
Peer reviewed version

License (if available): CC BY-NC-ND

Link to published version (if available): 10.1016/j.clon.2019.05.008

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0936655519302006?via%3Dihub. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
The SMALL Trial: big change for small cancers
Jenna Morgan¹, Shelley Potter², Nisha Sharma³, Stuart A McIntosh⁴

On behalf of the SMALL Trial Management Group

1. University of Sheffield, FU32, The Medical School, Beech Hill Road, Sheffield, S10 2RX.
2. Bristol Centre for Surgical Research, Population Health Sciences, Bristol Medical School, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK and Bristol Breast Care Centre, Southmead Hospital, Bristol, BS10 5NB
3. Breast Unit, Level 1 Chancellor Wing, St James Hospital, Beckett Street, Leeds LS9 7TF
4. Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE

Correspondence to: Stuart McIntosh, Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE (s.mcintosh@qub.ac.uk)

SMALL Trial Management Group:

CE Coles (University of Cambridge)
D Dodwell (University of Oxford)
K Elder (Western General Hospital, Edinburgh)
C Gaunt (CRCTU, University of Birmingham)
I Lyburn (Cheltenham General Hospital)
SA McIntosh (Queen’s University Belfast)
J Morgan (University of Sheffield, Sheffield)
S Paramasivan (University of Bristol, Bristol)
S Pinder (Guy’s Hospital, London)
S Pirrie (CRCTU, University of Birmingham)
S Potter (University of Bristol)
D Rea (University of Birmingham)
T Roberts (University of Birmingham, Birmingham)
N Sharma (St James’s University Hospital, Leeds)
H Stobart (Independent Cancer Patients’ Voice)
S Taylor-Phillips (University of Warwick)
M Wallis (Addenbrooke’s Hospital, Cambridge)
M Wilcox (Independent Cancer Patients’ Voice)
Addressing the overdiagnosis and overtreatment of breast cancer resulting from breast screening has been the focus of considerable media attention, and is consequently an international research priority. Standard treatment involving surgery and adjuvant radiotherapy for small, biologically favourable screen detected cancers can be associated with significant complications with few potential benefits for patients. Strategies to de-escalate components of the treatment pathway may address overtreatment and reduce morbidity for patients without detriment to their oncological outcomes. This editorial discusses the design and rationale of the SMALL trial, a new study aiming to de-escalate surgical treatment and evaluate minimally invasive vacuum-assisted excision (VAE) as an alternative to standard surgery in this setting.

Addressing overtreatment within the NHSBSP

Since the National Health Service Breast Screening Programme (NHSBSP) was established in 1988, there has been debate concerning the risks and benefits of mammographic screening. In 2010, the Nordic Cochrane Group fuelled controversy by suggesting that there was “no convincing evidence” that the NHSBSP saves lives [1]. The resulting UK Independent Panel Review of Breast Screening concluded that while the NHSBSP did result in a significant reduction in breast cancer mortality, there was undoubtedly overdiagnosis within the programme [2], and called for research to address this. The medical community has embraced this challenge; several trials to reduce overdiagnosis and resulting overtreatment have been designed focusing on de-escalating standard treatment to minimise harms. These include trials omitting breast surgery in patients with low risk ductal carcinoma in situ (the UK LORIS trial, EORTC LORD trial and US COMET trials), trials omitting axillary surgery in patients with radiologically normal axillary nodes and low risk breast cancers (the SOUND trial), and trials omitting radiotherapy in patients at low risk of recurrence (PRIMETIME) [3-5]. The SMALL trial aims to de-escalate surgical treatment and evaluate minimally invasive vacuum-assisted excision as an alternative to standard surgery for small, biologically favourable, screen-detected breast cancers.

Problems with current management strategies

Screen-detected breast cancers are currently treated with surgical excision (usually image-guided wide local excision) and sentinel lymph node biopsy (SLNB) under general anaesthesia, followed by adjuvant therapies as agreed by the multidisciplinary team. Wide local excision may result in complications [6] and/or poor cosmetic outcomes[7] which may adversely impact on patient satisfaction and quality of life[8, 9]. In addition, up to 20% of patients may require additional surgery for re-excision of margins involved with tumour following histopathological assessment [10]. This has considerable impact on patient well-being and significant resource implications for the NHS [11] and although many international centres now accept the pathological definition of a clear margin as “no tumour at the inked resection margin” [12], current practice continues to vary across the UK [13]

SLNB is currently standard of care for radiologically node negative patients, but the incidence of axillary nodal disease in this group is known to be low and ultrasound +/- biopsy have an extremely high negative predictive value [3]. Even in the context of a positive sentinel node, excellent regional control can be achieved in the axilla without further surgical dissection, suggesting that a low burden of nodal disease can be adequately controlled with adjuvant therapies [14]. Furthermore, information on the extent of nodal involvement does not usually influence treatment selection[15], nor indeed alter long-term prognosis[16]. Data supporting the omission of axillary surgery in selected low-risk
patients suggests that this approach is safe, with acceptable recurrence-free survival [17]. Taken together, these data suggest a lack of evidence to justify routine use of SLNB in this setting, given its attendant (albeit low) morbidity in terms of lymphoedema, numbness and paraesthesia [18].

A minimally invasive approach to treating small breast cancers

Many of the small, biologically favourable cancers diagnosed by the NHSBSP are likely to represent overdiagnosis, and recent data suggests that such tumours have an excellent prognosis [19]. Treatment with conventional open surgery has been extrapolated from historical data, and there is no prospective evidence to support this approach. Minimally invasive techniques could therefore be developed for use in this setting, potentially reducing the morbidity and complications associated with standard treatment, allowing patients to avoid a general anaesthetic. These may also have significant benefits for the NHS, including cost savings associated with the avoidance of surgery.

Vacuum-assisted biopsy (VAB) is one such minimally-invasive technique which is widely available in the UK. The VAB device is equipped with a large calibre needle, and the procedure is carried out under image-guidance (either ultrasound or X-ray guided) under local anaesthesia during a brief out-patient visit. Initially used for diagnostic purposes, VAB has evolved and is utilised as a tool for non-surgical excision of benign lesions[20, 21] as well as the management of lesions of uncertain malignant potential (B3 lesions)[22]. It is generally well-accepted by patients[23] and vacuum-assisted excision (VAE) is approved by National Institute for Health and Care Excellence (NICE) for excision of benign breast lesions. Post-VAE imaging can accurately estimate complete removal of masses in 90% of cases [24]. There is therefore evidence to support repurposing of this technique for the excision of small screen-detected breast cancers with favourable biological characteristics.

Study Design

SMALL is a prospective, multi-centre, randomised (2:1) phase III trial of minimally invasive vacuum-assisted excision versus surgery in patients with small, biologically favourable screen-detected breast cancer. It aims to generate high-quality, practice-changing clinical evidence to support the safe de-escalation of surgical treatment within the context of standard adjuvant radiotherapy and endocrine therapy in selected patients. The study is designed to assess whether:

- The extent of surgical treatment can be reduced in the context of standard adjuvant radiotherapy and endocrine therapy.
- Vacuum-assisted excision is non-inferior to conventional surgery in terms of the requirement for a second operation to achieve complete resection of the cancer.
- There is an acceptable local recurrence risk in the VAE arm with long-term follow up.

The primary outcome measures in SMALL are re-excision rates and local recurrence-free survival time. The novel study design incorporates a randomised, non-inferiority comparison of the requirement for a second procedure between the techniques. Single arm follow-up of the VAE cohort will then allow determination of the local recurrence rate in this group. The trial schema is shown in Figure 1.

Secondary outcomes will assess the psychological impact of VAE compared with standard surgery and health economics are included to determine the cost-effectiveness of the technique. SMALL requires recruitment of 800 patients over a four year recruitment period, with a subsequent follow up period of 5 years.
Patients randomised to surgery will undergo standard surgical treatment (including SLNB and re-excision of involved margins as deemed necessary by their local MDT), with adjuvant endocrine and radiotherapy according to local guidelines. Patients randomised to VAE will undergo the procedure under local anaesthetic, with insertion of marker clip and post-operative mammography to assess completeness of excision radiologically. SLNB will not be performed in the VAE arm of the study. Where excision is determined to be complete, patients will proceed to adjuvant radiotherapy and endocrine therapy (according to local protocols, which may include partial breast radiotherapy in keeping with NICE guidance). If residual disease is apparent on post-VAE imaging then patients will proceed to standard surgical treatment.

In good prognosis cancers, the risk of local recurrence within the breast has been shown to be low following surgery and radiotherapy, with rates of around 1% at 5 years [24]. It is possible that this risk may be increased following VAE due to pathological incomplete resection. However, what is critical for long-term clinical outcomes is not the presence of low-volume microscopic disease, but rather its impact on local recurrence. It is important to recognize that following surgery, a clear resection margin does not mean that there is no residual tumour in the breast. Data suggests that even where additional surgery is not carried out to clear focally involved resection margins, acceptable local recurrence rates (<3%) at 5 years can be obtained with the use of adjuvant radiotherapy and endocrine therapy [25]. Therefore, in the VAE arm of SMALL, adjuvant radiotherapy and endocrine therapy are mandated to minimize the local recurrence risk. Furthermore, local recurrence rates will be closely monitored, and not be allowed to rise above a prespecified rate (3% per year). In this setting, local recurrence is a salvageable occurrence which can be managed by further surgery and does not impact on long-term survival.

SMALL includes an internal pilot phase of 18 months to determine the acceptability and feasibility of recruitment. To address potential challenges to patient recruitment (such as identifying eligible patients, differences in levels of recruiters’ equipoise and patients’ preference for open surgery or VAE), SMALL will employ an integrated Quintet Recruitment Intervention (QRI) [25] aimed at optimising recruitment and informed consent. The QRI uses a novel qualitative and mixed methods approach pioneered during the HTA-funded ProtecT study and has been shown to support recruitment to time and target in other challenging randomised trials [26].

Conclusions

The novel design of the SMALL trial provides a unique opportunity to evaluate the de-escalation of surgical treatment in screen-detected breast cancer, at a time when overtreatment remains a highly controversial issue. The introduction of VAE following a prospective randomised trial would represent a significant step forward in this setting, and it is anticipated that SMALL will pave the way for the development of future strategies for further treatment de-escalation.

Acknowledgements

The SMALL trial is funded by the National Institute for Health Research Health Technology Assessment Programme (project number 17/42/32). Shelley Potter is an NIHR Clinical Scientist (CS-2016-16-019)

Disclaimer: The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Health Technology Assessment Programme, National Institute for Health Research, National Health Service or the Department of Health.
References:

Patient presents with screen-detected mass lesion, ≤15mm maximum diameter

Routine diagnostic core biopsy histology

Key Eligibility Criteria
- Female aged ≥ 47 years old with screen-detected breast cancer
- <15mm maximum tumour diameter on mammogram
- No associated mammographic microcalcification
- Unifocal disease
- Grade 1 disease
- ER strongly positive (Allred ≥7 or equivalent)
- PR strongly positive (Allred ≥7 or equivalent)
- HER2 negative (0 or 1+ on IHC, or 2+ and negative on ISH)
- Normal axillary ultrasound/equivocal axillary ultrasound with benign fine needle aspiration cytology (FNAC) or core biopsy (CB)
- No previous diagnosis of ipsilateral breast cancer or DCIS

Obtain Informed Consent

Randomisation

Surgery Arm
Standard surgery (wide local excision & sentinel lymph node biopsy)

Radiotherapy and endocrine therapy according to local practice

Annual follow-up with mammography for 5 years

VAE Arm
Vacuum assisted excision with post-VAE mammogram & assessment of complete radiological excision

Incomplete radiological excision
- OR
 Upgrade to grade 3

Complete radiological excision

Surgical excision & SLNB

Radiotherapy and endocrine therapy according to local practice

Figure 1: SMALL trial schema