energy ArH⁺ ions with the Cu base plate is a likely source of the volatile Cu atoms observed in the present experiments. Figure 4(b) showed the \(I_{\text{em}}(\text{Cu}^*) \) signal increasing steeply with increasing \(X_0(\text{Ar}) \). Comparison with the calculated ion concentrations adjacent to the base plate (Figure 4(c)) reveals an obvious correlation between \(I_{\text{em}}(\text{Cu}^*) \) and the local ArH⁺ concentration, but no
correlation with the (much higher) local concentrations of H$_3$O$^+$ and H$_3^+$ ions. We also note the possibility of producing CuH species (as a volatile product at the Cu surface) in the process of Cu–Cu bond breaking in the interaction with ArH$^+$, \textit{i.e.} in e-ArH$^+$ DR at the Cu surface. Any such volatile CuH species would be readily destroyed at the high prevailing H atom concentrations. The CuH + H ↔ Cu + H$_2$ reaction is exothermic for forming Cu products in both the ground ($^2S_{1/2}$) or first excited ($^2D_{5/2}$) state. Quenching of any excited state Cu species will be efficient at the prevailing pressures, so the most abundant copper species diffusing away from the base plate will surely be Cu($^2S_{1/2}$) atoms, and EIE provides a ready route to populating the observed emitting Cu($^2P_{3/2}$) and Cu($^2P_{1/2}$) states (with respective excitation energies of 3.82 eV and 3.79 eV).

The local $I_{em}(Cu^*)$ signals at 324.75 and 327.4 nm are determined by the product of the EIE rate coefficient k_{EIE}, the electron density, n_e, and the concentration of ground state Cu atoms, [Cu($^2S_{1/2}$)]. [Cu($^2S_{1/2}$)] will be maximal just above the substrate as a result of its proximity to the source region (the base plate at $z = -3$ mm) and, as with Ar, as a result of thermodiffusive transfer driven by the drop in T_e at small z. The n_e term shows the opposite behavior at small z (see Figure 9, recognizing that $n_e \approx \left[H_3O^+ \right] + \left[H_3^+ \right] + \left[ArH^+ \right]$). The observed maximum of $I_{em}(Cu^*)$, at $z \sim$2-3 mm (Figure 4(a)), reflects the maximum of the product $k_{EIE}n_e$[Cu($^2S_{1/2}$)] and, in particular, the maximum of the calculated T_e distribution (Figure 6(b)). The calculated maximal concentrations of [ArH$^+$] above the Cu base plate are localized in the annulus immediately outside the substrate \textit{(i.e.} in the region $R_{sub}+1.5 < r < R_{sub}+4$ mm, recall Figure 7(b)), and it is here that maximal sputtering rates should be observed. That $I_{em}(Cu^*)$ at any given $X_0(R)$ is greater when $R = Kr$ follows naturally from the greater relative KrH$^+$ concentrations (recall section 3.3.2). The Cu atoms in the gas phase above the base plate can be expected to reach their steady state concentrations within a short time after plasma ignition (a few seconds at most), with the flux of Cu atoms into the gas phase (from sputtering) compensated by loss as a result of diffusive expansion and redeposition onto proximal surfaces (the base plate and/or the substrate).

4 Conclusions

This combined experimental and modeling study explores ways in which MW-activated hydrogen plasmas operating under conditions relevant to contemporary diamond CVD
reactors, *i.e.* at a high gas temperature ($T_g \sim 3000$ K) and moderate pressure ($p \sim 150$ Torr), are affected by additions of noble gas (R = Ar and Kr). The experiments provided spatially resolved optical emission spectra from the d and G excited states of H$_2$, from the $n = 3$ level of atomic hydrogen and from various excited states of Ar and Kr, as functions of gas mixing ratio. The experimental data are compared and contrasted with the outputs of a self-consistent 2-D (r, z) model of the plasma-chemical, transport and electromagnetic processes prevailing in H$_2$/Ar plasmas with different X_0(Ar). Such comparisons allow characterization of the dominant plasma (and plasma emission) generation mechanisms prevailing in MW-activated H$_2$/Ar plasmas, and identification of the more important Ar–H, Ar–H$_2$ and H–H$_2$ coupling reactions. Noble gas addition causes a radial expansion of the plasma, and thus leads to more uniform [H] and T_g profiles just above the substrate – a finding that should find use when planning diamond growth experiments involving larger area substrates and dilute C/H/(Ar) gas mixtures. Noble gas addition in the current experiments is also found to exacerbate (unwanted) sputtering of the copper section within the reactor base plate. The observed gas phase Cu* emission intensities correlate well with the calculated ArH$^+$ (and KrH$^+$) ion concentrations just above the substrate surface but appear insensitive to the (relatively more abundant) H$_3^+$ and H$_3$O$^+$ ion concentrations in this region.

Additional Content

The following Supporting Information is available free of charge on the ACS Publications website at DOI:

Selected $I_{em}(\lambda, z)$ images of H$_2$(d–a), H$_\alpha$ and Ar* emissions from MW activated H$_2$/Ar plasmas; plot showing key excited states of H$_2^*$, H*, Ar* and Kr* on a common energy scale; I_{em}(H$_2^*$, G–B), I_{em}(H$_\beta$), I_{em}(H$_\gamma$), I_{em}(Ar*, 811.53 nm) and I_{em}(Ar*, 826.45 nm) emission profiles as functions of X_0(Ar); I_{em}(H$_\gamma$), I_{em}(Kr*, 427.40 nm) and I_{em}(Kr*, 437.61 nm) emission profiles from MW activated H$_2$/Kr plasmas as functions of X_0(Kr); radial distributions of the calculated axial column power density weighted by the area of the annulus associated with cells at radius r for H$_2$/Ar plasmas with X_0(Ar) = 0, 0.07, 0.33 and 0.4, $p = 150$ Torr and $P = 1.5$ kW; axial (at $r = 0$) and radial (at $z = 10.5$ mm) concentration profiles for selected species in H$_2$/Ar plasmas with X_0(Ar) = 0.33, zero air contamination, $p =$
150 Torr and \(P = 1.5 \) kW; axial (at \(r = 0 \)) and radial (at \(z = 10.5 \) mm) concentration profiles of the total ion concentration in \(\text{H}_2/\text{Ar} \) plasmas with \(X_0(\text{Ar}) = 0.07 \) and 0.33, with \(p = 150 \) Torr and \(P = 1.5 \) kW, plotted on a linear scale to highlight the radial expansion and the minimal change in the axial dimension of the plasma volume upon increasing \(X_0(\text{Ar}) \).

Author Information

Corresponding Authors

E-mail: mike.ashfold@bristol.ac.uk; ymankelevich@mics.msu.su

Notes

The authors declare no competing financial interests.

All underlying experimental data are available at the University of Bristol data repository, data.bris, at DOI: 10.5523/bris.81gdmets9gr22umh81j0gmxlb

Acknowledgements

The Bristol authors are grateful for financial support from the Engineering and Physical Sciences Research Council (EPSRC) through grant no. EP/K018388/1, the EPSRC Centre for Doctoral Training in Diamond Science and Technology (EP/L015315/1) and Element Six Ltd. The authors are also grateful for the many and varied contributions from Dr James Smith. The work was performed within the Cooperation in Science and Technology Agreement between Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, and the University of Bristol.
Table 1

Atomic and Molecular Emissions Monitored in this Work, with the Argon Transitions Labelled using both Russell-Saunders and Paschen Notation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Transition</th>
<th>Monitored Wavelength / nm</th>
<th>Upper state energy / eV</th>
<th>Lower state energy / eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂*</td>
<td>d³Πₐ → a³Σ⁺⁺</td>
<td>603.19</td>
<td>13.848 ¹⁰</td>
<td>11.788 ¹⁰</td>
</tr>
<tr>
<td></td>
<td>G¹Σ⁺⁺ → B¹Σ₉⁺⁺</td>
<td>463.14</td>
<td>13.863 ¹⁰</td>
<td>11.183 ¹⁰</td>
</tr>
<tr>
<td>H*</td>
<td>n = 3 → n = 2</td>
<td>656.28</td>
<td>12.085</td>
<td>10.198</td>
</tr>
<tr>
<td></td>
<td>n = 4 → n = 2</td>
<td>486.13</td>
<td>12.748</td>
<td>10.198</td>
</tr>
<tr>
<td></td>
<td>n = 5 → n = 2</td>
<td>434.04</td>
<td>13.054</td>
<td>10.198</td>
</tr>
<tr>
<td>Ar*</td>
<td>3p⁵(2⁰₁/2)4p¹ → 3p⁵(2⁰₃/₂)4s¹ (2p₂ → 1s₈)</td>
<td>696.54</td>
<td>13.327</td>
<td>11.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>811.53</td>
<td>13.075</td>
<td>11.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>826.45</td>
<td>13.327</td>
<td>11.828</td>
</tr>
<tr>
<td>Kr*</td>
<td>4p⁵(2⁰₃/₂)6p¹ → 4p⁵(2⁰₃/₂)5s¹</td>
<td>427.40</td>
<td>12.815</td>
<td>9.915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>431.96</td>
<td>12.784</td>
<td>9.915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>437.61</td>
<td>12.864</td>
<td>10.032</td>
</tr>
<tr>
<td>Cu*</td>
<td>3d¹⁰4p¹ → 3d¹⁰4s</td>
<td>324.75</td>
<td>3.816</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>327.40</td>
<td>3.785</td>
<td>0.000</td>
</tr>
</tbody>
</table>

¹⁰ quoted term values are for the ν' = 0 level, defined relative to X, ν'' = 0 level.
Table 2.
Selected Reactions for Charged Species and for Emitting H*, H₂*, and Ar* Neutrals. Ar(1s₃,5) and Ar(1s₂,4) Represent, Respectively, the Sums of the 1s₃ and 1s₅ (Lowest Metastable) and the 1s₂ and 1s₄ (Lowest Resonance) States of Ar. Ar(4p) Represents the Sum of 2pᵢ (i = 1-10) States with Excitation Energies in the Range 12.9-13.5 eV. Rate Coefficients \(k_i \) and Reaction Rates \(R_i \) for the Important Reactions Involving Charged and Electronically Excited Species are Presented for the Following Plasma Conditions Prevailing at \(r = 0, z = 3.5 \) mm: \(X_0(\text{Ar}) = 0.33 \) in H₂, along with \(\sim 10 \) ppm Air Impurity, \(|E|/(N×a) = 34 \) Td, \(p = 150 \) Torr, \(P = 1.5 \) kW, \(T_g = 2713 \) K, \(T_e = 1.57 \) eV, under which Conditions the Main Species Mixing Ratios are 8.3%H/18.8%Ar/H₂ (as for Figure 10 also). \(k_i \) are in Units of cm³ s⁻¹ Except for the Radiative Decay Reactions (s⁻¹), \(T_g \) is in K, and H₂ and Ar Denote the Respective Ground States. Table S3 Presents an Expanded Version of this Table, Including References to the Sources of the Rate Data.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\text{Electron impact excitation})</th>
<th>(k_i / \text{cm}^3\text{s}^{-1})</th>
<th>(R_i / \text{cm}^3\text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{H}(n=1) + e \rightarrow \text{H}(n=2) + e)</td>
<td>(4.6 \times 10^{-12})</td>
<td>(5.9 \times 10^{16})</td>
</tr>
<tr>
<td>2</td>
<td>(\text{H}(n=1) + e \rightarrow \text{H}(n=3) + e)</td>
<td>(7.6 \times 10^{-14})</td>
<td>(9.7 \times 10^{14})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{H}(n=1) + e \rightarrow \text{H}(n=4) + e)</td>
<td>(1.2 \times 10^{-14})</td>
<td>(1.6 \times 10^{14})</td>
</tr>
<tr>
<td>4</td>
<td>(\text{H}(n=1) + e \rightarrow \text{H}(n=5) + e)</td>
<td>(3.4 \times 10^{-15})</td>
<td>(4.4 \times 10^{13})</td>
</tr>
<tr>
<td>5</td>
<td>(\text{H}(n=1) + e \rightarrow \text{H}(n=6) + e)</td>
<td>(1.5 \times 10^{-15})</td>
<td>(2.0 \times 10^{13})</td>
</tr>
<tr>
<td>6</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{b}^3\text{Σ}_u^+) + e \rightarrow 2\text{H} + e)</td>
<td>(2.2 \times 10^{-11})</td>
<td>(2.4 \times 10^{18})</td>
</tr>
<tr>
<td>7</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{B}^1\text{Σ}_u^+) + e)</td>
<td>(3.5 \times 10^{-13})</td>
<td>(3.9 \times 10^{16})</td>
</tr>
<tr>
<td>8</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{c}^3\text{Π}_u) + e)</td>
<td>(4.7 \times 10^{-13})</td>
<td>(5.3 \times 10^{16})</td>
</tr>
<tr>
<td>9</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{a}^3\text{Σ}_g^+) + e)</td>
<td>(7.5 \times 10^{-13})</td>
<td>(8.5 \times 10^{16})</td>
</tr>
<tr>
<td>10</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{C}^1\text{Π}_u) + e)</td>
<td>(5.1 \times 10^{-14})</td>
<td>(5.7 \times 10^{15})</td>
</tr>
<tr>
<td>11</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{e}^3\text{Σ}_u^+) + e)</td>
<td>(5.1 \times 10^{-15})</td>
<td>(5.7 \times 10^{14})</td>
</tr>
<tr>
<td>12</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{d}^3\text{Π}_u) + e)</td>
<td>(3.8 \times 10^{-15})</td>
<td>(4.3 \times 10^{14})</td>
</tr>
<tr>
<td>13</td>
<td>(\text{H}_2 + e \rightarrow \text{H}_2(\text{G}^1\text{Σ}_u^+) + e)</td>
<td>(1.6 \times 10^{-15})</td>
<td>(1.8 \times 10^{14})</td>
</tr>
<tr>
<td>14</td>
<td>(\text{Ar} + e \rightarrow \text{Ar}(1s₃,5) + e)</td>
<td>(2.2 \times 10^{-13})</td>
<td>(6.3 \times 10^{15})</td>
</tr>
<tr>
<td></td>
<td>Reaction</td>
<td>k_i / cm3 s$^{-1}$</td>
<td>k_f / cm3 s$^{-1}$</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>15</td>
<td>Ar + e → Ar(1s$_2$) + e</td>
<td>1.5×10$^{-13}$</td>
<td>4.3×1015</td>
</tr>
<tr>
<td>16</td>
<td>Ar + e → Ar(4p) + e</td>
<td>4.8×10$^{-14}$</td>
<td>1.4×1015</td>
</tr>
<tr>
<td>17</td>
<td>Electron-ion dissociative recombination k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>H$_3^+$ + e → H($n=2$) + H$_2$ (or → 3H)</td>
<td>3.5×10$^{-9}$</td>
<td>2.2×1014</td>
</tr>
<tr>
<td>18</td>
<td>H$_3$O$^+$ + e → OH* + 2H (or → H$_2$O + H)</td>
<td>9.6×10$^{-9}$</td>
<td>5.9×1013</td>
</tr>
<tr>
<td>19</td>
<td>ArH$^+$ + e → Ar + H($n=2$)</td>
<td>2.2×10$^{-10}$</td>
<td>3.5×1012</td>
</tr>
<tr>
<td>20</td>
<td>Electron impact ionization k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>H($n=1$) + e → H$^+$ + e + e</td>
<td>1.3×10$^{-14}$</td>
<td>1.6×1014</td>
</tr>
<tr>
<td>21</td>
<td>H$_3$ + e → H$_2^+$ + e + e</td>
<td>2.1×10$^{-15}$</td>
<td>2.4×1014</td>
</tr>
<tr>
<td>22</td>
<td>Ar + e → Ar$^+$ + e + e</td>
<td>1.5×10$^{-15}$</td>
<td>4.5×1013</td>
</tr>
<tr>
<td>23</td>
<td>Associative ionization k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>H($n=2$) + H$_2$ → H$_3^+$ + e</td>
<td>3.82×10$^{-8}T_9^{0.95}$</td>
<td>1.3×1015</td>
</tr>
<tr>
<td>24</td>
<td>Ar(1S$_3$,5)/Ar(1S$_2$,4) + H($n=1$) → ArH$^+$ + e</td>
<td>10^{-11}</td>
<td>1.8×1014</td>
</tr>
<tr>
<td>25</td>
<td>Excitation transfer H$^$ ↔ H$_2^$ k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>H($n=3$) + H$_2$ → H($n=1$) + H$_2$(a3Σ$^+$)</td>
<td>10^{-9}</td>
<td>6.7×1015</td>
</tr>
<tr>
<td>26</td>
<td>H(1S_1) + H$_2$(a3Σ$^+$) → H($n=3$) + H$_2$</td>
<td>3.3×10$^{-10}$</td>
<td>7.0×1015</td>
</tr>
<tr>
<td>26</td>
<td>H($n=6$) + H$_2$ → H($n=1$) + H$_2$(e3Σ$^+$)</td>
<td>6.0×10$^{-10}$</td>
<td>3.5×1014</td>
</tr>
<tr>
<td>27</td>
<td>Excitation transfer H$^$ ↔ Ar$^$ k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>H($n=3$) + Ar → H($n=1$) + Ar(1S$_3$,5)</td>
<td>2.3×10$^{-10}$</td>
<td>4.0×1014</td>
</tr>
<tr>
<td>28</td>
<td>H($n=1$) + Ar(1S$_3$,5) → H($n=3$) + Ar</td>
<td>2.4×10$^{-11}$</td>
<td>2.4×1014</td>
</tr>
<tr>
<td>28</td>
<td>Ar($n=3$) + Ar → H($n=1$) + Ar(1S$_2$,4)</td>
<td>2.3×10$^{-10}$</td>
<td>4.0×1014</td>
</tr>
<tr>
<td>29</td>
<td>Ar(1S$_3$,5) + H($n=1$) → Ar + H($n=2$)</td>
<td>2.0×10$^{-10}$</td>
<td>2.1×1015</td>
</tr>
<tr>
<td>30</td>
<td>Ar(1S$_2$,4) + H($n=1$) → Ar + H($n=2$)</td>
<td>2.5×10$^{-11}$</td>
<td>1.9×1014</td>
</tr>
<tr>
<td>31</td>
<td>Ar(4p) + H($n=1$) → Ar + H($n=6$)</td>
<td>3.0×10$^{-11}$</td>
<td>7.4×1013</td>
</tr>
<tr>
<td>32</td>
<td>Ar$^$ ↔ H$_2^$ k_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>H$_3$(a3Σ$^+$) + Ar → H$_2$ + Ar(1S$_3$,5)</td>
<td>10^{-10}</td>
<td>4.7×1015</td>
</tr>
<tr>
<td>33</td>
<td>H$_3$(a3Σ$^+$) + Ar → H$_2$ + Ar(1S$_2$,4)</td>
<td>3.5×10$^{-11}$</td>
<td>3.2×1015</td>
</tr>
<tr>
<td>33</td>
<td>Ar(1S$_2$,4) + H$_2$ → Ar + H$_2$(a3Σ$^+$)</td>
<td>10^{-10}</td>
<td>4.7×1015</td>
</tr>
<tr>
<td></td>
<td>Reactions</td>
<td>(k_i) / s(^{-1})</td>
<td>(k_i) / cm(^3)s(^{-1})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>34</td>
<td>(\text{Ar}(4p) + \text{H}_2 \rightarrow \text{Ar} + \text{H}_2(e^3\Sigma_u^+))</td>
<td>(2.0 \times 10^{-11})</td>
<td>(4.3 \times 10^{14})</td>
</tr>
<tr>
<td>-34</td>
<td>(\text{H}_2(e^3\Sigma_u^+) + \text{Ar} \rightarrow \text{H}_2 + \text{Ar}(4p))</td>
<td>(3.0 \times 10^{-10})</td>
<td>(2.2 \times 10^{14})</td>
</tr>
<tr>
<td></td>
<td>Selected radiative transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>(\text{H}(n=3) \rightarrow \text{H}(n=2) + hv)</td>
<td>(4.4 \times 10^{7})</td>
<td>(7.6 \times 10^{14})</td>
</tr>
<tr>
<td>36</td>
<td>(\text{H}_2(B^1\Sigma_u^+) \rightarrow \text{H}_2 + hv)</td>
<td>(1.7 \times 10^{9})</td>
<td>(4.2 \times 10^{16})</td>
</tr>
<tr>
<td>37</td>
<td>(\text{H}_2(a^3\Sigma_u^+) \rightarrow \text{H}_2(B^1\Sigma_u^+) + hv)</td>
<td>(9.0 \times 10^{7})</td>
<td>(4.3 \times 10^{16})</td>
</tr>
<tr>
<td>38</td>
<td>(\text{Ar}(4p) \rightarrow \text{Ar}(1s_{3,5})/\text{Ar}(1s_{2,4}) + hv)</td>
<td>(2 \times 10^{7})</td>
<td>(1.1 \times 10^{15})</td>
</tr>
<tr>
<td></td>
<td>Reactive quenching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>(\text{Ar}(1s_{3,5}) + \text{H}_2 \rightarrow \text{Ar} + 2\text{H})</td>
<td>(7.0 \times 10^{-11})</td>
<td>(6.4 \times 10^{15})</td>
</tr>
<tr>
<td>40</td>
<td>(\text{Ar}(1s_{2,4}) + \text{H}_2 \rightarrow \text{Ar} + 2\text{H})</td>
<td>(7.0 \times 10^{-11})</td>
<td>(4.6 \times 10^{15})</td>
</tr>
<tr>
<td>41</td>
<td>(\text{H}(n=2) + \text{H}_2 \rightarrow 3\text{H})</td>
<td>(10^{-9})</td>
<td>(6.1 \times 10^{16})</td>
</tr>
<tr>
<td>42</td>
<td>(\text{H}_2^* + \text{H}_2 \rightarrow 2\text{H} + \text{H}_2)</td>
<td>(2.2 \times 10^{-10})</td>
<td>(9.7 \times 10^{16})</td>
</tr>
<tr>
<td></td>
<td>Ion conversions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>(\text{ArH}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{Ar})</td>
<td>(6.3 \times 10^{-10})</td>
<td>(1.4 \times 10^{19})</td>
</tr>
<tr>
<td>-43</td>
<td>(\text{H}_3^+ + \text{Ar} \rightarrow \text{ArH}^+ + \text{H}_2)</td>
<td>(6.5 \times 10^{-9})</td>
<td>(1.4 \times 10^{19})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\exp(-6830/T_g))</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>(\text{H}_3^+ + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{H}_2)</td>
<td>(5.9 \times 10^{-9})</td>
<td>(1.4 \times 10^{15})</td>
</tr>
<tr>
<td>-44</td>
<td>(\text{H}_3\text{O}^+ + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H}_2\text{O})</td>
<td>(2.3 \times 10^{-12} \times T_g \times \exp(-29300/T_g))</td>
<td>(1.2 \times 10^{15})</td>
</tr>
<tr>
<td>45</td>
<td>(\text{ArH}^+ + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{Ar})</td>
<td>(8 \times 10^{-10})</td>
<td>(4.8 \times 10^{13})</td>
</tr>
<tr>
<td>-45</td>
<td>(\text{H}_3\text{O}^+ + \text{Ar} \rightarrow \text{ArH}^+ + \text{H}_2\text{O})</td>
<td>(7.4 \times 10^{-14} \times T_g^{1/4} \times \exp(-34500/T_g))</td>
<td>(4.2 \times 10^{13})</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1

Spatial profiles of (a) $I_{em}(\text{H}_2, d-a, v'=0-v''=0, Q(3))$, (b) $I_{em}(\text{H}_\alpha)$, (c) $I_{em}(\text{Ar*}, 696.54 \text{ nm})$ and (d) $I_{em}(\text{Ar*}, 811.53 \text{ nm})$ from a MW activated plasma for various $X_0(\text{Ar})$. The data in panels (a) and (b) were obtained by adding the appropriate $F(\text{Ar})$ to $F(\text{H}_2) = 300 \text{ sccm}$, while the data in (c) and (d) were obtained by increasing $F(\text{Ar})$ and setting $F(\text{H}_2) = \{300 - F(\text{Ar})\} \text{ sccm}$. In all cases, $p = 150 \text{ Torr}$ and $P = 1.5 \text{ kW}$. The relative intensities in plots (a) – (c) are displayed on a common vertical scale, whereas the profiles in (d) have been scaled to a common maximum peak intensity (which accounts for the noise on the low $X_0(\text{Ar})$ traces at higher z).

Figure 2

Plot showing the different trends in (a) $I_{em}(\text{H}_2^*)$, (b) $I_{em}(\text{H}_\alpha)$ and (c) $I_{em}(\text{R*})$ with changes in $X_0(\text{R})$ for $\text{R} = \text{Ar}$ (solid lines) and Kr (dashed lines). The displayed trends are for $z = 2$ and 7.5 mm (red and black symbols, respectively). The data in these panels have been normalised to (a) the $I_{em}(\text{H}_2^*)$ signals at $z = 2 \text{ mm}$ and $X_0(\text{R}) = 0$, (b) the $I_{em}(\text{H}_\alpha)$ signals at $z = 7.5 \text{ mm}$ and $X_0(\text{R}) = 0$, and (c) the $I_{em}(\text{R*})$ signals measured at low z and highest $X_0(\text{R})$.

Figure 3

Spatial profiles of $I_{em}(\text{H}_2^*)$, $I_{em}(\text{H}_\alpha)$ and $I_{em}(\text{Kr*}, 431.96 \text{ nm})$ from a MW activated plasma for various $X_0(\text{Kr})$ obtained by increasing $F(\text{Kr})$ and setting $F(\text{H}_2) = \{300 - F(\text{Kr})\} \text{ sccm}$, with $p = 150 \text{ Torr}$ and $P = 1.5 \text{ kW}$. The relative intensities in each plot are displayed on a common vertical scale.

Figure 4

(a) Spatial profiles of $I_{em}(\text{Cu*}, 324.75 \text{ nm})$ from a MW activated plasma for various $X_0(\text{Ar})$ measured by increasing $F(\text{Ar})$ and setting $F(\text{H}_2) = \{300 - F(\text{Ar})\} \text{ sccm}$, with $p = 150 \text{ Torr}$ and $P = 1.5 \text{ kW}$. The relative intensities are displayed on a common vertical scale. (b) Plot comparing the $X_0(\text{Ar})$ dependences of $I_{em}(\text{Cu*}, 324.75 \text{ nm})$, measured at $z = 2$ and 7.5 mm, with the maximal intensity in each case normalised to unity. (c) semi-logarithmic plot comparing the $X_0(\text{Ar})$ dependences of $I_{em}(\text{Cu*}, 324.75 \text{ nm})$ with the $[\text{ArH}^+], [\text{H}_3^+]$ and $[\text{H}_3\text{O}^+]$ concentrations close above the base plate at $r = 18 \text{ mm}$ predicted by the 2-D (r, z) modeling.
Figure 5

Normalized EEDFs ($f(\varepsilon)/\int f(\varepsilon) d\varepsilon$, plotted on a logarithmic scale) for a reduced electric field $|E|/(N\times a) \approx 33.4$ Td, $T_g = 2900$ K, $X(H) = 0.12$ and various argon mole fractions, $X(Ar)$. The respective electron temperatures $T_e \approx 1.39$-1.84 eV are shown in the inset (with $T_{tail} \approx 0.76$ eV in each case).

Figure 6

(a) Axial (at $r = 0$) and (b) radial (at $z = 10.5$ mm) profiles of the reduced electric fields, $|E|/(N\times a)$, the power density, $|jE|$, and the electron temperature T_e and T_{tail} for H$_2$/Ar mixtures containing, respectively, $X_0(Ar) = 0.07$ and 0.33 (filled and open symbols, respectively), under base conditions of p and P.

Figure 7

Radial profiles of [H], n_e and T_{gas} calculated at (a) $z = 10.5$ mm and (b) $z = 0.5$ mm (i.e. 0.5 mm above the substrate) for H$_2$/Ar mixtures with $X_0(Ar) = 0, 0.07$ and 0.33, under base conditions of p and P. The brown bar near the bottom of (b) indicates the radius of the substrate, while the orange and cyan bars at the top of (a) illustrate the radial extents of the H$_2$/Ar ($X_0(Ar) = 0.07$ and 0.33, respectively) plasma defined as the volume within which the concentrations of emitting species are within an order of magnitude of their maximal values.

Figure 8

Radial concentration profiles (at $z = 10.5$ mm) for selected species in H$_2$/Ar plasmas with $X_0(Ar) = (a) 0.07$ and (b) 0.33, with $p = 150$ Torr and $P = 1.5$ kW. The different $[H_3O^+]/[H_3^+]$ ratios in the two plots reflect the increased air contamination assumed in the $X_0(Ar) = 0.33$ modeling.

Figure 9

Axial concentration profiles (at $r = 0$) for selected species in H$_2$/Ar plasmas with $X_0(Ar) = (a) 0.07$ and (b) 0.33, with $p = 150$ Torr and $P = 1.5$ kW. As in Figure 9, the different $[H_3O^+]/[H_3^+]$ ratios in the two plots reflect the increased air contamination assumed in the $X_0(Ar) = 0.33$ modeling.

Figure 10
Histogram (logarithmic scale) showing the total electron impact excitation (EIE) and ionization (EII) rates of H, H$_2$ and Ar, the rates of the dominant excitation transfer (ET) processes between these species and the reactive quenching (RQ) and radiative (Rad) loss rates for all three species at $r = 0, z = 3.5$ mm, for the following plasma conditions: input gas mixture comprising X_0(Ar) = 0.33 in H$_2$, along with ~10 ppm air impurity, $|E|/(N\times a) = 34$ Td, $p = 150$ Torr, $P = 1.5$ kW, $T_g = 2713$ K, $T_e = 1.57$ eV, under which conditions the main species mixing ratios are 8.3%H/18.8%Ar/H$_2$. Loss rates for H*, H$_2$* and Ar* are shown by negative going bars. For comparative purposes, the rate of electron impact dissociation (EID) of H$_2$ is also included, at the far left.

Figure 11

Comparisons of the calculated column densities (left hand axis, shown by filled symbols defined in the upper inset) and measured emission intensities (right hand axis, shown by lines, as defined in the lower panels) of (a) H($n = 3$) atoms, (b) H$_2$(d, $v = 0$) molecules and (c) Ar(4p) atoms for H$_2$/Ar plasmas operating at $p = 150$ Torr, $P = 1.5$ kW with different X_0(Ar).
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
References

