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Abstract

Mendelian randomisation (MR) is a method for establishing causality be-
tween a risk factor and an outcome by using genetic variants as instrumental
variables. In practice the association between individual genetic variants and
the risk factor is often weak, which may lead to a lack of precision in the MR
and even biased MR estimates. Usually, the most significant variant within a
genetic region is selected to represent the association with the risk factor, but
there is no guarantee that this variant will be causal or that it will capture
all of the genetic association within the region. It may be advantageous to
use extra variants selected from the same region in the MR. The problem is
to decide which variants to select. Rather than select a specific set of vari-
ants, we investigate the use of Bayesian model averaging (BMA) to average
the MR over all possible combinations of genetic variants. Our simulations
demonstrate that the BMA version of MR out-performs classical estimation
with many dependent variants and performs much better than a MR based
on variants selected by penalised regression. In further simulations we inves-
tigate robustness to violations in the model assumptions and demonstrate a
sensitivity to the inclusion of invalid instruments. The method is illustrated
by applying it to a MR of the effect of body mass index on blood pressure
using SNPs in the FTO gene.

Keywords: Bayesian model averaging; Mendelian randomisation; many weak
instruments; dependent SNPs
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1 Introduction

In epidemiological studies, ordinary least squares (OLS) regression is often used
to estimate the effect of a modifiable risk factor on an outcome of interest, but
such an analysis is biased in the presence of unmeasured confounding. Mendelian
randomisation (MR) adjusts for unmeasured confounding using genetic variants as
instrumental variables. Each genetic instrument must (1) influence the risk factor,
(2) be independent of the confounders and (3) associate with the outcome only
through its effect on the risk factor [18, 33, 45, 60, 65]. The application of MR comes
with its own challenges [19, 20, 66], one of which is that most genetic instruments
only explain a small proportion of the variation in the risk factor; this is commonly
known as the weak instruments problem. When the instruments are weak, a very
large sample size will be required to provide power and precision [9, 56] and as a
result it can be advantageous to include as many genetic variants as possible in the
MR, provided that they are all valid instruments.

Usually the variants included in a MR are chosen to be independent of one
another [11, 70], but there are situations in which it may be beneficial to include
sets of variants from the same genetic region even though they will be in linkage
disequilibrium (LD) and thus not independent. For instance, there may be several
causal variants in the region, or it might be difficult to identify the causal variant, or
the causal variant might not have been measured. In each case it could be beneficial
to use a set of proxy variants.

Several Mendelian randomisation studies that have used SNPs from the same ge-
netic region as instruments, these include, a study of plasma level on cardiovascular
disease that used SNPs from the AHSG gene [26], a study of adiponectin and type 2
diabetes with SNPs from ADIPOQ [75], and a study of adiposity and cardiovascular
disease with SNPs from TRIB1 [17]. However, these studies gave individual causal
effect estimates from each SNP. Other Mendelian randomisation studies have com-
bined dependent SNPs into a single instrument, using allele scores. However, due
to a lack of external data on the genetic-exposure association, they either derived
the weights for the allele score from the dataset under analysis or did not weight
the risk allele. The former approach is subject to bias [12] and the latter to a loss
in precision [22].

Bayesian approaches offer a systematic and structured way of incorporating ex-
ternal biological knowledge into the statistical analysis [1]. Many publications have
discussed the biological justification for the genetic instruments used in the MR [32],
so why not incorporate this information into the statistical analysis? In the con-
text of Mendelian randomisation, the selection of instruments using the p-value or
F-statistic cannot distinguish between situations in which (1) there is not sufficient
data to detect an effect and (2) there is no effect. By computing the posterior effect
probability for each variant, the Bayesian approach is able to quantify these two pos-
sibilities. Instead of selecting instruments based on significance, instruments that
are biologically relevant to the exposure or instruments that have shown association
with it in a meta-analysis, can be given more weight.
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The aim of this paper is to investigate the use of Bayesian model averaging
(BMA) [35] in the context of a MR with many dependent instruments. BMA allows
the MR to consider all possible combinations of the genetic variants and combines
the resulting causal effect estimates with appropriate weights, all within the same
dataset. We perform simulations to identify factors that affect convergence and mix-
ing, robustness and the performance of BMA compared with two-stage least squares
(2SLS), limited information maximum likelihood (LIML) and a recently available
penalised regression based method called, Some Invalid Some Valid Instrumental
Variables Estimator (sisVIVE) [40]. The simulations will mimic the SNP patterns
similar to the ones seen in the regional plots from the Schizophrenia Psychiatric
GWAS Consortium [58], in which genes have a lead SNP (the most significant) and
many SNPs correlated with it. Our robustness section will follow the procedure
seen in O’Malley et al. [53], where they tested the sensitivity of the estimators to
the instrumental variable and distributional assumptions. Finally, the paper will
consider the use of real data from the GRAPHIC study [69] to estimate the causal
effect of BMI on blood pressure using SNPs from the FTO gene as the instruments.

In this paper, models are fitted using the R package ivbma. We use lower case
italics for the name of the package and upper case (IVBMA) for the general method
of applying BMA to instrumental variable analyses such as Mendelian randomisa-
tion. Similarly we refer to the R package sisVIVE that implements the sisVIVE
method.

2 Instrumental Variable Bayesian Model Averag-

ing

Focusing a statistical analysis on a single pre-selected model has been described
as a quiet scandal [7]. Bayesian model averaging (BMA) avoids the scandal by
considering a range of models. Suppose that we decide to consider K possible models
M1, . . . ,MK , then the posterior distribution of a quantity of interest Λ given data
D is;

p(Λ|D) =
K∑
k=1

p(Λ|Mk, D)p(Mk|D). (1)

This is an average of the posterior distributions under each of the models (Mk),
weighted by their posterior model probability. In the context of a MR with many
instruments, the models Mk represent different combinations of the potential set of
genetic instruments. The posterior probability of model Mk is given by,

p(Mk|D) =
p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

. (2)
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where

p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk)dθk (3)

is the integrated likelihood of model Mk, θk is the vector of parameters of model Mk,
p(θk|Mk) is the prior density of θk under model Mk, p(D|θk,Mk) is the likelihood
and p(Mk) is the prior probability that Mk is the true model.

The posterior mean and variance of Λ are;

E[Λ|D] =
K∑
k=0

Λ̂kp(Mk|D),

Var[Λ|D] =
K∑
k=0

(Var[Λ|D,Mk] + Λ̂2
k)p(Mk|D)− E[Λ|D]2,

where Λ̂k = E[Λ|D,Mk].
Hoeting et al. [35] gives a comprehensive tutorial on BMA. Bayesian model

averaging approaches have been adapted by econometricians for large numbers of
exogenous variables, as a way to avoid over-fitting the regression model. Koop et al.
[44] introduced BMA into the framework of instrumental variable analysis. They
argued that investigators may be uncertain about whether their variables belong to
the groups of endogenous variables, exogenous variables or instruments, and BMA
would be a way of incorporating this uncertainty. Lenkoski et al. [46] have shown
through simulations that, unlike its classical counterparts, instrumental variable
Bayesian model averaging (IVBMA) does not suffer from many instrument bias.

IVBMA reduces weak instrument bias by averaging the estimated causal effect
from models with different sets of instruments. The selection of instruments is
conditional on the likelihood of the data and the given priors. IVBMA also gives
the posterior probability of inclusion for each instrument and a posterior probability
to measure support for the null hypothesis of no causal effect. As we rarely know
the true causal variant, IVBMA offers a way of comparing multiple plausible models
with different instruments without selection by p-value.

The main advantage of applying BMA to Mendelian randomisation is its poten-
tial to reduce the many weak instrument bias by allowing flexibility in instrument
inclusion without introducing selection bias (from using the same dataset for cal-
culating the weights of the instruments and estimating the causal effect). Karl et
al. [41] designed an algorithm for instrumental variable Bayesian model averaging
(IVBMA) and later wrote an R package, ivbma, to implement their approach. ivbma
uses Markov Chain Monte Carlo Model Composition (MC3) within a Gibbs sampler,
which is a special case of a Metropolis-within-Gibbs algorithm. MC3 can be consid-
ered as a Metropolis-Hastings step in the space of the models; MC3 moves through
model space, accepting or rejecting a model via a Conditional Bayes Factor. The
MC3-within-Gibbs sampler is particularly efficient when there are many potential
models [51]. The ivbma model is;
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X = Zδ +Wτ + η (4)

Y = XβXY +Wγ + ε (5)

where the outcome, Y , and the endogenous risk factor, X, are both n × 1.
W denotes an n × p matrix of further explanatory variables and Z contains the

instrumental variables in an n× k matrix.
(
εi
ηi

)
∼ N2(0,Σ) and Σ =

(
σ11 σ12

σ21 σ22

)
The MC3-within-Gibbs sampler as implemented in ivbma is described in full

in Karl et al. [41] but briefly the algorithm creates a sequence for the full set of
parameters θ(1) . . . θ(S) where;

θ(s) =
{
ρ(s),M(s)

sec,λ
(s),M(s)

fst,Σ
(s)
}
,

ρ(s) = [βXY ,γ] and λ(s) = [δ, τ ]. Msec andMfst are the model spaces for Equation 5
and 4 respectively, i.e. the model space for Mfst includes Z and W, whereas Msec

includes X and W. Given the current state ρ(s) and data D, the ivbma algorithm
starts;

1. Sample M′
sec from the neighbourhood of M(s)

sec, i.e. models that differ from

M(s)
sec by one variable. Then calculate

α =
p(D|M′

sec,λ
(s),Σ(s))

p(D|M(s)
sec,λ(s),Σ(s))

1
{
M′

sec,M
(s)
fst ∈ A

}
with probability min {α, 1} set M(s+1)

sec =M′
sec, otherwise M(s+1)

sec =M(s)
sec

2. Sample ρ(s+1) from the conditional posterior distribution of ρM(s+1)
sec

, i.e. poste-
rior distribution for coefficients of the new model in the second stage regression.

3. Sample M′
fst from the neighbourhood of M(s)

fst. Then calculate

α =
p(D|M′

fst,ρ
(s+1),Σ(s))

p(D|M(s)
fst,ρ

(s+1),Σ(s))
1
{
M(s+1)

sec ,M′
fst ∈ A

}
with probability min {α, 1} set M(s+1)

fst =M′
fst, otherwise M(s+1)

fst =M(s)
fst

4. Sample λ(s+1) from the conditional posterior distribution of λM(s+1)
fst

, i.e. pos-

terior distribution for coefficients of the new model in the first stage regression.

5. Use λ(s+1) and ρ(s+1) to calculate εs+1 and η(s+1) and sample Σ(s+1) from the
conditional posterior distribution of Σ.
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See Karl et al. [41] for the derivation of Bayes Factor in Steps (1) and (3) and the
full equation of the conditional posterior distributions for each parameter.

The R package, ivbma, imposes the following priors on the parameters:

[βXY ,γ] ∼ N(0, 1),

[δ, τ ] ∼ N(0, 1),

[Mfst,Msec] ∼ Bern(0.5),

Σ ∼ W−1
([

1 0

0 1

]
, 3

)
.

where N , Bern and W−1 stands for the Normal, Bernoulli and Inverse-Wishart
distribution respectively. Note that giving Bern(0.5) distribution to the model
spaces tells ivbma that each possible model, is equally likely to be true, where each
model contains different covariates. ivbma does not allow these priors to be altered.
Lenkoski et al. [46] provide a description of the options available in the R package.

3 Method of Simulation

The human genome is made up of 3.2×109 base-pairs(bp) and the average length of
protein-coding genes is 53.6×103 [63]. The International HapMap Project estimated
10 million SNPs within the human genome [64] and 5 million of these have allele
frequency greater than 10% [57]. Based on these figures we estimated that a typical
gene might contain 80 or 90 common SNPs.

The simulation study used two methods. The first was designed to investigate
the effect of different LD patterns and minor allele frequency (MAF) using controlled
but artificial patterns of linkage disequilibrium (LD). The second method used the
GENOME [47] program to create realistic but uncontrolled patterns of LD and
MAF. In all scenarios genotype, exposure and outcome of interest were simulated
for a study of 2,000 individuals.

3.1 Artificial LD

We consider four artifical patterns of LD as illustrated in Figure 1. Patterns I, II
and III assume one functional variant located in the middle of the region. Pattern
IV divides the region into two and places one causal SNP at the centre of each
part. Suppose that k is the total number of SNPs or potential instruments, n is the
number of individuals, ρmax is the maximum correlation between the genotype of
the causal SNP, SNPc, and that of any other SNP and f is the MAF of the causal
SNP. All SNPs are coded as 0, 1 and 2 according to the number of minor alleles.
To simulate an LD pattern in which the correlation between SNP i and the causal
SNP is dependent on physical proximity we use the following equation to determine
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the correlation, ρi, between a SNPi and SNPc,

ρi = ρmax

(
1− 2

|i− c|
k

)
(6)

where position i = 1 . . . k and c is the position of the causal SNP among k SNPs.
Patterns I, III and IV have ρmax of 0.9 and Pattern II has a lower maximum

correlation of 0.5. Pattern III is designed to produce a flat haplotype block within
the region, hence Equation 6 is conditioned such that if ρi > 0.5 then ρi is set to
ρmax. Under pattern IV each SNP obtains its correlation to the closest causal SNP
according to Equation 6.

The genotypes are simulated by creating a latent variable Zc ∼ N(0, 1) for SNPc
and then for each of the other SNPs,

Zi =
ρiZc + (1− ρi)εi√

(ρ2i + (1− ρi)2)
(7)

where εi ∼ N(0, 1) is drawn randomly.
The genotypes for SNP i are created by specifying a MAF, f and then coding

the genotype as 0 if Φ(Zi) < (1−f)2, 1 if (1−f)2 < Φ(Zi) < 1−f 2 and 2 otherwise,
where Φ() is the standard normal integral.

3.2 GENOME simulator

The genome simulator, GENOME [47], was used to provide a more realistic but
less controllable set of genetic variants. GENOME applies the coalescent-based ap-
proach [43] to simulate genome data using the Wright-Fisher neutral model [24]. The
algorithm uses realistic recombination rates, genealogy tree and haplotype blocks.
GENOME was used to simulate 10,000 haplotypes of the size of an average protein-
coding gene (53.6 × 103bp) with 200 SNPs [63] and 5 recombination points [30].
The genotypes of individuals were simulated by selecting 2 out of the 10,000 haplo-
types and combining them, until the required genotypes for 2,000 individuals were
obtained.

3.3 The exposure and outcome

The simulated exposure and outcome were selected to mimic the relationship be-
tween birth weight and type II diabetes as measured by the level of fasting glucose
[71]. Each simulated dataset consisted of the genotype of a causal SNP (SNPc), risk
factor (X), disease outcome (Y), and unmeasured confounding (U) for 2,000 indi-
viduals. The causal SNP explained 2% of the variation in X [37] and X explained
6% of the variation in Y. X and Y were distributed N(3.3, 0.592) [Office for National
Statistics] and N(5.47, 1.322) [23] respectively. U was drawn from a N(0, 1) distri-
bution. The following equations describe the relationship between SNPc, X, Y and
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U;

Xi = α0 + α1SNPci + α2Ui + εxi (8)

Yi = β0 + βXYXi + β2Ui + εyi (9)

where εxi and εyi are independent random errors with distributions of N(0, 1), i =
1, . . . , n and n is the number of individuals. As the causal SNP explains 2% of the
variance in X, the remaining 98% was divided equally between U and ε and their
regression coefficients are calculated accordingly.

In LD Pattern IV there were two causal SNPs, SNPc1 and SNPc2, so the regres-
sion equation for X became;

Xi = α0 + α1SNPc1i + α2SNPc2i + α3Ui + εxi (10)

where each causal SNP explained 1% of the variation in X.
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Figure 1: The regional association plots for the four patterns with 90 SNPs. On the
x-axis is SNP ID representing chromosome position, and on the y-axis is -log10 P ,
where P is the mean p-value, over 200 simulations, from the regression of X on each
SNP individually. Colour coding (from light to dark grey) denotes strong to weak
correlation with the causal SNP; see also the legend within the plot. The black dot
is the causal SNP

Figure 1 shows regional plots of the average values of -log10(p-value) for Patterns
I, II, III and IV, when the p-values are calculated separately for each SNP. The
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strength of correlation decreases with the distance from the causal SNP and this is
reflected in the decline in average statistical significance.

4 Convergence and mixing

When there are k potential instruments, there are 2k possible models linking the
selected instruments to the exposure. Adequately covering the huge space of po-
tential models is a challenge and a poorly tuned algorithm will mix badly and so
be slow to converge. An important aspect of any variable selection algorithm is the
choice of priors, because when an instrument is excluded from the current model, it
is considered for inclusion at a later point with a coefficient that will be dependent
on those priors. The priors in ivbma are chosen to be relatively vague and they
cannot be altered by the user. For this reason it is important to consider whether
the choices imposed by ivbma work well for Mendelian randomisation with many
instruments. O’Hara et al. [52] gives a general discussion of the use of priors to
improve mixing and increase the speed of convergence.

Karl et al. [41] suggested that, for most problems, 50,000 iterations and a 10,000
burn-in would be sufficient to reach convergence with ivbma. However, they have
only looked at scenarios seen in the econometric literature. To investigate conver-
gence in the context of MR we considered a range of scenarios and analysed them
with ivbma using 5 chains with random starting values, each chain having 50,000
iterations and a 10,000 burn-in. We then analysed the same data with a single chain
of length 500,000 with a burn-in of 250,000.

In the first scenario we varied the number of potential instruments and considered
each of 10, 30, 60 and 90. The causal SNP had MAF of 0.05 but was excluded
from the analysis and the correlated non-causal SNPs had MAF varying randomly
between 0.1 to 0.5. The second scenario was similar except there were just 10
instruments and the MAF of the non-causal SNPs was fixed at 0.1. A third scenario
also considered 10 instruments but with negative correlation between X and Y, and
with a stronger confounder.

We assessed mixing by looking at the trace plots and assessed convergence by
the 5 chains with different initial values [48]. For each analysis of the same dataset
we monitored the mean causal effect estimate, 95% credible interval, the probability
that X was included in the second regression model (i.e. the probability of a causal
effect) and the total visited probability for the 10 most visited models in the long
chain [31].

The full results of this experiment are given in Supplement Table S.1. To sum-
marise the results we calculated the mean absolute deviation (MAD) between the
estimate of the causal effect, βXY , from the 5 short chains and the estimate from
the long chain. In the first scenario in which the number of instruments varied, the
MADs were 0.013, 0.014, 0.025, 0.019. The agreement between chains deteriorated
only slightly as the number of instruments increased and averaged at about 7% of
the true value of the causal parameter. The low fixed MAF scenario had a MAD
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of 0.015 and in scenario three the MADs were 0.027 and 0.013 for negative and
stronger confounding effects, respectively.

Convergence and mixing of the shorter chains did not vary greatly across the
scenarios that we considered. We decided that the short chains were sufficiently
accurate for the MR scenarios to show strong patterns in the scenarios that we
wanted to consider and we decided to use 50,000 iterations and a 10,000 burn-in for
all analyses.

5 Selection of instruments

In the situation in which ivbma has many correlated genetic instruments to choose
from we wanted to look for patterns in the way that SNPs were selected so we
simulated three scenarios as shown in Table 1. Each dataset consisted of 10 non-
causal SNPs genotyped on 2,000 individuals. The SNPs had LD of Pattern I with
the causal SNP located in the centre of the range between SNP5 and SNP6, but
the causal SNP was not included in the analysis. The pattern of MAF was varied;
in the common scenario the MAF was 0.45, in the low scenario it was 0.1 and in
the variable scenario it varied randomly between 0.1 and 0.5. Each scenario was
simulated 200 times and the results were averaged across the simulations.

When ivbma analyses the data, it averages over different combinations of the
instruments and over models that conclude that there is a causal link between X
and Y with a non-zero coefficient βXY or that there is no causal link, in which
case βXY is zero. Each dataset provides its own probability of a causal relationship
by the proportion of the chain for which βXY is non-zero. Table 1 shows that in
the common MAF scenario the probability on a causal relationship between X and
Y was about 0.69. So there is a 31% chance that X is not causally related to Y,
which explains why the average estimate of βXY is downwardly biased. The sum
of the probabilities of inclusion for the ten SNPs in the common MAF scenario is
1.67 indicating that on average the MR used 1.67 SNPs. SNP selection strongly
favoured those SNPs that were most highly correlated with the causal SNP. In the
low and variable MAF scenarios, the patterns were similar although for the case of
variable MAF the tendency to select the highly correlated SNPs is less strong, since
sometimes these will have low MAF.

Figure 2 shows the posterior distributions of βXY for two simulated datasets;
the one on the left is typical of the situation in which there is a high probability
of a causal relationship between X and Y and the one on the right illustrates the
situation in which the evidence of causality is less strong.
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Table 1: Average performance over 200 datasets between three different MAFs; β̂XY
is the causal effect estimate (true value, 0.2449) and SE is its standard error. p(X)
is the probability that X is included in the second regression. Correlation is with
the causal SNP. β̂ZX is the estimated association of the SNP with X. p(SNP) is the
probability of being included as an instrument.

MAF Mean β̂XY (SE) p(X) SNP Correlation Mean β̂ZX p(SNP)

Com
0.190
(0.018)

0.693

1 0.089 0.000 0.044

2 0.308 0.001 0.045

3 0.568 0.003 0.074

4 0.801 0.012 0.148

5 0.941 0.076 0.541

6 0.941 0.067 0.490

7 0.801 0.011 0.146

8 0.570 0.003 0.082

9 0.310 0.002 0.059

10 0.088 0.000 0.038

Low
0.167
(0.022)

0.561

1 0.089 0.000 0.072

2 0.307 0.000 0.080

3 0.570 0.006 0.102

4 0.801 0.027 0.216

5 0.942 0.078 0.446

6 0.942 0.103 0.556

7 0.801 0.021 0.195

8 0.570 0.008 0.121

9 0.308 0.000 0.070

10 0.089 -0.001 0.089

Var
0.171
(0.022)

0.557

1 0.089 -0.001 0.063

2 0.310 0.000 0.064

3 0.568 0.003 0.087

4 0.801 0.016 0.187

5 0.941 0.047 0.381

6 0.941 0.046 0.378

7 0.801 0.017 0.183

8 0.569 0.002 0.077

Continued on next page
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Table 1 – Continued from previous page

MAF Mean β̂XY (SE) p(X) SNP Correlation Mean β̂ZX p(SNP)

9 0.308 -0.001 0.073

10 0.090 -0.003 0.072
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Figure 2: Posterior distribution of causal effect (βXY ) for example datasets. In
the left hand example, the probability that X is causal is high (0.99) while in the
right hand example causality is less certain (0.64). The red and black vertical lines
represent the true causal effect (0.24) and posterior mean, respectively.

6 Comparison with other estimators

In this section we compare ivbma with two classical approaches, 2SLS and LIML,
and with a recently suggested approach based on penalised regression. The first two
simulation experiments use the controlled patterns of LD introduced in subsection
3.1; experiment 1 investigates the impact of MAF on relative performance and
experiment 2 investigates the impact of LD pattern. The third experiment uses
GENOME to simulate realistic patterns of LD and MAF as described in subsection
3.2. Each scenario was repeated 200 times and each dataset was analysed using
ivbma with 50,000 MCMC iterations and burn-in of 10,000.

As recommended by Burton et al. [13], bias, root mean squared error (RMSE)
and coverage were monitored. LIML is known to produce occasional outliers in the
presence of many weak instruments, that is extreme estimates of the causal effect
size, [15]. To compare performance without the effect of outliers, bias and RMSE
measures were winsorised when combining over the 200 simulated datasets and the
percentage of outliers was noted. Winsorisation reduces the effect of outliers by
replacing the highest and lowest 20% of the estimates by the 20% and 80% quantiles
[72]. Outliers were defined as in a box plot, that is to say, more than 1.5 times the
interquartile range from the upper or lower quartile.

The R package sisVIVE was used to implement the penalised regression based
method of Kang et al.[40]. As recommended by the authors, we used 10-fold cross-
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validation for the selection of the penalty parameter. sisVIVE does not provide the
standard errors for the point estimate and so coverage is not reported.

6.1 Effect of MAF

In experiment 1, the correlation between SNPs had Pattern I; for the variable case,
the causal SNP had a MAF of 0.5 and non-causal MAFs were randomly generated
between 0.1 and 0.5. In the common case, the causal and non-causal SNPs had
MAFs of 0.45 and 0.5 respectively. In the low MAF scenario, the MAFs were 0.05
and 0.1 respectively. The results are shown in Table 2.

Although commonly used when there are few instruments, 2SLS, is not a prac-
tical method for many dependent instruments, even in the common MAF scenario
the bias increases with the number of available instruments, coverage deteriorates
sharply and the RMSE is worse than for any of the other methods. Performance
with low or variable MAF shows the same patterns but is worse. sisVIVE also shows
deteriorating performance as the number of available instruments increases and is
similar to 2SLS. LIML and ivbma perform much better, performance is generally
more stable as the number of potential instruments increases, bias is less, RMSE
is smaller and coverage is better. Of the two, ivbma performs slightly better than
LIML with better RMSE and more stable coverage, especially with low or variable
MAF.

ivbma has the advantage of a prior that restricts the range of possible causal
effect estimates and as a result outliers are rare regardless of the MAF or number
of instruments. Unexpectedly, for 10 and 30 instruments with variable MAF, ivbma
produced more outliers than 2SLS; these came about because of uncertainty in the
existence of any causal association between X and Y, see Supplement Figure S.5b.

Table 2: Average performance with different patterns of minor allele frequency
(MAF) for 2SLS, LIML, ivbma and sisVIVE. Inst. is the number of instruments.
Both bias and RMSE are Winsorised. Outlier is the percentage of extreme estimates.

MAF Inst. 2SLS LIML sisVIVE ivbma

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Com

10 0.089 0.129 -0.041 0.147 0.144 0.167 -0.058 0.115

30 0.217 0.228 -0.015 0.137 0.327 0.253 -0.059 0.113

60 0.309 0.315 0.002 0.162 0.358 0.331 -0.060 0.110

90 0.338 0.343 0.187 -0.023 0.300 0.361 -0.024 0.109

Low

10 0.146 0.176 0.005 0.130 0.165 0.192 -0.098 0.141

30 0.248 0.261 -0.049 0.184 0.258 0.267 -0.068 0.132

60 0.340 0.344 -0.007 0.208 0.339 0.345 -0.006 0.119

Continued on next page
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Table 2 – Continued from previous page

MAF Inst. 2SLS LIML sisVIVE ivbma

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

90 0.369 0.372 -0.072 0.302 0.365 0.369 0.021 0.119

Var

10 0.164 0.204 -0.011 0.182 0.186 0.217 -0.098 0.136

30 0.285 0.300 -0.022 0.228 0.300 0.310 -0.075 0.137

60 0.342 0.350 -0.043 0.261 0.366 0.370 -0.044 0.133

90 0.390 0.393 0.054 0.279 0.384 0.387 0.042 0.151

Outlier Coverage Outlier Coverage Outlier Coverage Outlier Coverage

Com

10 5.0 86.5 3.0 92.0 2.5 - 0.0 87.5

30 1.0 47.5 1.5 88.0 0.0 - 0.0 88.0

60 0.5 10.0 4.5 83.0 2.5 - 0.0 90.0

90 0.0 2.0 7.0 79.5 2.0 - 0.0 90.5

Low

10 1.0 86.0 5.5 96.0 1.0 - 3.5 96.5

30 1.0 45.0 5.0 91.5 0.5 - 0.0 93.0

60 1.0 7.0 4.0 84.5 3.0 - 0.0 94.5

90 2.0 0.5 7.5 76.0 0.5 - 0.0 92.0

Var

10 0.5 82.0 5.0 94.5 1.5 - 1.5 96.5

30 0.5 41.5 8.0 89.5 1.5 - 1.0 95.0

60 0.5 10.0 7.0 79.5 0.5 - 0.5 92.5

90 1.5 0.5 10.0 72.5 1.5 - 0.0 91.0

6.2 Four patterns of LD

In experiment 2, the MAF of causal SNP was 0.5 and non-causal MAFs varied
between 0.1 and 0.5. LD patterns I, II, III and IV were all considered. The results
are presented in Table 3.

When the number of instruments is small, ivbma is more biased than LIML for
all of the LD patterns, reflecting the fact that ivbma is uncertain about the causality
of X. Under patterns III and IV with 90 instruments, the bias with ivbma becomes
positive rather than negative as the causality of X becomes clearer (Supplement Fig-
ure S.6). LIML sometimes has too many outliers for 20% Winsorisation to remove.
For Pattern II there are hardly any improvements in performance as the number of
potential instruments increases reflecting the fact that none of them was strongly
correlated with the causal SNP. However, the Winsorised RMSE from LIML are
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large in comparison to ivbma.

Table 3: Average performance with LD Patterns I, II, III and IV for 2SLS, LIML,
ivbma and sisVIVE. Inst. is the number of instruments. Both bias and RMSE are
Winsorised. Outlier is the percentage of extreme estimates.

LD Inst. 2SLS LIML sisVIVE ivbma

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

I

10 0.164 0.204 -0.011 0.182 0.186 0.217 -0.098 0.136

30 0.285 0.300 -0.022 0.228 0.300 0.310 -0.075 0.137

60 0.342 0.350 -0.043 0.261 0.366 0.370 -0.044 0.133

90 0.390 0.393 0.054 0.279 0.384 0.387 0.042 0.151

II

10 0.232 0.274 -0.022 0.307 0.271 0.298 -0.059 0.131

30 0.335 0.345 0.006 0.283 0.337 0.351 -0.051 0.142

60 0.374 0.381 -0.001 0.319 0.385 0.390 -0.030 0.120

90 0.399 0.402 -0.039 0.372 0.405 0.408 0.003 0.145

III

10 0.158 0.191 -0.038 0.200 0.205 0.231 -0.102 0.142

30 0.266 0.281 -0.010 0.194 0.274 0.286 -0.061 0.137

60 0.339 0.345 0.008 0.209 0.348 0.352 -0.027 0.131

90 0.369 0.372 -0.058 0.252 0.392 0.396 0.026 0.142

IV

10 0.189 0.227 -0.053 0.245 0.479 0.479 -0.106 0.144

30 0.306 0.315 0.002 0.241 0.481 0.481 -0.064 0.136

60 0.372 0.378 0.025 0.257 0.480 0.480 -0.007 0.131

90 0.391 0.393 -0.035 0.309 0.480 0.480 0.026 0.131

Outlier Coverage Outlier Coverage Outlier Coverage Outlier Coverage

I

10 0.5 82.0 5.0 94.5 1.5 - 1.5 96.5

30 0.5 41.5 8.0 89.5 1.5 - 1.0 95.0

60 0.5 10.0 7.0 79.5 0.5 - 0.5 92.5

90 1.5 0.5 10.0 72.5 1.5 - 0.0 91.0

II

10 1.5 77.0 11.0 92.0 2.5 - 1.0 97.0

30 1.0 30.0 9.5 83.5 0.0 - 0.0 97.5

60 1.5 4.5 14.0 80.0 0.0 - 0.5 96.5

90 0.5 0.0 6.5 70.0 1.0 - 0.0 91.5

Continued on next page
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Table 3 – Continued from previous page

LD Inst. 2SLS LIML sisVIVE ivbma

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

III

10 0.5 82.5 5.0 93.5 0.5 - 3.0 92.5

30 0.0 43.0 4.5 87.5 0.5 - 1.0 94.5

60 0.0 5.0 6.5 82.5 1.5 - 0.0 93.0

90 1.5 1.0 10.5 75.5 1.0 - 0.0 89.0

IV

10 2.0 79.5 4.5 91.5 1.0 - 4.0 95.5

30 2.5 33.0 8.0 84.5 0.0 - 0.5 93.5

60 0.5 5.5 10.0 79.0 0.0 - 0.0 94.5

90 2.5 0.5 9.5 76.5 1.0 - 0.0 89.5

6.3 GENOME

GENOME was used to simulate realistic patterns of LD for a region containing
approximately 200 SNPs. The causal SNP was randomly selected from those SNPs
with a MAF below 0.1 and all common SNPs with a MAF of at least 0.1 were
retained for the analysis. The simulation was repeated 200 times and the average
number of common SNPs available for analysis was 41 (range 3 to 87). In one
simulation there were no common SNPs and this dataset was discarded. The 199
datasets were analysed by 2SLS, LIML, sisVIVE and ivbma and the results are given
in Table 4. ivbma performed best on all scales with the lowest Winsorised bias, the
smallest RMSE, the fewest outlying estimates and coverage that was closest to 95%.

Table 4: Average performance for 2SLS, LIML, ivbma and sisVIVE with GENOME
simulated genetic instruments. β̂XY is the causal effect estimate (true value 0.2449).
Both bias and RMSE are Winsorised. Outlier is the percentage of extreme estimates.

Mean β̂XY Bias RMSE Outlier Coverage

2SLS 0.417 0.164 0.192 1.0 73.9

LIML 0.755 -0.282 0.902 8.0 10.6

sisVIVE 0.386 0.132 0.156 4.0 -

ivbma 0.196 -0.069 0.132 0.0 94.5

7 Robustness

In this section we investigate the robustness of ivbma to non-normality in the con-
founding between X and Y, and to a violation of assumption (3) for Mendelian
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randomisation.
All experiments were based on simulated data for a MR on 2,000 individuals. The

LD pattern I of Figure 1 was used, so there was a single causal SNP. The causal SNP
was not included in the analysis. The non-causal SNPs had MAFs randomly chosen
to lie between 0.1 and 0.5, and the causal SNP had a MAF of 0.45. Performance
was assessed with 10, 30, 60 and 90 instruments averaged over 200 random datasets
each analysed using ivbma.

Table 5: Average performance with different number of SNPs and variable MAF,
when the errors have various distributions and in the presence of invalid instruments.
Inst. is the number of Instruments. β̂XY is the causal effect estimate (true value
0.2449) and SE is the standard error.

Distribution Invalid Inst. Mean β̂XY SE Bias RMSE Outlier Coverage

Normal 0

10 0.171 0.011 -0.074 0.176 1.5 96.5

30 0.181 0.012 -0.064 0.175 1.0 95.0

60 0.215 0.012 -0.030 0.174 0.5 92.5

90 0.291 0.013 0.046 0.190 0.0 91.0

Uniform 0

10 0.181 0.009 -0.064 0.140 0.0 85.5

30 0.192 0.008 -0.053 0.128 0.0 91.0

60 0.208 0.008 -0.037 0.124 0.0 89.5

90 0.237 0.009 -0.008 0.121 0.0 91.0

Student’s t 0

10 0.194 0.009 -0.052 0.140 0.0 87.5

30 0.207 0.009 -0.038 0.135 0.0 88.0

60 0.210 0.009 -0.035 0.131 0.0 88.0

90 0.220 0.008 -0.025 0.122 0.0 92.0

Normal 1

10 0.345 0.009 0.100 0.162 0.1 73.0

30 0.335 0.009 0.090 0.154 0.0 74.0

60 0.336 0.009 0.091 0.155 0.0 78.5

90 0.340 0.008 0.095 0.151 0.1 74.0

Normal 10%

10 0.332 0.009 0.087 0.158 0.0 77.0

30 0.415 0.008 0.170 0.204 0.0 58.5

60 0.489 0.007 0.244 0.261 0.0 29.0

90 0.554 0.007 0.309 0.324 0.0 10.0

7.1 Non-normal errors

As in previous sections the confounding between X and Y was first simulated using a
standard normal distribution and the first block of Table 5 shows the average results.
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To assess distributional robustness we then simulated confounding from a short-
tailed and a long-tailed distribution with the same mean and variance, namely a
Uniform distribution (unif(−

√
3,
√

3)) and a Students t distribution with 4 degrees
of freedom (t(4)/

√
2). The results are shown in the second and third blocks of Table

5. There is a slight reduction in the coverage when the data are simulated with
non-normal confounding but no evidence of an effect on the mean estimate. The
distributional assumptions do not seem to have an important effect on the results.

7.2 Invalid Instruments

Invalid instruments were defined as instruments that are directly associated with Y
along a pathway that does not pass through X; this is sometimes known as horizontal
pleiotropy. Two scenarios were considered; only 1 invalid instrument and 10% of
instruments invalid. The non-causal SNP(s) with the lowest correlation with the
causal SNP were chosen as the invalid instrument(s). The invalid instrument(s) in
total explained 0.1% of the variation in Y.

The results are shown in Table 5. In the presence of 1 invalid instrument, ivbma
remains consistently biased regardless of the number of instruments and that bias
is comparable in size to that seen with no invalid instrument but in the opposite
direction. Coverage is much poorer. When 10% of the instruments are invalid the
effects are similar in that both bias and coverage deteriorate but the effects increase
with the number of instruments. It appears that ivbma is sensitive to the inclusion
of invalid instruments particularly if the number of invalid instruments increases
with the number of potential instruments.

8 GRAPHIC Study: FTO gene, body mass index

and blood pressure

There are many epidemiological studies demonstrating the association between obe-
sity and blood pressure, although the exact mechanism behind this relationship is
unknown. As a consequence it is difficult to identify all of the confounders and
causality is uncertain [21, 62, 74]. To illustrate the used of ivbma with real data
we considered the causal effect of body mass index (BMI) on mean 24 hour systolic
blood pressure (SBP) using instruments taken from the FTO gene.

8.1 Data

The data come from the Genetic Regulation of Arterial Pressure of Humans in
the Community (GRAPHIC) study [69]. This population-based cohort recruited
2037 white European participants from 520 nuclear families living in Leicestershire,
UK. To avoid the complication of a family effect, only parents’ data were analysed.
Individuals were included if they had complete data for body mass index (BMI) and
mean 24-hour systolic blood pressure (SBP).
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8.2 Instruments

The FTO gene has been identified as being associated with BMI in GWAS [27]. 207
measured SNPs in the region of the FTO gene were selected. A SNP was included in
the analyses if (1) it had less than 1% of missing data, (2) the minor allele frequency
was greater than 0.1 (3) it was in Hardy-Weinberg equilibrium (4) it was not in full
LD with another SNP. After quality control there were 173 BMI-related SNPs that
acted as the set of potential instruments. The genotypes of the SNPs were coded 0,
1, or 2 representing the number of BMI-increasing alleles.
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Figure 3: Regional association plots for BMI-related FTO variants. Regional P
value plots where the p-value is from the regression of each SNP on BMI. On the x
axis is SNP ID in the ascending order of chromosome position, and on the y axis is
-log10 P . Colour coding (from light to dark grey) denotes LD information; see also
the legend within the plot.

8.3 Results

After quality control, there were 1026 unrelated-individuals with complete records of
BMI and mean 24-hr SBP. Table 6 summarises the characteristics from the subjects.

Table 6: GRAPHIC study unrelated-individuals characteristics, N=1028

N Mean Standard deviation

Gender (male) 1028(514) - -

Age (years) 1028 52.7 4.6

BMI (kg/m2) 1028 27.4 4.3

Mean 24-hr SBP (mm Hg) 1026 120.6 12.0
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All the SNPs from GRAPHIC would be considered as weak instruments, as their
individual F-statistics from the association with BMI were less than 10 [61]. Even for
the lead SNP, the F-statistic was 8 and explained approximately 1% of the variation
in BMI. Figure 3 shows that out of 173 SNPs, only 6 were strongly correlated with
the lead SNP. There was a second SNP, independent of the lead SNP, that was
also significant and which had a similar effect size for BMI as the lead SNP. This
resembles Pattern IV in the simulation study but with weaker instruments.

As the R package ivbma does not have an option to change the prior distribution,
we have standardised X and Y and Z, to ensure that the prior does not heavily
influence the posterior distribution. For comparability to the other estimates, the
coefficient and credible interval from ivbma shown in Table 7 have been transformed
back to the original scale.

For the non-Bayesian methods, Table 7 gives the estimated coefficient of the
causal effect, its 95% confidence interval and p-value. For the Bayesian approach
adopted by ivbma we give the posterior mean estimate of the coefficient, its 95%
credible interval and the probability of a causal association as measured by the
probability that BMI is included in the regression equation for mean SBP. The
analyses give slightly different pictures of the BMI-SBP association. 2SLS, sisVIVE
and ivbma all agree that there is a positive association and there is overlap of their
confidence regions. The estimates from 2SLS and sisVIVE are similar to that which
would have been obtained by OLS regression, 0.90 (95% CI: 0.74, 1.07). LIML
estimated the effect of BMI in the opposite direction, but the confidence interval is
very wide.

Table 7: The effect of BMI (kg/m2) on SBP (mm Hg), where N=1026 and there are
173 potential instruments. P(causal), posterior probability of BMI and SBP having
a causal relationship.

Method Coefficient (95% Confidence Interval) p-value

2SLS 0.86 (0.47, 1.25) <0.001

LIML -5.72 (-14.94, 3.50) 0.2246

sisVIVE 0.92 (-,-) -

Coefficient (95% Credible Interval) P(causal)

ivbma 1.21 (-0.08, 2.58) 0.98

8.4 Conclusion

2SLS is known to be biased towards the OLS estimate with weak instruments [61]
and sisVIVE also gave a similar causal effect estimate to OLS. As seen from Sec-
tion 6, LIML usually gives better estimates with many instruments but will some-
times give extreme estimates when the dataset only has weak instruments. This is
the case for GRAPHIC study; the highest F-statistic for all the SNPs was 8. The
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estimated coefficient from ivbma is larger than that provided by the other methods
at 1.21 mmHg per unit increase in BMI. If correct, this would suggest that BMI
is a more serious public health issue, at least over the range of BMI represented in
this study. However, the associated credible interval indicates a lack of precision
around this estimate. In 2009, Timpson et al. [68] performed a MR analysis of the
Copenhagen General Population study of 36,851 participants and showed that SBP
increased by 3.85 (95% CI:1.88, 5.83) per 10% increase in BMI, using FTO and
MC4R as the two instruments. Using a meta-analysis of 30 studies on the effect
of the FTO genotype on SBP and BMI, the MR analysis resulted in an increase
of 0.89 (95% CI: 0.48, 1.31) SBP for a 1-unit of increase in BMI [25]. Holmes et
al. [36] performed a MR using individual-level data from 6 studies (N=30,136) and
demonstrated that SBP increased by 0.70 (95% CI: 0.24, 1.16) per unit increase in
BMI. In that study the instrument was a genetic score from 14 SNPs, weighted by
the coefficients from a discovery study [34].

9 Discussion

Instrumental variable analysis with many dependent, weak instruments represents
a difficult problem for any method of analysis, but through simulations we have
demonstrated that ivbma performs better many of the alternatives. Our analyses
have relied heavily on the R package ivbma. Similar estimates can be obtained
from OpenBUGS [59] but the convergence of that algorithm is much slower and it
is not practical for use in a simulation study. However, OpenBUGS does have the
advantage of allowing the use of different prior distributions.

In our simulations with controlled patterns of LD, ivbma consistently out-performed
the other methods that we tried regardless of the pattern of LD or the MAF or the
number of instruments. The simulations with realistic patterns of LD also strongly
favoured ivbma and the study with real data provided a posterior mean estimate
that is similar to estimates from other epidemiological studies. Further evidence of
the method’s performance with real data is required.

When the causal relationship between exposure, X, and outcome, Y, is uncertain,
IVBMA will produce a posterior distribution for the causal effect estimate that has
a bimodal shape with one peak at 0 for models without X and another peak at the
mean estimates from models which include X (as shown in Figure 2). As a result the
posterior mean will be pulled towards zero and to get a true impression of the results
it is important to plot the posterior distribution of the causal effect. To help judge
the results of BMA, Kass and Raftery [42] suggested a posterior inclusion probability
of <0.5 suggests no effect of the explanatory variable on the outcome, 0.5-0.75 gives
weak evidence for an effect, 0.75-0.95 gives positive evidence and >0.95 gives strong
evidence. This scale might be adopted when deciding on causality.

The algorithm incorporated into ivbma [41] has been shown to be more compu-
tationally efficient than Two-stage BMA (2BMA) [46], a method similar to 2SLS,
and it has been shown to have faster convergence and better mixing that the al-
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gorithm of Koop et al.’s [44] approach. However, Karl and Lenkoski [41] did find
that convergence of the 95% credible interval from ivbma deteriorates as number of
potential covariates in the regression increases.

Our simulations have shown that in the presence of invalid instruments, ivbma
performs poorly. Bias and the proportion of outliers increased and coverage de-
creased with increasing numbers of instruments. This may be because these invalid
instruments also explain X, from X’s association with Y. Hence, IVBMA cannot
distinguish between the direct effect on Y or the indirect effect through X on Y.
Furthermore, the more invalid instruments that are included with similar causal ef-
fect estimates, the more certain ivbma is of their effect being genuine and therefore
these are given more weight in the averaged causal effect estimation. This is a serious
practical concern since it will be almost impossible to be certain that all potential
instruments are valid. A possible solution might be to implement a version of BMA
with the genetic variants included in the regression equation for Y but this needs
further investigation. Invalid instruments are also a major concern in the classical
MR setting where several methods to account for this have been developed, each
with their own estimation assumptions, and suitable for both summary data [5, 6]
and individual-level data [40, 73].

One of the limitations of this study is that we have not compared ivbma with all of
the approaches for many instruments [2, 3, 14, 16]. However, the many instruments
literature concentrates on strong instruments and may therefore not be relevant to
most Mendelian randomisation settings. IVBMA is particularly appealing in the
context of many weak instruments because, by definition, model selection will be
difficult and model averaging allows us to incorporate that uncertainty.

As well as producing point estimates of the causal effect with good repeated
sampling properties, the Bayesian nature of IVBMA offers two other advantages.
Firstly, it provides a direct estimate of the probability that the exposure is causal in
terms of the probability that the exposure is included in the regression equation for
the outcome. Secondly, it offers the potential for including biological knowledge in
the form of informative prior distribution. However it is not easy to quantify prior
knowledge and the IVBMA analysis would have to be programmed in software such
as OpenBUGS or Stan if the priors were to be changed. The use of informative
priors could represent how to make use of many weak instruments in small studies.

In the general Bayesian statistical literature the focus is on priors that improve
the mixing and speed of convergence; O’Hara et al. [52] provide an insightful review
of priors and samplers for Bayesian variable selection but when the information is
weak there may also be benefits in adopting informative prior distributions. The
assumptions of Mendelian randomisation ought to be validated by biological knowl-
edge [8, 54] and in a Bayesian approach this same knowledge could be incorporated
into the priors.

In the related field of determining genetic association, Fridley et al. [28], con-
sidered the use of some of the Bayesian variable selection algorithms described in
O’Hara et al. [52] with SNPs as potential predictors. However, there was very
little discussion on how to quantify priors on the model space. Other studies
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have considered SNP prioritisation to increase statistical power in GWAS analy-
sis [29, 49, 67] effectively applying weights in the gene-exposure regression. Such
weights might be based on previous GWAS significance, perhaps from GWAS Cen-
tral at www.gwascentral.org. Alternatively weights might vary by haplotype block
or SNPs within protein coding genes might be given more weight [49]. Incorporat-
ing prior information for correlated variables can be complicated [38] especially in a
variable selection problem where the prior might dependent on which other variables
are included in the current model.

Decisions on the prior for the second regression in an instrumental variable anal-
ysis is problem specific, our analyses and those of Koop et al. [44] and Karl and
Lenkoski [41] all allow X to come in and out of the regression model for Y and hence
the causal effect can be zero. If the investigator is sure of the causal relationship
between X and Y then that prior knowledge could be used to place a prior on the
causal effect estimate that excludes zero and which perhaps dictates the direction
of the effect.

Jones et al. [39] have found that an instrumental variable analysis is robust
to the prior on the covariance matrix, as the model does not directly estimate the
causal effect from the covariance matrix. Nevertheless, the prior on the covariance
matrix does effect the precision of the causal effect estimate. BMA accounts for
model uncertainty in the causal effect estimate, but without an informative prior
on the covariance matrix, the precision of the causal effect could be very wide. The
amount of confounding between X and Y might be assessed from previous clinical
trials and epidemiological studies: when the coefficient decreases with adjustment
for confounding this implies presence of positive confounding and if it increases this
suggests negative confounding [9].

An important practical note is that the R package ivbma does not allow the user
to change the priors, i.e. all the coefficients and intercepts are given a N(0, 1) prior
distributions. Because of this, we standardised the data when analysing the BMI-
SBP study. This dataset is comparatively small and without transformation the
prior would dominate the analysis and force the intercept in the second regression
to be close to zero. As a consequence the causal estimate would have been artificially
raised. Alternatively, the need for transformation can be avoided by running the
IVBMA algorithm with vaguer priors in OpenBUGS [59], although the required
computation time would be much greater.

In the future is would be really beneficial if the ivbma package were modified
to allow greater flexibility in the choice of the prior. As well as having normal
priors with much larger variances, it would be helpful to incorporate a g-prior in the
first stage regression of MR, as this has been shown to move between models more
efficiently for highly correlated predictors [4]. With the growth of GWAS, there has
been a large effort to develop MR methods that can be used with summary data
[10, 11, 55]. One approach to using summary data in IVBMA might be based on
the algorithm from joint analysis of marginal summary statistics (JAM) [50]; this
is a Bayesian variable selection that uses GWAS summary data to select the most
likely causal SNP.
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Bayesian analysis is never a black-box solution to data analysis but in the context
of Mendelian randomisation where there are potentially many weak dependent in-
struments, IVBMA offers an interesting alternative method of analysis. Our results
suggest that it is good alternative to more more established methods, although,
like all Mendelian randomisation methods, the validity of the analysis is heavily
dependent on strong assumptions about the instruments.
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[32] M. Gögele, C. Minelli, A. Thakkinstian, A. Yurkiewich, C. Pattaro, P. P. Pram-
staller, J. Little, J. Attia, and J. R. Thompson. Methods for meta-analyses
of genome-wide association studies: critical assessment of empirical evidence.
American Journal of Epidemiology, 175(8):739–749, 2012.

[33] S. Greenland. An introduction to instrumental variables for epidemiologists.
International Journal of Epidemiology, 29(4):722–729, 2000.

26



[34] Y. Guo, M. B. Lanktree, K. C. Taylor, H. Hakonarson, L. A. Lange, B. J.
Keating, and The IBC 50K SNP array BMI Consortium. Gene-centric meta-
analyses of 108 912 individuals confirm known body mass index loci and reveal
three novel signals. Human Molecular Genetics, 22(1):184–201, 2012.

[35] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model
averaging: a tutorial. Statistical Science, pages 382–401, 1999.

[36] M. V. Holmes, L. A. Lange, T. Palmer, M. B. Lanktree, K. E. North, B. Al-
moguera, et al. Causal effects of body mass index on cardiometabolic traits
and events: a Mendelian randomization analysis. American Journal of Human
Genetics, 94(2):198–208, Feb 2014. doi: 10.1016/j.ajhg.2013.12.014.

[37] M. Horikoshi, H. Yaghootkar, D. O. Mook-Kanamori, U. Sovio, H. R. Taal,
B. J. Hennig, et al. New loci associated with birth weight identify genetic
links between intrauterine growth and adult height and metabolism. Nature
Genetics, 45(1):76–82, Jan 2013.
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10 Supplementary tables and figures

10.1 Convergence and mixing

Table 8: Convergence Diagnostic by comparing 5 short chains with 1 long chain.
The short chain had 50,000 iterations with 10,000 burn in. The long chain had
500,000 iterations and 250,000 burn in. The true βXY is 0.2449. SE is Time-Series
standard error. Prob. X is the probability of X included in the second regression.
Total Visit. Prob. is the visited probability of the set of models chosen in the first
regression; the set consist of the top 10 models from the longer chain.

Ins. Chain Mean β̂XY SE 95% Credible Int. Prob. X Total Visit. Prob.

Number of Instruments (with variable MAF and positive confounding)

10

1 0.0856 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0068 -0.1330 0.5259 0.4584 0.6786

30

1 0.2839 0.0220 0.0000 0.6645 0.7621 0.1061

2 0.2766 0.0237 0.0000 0.6801 0.7274 0.1051

3 0.2954 0.0183 0.0000 0.6603 0.8106 0.1015

4 0.2536 0.0218 0.0000 0.6540 0.7174 0.1068

5 0.2819 0.0181 0.0000 0.6529 0.7877 0.1056

Long 0.2906 0.0079 0.0000 0.6597 0.7881 0.1034

60

1 0.2017 0.0222 -0.0142 0.6165 0.6219 0.0285

2 0.2025 0.0243 -0.0614 0.6215 0.6291 0.0346

3 0.2275 0.0198 -0.0162 0.6333 0.6947 0.0287

4 0.2103 0.0277 -0.1478 0.6661 0.6597 0.0358

5 0.1744 0.0245 -0.0912 0.6489 0.5621 0.0263

Long 0.1801 0.0093 -0.0724 0.6077 0.5939 0.0315

90

1 0.2068 0.0226 -0.0157 0.6452 0.6356 0.0106

2 0.2043 0.0202 -0.0107 0.5802 0.6602 0.0101

3 0.2228 0.0207 0.0000 0.6164 0.6775 0.0121

4 0.1659 0.0206 -0.0512 0.5933 0.5789 0.0137

Continued on next page
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Table 8 – Continued from previous page

Ins. Chain Mean β̂XY SE 95% Credible Int. Prob. X Total Visit. Prob.

5 0.2154 0.0252 -0.0306 0.6510 0.6496 0.0128

Long 0.1962 0.0096 -0.0377 0.6236 0.6210 0.0137

MAF (with 10 instruments and positive confounding)

Low

1 0.4145 0.0161 0.0000 0.7490 0.9104 0.5053

2 0.4226 0.0157 0.0000 0.7543 0.9148 0.4861

3 0.3855 0.0178 0.0000 0.7225 0.8771 0.4956

4 0.4338 0.0140 0.0000 0.7367 0.9240 0.5132

5 0.4167 0.0148 0.0000 0.7340 0.9192 0.5056

Long 0.4272 0.0065 0.0000 0.7473 0.9252 0.5069

Variable

1 0.0856 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0068 -0.1330 0.5259 0.4584 0.6786

Confounding effect (with 10 instruments and variable MAF)

Positive

1 0.0856 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0068 -0.1330 0.5259 0.4584 0.6786

Negative

1 0.4312 0.0297 0.0000 1.0558 0.8951 0.7213

2 0.4064 0.0270 0.0000 0.9535 0.8576 0.7181

3 0.4292 0.0240 0.0000 0.9532 0.8977 0.7400

4 0.3777 0.0349 0.0000 0.9754 0.7804 0.7271

5 0.4680 0.0304 0.0000 1.0914 0.9116 0.7287

Long 0.4379 0.0115 0.0000 1.0038 0.8842 0.7249

Strong

1 0.0849 0.0235 -0.2470 0.4869 0.4556 0.7671

2 0.0530 0.0264 -0.3916 0.4592 0.4309 0.7782

3 0.0727 0.0171 -0.1352 0.4800 0.4050 0.7859

Continued on next page
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Table 8 – Continued from previous page

Ins. Chain Mean β̂XY SE 95% Credible Int. Prob. X Total Visit. Prob.

4 0.0923 0.0277 -0.3282 0.5217 0.4802 0.7617

5 0.0908 0.0242 -0.3049 0.4971 0.4953 0.7667

Long 0.0797 0.0079 -0.1404 0.4704 0.4312 0.7774
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(a) 10 Instruments & Short Chain (b) 10 Instruments & Long Chain

(c) 30 Instruments & Short Chain (d) 30 Instruments & Long Chain

(e) 60 Instruments & Short Chain (f) 60 Instruments & Long Chain

(g) 90 Instruments & Short Chain (h) 90 Instruments & Long Chain

Figure 4: Trace plot of the causal effect estimate (β̂XY ) from 10,30,60 and 90 instru-
ments. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).
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(a) Low MAF & Short Chain (b) Low MAF & Long Chain

(c) 10 Instruments & Short Chain (d) 10 Instruments & Long Chain

Figure 5: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
different MAF. Short and long chain consist of 50,000 and 500,000 iterations with
10,000 and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).
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(a) Positive Confounding & Short Chain (b) Positive Confounding & Long Chain

(c) Negative Confounding & Short Chain (d) Negative Confounding & Long Chain

(e) Strong Confounding & Short Chain (f) Strong Confounding & Long Chain

Figure 6: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
different confounding effect with short and long chain. Short and long chain consist
of 50,000 and 500,000 iterations with 10,000 and 250,000 burn-in respectively. The
horizontal line is the true βXY (0.2449).
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10.2 A comparison to the classical estimators

10 30 60 90

0
.2

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b.
 X

(a) Common MAF

10 30 60 90

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b.
 X

(b) Low MAF

10 30 60 90

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b.
 X
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Figure 7: Probability of X for common, variable and low MAF with different number
of instruments from ivbma. Probability of X, is the probability of X included in the
second regression of IVBMA.
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(a) Pattern I
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(b) Pattern II
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(c) Pattern III
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(d) Pattern IV

Figure 8: Probability of X for all four patterns with different number of instru-
ments from ivbma. Probability of X, is the probability of X included in the second
regression of IVBMA.
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