The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: a review

B.D.A. Naafs1,2*, G.N. Inglis1,2, J. Blewett1, E.L. McClymont3, V. Lauretano1, S. Xie4, R.P. Evershed1, and R.D. Pancost1,2

1Organic Geochemistry Unit, School of Chemistry, Cabot Institute for the Environment, University of Bristol, Bristol, UK
2School of Earth Sciences, Cabot Institute for the Environment, University of Bristol, Bristol, UK
3Department of Geography, Durham University, Durham, UK
4State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, China

*Corresponding author: david.naafs@bristol.ac.uk

Abstract

Molecular fossils (biomarkers) are abundant in organic rich natural archives such as peats and lignites (fossilized peat), where their distribution is governed by their biological source, environmental factors, such as temperature and pH, and diagenetic reactions. As a result, biomarkers in peat have become an important tool to study past variations in vegetation, environment and climate in terrestrial settings, as well as biogeochemistry on time-scales of hundreds to millions of years ago. In recent years, significant progress has been made in understanding the controls on biomarker distributions, especially those derived from microorganisms and peat-forming plants, allowing for example, the quantification of past temperature and vegetation history during peat formation. Herein, we provide a review of a range of
commonly applied biomarker proxies in peats, discuss the latest proxy
developments, and explore the potential of using biomarkers in peat and lignite as
paleoenvironmental proxies. We provide a framework for biomarker analyses in peat
and identify possible future research directions.

Introduction

Peat is a heterogeneous mixture of (partly) decomposed plant material that has
accumulated anaerobically and is (periodically) water saturated. Peatlands can act as
a source or sink of carbon depending on environmental conditions (Kayranli et al.,
2010). They are widespread, covering ~2-3% of the total land surface of Earth and
occurring at all latitudes, although the majority of peatland exists in the mid/high-
latitude Northern Hemisphere. Peats develop relatively rapidly with accumulation
rates of a few mm per year (Gorham et al., 2003), affording high-resolution records
across the (late) Holocene that make peat valuable archives of past environmental
change (see reviews by Barber et al., 1994; Chambers et al., 2012).

Although the majority of modern-day peatlands formed during the Holocene
when the continental ice sheets in the Northern Hemisphere disappeared (Blackford,
2000), some continuous peat deposits extend back to the last glacial period and
beyond (Woillard, 1978; Vanneste et al., 2015). Besides continuous peat records,
patches of ancient peat up to a few million years old are known (Rowe et al., 1997;
Tedford and Harington, 2003). In addition, upon burial and over geological time
scales, peat can turn into lignite (brown coal) and coal and be preserved over
(hundreds of) millions of years. This makes peat one of the few terrestrial archives
that are preserved in the geological record, and hence they have powerful potential
for deep time terrestrial paleoclimate reconstructions (e.g., Collinson et al., 2003;
Holdgate et al., 2009; Naafs et al., 2018b).
A wide array of proxies can be applied to peat/lignite to reconstruct the palaeoenvironment/biogeochemistry. Plant macrofossils and pollen are classical proxies, applied to reconstruct changes in vegetation and, based on these, to infer changes in temperature or precipitation (e.g., Woillard, 1978; Mauquoy et al., 2008). Testate amoebae, protozoa that prefer aquatic to moist habitats, are another type of proxy applied to peat to reconstruct changes in moisture conditions and climate (see review by Mitchell et al., 2008). Although these proxies have provided a tremendous insight into past climatic conditions, they can sometimes be difficult to apply to ancient peats and lignites (fossilized peat) that are strongly humified.

Over the past three decades, a range of biomarker-based palaeoclimatic proxies have been developed and applied to peats to reconstruct and quantify changes in climate (e.g. temperature, vegetation, and biogeochemistry) (e.g., Ficken et al., 1998; Nott et al., 2000; Pancost et al., 2002, 2003; Xie et al., 2004; Naafs et al., 2017b). The advantage of a biomarker approach is that it can be applied to highly humified peat in which identification of macrofossils, for example, is difficult. In addition, because peat is nearly entirely comprised of organic carbon, it contains a wide array of biomarkers in high concentrations. Lastly, biomarkers often record *in situ* processes, whereas other signals (e.g. pollen) can be transported over long distances, complicating their use as palaeoclimate proxy (Farrimond and Flanagan, 1996). Herein, we provide a detailed review of the application of a wide range of biomarkers to peat and lignite, ranging from the classic application of *n*-alkanes to reconstruct climate and vegetation to the latest developments regarding the application of glycerol dialkyl glycerol tetraethers (GDGTs) to quantify temperature. We explore the theory behind these proxies, recent advances, and highlight areas for future research. The sections are ordered by compound class, but it is important to note that different compound classes can be used to obtain the same climatic variable (e.g. temperature). Bold roman numbers (e.g. I, V, X, etc) in text refer to biomarker structures in the appendix.
1. Long-chain \(\text{n} \)-alkanes

A range of \(\text{n} \)-alkyl compounds such as fatty acids (\(\text{n} \)-alkanoic acids) and \(\text{n} \)-alkanes are biosynthesized by higher plants and mosses as part of their epicuticular waxes (Eglinton and Hamilton, 1967; Freeman and Pancost, 2014), and these compounds are abundant in peat (e.g., Ficken et al., 1998). However it is important to note that a few bacteria can also synthesize long-chain \(\text{n} \)-alkanes (Han and Calvin, 1969). In this section we focus on long-chain \(\text{n} \)-alkanes (I, II) in peat, starting with exploring the average chain length (ACL) and carbon preference index (CPI) as climate (e.g. temperature) proxy before discussing their use as specific vegetation markers.

Alkanes consist of a chain of methylene (-\(\text{CH}_2 \)) groups and are predominantly saturated. They are formed by the elongation of the C\text{16} fatty acid in the epidermal cells and subsequently decarboxylated, resulting in a predominance of odd carbon number chains (von Wettstein-Knowles, 1979). They are thermally stable and relatively resistant to degradation due to the lack of functional groups and, therefore, well-preserved in sedimentary archives for hundreds of millions of years. Higher plants predominantly biosynthesize odd-numbered \(\text{n} \)-alkanes with 25 to 37 (e.g., II) carbon atoms (Diefendorf and Freimuth, 2017), but other plants, including mosses and aquatic macrophytes, can biosynthesise significant abundances of mid-chain \(\text{n} \)-alkanes with 21 to 27 (e.g., I) carbon atoms (Nott et al., 2000). Consequently, in peat, the distribution typically consists of C\text{19} to C\text{33} \(\text{n} \)-alkanes, with a high dominance of the odd carbon number homologues (Fig. 1 and 5). Because these derive from a range of plants, with somewhat differing ecologies, their isotopic compositions can vary, i.e. the $\delta^{13}\text{C}$ value of the C\text{19} \(\text{n} \)-alkane can be different from that of the C\text{33} homologue (e.g., Dehmer, 1993; Ficken et al., 1998; Nott et al., 2000; Pancost et al., 2002; Grice et al., 2008).
An advantage of using \(n\)-alkanes in palaeoenvironmental investigations is that they are relatively abundant. Moreover, \(n\)-alkanes are relatively easy to analyse using gas chromatography, coupled for example to a flame ionisation detector (GC-FID), mass spectrometer (GC-MS), or combustion isotope ratio mass spectrometer (GC-C-IRMS) systems where they elute as a series of homologues, facilitating both their quantification and determination of their isotopic composition. \(n\)-Alkanes have a typical fragmentation pattern under typical GC-MS conditions, resulting in \(m/z\) 57+(14)\(_n\) fragments.

The \(n\)-alkane distribution in a given peat sample is derived from a mixture of different plants. It is possible that some of the \(n\)-alkanes in peat can be allochthonous, i.e. deposited into the peat by aeolian processes (e.g. dust and pollen), but this component is likely very small compared to the direct input from peat vegetation. Over the past two decades the distribution of \(n\)-alkanes and their light stable isotopic composition (\(\delta^{2}H\) and \(\delta^{13}C\)) in peat have been used to reconstruct a range of palaeoenvironmental conditions, including changes in temperature, hydrology and vegetation type (e.g., Ficken et al., 1998; Nott et al., 2000; Xie et al., 2000; Pancost et al., 2002; Zhou et al., 2005). In this section we review the strengths and weakness of each approach, present new data, and suggest future research directions.

1.1 CPI of long-chain \(n\)-alkanes as a proxy for microbial degradation and temperature

The Carbon Preference Index (CPI) reflects the degree of odd-over-even predominance of the long-chain \(n\)-alkane distribution.

\[
\text{Carbon Preference Index (CPI}_{n\text{-alkane}} = \frac{1}{2} \left(\frac{C_{25} + C_{27} + C_{29} + C_{31} + C_{33}}{C_{26} + C_{28} + C_{30} + C_{32} + C_{34}} \right) + \left(\frac{C_{26} + C_{28} + C_{30} + C_{32} + C_{34}}{C_{25} + C_{27} + C_{29} + C_{31} + C_{33}} \right)
\]
Slightly different versions of the CPI have been proposed, based on different homologues of \(n \)-alkanes, but here we use the CPI as originally defined (Bray and Evans, 1961). In addition, we focus on the classical application of the CPI to \(n \)-alkanes, but CPI indices can also be calculated for other higher-plant leaf waxes such as long-chain \(n \)-alcanols and \(n \)-alkanoic acids, and these have also been applied to peat (e.g., Pancost et al., 2002; Andersson and Meyers, 2012).

The \(n \)-alkane CPI of fresh plant material is high (e.g. 4-40) (Collister et al., 1994), but decreases over time due to diagenesis and microbial input, approaching values of unity (= 1) in mature rocks and oils. The CPI in peat has been used to infer changes in peat humification, because early studies showed an increase in the relative proportion of even long-chain \(n \)-alkanes (lower CPI) in deeper, oxygen-poor horizons below the water table (Lehtonen and Ketola, 1993). Because the rates of bacterial diagenesis of \(n \)-alkanes and potential production of bacterial long-chain \(n \)-alkanes, which both result in a \(n \)-alkane distribution with a lower CPI, are higher at elevated temperatures, the CPI index in peat has been used to infer changes in past climate (e.g., Zhou et al., 2005; Ortiz et al., 2010).

However, the variation in CPI between different plant species is large (Fig. 1) and changes in vegetation (potentially driven by climatic changes other than temperature) can dominate the changes in \(n \)-alkane distribution and hence CPI (see reviews by Bush and McInerney, 2013; Diefendorf and Freimuth, 2017). Secondary factors, such as moisture content, humidity, and stage of plant/leaf development within one plant species can also influence the \(n \)-alkane distribution and hence CPI (Herbin and Robins, 1969; Sachse et al., 2010; Hoffmann et al., 2013; Feakins et al., 2016; Eley and Hren, 2018). Moreover, although applied to ancient peat deposits to reconstruct changes in temperature, so far, studies rigorously testing the actual relationship between temperature and CPI in peat are lacking. In addition, studies often rely on \(n \)-alkanes obtained from leaves, while a significant part of the \(n \)-alkane pool in peat can originate from other parts of the plant, such as roots, potentially with a different \(n \)-
alkane distribution (Pancost et al., 2002; Huang et al., 2011; Ronkainen et al., 2013).

Huang et al. (2016) attempted to verify whether the CPI in peat is correlated to environmental factors. They used a limited set of seven peatlands along a climatic transect from China and noted that the CPI varies significantly within a single peatland, but that site averaged values are weakly correlated with temperature ($r^2 = 0.35$).

To further explore the correlation between the long-chain n-alkane distribution in peat and mean annual air temperature (MAAT), we determined the CPI in a global database of peatlands. This dataset is a subset from the global peat database of (Naafs et al., 2017b) and consists of 222 samples from 31 peats. All samples are from the top 1 m of peat (the majority < 50 cm), representing a few centuries of peat accumulation. Detailed information about sample preparation and biomarker extraction (Naafs et al., 2017b) and analysis by gas chromatography-mass spectrometry (GC-MS) can be found elsewhere (Inglis et al., 2018). The MAAT for each peat was obtained using the simple bio-climatic model PeatStash, which provides surface air temperatures globally with a 0.5 degree spatial resolution (Naafs et al., 2017b).

In the global compilation the average CPI has a correlation ($r^2 = 0.60$) with mean annual air temperature (MAAT) (Fig. 2a). Peats with a higher CPI are predominantly present in regions with low MAAT and vice versa. This is consistent with the hypothesis of enhanced microbial degradation at higher temperatures (Zhou et al., 2005). However, changes in vegetation might play also role in driving this global correlation between CPI and temperature. For example, *Sphagnum* dominated peats in general have the highest CPI values ($10 < CPI < 35$), whereas graminoids- and woody angiosperms-dominated peats in general have lower CPIs ($5 < CPI < 15$).

If microbial degradation is indeed a dominant control on CPIs in peat, they are expected to decrease downcore. To test this, we determined the downcore CPI in the Butterburn Flow peat, England (55°, 05' 19" N, 02°, 30' 31" E), an intermediate
ombrotrophic bog (meaning it is a peatland that receives all water and nutrients from precipitation). This peat core was recovered as part of the EU-funded ACCROTELM project (Chambers and Magny, 2010). The vegetation is dominated by *Sphagnum* mosses (*Sphagnum magellanicum* and *S. papillosum*), with *Erica tetralix, Narthecium ossifragum* and *Vaccinium oxyccocus* also common; *Andromeda polifolia* is also abundant, with some *Calluna vulgaris* occurring on hummock microforms and *Rhynchospora alba* occurring in some hollow microforms. The CPIs do not decrease with depth (Fig. 3e), in a sequence that spans ~1000 years. Instead, the CPI is highly variable in the top 100 cm of this peat (ranging from 10 to 35) and lacks a clear downcore trend. Moreover, the CPI is not correlated with reconstructed changes in macrofossil-based vegetation (Fig. 3a), water table depth based on testate amoeba (Fig. 3b), or degree of humification for this peat (Fig. 3c). These results are consistent with previously published results from another *Sphagnum*-dominated peat from the UK (MAAT ~ 8 °C) which shows relatively large amplitude downcore variations in the CPI (Xie et al., 2004). These results are difficult to explain if microbial degradation exerts a main control on the CPI in peat. Andersson and Meyers (2012) record a downcore decrease in CPI in a Siberian peat with values between 10 and 20 in the top 40 cm and a CPI of around 5 between 40 and 200 cm, consistent with a microbial-control on the CPI. However, the downcore decrease in CPI in this peat core is associated with a shift in peat type (from acidic bog to alkaline fen) and vegetation.

Therefore, it remains unclear what governs the temperature-CPI relationship observed in the global database (Figure 3). We propose that it reflects changes in vegetation that are also (partly) related to temperature. If instead, it is driven by diagenetic processes, those processes must dominate in the shallow part of the peat, perhaps limited to the oxic acrotelm, imparting a signature that is not altered with subsequent burial on the timescales explored here. These results indicate that care should be taken in relating changes in *n*-alkane CPI in peat to temperature alone.
1.2 ACL of long-chain n-alkanes as temperature proxy

The ACL describes the dominant chain-length of the long-chain (>C$_{27}$) n-alkanes (Poynter et al., 1989; Poynter and Eglinton, 1990).

$$\text{Average Chain Length (ACL}_{n\text{-alkane}} = \frac{\sum (27 \times C_{27}) + (29 \times C_{29}) + (31 \times C_{31})}{\sum (C_{27} + C_{29} + C_{31})}$$

It only includes odd numbered long-chain n-alkanes and can be modified to include shorter (e.g. C$_{25}$) or longer chain (e.g. C$_{33}$) n-alkanes (Baas et al., 2000; Nott et al., 2000). As with the CPI, the ACL can be calculated for other higher-plant leaf waxes such as n-alkanoic acids and this has been applied to peat (Baker et al., 2016).

The ACL has been used in peat to reconstruct changes in temperature, based on several studies showing that higher plants synthesize longer-chain compounds in warmer (drier) compared to colder (wetter) climate (e.g., Poynter et al., 1989; Tipple and Pagani, 2013; Carr et al., 2014; Bush and McInerney, 2015). For example, Sachse et al. (2006) showed that the ACL of n-alkanes from deciduous tree leaves increased from northern Finland to southern Italy, in tandem with the increase in mean annual air temperature. There have been several applications of this approach (e.g., Ortiz et al., 2010; Andersson and Meyers, 2012; Routh et al., 2014). For example, Zhou et al. (2005) demonstrated that in a Chinese peat that spans the Holocene, high n-alkane ACL (and low CPI) occur during the early Holocene climatic optimum, consistent with other proxies from the same peat that indicate a warmer climate during this period.

However, as with the CPI, the variation in ACL between different plant species is large (Fig. 1) and can also be controlled by secondary factors (e.g. moisture, etc). In fact, on a global scale, there is no correlation between temperature and ACL of higher plants (Diefendorf and Freimuth, 2017), indicating caution when interpreting changes in peat ACL as due to changes in temperature alone. In addition, peat is characterized by specific vegetation (e.g. Sphagnum), and this type of vegetation is
often not incorporated in studies that aim to determine whether the ACL is correlated with temperature. Furthermore, Zhang et al. (2017) have argued that mid-chain \(n \)-alkanes in peat may be preferentially degraded relative to longer chain homologues, which might influence the ACL, especially when mid-chain \(n \)-alkanes are included in the calculation of the ACL.

To explore the use of ACL as an environmental proxy, we also determined the ACL in the global database of peatlands. In contrast to the CPI (see section 1.1), the ACL has no clear correlation with mean annual air temperature (MAAT) (Fig. 2b). It is difficult to separate \textit{Sphagnum}-dominated peats from other peat forming environments based on the ACL, but in general graminoid-dominated peats are characterized by the lowest values. Although there is no global correlation between ACL and MAAT when considering all data, a relationship is apparent when vegetation is kept constant: in \textit{Sphagnum}-dominated peats, ACL increases with temperature \((r^2 = 0.61)\). Interestingly, downcore ACLs in the Butterburn Flow peat are relatively constant (Fig. 3d), suggesting that changes in redox conditions, vegetation, and moisture do not significantly influence the ACL in these settings. Thus, our results suggest that as long as significant changes in vegetation do not occur, the ACL could be indicative of temperature in \textit{Sphagnum}-dominated peats. However, Pancost et al. (2002) previously showed significant changes in ACL within the top of a \textit{Sphagnum}-dominated peat core, suggesting that additional factors besides temperature can control the ACL in even those settings.

In summary, both the CPI and ACL can be influenced by a range of factors and should not be used as a pure temperature or universal source proxy in the absence of additional supporting data. However, they might hold potential as indicators of paleoenvironmental conditions and post depositional alterations (e.g., Zhou et al., 2010), despite the absence of a clear understanding of the factors and processes that drive them.
1.3 n-alkane distributions in peat as indicator of past vegetation

A wide range of biomarkers have been identified to be characteristic for various peat-forming plants. These include 5-n-alkylresorcinols for sedges (Avsejs et al., 2002), a high C31/C27 n-alkane combined with a high C26/C30 n-alcohol ratio for Páramo grasses (Jansen et al., 2006), and the distribution of monosaccharides and phenols to differentiate between lichens, Sphagnum, and vascular plants (van der Heijden et al., 1997; Jia et al., 2008; McClymont et al., 2011; Schellekens et al., 2015). Here, we focus on the lipids that are most commonly used to identify past vegetation in peat: long- and mid-chain n-alkanes.

Sphagnum mosses are dominated by mid-chain n-alkanes (C23 and C25), whereas terrestrial higher plants, including those that occur in peatlands, are dominated by long-chain n-alkanes (C29 to C33) (e.g., Baas et al., 2000; Nott et al., 2000; Bingham et al., 2010). As such, the C23/C31 n-alkane ratio has been used to reconstruct the input of Sphagnum moss in peat. Previous studies indicate a close correspondence between the C23/C31 n-alkane ratio and the relative abundance of Sphagnum macrofossils in modern peats (Nott et al., 2000) and ancient lignites (Inglis et al., 2015). However, this approach does not always reproduce macrofossil records in other peats (Farrimond and Flanagan, 1996; Ficken et al., 1998; Pancost et al., 2002; Ronkainen et al., 2013). To resolve this, alternative ratios have been proposed (e.g., Nichols et al., 2006; Vonk and Gustafsson, 2009). However, these cannot always reconcile the difference between macrofossil and biomarker proxies, suggesting that environmental and biosynthetic processes may be more important.

For example, the abundance of n-alkanes produced by Sphagnum mosses is much lower than produced by other peat-forming plants (e.g. woody angiosperms), such that an increase in Sphagnum moss may not correspond to a significant increase in the C23/C31 ratio (Schellekens and Buurman, 2011). Mid-chain n-alkanes can also be biosynthesised by aquatic macrophytes (Ficken et al., 2000) and lichen (Huang et al., 2012a), which can bias the C23/C31 ratio in peat. In addition, different Sphagnum
species can also produce different quantities of mid- and long-chain n-alkanes, such
that variations in the C_{23}/C_{31} or C_{23}/(C_{23}+C_{29}) ratio could reflect changes between
Sphagnum species (McClymont et al., 2008; Bingham et al., 2010). Ronkainen et al.
(2013) showed that roots of some sedges had similar n-alkane distributions to
Sphagnum, complicating the interpretation of the C_{23}/C_{31} or C_{23}/(C_{23}+C_{29}) ratios.
Finally, mid-chain n-alkanes can also be preferentially degraded during early
diagenesis compared to long-chain n-alkanes, resulting in lower C_{23}/C_{31} ratios
(Lehtonen and Ketola, 1993; Zhang et al., 2017). However, the impact of early
diagenesis has been questioned (e.g., Schellekens and Buurman, 2011), and further
work is required.

The Paq index was defined using lacustrine vegetation (Ficken et al., 2000), but
has been used to reconstruct the input of aquatic macrophytes in peat and by
extension indicate changes in peat hydrology (Zhou et al., 2005; Nichols et al., 2006;
Zhou et al., 2010).

\[
P_{aq} = \frac{(C_{23} + C_{25})}{(C_{23} + C_{25} + C_{29} + C_{31})}
\]

High values (> 0.7) indicate a significant contribution from submerged and/or
floating macrophytes, whereas low values (< 0.1) indicate a dominance of terrestrial
higher plants (Ficken et al., 2000; Ronkainen et al., 2013). However, as *Sphagnum*
moss and aquatic macrophytes are characterised by similar lipid distributions (Baas
et al., 2000; Ficken et al., 2000), the Paq ratio cannot be used to discriminate between
Sphagnum and aquatic macrophytes, especially when plant macrofossils are absent
and/or poorly preserved (Ortiz et al., 2010); instead, in peat, it should be used as a
complement to the C_{23}/C_{31} n-alkane ratio.

In addition, angiosperm and conifer inputs to peat might be distinguished based
on particular n-alkane chain lengths. For example, the unusually high relative
abundance of the rare C_{37} n-alkane in lignite deposits from the Gippsland Basin in
South Australia (Chaffee and Johns, 1985) could be correlated with the abundance of
specific conifers (Podocarpaceae) in the floral assemblages in this terrestrial setting (Holdgate et al., 2009; Korasidis et al., 2017), as these conifers are known to produce significant amounts of C_{37} n-alkanes (Diefendorf et al., 2015).

1.4 δ^{13}C values of long-chain n-alkanes to reconstruct hydrology and vegetation type

Although n-alkane abundances and distributions have been measured in natural samples since the 1960s, their compound-specific stable isotope (δ^{2}H and δ^{13}C) compositions could not be determined routinely in natural samples until the development of gas chromatography-isotope ratio mass spectrometry in the late 1980s (Hayes et al., 1990). Herein, we specifically focus on long-chain n-alkanes as these lipids are most frequently used, but the stable isotopic composition of other higher-plant lipids in peat (e.g. n-alkanols, triterpenes, etc) can also be used to infer changes in depositional environment and biogeochemistry (e.g., Pancost et al., 2003).

The stable carbon isotopic compositions (δ^{13}C) of mid- (e.g. C_{23}) and long-chain (e.g. C_{29}) n-alkanes have been determined in various peat cores (e.g., Ficken et al., 1998; Pancost et al., 2002; Xie et al., 2004; Yamamoto et al., 2010; Wang et al., 2016), as well as in typical peat vegetation such as Sphagnum (e.g., Ficken et al., 1998; van Winden et al., 2010; Huang et al., 2012a). These studies concluded that there are multiple controls on long-chain n-alkane δ^{13}C values in peat, among them peat hydrology and vegetation.

To explore this further we compiled the available δ^{13}C_{n-alkane} values from all peat vegetation (Fig. 4). δ^{13}C_{n-alkane} values are generally between -30 and -40 ‰ but do vary among plant species, i.e. Alismatales (macrophytes) have values as high as -12 ‰. δ^{13}C_{n-alkane} values also vary with carbon chain length and there is more variation in C_{23} δ^{13}C_{n-alkane} than C_{31} δ^{13}C_{n-alkane}. For example, C_{23} δ^{13}C_{n-alkane} values from sphagnales are as low as -42 ‰, whereas C_{25} and C_{29} δ^{13}C_{n-alkane} values are
relatively invariant among species and are enriched (values always > -35 ‰)

compared to those from the C23 n-alkane (most values < -35 ‰). The relatively low
δ13Cn-alkane values of the C23 n-alkane could result from the influence of symbiotic
methanotrophs on the carbon available for assimilation by sphagnales (especially
when submerged), because methane-derived carbon is depleted in δ13C
(Raghoebarsing et al., 2005; Kip et al., 2010; Huang et al., 2012b). However, it is
unclear why this would only influence the C23 n-alkane and not the longer-chain
homologues (e.g. C25 and C29) from the same species (Fig. 4).

The other evident control on δ13Cn-alkane values is submerged vs emerged
physiology. Most strikingly, monocot macrophytes belonging to the order of
Alismatales (macrophytes) have δ13Cn-alkane values between -10 and -30 ‰. Other
submerged mono- and eudicot macrophytes are associated with elevated δ13Cn-alkane
values – for all homologues. In these fully submerged species, enriched δ13Cn-alkane
values are likely explained by CO2 limitation.

Previous studies suggested an increase in δ13Cn-alkane with chain-length for
sphagnales (Ficken et al., 1998), but there appears to be no consistent correlation
with changes in chain-length and δ13Cn-alkane across all vegetation. For example,
consistent with previous findings (Ficken et al., 1998) the C23 δ13Cn-alkane is more
depleted compared to C29 and C31 δ13Cn-alkane in sphagnales, but this relationship
breaks down in eudi- and monocot species (both angiosperms) where the C23 and
C25 are more enriched compared to the C29 and C31 n-alkanes.

Based on these results it might be possible to use δ13Cn-alkane values to
reconstruct past changes in peat vegetation and hydrology. For example, the C23
δ13Cn-alkane should be able to differentiate between fully emerged sphagnales (very
depleted in δ13Cn-alkane), indicating periods with a low water table, and fully submerged
macrophytes (relatively enriched in δ13Cn-alkane) that grow during periods with a high
water table. This pattern might be exacerbated by enhanced uptake of 13C-depleted
CO2 due to enhanced microbial respiration under drier conditions (Huang et al.,
In addition to absolute δ^{13}C_{n-alkane} values, changes in the offset between different δ^{13}C_{n-alkane} could also be used (e.g. Δδ^{13}C_{31-21} = δ^{13}C_{31-alkane} - δ^{13}C_{21-alkane}) (Yamamoto et al., 2010). However, the spread in modern plant species δ^{13}C_{n-alkane} values (Fig. 4) is of the same order of magnitude as most downcore peat records, which generally contain relatively small (~1-2 ‰) changes during the late Holocene (e.g., Ficken et al., 1998; Pancost et al., 2002; Xie et al., 2004). We urge caution in interpreting these small changes as changes in vegetation/hydrology, especially given that other factors can also influence plant δ^{13}C values (Arens et al., 2000).

Longer-term peat records that reach the early Holocene and last glacial can record larger (up to 6 ‰) changes (Yamamoto et al., 2010) that perhaps more likely reflect changes in peat vegetation/hydrology.

1.5 δ²H of long-chain n-alkanes to reconstruct peat hydrology

The stable hydrogen isotopic composition (δ²H) of long-chain n-alkanes can reflect the δ²H value of the source water used during biosynthesis, albeit offset by a fractionation factor(s) related to biosynthesis, evaporation and evapotranspiration (see review by Sachse et al., 2012). Hence, δ²H values of long-chain n-alkanes in peat have been used in a number of studies to reconstruct variations in hydroclimate during the Holocene (e.g., Xie et al., 2000; Seki et al., 2009; Sharifi et al., 2015; Huang et al., 2018). However, the interpretation of past environmental conditions from δ²H values of long-chain n-alkanes can be complicated because they derive from a wide range of plant species, each with a potentially distinct δ²H signature (e.g., Balascio et al., 2018; Zhao et al., 2018). For example, Balascio et al. (2018) analysed samples from a Norwegian bog and demonstrated that δ²H values of C_{25} to C_{33} n-alkanes varied from -120 to -220 ‰ across a range of plant species collected from the surface of the bog (60 to 140 ‰ more depleted than the bog water). In that study, Sphagnum was the most depleted, and Rubus chamaemorus was the least depleted. Interestingly, the average n-alkane δ²H value of the surface sample
(representing a contribution from a mixture of plant species) was ~10‰ more depleted than that of the average \(n \)-alkane \(\delta^2 \text{H} \) value of any pure vegetation sample from the same bog. A 1-year long monitoring of pore-water \(\delta^2 \text{H} \) at the Dajiuhu peatland in China demonstrates that values are highly variable in the top 20-30 cm, but converge below ~50 cm (Huang et al., 2018). The source of the pore water predominantly used for lipid biosynthesis by plants in this peatland is not well constrained and is likely variable across the peatland. However, long-chain \(n \)-alkane \(\delta^2 \text{H} \) values at this peatland are ~150‰ more depleted than pore waters, suggesting an influence of plant habitat-specific conditions, such as relative humidity on plant wax \(\delta^2 \text{H} \) values (Huang et al., 2018). In addition, Huang et al. (2016) demonstrated that \(\delta^2 \text{H} \) values of long-chain \(n \)-alkanes within a single peatland is highly variable. These results are perhaps not surprising given the range of biosynthetic factors (e.g., plant species, growth season length, and lipid biosynthesis time) that can influence \(n \)-alkane \(\delta^2 \text{H} \) values, complicating their usage as a paleo-hydroclimate proxy. We suggest that \(\delta^2 \text{H} \) values should be interpreted in tandem with macrofossil or biomarker data that can constrain vegetation change (see sections 1.3 and 1.4). This combined approach might allow these factors to be deconvolved from hydroclimate, noting of course the strong interconnection between hydroclimate and species assemblage in wetlands.

2. \(n \)-Alkan-1-ols

\(n \)-Alkan-1-ols (primary alcohols) are characterized by a single alcohol (-OH) group at the first carbon (e.g., III-V). They are abundant in natural sediments (Sever and Parker, 1969; Mudge and Norris, 1997). They can be saturated, unsaturated, and/or branched (IV, V) and all three classes are found in peat and peat-forming vegetation, generally with an even-over-odd predominance (Lehtonen and Ketola, 1993; Ficken
et al., 1998; Zhou et al., 2010; Huang et al., 2013a). Below we briefly discuss straight
and branched chain \(n\)-alkan-1-ols in peat.

2.1 Straight-chain \(n\)-alkan-1-ols to reconstruct changes in vegetation

Straight-chain \(n\)-alkan-1-ols (III, VII) are abundant in peat and typical peat-vegetation
(Ficken et al., 1998; Zheng et al., 2007; Andersson and Meyers, 2012). For example,
in the Hani peat core (China) C\(_{12}\) to C\(_{28}\) homologies were identified (Zhou et al.,
2010). They are formed from (elongated) C\(_{16}\) fatty acids through reduction
(von Wettstein-Knowles, 1979). As with regular \(n\)-alkanes (see section 1.2), the
short-chain homologues (C\(_{12}\)-C\(_{28}\)) are predominantly produced by algae and bacteria
(Robinson et al., 1984; Volkman et al., 1999). Mid-chain (C\(_{24}\)-C\(_{26}\)) homologues are
dominant in Sphagnum (Ficken et al., 1998), whereas long-chain (C\(_{28}\)-C\(_{38}\))
homologues are dominant in sedges, lichens, and other plants (Eglinton and
Hamilton, 1967; Ficken et al., 1998; Chikaraishi and Naraoka, 2007). On this basis,
downcore changes in \(n\)-alkan-1-ol chain-length in peat have been used to infer past
changes in vegetation (Zheng et al., 2009). However, it is important to note that
Huang et al. (2011) showed that in typical peat vegetation the distribution in roots can
differ from that of the leaves. Shifts in preservation/production of leaves versus roots
can thus cause changes in chain-length.

Changes in \(n\)-alkan-1-ol carbon preference index (CPI) have also been used to
reconstruct changes in microbial activity in peat, although the interpretation is
complicated (Andersson and Meyers, 2012).

2.2 Branched \(n\)-alkan-1-ols to reconstruct temperature

In addition to regular \(n\)-alkan-1-ols (e.g., III, VII), branched homologues (e.g., IV, V)
have been found in peat. The specific source in peat is currently unknown, other than
that they are likely produced by bacteria. Huang et al. (2013a) proposed that the ratio
of the C\textsubscript{15} iso- (\textbf{IV}) and anteiso (\textbf{V}) branched over the normal C\textsubscript{15} n-alkan-1-ol (\textbf{VII}),
the BNA\textsubscript{15} index, is controlled by temperature.

\[BNA_{15} = \frac{(isoC_{15}(\textbf{IV}) + anteisoC_{15}(\textbf{V}))}{(C_{15}(\textbf{VII}))} = 1.14 \times T - 0.59 \]

The correlation between the BNA\textsubscript{15} and temperature ($R^2 = 0.7$) is based on 11 soil
samples taken along an altitudinal transect from central China. When applied to the
Dajiuhu peat that spans the last 13 kyr, the Holocene temperature pattern obtained
using the BNA\textsubscript{15} index was similar to that seen in a pollen-based temperature records
from the same peat core (Zhu et al., 2008), as well as temperature reconstructions
from other archives, suggesting that the index reflects temperature.

However, the absolute temperatures are offset, with BNA\textsubscript{15}-based temperatures
being lower than those based on pollen. In addition, BNA\textsubscript{15}-based temperatures at
the top of the peat core are colder than instrumental temperatures at this location
over the last few decades. To further explore this novel proxy, we determined the
BNA\textsubscript{15} in (saponified) peat samples from the tropical Sabangau peatland in Indonesia
(MAAT 26.5 °C) and high-latitude Stordalen peatland in Sweden (MAAT -1.3 °C).
Consistent with the Chinese data, the iso- and anteiso branched C\textsubscript{15} n-alkan-1-ols
are more abundant relative to straight-chain homologues in the tropical peat
compared to the high-latitude peat (Fig. 6). However, the absolute BNA\textsubscript{15} values at
Sabangau (values ~ 2-3) are much lower compared to those in Chinese soils (BNA\textsubscript{15}
> 12 in soils with MAAT ~ 9 °C). Application of the Chinese calibration results in
unrealistically low values for Sabangau with a BNA\textsubscript{15}-based MAAT of ~ 3 °C. Thus,
although the increase in degree of branching of C\textsubscript{15} n-alkan-1-ols at higher
temperature appears to be a widescale phenomenon that is recorded in peats from
different continents and settings, we urge for caution with using the calibration to
quantify temperatures. Future work should determine whether the correlation
between BNA\textsubscript{15} and temperature is a truly global phenomenon and whether there is a
universal calibration.
3. Long-chain \(n\)-alkan-2-ones as proxy for \textit{Sphagnum} and microbial degradation

Long chain \(n\)-alkan-2-ones (VIII) are lipids characterized by a straight-alkyl chain with a ketone moiety at the second carbon atom. The \(C_{17}-C_{35}\) homologues are abundant in peat and peat-forming vegetation (Lehtonen and Ketola, 1990; Zheng et al., 2007; Andersson and Meyers, 2012). They are easily identified by GC-MS using base peak ions \(m/z\) 58+59. In general, two possible sources for \(n\)-alkan-2-ones in peat have been proposed.

First, Nichols and Huang (2007) argued that they are biosynthesized by and directly derived from vegetation. They are particularly abundant in a range of \textit{Sphagnum} species, where they have a clear odd-over-even predominance and tend to maximize at carbon length 27-29 (Nichols and Huang, 2007). They have, therefore, been suggested to be biomarkers for \textit{Sphagnum} in ombrotrophic bogs (Nichols and Huang, 2007). However, \(n\)-alkan-2-ones have also been found in other peat forming vegetation, such as \textit{Erica mackaiana} (Ortiz et al., 2011) as well as other higher plants, sawgrass, seagrasses, and mangroves (Richter and Krain, 1980; Hernandez et al., 2001). Thus, care should be taken with interpreting their presence as an unambiguous indicator of \textit{Sphagnum}.

Alternatively these ketones could form via diagenesis, specifically the microbial oxidation of \(n\)-alkanes (Amblès et al., 1993; van Bergen et al., 1998) and/or decarboxylation of fatty acids (Amblès et al., 1989). However, López-Dias et al. (2013) demonstrated that the stable carbon isotopic composition (\(\delta^{13}C\)) of \(n\)-alkan-2-ones in peat can be ~3.5 \(^\circ\) heavier than those from long-chain \(n\)-alkanes of the same sample. These results suggest that \(n\)-alkan-2-ones in peat might also derive from a microbial source other than purely \(n\)-alkanes. Further work is needed to identify exactly which other microbial sources can generate these compounds. Irrespective of the exact pathway of diagenesis, the relative amount of shorter-
chain (C_{17}-C_{25}) over longer-chain (C_{27}-C_{31}) homologues has been shown to increase with depth and humification (Lehtonen and Ketola, 1990). Based on these observations Zheng et al. (Zheng et al., 2011) defined the “KET-ratio”:

\[
KET = \frac{(C_{23} + C_{25})}{(C_{27} + C_{29} + C_{31})}
\]

And suggested that periods of higher KET-ratios in a Chinese peat core spanning the Holocene reflect an increase in microbial degradation of \(n\)-alkanes and fatty acids during periods of wetter and warmer climate due to an enhanced Monsoon. In their core, the KET-ratio varies in a similar fashion as a pollen record of firs/sedges, interpreted to reflect Monsoon precipitation.

In summary, the source of these compounds can be both from vegetation and degradation and they might hold potential as paleoenvironment proxies. However, further research is needed to better understand the mechanisms that control their downcore abundance and distributions in peat.

4. Triterpenes

Triterpenes are lipids ultimately derived from the acyclic molecule squalene, built-up from six isoprene units. They are a structurally very diverse compound class, ranging from hopanes to carotenoids and sterols. They are produced by both bacteria (e.g. hopanes) and eukaryotes (e.g. sterols). Below we discuss those most commonly studied in peat; penta- and tetracyclic triterpenes.

4.1 Tetracyclic triterpenes (Stanol/Sterols)

4.1.1 Introduction

Sterols are common lipids in eukaryotes and contain three cyclohexane and one cyclopentane ring. The C_{27}, C_{28}, and C_{29} sterols (e.g., IX, XI) are especially abundant in plants and animals (e.g., Huang and Meinschein, 1979), including those common
in peatlands. For example, C_{28} and C_{29} sterols are among the most abundant lipids in *Sphagnum* (Baas et al., 2000; Ronkainen et al., 2013). Stanols (e.g., X, XII) are much less common and are generally considered to be anaerobic (reductive) degradation products of the corresponding sterol (Gaskell and Eglinton, 1976; Wakeham, 1989; Rieley et al., 1991), suggesting that the stanol/sterol ratio can provide information about (microbial) degradation in natural archives. Stanols and sterols are part of the polar fraction and typically analysed using gas chromatography-mass spectrometry (GC-MS) after TMS-derivatization.

4.1.2 5α-stanol/Δ^5 Sterol ratio as degradation proxy in peat

The C_{28} and C_{29} 5α-stanol/Δ^5 sterol ratio has been suggested as a biomarker proxy to trace changes in microbial degradation/peat humification (e.g., Lehtonen and Ketola, 1993; Huang et al., 2011; Routh et al., 2014). This proxy relies on the hypothesis that C_{28} and C_{29} 5α-stanols in peat mainly derive from the microbial driven anaerobic degradation of C_{28} and C_{29} Δ^5 sterols. C_{28} and C_{29} sterols are common in plants (Erich, 1971) and occur at relatively high concentrations in a range of ombrotrophic bog plant species, including *Sphagna* (Karunen et al., 1983; Lehtonen and Ketola, 1993; Baas et al., 2000; Ronkainen et al., 2013), *Carex* (Lehtonen and Ketola, 1993; Huang et al., 2011), and ericaceous shrubs (Pancost et al., 2002). In contrast, stanols only occur in minor proportions in *Sphagna* (Gaskell and Eglinton, 1976; Karunen et al., 1983; Baas et al., 2000) and other bog-forming vegetation (Nott et al., 2000; Ronkainen et al., 2013). As a result, stanol/sterol ratios are low in leaf waxes (Rieley et al., 1991) but high in anoxic lacustrine (Gaskell and Eglinton, 1976) and marine settings (Wakeham, 1989) as the hydrogen-mediated transformation of plant-derived Δ^5-sterols to their corresponding 5α-stanols occurs preferentially under anaerobic conditions.
Consistent with the hypothesis that stanols are degradation products is the observation from a range of peatlands that the stanol/sterol ratio increases with depth (Xie et al., 2004; Ronkainen et al., 2014; Routh et al., 2014; Zheng et al., 2015) and is high in the anoxic catotelm (Duan and Ma, 2001; Guignard et al., 2005). However, a thorough comparison between the stanol/sterol ratio in peat and independent proxies of microbial degradation and water table are so far lacking. Here, we compare the stanol/sterol ratio with peat humification records obtained in four temperate sphagnum-dominated ombrotrophic peatlands.

4.1.3 New high-resolution Δ⁵ Sterol/5α-stanol records from four peatlands

Lipid biomarker distributions were investigated in peat cores recovered from four northern European sites as part of the EU-funded ACCROTELM project (Chambers and Magny, 2010): Great Britain, Ireland, Germany and Finland. For a detailed site and method description see Pancost et al. (2011). Although all peats are from NW Europe, the four peats are characterized by different hydrology and vegetation regimes, providing a diverse sample set to test the application of the stanol/sterol ratio as a degradation proxy.

A range of C₂₈ and C₂₉ sterols occurs in these peats (Fig. 7). The most prominent is the C₂₉ 24-ethylcholest-5-en-3β-ol (IX; β-sitosterol) and its corresponding 5α(H)-stanol, 24-ethyl-5α-cholestan-3β-ol (X; 3-stigmastanol), with concentrations ranging from 140 to 6100 µg g⁻¹, and 0 to 1300 µg g⁻¹, respectively. Other C₂₉ sterols occurring in the peat include 24-ethylcholesta-5,22-dien-3β-ol and 24-ethyl-5α-cholest-22-en-3β-ol. The peats also contain relatively lower concentrations of C₂₈ sterols (Fig. 7), mainly 24-methylcholest-5-en-3β-ol (XI, campesterol; 0.1 to 810 µg g⁻¹) and 24-methyl-5α-cholestan-3β-ol (XII, campestanol; 0 to 230 µg g⁻¹). Sterol concentrations at all sites are generally low in the acrotelm (top part of peat that
consists of living plants and that is periodically water saturated) but increase with depth, especially in the catotelm (layer of peat that is permanently water saturated).

Stanol:sterol ratios can be based on either C28 or C29 steroids:

\[
C_{29}\text{-stanol}:\Delta^5\text{-sterol} = \frac{\{\text{X}\}}{\{\text{X}\} + \{\text{IX}\}}
\]

\[
C_{28}\text{-stanol}:\Delta^5\text{-sterol} = \frac{\{\text{XII}\}}{\{\text{XII}\} + \{\text{XI}\}}
\]

Both ratios exhibit the same down-core trends, such that we primarily use a composite stanol:Δ5-sterol ratio that combines all compounds:

\[
\text{stanol}:\Delta^5\text{-sterol} = \frac{\{\text{X}\} + \{\text{XII}\}}{\{\text{IX}\} + \{\text{X}\} + \{\text{XI}\} + \{\text{XII}\}}
\]

This equation is analogous to that used by previous workers (Gaskell and Eglinton, 1976; Wakeham, 1989; Lehtonen and Ketola, 1993; Xie et al., 2004; Andersson and Meyers, 2012).

At our sites, stanol:Δ5-sterol ratios in the acrotelm are generally < 0.15 - 0.2. In the anoxic catotelm below the current water table level, they increase down to about 40-50 cm, after which they fluctuate but remain higher than those in the acrotelm (Fig. 8). Profiles of the stanol:Δ5-sterol ratio are broadly similar across all four sites, but maximum ratios differ as does the rate of increase with depth. Highest ratios occur in Ballyduff Bog, Ireland, and the lowest occur in Kontolanrahka Bog, Finland.

The ratios found here for Finland with a maximum of 0.2 are similar to that found in two other Finnish peats (Ronkainen et al., 2014), suggesting a temperature control on the degree of diagenetic alteration, perhaps analogous to that invoked for CPIs (see above).

There is a clear correlation between the stanol:Δ5-sterol ratio and humification index, with high ratios exclusively occurring in the anoxic water saturated catotelm where the humification index is low (Fig. 8). In addition, the transition from low to high stanol:Δ5-sterol ratios at all four sites roughly coincides with the appearance of archaeol (Pancost et al., 2011), a marker for anaerobic methanogens (see section
5.3). The increase with depth and correlation with peat humification suggests that the stanol:Δ⁵-sterol ratio in peat records a degradation signal.

Interestingly, although the ratios increase with depth, the transformation of sterols to stanols does not proceed to completion (ratio = 1) in these cores nor in other published records from other peats, indicating that a competing process rapidly terminates the reduction reaction in the catotelm. This could be exhaustion of the reductant; although this might seem unlikely given the range of potential substrates (including H₂) in peat, it could be consistent with H₂S as the reductant because this is present in only very low concentrations in the peats that we have examined here. Alternatively, sterol reduction might be terminated by diagenetic stabilisation of sterols, perhaps due to steric hindrance of the double-bond as humification progresses. Microbial reduction of sterols occurs when the C-3 hydroxyl group is not bound; thus, esterification of sterols, which also rapidly occurs during diagenesis, could halt further reduction and stanol formation. Indeed, in our protocol, saponification of the total lipid extract will have released these esterified and potentially protected sterols, and future work is required to explore whether similar downcore trends are observed in the non-esterified fractions.

4.1.4 Use of the stanol:Δ⁵-sterol ratio as a palaeo-redox proxy and linking it to changes in carbon cycling

The crucial requirement for reduced reactants to bring about double bond reduction suggests that shifts in the stanol:Δ⁵-sterol ratio in peat bog cores record past changes in redox conditions. Although the ratio has previously been measured in peat cores to infer changes in microbial degradation rates (Lehtonen and Ketola, 1993; Xie et al., 2004; Andersson and Meyers, 2012; Routh et al., 2014), it was not applied to study past redox conditions. The primary challenge is if progressive reduction over time is the primary control on the ratio, past differences in redox
potential will be obscured. However, our observations from these four core profiles suggest this is not the case. Crucially, the reduction reaction appears to happen rapidly once anoxic conditions prevail, but then ceases, also at relatively shallow depths (<40-60 cm), due to either a limited supply of specific reductants or competition with other processes that remove sterols from the reduction reaction window. In other words, sterol reduction apparently occurs over a rather narrow depth horizon, such that ratios will record shallow redox conditions, likely integrated over century timescales based on the depth range over which the reaction occurs (10-30 cm). In particular, we anticipate that the depth of the water table will exert the primary control by governing the amount of competing diagenetic reactions that sterols can undergo prior to experiencing anoxic conditions.

Providing further evidence that the stanol:Δ5-sterol ratio can at least qualitatively record temporal and spatial differences in redox conditions are the substantial differences between the ratios in the four studied peat cores (Fig. 8). The highest average ratios occur at Ballyduff Bog, IR (>0.3), whereas slightly lower values (~0.2) are recorded at Butterburn Flow, GB, and Bissendorfer Moor, DE, and the lowest values (~0.15) are recorded in Kontolanrahka, FI. In general, these site-to-site patterns parallel those of water table depth reconstructions from testate amoebae distributions and the humification index with the lowest reconstructed water table depth and highest humification in Finland. In addition, the absolute difference in archaeol concentrations for these cores, putatively derived from methanogens (see section 5.3), matched this pattern with the lowest abundance of archaeol in Finland. The shallow Bissendorfer Moor samples are an exception, but this could be related to extensive recent disturbance of the peat (Talbot et al., 2016b); indeed water table oscillations, in addition to absolute depth, can have a strong impact on redox potential in mires (Haraguchi, 1991). Thus, it appears that water table levels could be a primary control on stanol/Δ5-sterol ratios, as expected if the latter predominantly reflect the early onset of reducing conditions.
Additional evidence for the potential of stanol:Δ⁵-sterol ratios in palaeo-redox investigations comes from the downcore variations, which generally track testate-derived water table depths (Fig. 8). We note here, as previously observed (McClymont et al., 2008; Pancost et al., 2011), that fine (cm) scale correlation between records of the peat surface (e.g. testate amoebae) and those recorded in the peat sub-surface (e.g. stanol:Δ⁵-sterol ratios) are not expected. Specifically, diagenetic or microbial signals generated and preserved in the sub-surface will appear to lead the environmental changes that cause them. This is observed at all four of our sites, where the stanol:Δ⁵-sterol ratio often indicates the development of wetter/drier conditions ahead of the testate amoebae response, further supporting the proposal that sterol transformation occurs after deposition of the plant material. As a result, the absolute timing of transitions in stanol:Δ⁵-sterol ratios should be considered a maximum estimate, and will have to be carefully considered if stanol:Δ⁵-sterol ratios can be used in future palaeo-redox investigations.

These observations indicate the potential for using stanol:Δ⁵-sterol ratios to interrogate past changes in ombrotrophic bog redox state, potentially in tandem with well-developed vegetation proxies (e.g. testate amoeba) and less developed biomarker-based redox proxies such as the diacid to hydroxy acid ratio (Pancost et al., 2003). However, we note that exploitation of the proxy is contingent upon experimental interrogation of its veracity and determination of the mechanism. For example, if reduction is dependent on H₂S availability, as has been shown for other reduction mechanisms (Hebting et al., 2006), then stanol:Δ³-sterol ratios might better reflect past sulphur deposition. If termination of reduction is dictated by steric hindrance, via either covalent or non-covalent interactions, then the proxy could perhaps be refined by examining only the ester-bound steroids. Nonetheless, our records across four European peatlands together with published records (Zheng et al., 2015) show that stanol:Δ⁵-sterol ratios have varied in the past, and that these variations appear to track water table changes. Thus, they complement
interpretations based on only testate amoebae or macrofossils, indicating that past water table changes did impose significant controls on peat redox conditions. Crucially, such changes have implications for interpreting past carbon cycling, especially when coupled with archaeol indicators for methanogen populations (e.g., Pancost et al., 2011; Bischoff et al., 2013). Combined, these data provide a mechanism for interrogating how the relationship between hydrology, redox state and methanogenesis has changed in ancient peat deposits.

4.2 Pentacyclic triterpenes

Pentacyclic triterpenes were first identified in resins from the (tropical) trees of the Dipterocarpaceae family (Mills and Werner, 1955). They consist of a carbon skeleton built-up of four cyclohexane and one cyclopentane ring. In peat, pentacyclic triterpenes are mainly produced by higher-plants and bacteria, and below we discuss both groups. These are predominantly analysed using gas chromatography mass spectrometry (GC-MS).

4.2.1 Higher-plant triterpenes as vegetation proxies

Higher-plants, including typical peat vegetation produce a diverse range of triterpenes (Ives and O'Neill, 1958; Das and Mahato, 1983). In peat, those with ursane, oleanane, and lupine carbon skeletons are abundant (Ives and O'Neill, 1958; Pancost et al., 2002). Some studies have suggested that the occurrence of specific higher-plant derived triterpenes could be used to reconstruct vegetation. For example, taraxer-4-ene (XIII) and taraxast-20-ene (XIV), likely degradation products of taraxasterol and/or taraxast-4-one (XV), have been found in roots of Calluna vulgaris, a type of heather of the family Ericaceae (Pancost et al., 2002) and (in low concentrations) in Carex lasiocarpa (Ronkainen et al., 2013). In a Dutch peat the downcore concentrations of taraxer-4-ene (XIII) and taraxast-20-ene (XIV) are
correlated with the abundance of *Ericaceae* root abundances (Pancost et al., 2002), suggesting potential as a vegetation marker. In addition, pentacyclic triterpene 3-methyl ethers (e.g. XVI) have been proposed to be diagnostic for *Gramineae* (grasses) (Jacob et al., 2005). However, it is important to note that as triterpenes are subject to rearrangement during diagenesis, the original vegetation signal can be lost after burial. Thus, care should be taken when using these lipids to reconstruct past changes in peat vegetation.

4.2.2 Bacterial pentacyclic triterpenes (hopanoids)

4.2.2.1 Introduction to hopanoids

(Bio)hopanoids (e.g., XVII) are pentacyclic triterpenes produced by a wide range of bacteria, in which they perform a regulating and rigidifying function similar to sterols in eukaryotes, and consequently they are ubiquitous in the environment (including peat) (Dorsselaer et al., 1974; Rohmer et al., 1979; Sáenz et al., 2015). Potentially, they have important roles in stress response pathways and in plant-bacteria symbiotic interactions (Belin et al., 2018). Although several important exceptions exist (Talbot et al., 2016b), they appear to be predominantly produced by aerobic bacteria (Rohmer et al., 1992). This is consistent with their greater diversity in shallow peat (e.g., Talbot et al., 2016b). (Bio)hopanoids can be analysed by (high temperature) gas chromatography-mass spectrometry ((HT-)GC-MS) and identified based on their characteristic m/z 191 ion, resulting from the fragmentation along the C-ring. Biohopanoids can also be acetylated and analysed using reversed-phase high-performance liquid chromatography mass spectrometry (RP-HPLC-MS) and are identified based on characteristic MS, MS^2 and MS^3 spectra (Talbot and Farrimond, 2007).

Biohopanoids can be subdivided into two groups: simple hopanoids with a C_{30} ring system (e.g. diploptene (XVIII)/diplopterol (XIX)) and complex hopanoids with an
additional polyfunctionalised side chain (i.e. bacteriohopanopolyols (BHPs, \textit{XVII})).

Biohopanoids are abundant in peats and at least 23 structures have been identified (Kim et al., 2011; van Winden et al., 2012; Spencer-Jones et al., 2015; Talbot et al., 2016b). The most common structures are: 1) bacteriohopanetetrol (BHT, \textit{XVII}), 2) aminotriol and 3) BHT cyclitol ether (e.g., Talbot et al., 2016b). The majority of heterotrophs biosynthesise BHT and BHT cyclitol ether. As such, heterotrophs are the most likely source of these compounds in peat (Talbot et al., 2016b). In contrast, aminotriol can be biosynthesised by methanotrophs and some heterotrophic bacteria (e.g. Alphaproteobacteria). Methanotrophs can also produce diagnostic 35-amino functionalised BHPs (specifically, aminotetrol and aminopentol). The occurrence of aminotriol and aminotetrol together, in the absence of aminopentol, is indicative of Type II methanotrophs, whereas aminopentol is only known to occur in Type I methanotrophs (Talbot et al., 2001; Talbot and Farrimond, 2007). Within modern peats, aminotetrol and aminopentol have been identified but contribute < 5% of the entire BHP pool, suggesting a relatively small methanotroph population in peat (Kim et al., 2011; van Winden et al., 2012; Talbot et al., 2016b).

Although BHPs are typically only preserved over relatively recent timescales (e.g. <5 million years; Ma) (Handley et al., 2010; Talbot et al., 2014; Spencer-Jones et al., 2017), they have been identified in the Cobham Lignite, a terrestrial lacustrine/mire deposit associated with the Palaeocene–Eocene Thermal Maximum (PETM) (56 Ma). BHT, aminotriol, aminotetrol, and aminopentol are the most common BHPs at Cobham; however, a range of BHP transformation products were also detected, including anhydroBHT and N-containing structures. Aminotetrol (up to 65% of the total biohopanoidsBHPs) and aminopentol (up to 20% of the total biohopanoid BHPs) are more abundant than in modern peats and suggests an intensification of the methane cycle during the PETM (Talbot et al., 2016a).
Due to diagenesis, biohopanoids lose their functional groups forming a wide variety of geohopanoids (e.g. hopanoic acids, hopanols, hopanes, etc). Conversion of bio- to geohopanoids can occur almost instantaneously within peat (i.e. within the top 5 cm); however, geohopanoid concentrations usually remain low until the acro/catotelm boundary (Pancost et al., 2003; Inglis et al., 2018). Within peats, the geohopanoid distribution is typically dominated by the C\textsubscript{32} hopanoic acid and C\textsubscript{31} hopane (XX), likely derived from the oxidative degradation of tetrafunctionalised BHPs (e.g. BHT XVII). However, over 30 structures have been identified in peats (Quirk et al., 1984; Del Rio et al., 1992; Dehmer, 1993; Zheng and Huang, 2017; Inglis et al., 2018).

Acidic bogs are often characterised by a distinct hopanoid assemblage that is associated with the unusual dominance of the C\textsubscript{31} 17α,21β(H)-homohopane (Inglis et al., 2018) (Fig. 5). The dominance of the ‘thermally mature’ C\textsubscript{31} 17α,21β(H)-homohopane over the biological 17β,21β(H) isomer has been observed globally and appears to be strongly regulated by the acidic environment (Quirk et al., 1984; Huang et al., 2015; Inglis et al., 2018).

Using a global database of peats, Inglis et al. (2018) demonstrated that the ratio between the C\textsubscript{31}17α,21β(H) and 17 β,21β(H) homohopane in peat is correlated to pH ($r^2 = 0.64$) and could be used to reconstruct pH within modern and ancient peat-forming environments. So far, the validation of down-core pH reconstructions for this method is limited, but potentially this proxy could provide new insights into past changes in peat pH. For example, Inglis et al. (2018) calculated downcore pH profiles for a number of globally-distributed peat cores ($n = 11$). Most sites exhibit relatively constant pH values within the upper 100 cm and are consistent with relatively stable climate conditions over the last millennium (Crowley, 2000). Changes in pH are also often correlated to other parameters, such as vegetation and hydrology, and Pancost et al. (2003) and McClymont et al. (2008) observe a subtle increase in ββ/(αβ + ββ)
ratios in response to increasing bog surface wetness and associated Sphagnum-
induced acidity. In addition, because the presence of C31 17α,21β(H)-homohopane is
unusual in recent sediments other than acidic peats, Inglis et al. (2018) argue that
low C31 ββ/(αβ + ββ) indices could also be a useful proxy to trace the input of acidic
peat (or eroded lignite) into (marine) sediments.

4.2.2.3 Aromatic hopanes to trace changes in peat hydrology

Biomarkers with a wide range of degrees of aromatization have been identified in
peat (e.g., Del Rio et al., 1992; Dehmer, 1993; Huang et al., 2013b), including
aromatic triterpenoids (Fig. 5). Although aromatic hopanoids are normally not
abundant in recent sediments, a C25 tetraaromatic hopane with an isopropyl side
chain (XXI) was recently identified in the Dajiuhu peat in China (Zheng and Huang,
2017). This compound might derive from diploptene (XVIII). The processes
controlling the aromatization of lipids in peat are complex, but might (partially) be
controlled by hydrological conditions (Huang et al., 2013b). As the occurrence of the
C25 tetraaromatic hopane coincides with a wet period in this peat, Zheng and Huang
(2017) proposed that the presence of aromatic hopanes in peat might reflect peat
hydrology. The application of this method so far is limited, and these lipids are not
abundant. Therefore, thorough validation is required to validate and constrain this
potentially valuable proxy.

4.2.2.4 Stable carbon isotopes (δ13C) of hopanoids to trace changes in wetland
biogeochemistry (methane cycle)

The stable carbon isotopic composition (δ13C) of bacterial hopanoids can also
provide insights into terrestrial methane cycling (Pancost and Sinninghe Damsté,
2003; Yamamoto et al., 2010; Zheng et al., 2014). In modern peat-forming
environments, the δ^{13}C values of C_{31} hopanes (XX) (δ^{13}C of ca. -22 to -26 ‰) are
enriched in ^{13}C relative to co-occurring higher-plant biomarkers such as long-chain
n-alkanes (δ^{13}C of ca. -30 to -35 ‰) and bulk organic matter (δ^{13}C of ca. -30 to -25 ‰) (Pancost et al., 2003; Xie et al., 2004). As such, they have been attributed to a heterotroph ecology in which the source bacteria were consuming ^{13}C-enriched carbohydrates (Pancost et al., 2000b; Pancost et al., 2003). In contrast, C_{27} to C_{30} hopanes/hopenes yield intermediate lower δ^{13}C values (e.g. -30 to -40 ‰), suggesting that in some settings they are derived from a mixed suite of bacterial sources consuming both ^{13}C-enriched carbohydrates and ^{13}C-depleted, methane-derived CO_{2} (van Winden et al., 2010; van Winden et al., 2012; Zheng et al., 2014; Huang et al., 2018).

Long-term hopanoid δ^{13}C records have been reported from several (Chinese) cores spanning the last deglaciation and/or Holocene (e.g., Zheng et al., 2014; Huang et al., 2018). C_{29} and C_{30} hopane δ^{13}C values from central and eastern China exhibit a long-term minimum in δ^{13}C values (up to -50 ‰) during the mid-Holocene (ca. 4 to 7 kyr ago). Low C_{30} hopene δ^{13}C values (up to -55‰) are also obtained from an early Holocene (ca. 10 to 12 kyr ago) peat layer within an Alaskan lake (up to -55‰) (Elvert et al., 2016). These values are lower than any hopanoid δ^{13}C value so far observed in modern peatlands (Pancost et al., 2000a; Pancost and Sinninghe Damsté, 2003; Xie et al., 2004; van Winden et al., 2012; Zheng et al., 2014; Huang et al., 2018) and suggest enhanced methane oxidation during the mid- and early-Holocene. The mechanisms responsible for such ^{13}C-depleted hopanoids remain unclear. However, it appears to be associated with changes in hydrology (Zheng et al., 2015; Elvert et al., 2016), a shift towards nearly neutral pH (Zheng et al., 2015) and/or the development of longer and thicker sedge roots (Zheng et al., 2014).

However, due to the small number of modern and ancient wetlands that have been studied, our understanding of hopanoid δ^{13}C values in peat remains limited. To resolve this, a modern reference database is required.
Besides peat, hopanoid δ^{13}C values have also been obtained from ancient lignites such as the Cobham Lignite in the UK (~ 56 Myr ago; see above). During the onset of the PETM, C_{31} and C_{29} hopanoid δ^{13}C values decrease dramatically (to values < -70 ‰) in response to warm and wet conditions (Pancost et al., 2007). Such depleted δ^{13}C values have yet to be observed in a modern or Holocene peat deposit, but they are consistent with BHP distributions that indicate an intensified methane cycle during the PETM (Talbot et al., 2016a) (See above).

Hopanoid δ^{13}C values have also been obtained from the latest Paleocene and/or earliest Eocene Schöningen lignite (Germany). There, C_{31} hopane δ^{13}C values range between -28 and -33 ‰, comparable to modern-day values, and suggest that an intensified methane cycle is not characteristic for all greenhouse periods and may be limited to extreme events such as the PETM (Inglis et al., 2015).

So far, the application of hopanes and their stable carbon isotopic composition to palaeorecords has been limited (Pancost et al., 2007; Zheng et al., 2014; Inglis et al., 2015; Huang et al., 2018). However, hopanoids have been identified in coal deposits up to the Carboniferous period (Littke and Lo Ten Haven, 1989), and this approach can potentially provide unique new insights into terrestrial methane cycling over the last 360 million years. Future work could seek to reconstruct hopanoid δ^{13}C values across transient, large amplitude climate events (e.g. the Last Glacial Maximum, Paleocene-Eocene Thermal Maximum, Cretaceous-Paleogene boundary, and Oceanic Anoxic Events) where the signal-to-noise ratio is greatest. When coupled alongside three-dimensional earth system models (Beerling et al., 2011), this approach can potentially provide new insights into methane cycling and its role as a positive feedback mechanism, especially when put into the context of a modern reference database.
5. Archaeal lipids

5.1 Archaeol

Archaeol, or \textit{sn}-2,3-di-O-phytanyl glycerol (XXII), is a membrane lipid found near-ubiquitously across the Archaeal domain (Nishihara et al., 1987; Koga et al., 1993; Oger and Cario, 2013). It was first identified in cultures of extreme halophilic archaea using thin layer chromatography and comparison with a synthetic standard (Kates et al., 1966). Currently, most studies detect archaeol in the derivatized polar fraction using GC-MS and characteristic \textit{m/z}'s of 426, 130, 131 (Teixidor and Grimalt, 1992).

The core lipid structure is made up of a glycerol moiety with ether linkages to two C\textsubscript{20} isoprenoidal chains attached at the \textit{sn}−2 and \textit{sn}−3 positions. In its intact biological membrane form, the \textit{sn}−1 carbon is attached to a polar head group consisting of a range of phosphatidyl or glyco-sugar moieties. Although this polar moiety tends to be lost relatively quickly following cell death and lysis (Harvey et al., 1986; Chaves Torres and Pancost, 2016), the core-lipid structure is highly stable and can be preserved on geological timescales (van Dongen et al., 2006).

Structural variations on the core archaeol structure exist amongst certain \textit{Archaea}, helping to maintain membrane structure and function in response to external environmental stress such as elevated temperature, salinity or acidity (Valentine, 2007). Variations include extended-archaeol (Lipp and Hinrichs, 2009), where one or both isoprenoidal chains extend to C\textsubscript{25} rather than C\textsubscript{20}, a macrocyclic-archaeol incorporating a covalent bond between the two isoprenoidal chains, and hydroxy-archaeol (Hinrichs et al., 2000), which incorporates a hydroxyl group on either of the isoprenoid chains. Of these archaeol variants, so far only hydroxy-archaeol has been reported in peats (Pancost et al., 2011).
5.2 Isoprenoidal (iso)GDGTs

Isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs; e.g., XXIII) were first identified in cultures of extremophilic Archaea in the 1970s (De Rosa et al., 1977) but not until the 2000s did it become apparent that isoGDGTs were abundant in mesophilic settings, including peat (Schouten et al., 2000; Weijers et al., 2006b). This breakthrough was largely driven by an advance in analytical techniques. isoGDGTs are relatively high molecular weight compounds (m/z > 1250) and do not elute from classical gas chromatography columns. Originally, isoGDGTs were mainly analysed after (laborious) cleavage of the ether bonds, providing information about the alkyl chains only (De Rosa et al., 1980). With the use of high performance liquid chromatography- atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) in the late 1990s, isoGDGTs could be analysed much more easily in an intact form (Hopmans et al., 2000), including polar lipids (IPLs) that still contain their polar head groups (Sturt et al., 2004). Today most studies use HPLC-APCI-MS (m/z 1302 to 1292), but recent work demonstrated that isoGDGTs can also be analysed by using specialised GC columns and high-temperature gas chromatography flame ionization detection (HT/GC-FID) or mass spectrometry (HT/GC-MS) (Lengger et al., 2018).

A diverse range of Archaea can produce a wide collection of isoGDGTs (Liu et al., 2012; Schouten et al., 2013), but homologues with 0 (XXIII) to 4 cyclopentane moieties, as well as crenarchaeol (XXIV) the homologue with 4 cyclopentane moieties and one cyclohexane moiety (Sinninghe Damsté et al., 2002), are generally the most abundant compounds in mesophilic settings. However, the majority of research on isoGDGTs has focussed on the marine realm and reports of these compounds in peat are relatively sparse.

The concentration of the majority of isoGDGTs increases with depth in peat, especially across the acro/catotelm boundary (Fig. 9). This appears to be consistent across peatlands (e.g., Weijers et al., 2004; Huguet et al., 2010; Coffinet et al.,
This downcore pattern together with the generally low concentration of crenarchaeol in peat and dominance of isoGDGT-0 (XXIII) suggests that isoGDGTs are predominantly produced by anaerobic (potentially methanogenic) archaea in peat, consistent with 16S rDNA results (Basiliko et al., 2003; Hoj et al., 2007).

5.3 Archaeal lipids to trace changes in the abundance of methanogens

A range of archaeal lipids has been used to trace changes in peat biogeochemistry, mainly changes in the abundance of methanogens (methane producers). The most widely used marker is archaeol (Pancost et al., 2011). Whilst archaeol (XXII) has been detected in cultures of different Archaea, it is thought to be most common amongst 7 orders of Euryarchaeota, including methanogens such as Methanosarcinales, Methanopyrales, Methanococcales, Methanobacteriales, and Methanomicrobiales, as well as heterotrophic Halobacteriales and Thermococcales (Liu and Whitman, 2008; Villanueva et al., 2014). This predominance amongst methanogenic Euryarchaeota, which largely dominate the archaeal community in a range of peat types (Urbanová and Bárta, 2014), is consistent with the presence of archaeol in peat from a range of climatic zones (Pancost et al., 2003; Pancost et al., 2011; Zheng et al., 2014), permafrost peatlands (Bischoff et al., 2013), and water-saturated soils (Lim et al., 2012).

Hydroxy-archaeol is also commonly found in peats (Pancost et al., 2011; Zheng et al., 2014), and appears to be produced by a more tightly phylogenetically clustered group than archaeol, made up (predominantly) of methanogens from the order Methanosarcinales (Liu and Whitman, 2008; Lupascu et al., 2014). Hydroxy-archaeol is less stable and breaks down rapidly after cell-lysis, and therefore its presence has generally been interpreted as representing active methanogenic populations, consistent with its lower abundance compared to archaeol and its typical depth distribution (Pancost et al., 2011; Lupascu et al., 2014). However, Zheng et al.,
(2014) observed a coupling in the depth profiles of hydroxy-archaeol and the more recalcitrant archaeol, indicating potential longer-term preservation of hydroxy-archaeol under certain conditions. Similarly, intact archaeol has been putatively assigned as a potential biomarker for living or recently living methanogen biomass in terrestrial soils (Lim et al., 2012). This is supported by the lack of archaeol incorporation into the insoluble organic matter fraction in peat, unlike other compounds, which has been inferred as evidence that it rapidly loses its polar head-group following cell-lysis in peats (Chaves Torres and Pancost, 2016); this is also consistent with the predominance of the more labile phosphatidyl-moieties (Lengger et al., 2012b) amongst archaeol-producing Archaea in peatlands. Therefore, intact-archaeol likely provides a more robust measure of presently living methanogen biomass in peats. One of the potential strengths of quantifying intact-archaeol and/or hydroxy-archaeol as a measure of active total methanogen abundance over conventional DNA approaches (based on the *mcrA* gene) is that it circumvents primer biases introduced during qPCR, which can lead to inaccurate assessment of total methanogen population (McCartney et al., 2013). However, varying concentrations of archaeol per methanogen cell and contributions from other non-methanogenic Archaea may complicate direct archaeol-methanogen biomass interpretations (McCartney et al., 2013).

Pancost et al. (2011) demonstrated that archaeol and hydroxy-archaeol are nearly absent in the oxic acrotelm of four temperate ombrotrophic peats, while these biomarkers are abundant in the anoxic catotelm, with highest concentrations at the depth of the maximum seasonal water table. This pattern is consistent with an origin from anaerobic archaea, likely methanogens. In cultures, the concentration of archaeol is linearly correlated with the concentration of methane (Sunamura et al., 1999). Downcore profiles of archaeol, therefore, could reflect changes in methane cycling and archaeol could serve as a proxy to reconstruct past variations in wetland biogeochemistry (Pancost et al., 2011).
Subsequent studies have used archaeol in peat for this purpose. For example, Zheng et al. (2014) used core-archaeol concentrations and diploptene (XVIII) δ^{13}C values (see section 4.2.2.3) as respective proxies for past methanogenesis and methanotrophy in a peat Holocene palaeoarchive from the Tibetan Plateau. A strong coupling between proxies for peat hydrology and archaeol concentrations revealed an intimate link between the strength of the Asian monsoon system and rates of methanogenesis over the Holocene, with important implications for elucidating the primary drivers of global atmospheric methane concentrations during this period. Similarly, archaeol concentrations have been used to reconstruct changes in the rate of methanogenesis in response to changes in humidity and temperature in permafrost-affected peatlands from the Siberian Arctic during the late Pleistocene and Holocene (Bischoff et al., 2013).

Collectively these studies indicate that archaeol can provide information on the methane cycle, and studies using archaeol have helped to clarify the response of (methanogenic-) Archaea in peatlands, key mediators of the global carbon cycle, to changes in climate and hydrology. As such archaeol can provide important insights into the coupling of climate and wetland methane cycle. However, some uncertainties remain. For example, the relationship between the abundance of archaeol (and its derivatives) and methanogen biomass, as well as the ability of intact-archaeol, hydroxy-archaeol and core archaeol to quantify CH₄ fluxes from modern (and ancient) peatlands needs further research. In order to address this, future work in peatlands should focus on integrating metagenomic and transcriptomic methodologies with precise quantification of the full suite of archaeol derivatives, and comparison of this with CH₄ flux measurements.

The isoGDGTs also appear to have potential in exploring changes in peat biogeochemistry. isoGDGT-0 in peat might predominantly be produced by methanogens (Pancost and Sinninghe Damsté, 2003; Weijers et al., 2004); on the basis of their carbon isotopic composition, they have been further inferred to
predominantly derive from acetotrophic methanogens (Pancost and Sinninghe Damsté, 2003), but this remains to be rigorously explored. isoGDGT-0 is often the most abundant isoGDGT and is produced by a wide range of archaea (Schouten et al., 2013), including methanogens (Koga et al., 1993). In marine and lacustrine sediments a high abundance of isoGDGT-0 relative to crenarchaeol is used to indicate the contribution of methanogens to the lipid pool (e.g., Pancost et al., 2001; Blaga et al., 2009). In peat the relative abundance of isoGDGTs-0 has also been used as a tracer for methanogenic archaea (Zheng et al., 2015).

Lastly, isoprenoidal butanetriol dibiphytantyl glycerol tetraethers (isoBDGTs) have potential to trace changes in peat biogeochemistry. isoBDGTs (XXV) are similar to isoGDGTs, except that one of the two conventional glycerol backbones has been replaced by a butanetriol moiety (Zhu et al., 2014). A high concentration of isoBDGTs was recently identified in the only culturable member of the order of Methanomassiliicoccales, the 7th order of methanogens (Becker et al., 2016). Methanomassiliicoccales have a unique metabolic pathway, using H₂ to reduce methyl-compounds into methane (Dridi et al., 2012). This new pathway appears to form an important part for the methane cycle in wetlands as Methanomassiliicoccales is abundant in peat (Söllinger et al., 2016). As such, isoBDGTs in peat could serve as a specific marker for Methanomassiliicoccales and this biogeochemical pathway. So far isoBDGTs have only been reported in marine sediments (Zhu et al., 2014; Becker et al., 2016), but we find isoBDGTs in many samples of our global peat database. They therefore could provide an additional tool to assess past variations in wetland methane cycling, complementing biomarkers such as archaeol and isoGDGTs-0. Such multi-proxy-based reconstructions in ancient peat and lignite have the potential to provide crucial new insights in peat biogeochemistry during the geological past.
5.4 Crenarchaeol to trace changes in microbial communities and hydrology

Crenarchaeol (XXIV), an isoGDGT with four cyclopentane and one cyclohexane moiety (Sinninghe Damsté et al., 2002), is widespread in mesophilic settings (Hopmans et al., 2004), including peat (Weijers et al., 2004). It is only known to be biosynthesized by ammonia-oxidising Thaumarchaeota (Sinninghe Damsté et al., 2002; Elling et al., 2017). Changes in the abundance of crenarchaeol (detected using m/z 1292 under regular HPLC-APCI-MS conditions) have been used to infer broad temporal changes in the microbial community and peat hydrology (together with other biomarkers, see section 4.2.2.3). The rationale behind this proxy is that the peat water table depth controls the extent of peat that is (partly) oxic (i.e. the peat above the water table). As Thaumarchaeota are aerobic ammonia-oxidizers they live mainly above the water table. Thus, a drier peat with a low water table has more ammonia-oxidising Thaumarchaeota and hence crenarchaeol than a wet peat with a high-water table (flooded peat). Consistent with this, the depth profile of crenarchaeol concentrations in peat is different from other isoGDGTs and it does not increase with depth, suggesting that the majority of production occurs in the oxic acrotelm (e.g., Weijers et al., 2004). Similarly, Thaumarchaeota (and the biomarker crenarchaeol) are more abundant in dry soils (Bates et al., 2010) compared to peat, in which the archaeal community is dominated by methanogens (Urbanová and Bárta, 2014) that do not biosynthesize crenarchaeol. Of the four ACCROTELM sites described earlier, only Butterburn Flow, UK, contains traces of crenarchaeol (<1 ng/g) in some intervals. The lack or low concentration of crenarchaeol in these Sphagnum-dominated, wet ombrotrophic peats is consistent with the hypothesis that crenarchaeol-producing Thaumarchaeota do not thrive in ombrotrophic peats.

So far, the application is limited, but Zheng et al. (2015; 2018) applied this method to two Chinese peat cores that span the Holocene. They showed that
changes in crenarchaeol abundances in these peat profiles are broadly consistent between peatlands and trace other biomarker-based moisture proxies, indicating an increase in moisture content in peats in this region (more rain) from the early to late Holocene.

However, variations in the abundance of crenarchaeol for the top 1 m in the Butterburn Flow peat do not trace variations in the water table, based on testate amoebae (Fig. 10). This could be related to the low concentration of crenarchaeol in these peatlands, but clearly more fundamental proxy validation is needed, especially around the relationship between peat hydrology and archaeal-mediated ammonia oxidation. In this context, drained wetlands could be an ideal test case. A large number of peatlands have been drained in the 19/20th century, a process that is now slowly being reversed at many locations. The draining and subsequent restoration of peat has a dramatic impact on the hydrology of peatlands and therefore these peats could provide a test for the crenarchaeol-based peat hydrology/moisture proxy. Application of this proxy to peats with well characterized dry intervals is also needed to further test whether these intervals coincide with an increase in the concentration of crenarchaeol. In addition, using absolute concentrations of crenarchaeol could be complicated by changes in peat accumulation rates, and determination of crenarchaeol accumulation rates could result in an improved understanding.

5.5 isoGDGTs to reconstruct temperature

In marine sediments (Schouten et al., 2002) as well as lakes (Sinninghe Damsté et al., 2012) and potentially mineral soils (Coffinet et al., 2014; Yang et al., 2016), the degree of cyclization (e.g. reflected in TEX$_{86}$ or ring index) is correlated with temperature, providing the basis for a paleothermometer. However, in a global database of peat, these indices are not significantly correlated with temperature,
likely because of the diverse pool of archaea living in such settings (Naafs et al., 2018b). Thus, the application of the traditional isoGDGT-based paleothermometers to peat appears not to be possible.

However, besides the regular isoGDGTs with up to four cyclopentane moieties, isoGDGT-5 and -6 were recently found in a number of tropical ombrotrophic peats (Naafs et al., 2018b). So far isoGDGTs with more than four cyclopentane moieties had only been found in cultures of extremophiles and thermal hot springs and were suggested to be indicative of extremophilic archaea (Pearson and Ingalls, 2013; Schouten et al., 2013). However, Naafs et al. (2018b) showed that isoGDGT-5 (and -6) is produced in peat growing under mesophilic conditions and, more importantly from a paleoclimate perspective, the relative abundance of isoGDGT-5 in peat depends on temperature and pH. The relative abundance of isoGDGT-5 was calculated as:

\[
\text{(1) isoGDGT} \times 100 \times \frac{\text{(isoGDGT} - 5)}{\text{(isoGDGT} - 1) + \text{(isoGDGT} - 2) + \text{(isoGDGT} - 3) + \text{(isoGDGT} - 5)}
\]

isoGDGT-4 is excluded from this ratio due to the co-elution with the (M+H)^+ + 2 ion of crenarchaeol that also gives m/z 1294 (Weijers et al., 2004).

Naafs et al. (2018b) showed that isoGDGT-5 is absent in peatlands with a pH > 5.1 and/or MAAT < 12 °C and present in trace proportions (<1%) in peatlands with a pH < 5.1 and MAAT between 12°C and 19.5 °C. isoGDGT-5 is only present in significant amounts (>1%) in tropical and ombrotrophic peats with a pH < 5.1 and MAAT > 19.5 °C. This suggests that the presence of isoGDGTs-5 in ancient peat and lignite can be used to identify tropical and ombrotrophic peats in the geological record. So far the application is limited to a number of early Paleogene lignites (Naafs et al., 2018b), and further research is needed to determine whether the abundance of isoGDGT-5 in peat is correlated with temperature when the pH is held
constant, but this approach potentially provides a basis for a tropical terrestrial temperature proxy that does not saturate at 30 °C.

In addition to regular isoGDGTs that contain two alkyl chains, archaea can produce isoGDGTs with a covalent bond between the two alkyl chains; glycerol monoalkyl glycerol tetraethers (GMGTs). GMGTs are also called H-GDGTs because of their structure, although strictly speaking these lipids are not dialkyl (Morii et al., 1998). Similarly, branched H-GDGTs have also been identified (Liu et al., 2012).

Both H-isoGDGTs and H-brGDGTs were recently identified in peat (Naafs et al., 2018a). Using the global peat database (Naafs et al., 2017b), Naafs et al. (2018a) showed that the relative abundance of both H-isoGDGTs and H-brGDGTs relative to regular GDGTs increases (non-linearly) with temperature with the highest relative abundance of H-GDGTs occurring in tropical peatlands. There appears to be no correlation between the abundance of H-GDGTs and peat pH. Although the correlation with temperature was not strong enough to form the basis of a new quantitative temperature proxy, this study demonstrated that past changes in temperature should be accompanied by changes in the relative abundance of H-GDGTs. This method has only been applied to one set of lignites (Naafs et al., 2018a), where it appears that H-GDGTs might be produced in the subsurface during burial. Clearly, more research is needed to determine if subsurface production is important for the production of H-GDGTs and/or whether H-GDGTs can provide additional information about past temperature in peat and lignites.

6. Branched (br)GDGTs

The existence of the enigmatic branched glycerol dialkyl glycerol tetraethers (brGDGTs; e.g. XXVI-XXIX) was first inferred from the release of 13,16-dimethyl-octacosane hydrocarbons via ether bond cleavage (Chappe et al., 1982). Facilitated by HPLC-APCI-MS (Hopmans et al., 2000), they were finally identified in intact form
in a Dutch peat (Sinninghe Damsté et al., 2000). They are typically detected using m/z’s 1050-1018 and are abundant in mesophilic settings, especially terrestrial archives such as peat and mineral soils (Schouten et al., 2000; Schouten et al., 2013). However, their biological source remains the subject of debate and ongoing investigation (e.g., Sinninghe Damsté et al., 2018). Presumably, in living organisms, brGDGTs contain polar head groups, and in peat brGDGTs with glucose, glucoronyl, phosphoglycerol, and phosphohexose head groups having been identified (Liu et al., 2010; Peterse et al., 2011). The head group is lost after the cell dies, although how quickly this happens differs between the classes of IPLs (e.g., Lengger et al., 2012a). For palaeoclimatic studies the fossil core brGDGTs are typically analysed by HPLC-APCI-MS (Hopmans et al., 2016). brGDGTs (XXVI-XXIX) can contain 0 to 2 cyclopentane moieties (indicated by the letters a, b, and c) and 0 to 2 extra methyl groups (indicated by Roman numbers I, II, and III) at the C-5, C-6, or in some cases C-7 position (with a prime and double prime symbol used to denote that the methyl group is at the C-6 or C-7 position, respectively) (Sinninghe Damsté et al., 2000; Weijers et al., 2007; De Jonge et al., 2013; Ding et al., 2016).

Although the source organisms of brGDGTs have yet to be identified, their branched, rather than isoprenoidal, skeleton and glycerol stereochemistry indicates that they are produced by bacteria (Weijers et al., 2006a). Down core peat profiles (Fig. 9) as well as peat incubation studies of IPLs and core brGDGTs indicate an increase at depth, with highest concentrations in the anoxic catotelm (e.g., Weijers et al., 2009; Huguet et al., 2010; Peterse et al., 2011), suggesting that the source organism(s) is/are (facultative) anaerobes. This pattern is consistent with the observation that brGDGTs were around six times more abundant in an anoxic mineral soil CO2 vent compared to the oxic reference site (Oppermann et al., 2010). Compound-specific δ13C values from alkyl moieties of brGDGTs from mineral soils and peat, obtained via chemical cleavage of the ether bonds, is correlated (but more negative) to that of the δ13C value of bulk organic matter, suggesting that brGDGTs
are produced by heterotrophic bacteria (Pancost and Sinninghe Damsté, 2003; Weijers et al., 2010; Colcord et al., 2017). The first analysis of δ^{13}C from intact brGDGTs from mineral soils and lakes in Greenland also support this (Colcord et al., 2017). brGDGT-Ia and its building blocks were identified in strains of acidobacteria (Sinninghe Damsté et al., 2018 and references therein). These are heterotrophic bacteria that are abundant in (Sphagnum) peat (Dedysh et al., 2006), suggesting that these bacteria could be the source of brGDGTs found in peat. However, the strains that contained brGDGTs-Ia did not produce other brGDGTs. In addition, brGDGTs have also been identified in hydrothermal systems where acidobacteria are less common (Lincoln et al., 2013); together with other recent work (Chen et al., 2018; Sinninghe Damsté et al., 2018), this suggests that there are other (heterotrophic) bacteria capable of synthesizing brGDGTs.

Although the source organism is generally assumed to be an anaerobe, the strains of acidobacteria that produced brGDGT-Ia are aerobes and brGDGTs are also produced within the (oxic) water column of lakes and rivers (e.g., De Jonge et al., 2014b). In addition, Huguet et al. (2017) recently used peat incubation and labelling experiments to suggest that IPL and core brGDGTs were produced at a higher rate under suboxic conditions than under anoxic conditions. Thus, the source organism(s) could be facultative aerobes.

Over the last decade, brGDGTs have become an important tool for the palaeoclimate community to quantify climatic variables such as temperature and pH. In the absence of culture data, all brGDGTs-based climatic proxies are grounded on field-based empirical observations only. Although brGDGTs are ubiquitous and found in marine, riverine, and lacustrine sediments, as well as mineral soils, the discussion below focuses explicitly on the application to peat, and by extension lignite.
6.1 brGDGTs to reconstruct mean annual air temperature (MAAT) and pH

Weijers et al. (2007) first demonstrated that the distribution of core brGDGTs can depend on environmental conditions such as temperature and pH. Using a global database of mineral soils (134 samples), they showed that the Cyclization ratio of Branched Tetraethers (CBT) was significantly correlated with soil pH ($R^2 = 0.7$).

$$\text{CBT} = -\log\left(\frac{(l_1b + II_1b + II_2b')}{(l_1a + II_1a + II_2a')}\right) = 3.33 - 0.38 \times \text{pH}$$

CBT decreases at higher pH due to an increase in the relative abundance of brGDGTs with one or two cyclopentane moieties. In addition, with the discovery of 6-methyl brGDGTs (De Jonge et al., 2013) it was shown that the relative abundance of 6- over 5-methyl homologues is also correlated with soil pH with a near absence of 6-methyl brGDGTs in acidic mineral soils (De Jonge et al., 2014a). On the other hand, the Methylation index of Branched Tetraethers (MBT) in mineral soils is correlated with both mean annual air temperature ($R^2 = 0.62$) and pH ($R^2 = 0.37$), leading to the combined MBT/CBT paleothermometer that has a strong relationship with temperature ($R^2 = 0.77$).

$$\text{MBT} = \frac{(l_1a + l_1b + l_1c)}{(l_1a + l_1b + l_1c + II_1a + II_1b + II_1c + II_2a + II_2b + II_2c + IIIa + IIIb + IIIc)}$$

$$= 0.122 + 0.187 \times \text{CBT} + 0.020 \times \text{MAAT}$$

Weijers et al. (2007) speculated that a decrease in cyclopentane moieties and additional methyl branches would increase the packing of the membrane lipids, decreasing membrane proton permeability. However, molecular modelling studies to support this hypothesis are so far lacking. It is particularly intriguing that lower pH is associated with a decrease in cyclization in brGDGTs in mineral soils and peat but an increase in degree of cyclization in isoGDGTs in hot springs (Pearson et al., 2008; Kaur et al., 2015).
When using the original analytical techniques, 5- and 6-methyl penta- and hexamethylated brGDGTs co-elute (De Jonge et al., 2013); therefore, updated analytical techniques and associated novel indices and calibrations are now used. Importantly, these removed the pH dependence for the degree of methylation and associated paleotemperature proxies (De Jonge et al., 2014a). Later studies have expanded the global mineral soil dataset that now consists of 350 samples and developed novel ratios based on the degree of methylation and cyclization of brGDGTs (Naafs et al., 2017a), all highlighting a correlation between the distribution of brGDGTs in mineral soils and pH and MAAT.

6.2 Early applications of brGDGTs to peat

The majority of proxy development and application of the brGDGT-based paleothermometer focuses on mineral soils, but in the last decade the proxy has been applied to peat. The first application to peat was by Ballantyne et al. (2010) using a peat core from the Arctic that is early Pliocene in age. They applied the MBT/CBT mineral soil calibration to demonstrate that Arctic temperatures were significantly warmer than present during the Pliocene. Crucially, the reconstructed MBT/CBT-based temperatures were identical to two other temperature proxies (tree rings and the coexistence approach of vegetation) from the same samples, suggesting that the MBT/CBT proxy can be applied to ancient peat to quantify past temperatures. The first attempt to explore whether brGDGTs in a modern peat reflect temperature was undertaken by Weijers et al. (2011) using a 6 m long peat core from the French Jura. Using the MBT/CBT mineral soil calibrations they demonstrate that: i) reconstructed MAAT at the top of the peat is 5-10 °C higher than instrumental mean annual temperatures for the location, ii) the majority of brGDGTs at depth are fossil and not derived from extant biomass, iii) down-core changes in CBT coincide with changes in vegetation from a fen to an acidic sphagnum-peat, iv) the resultant
large changes in MBT/CBT at depth suggested that the temperature proxy is sensitive to changes in peat trophic status, and v) peat-specific temperature proxies and calibrations are needed before brGDGTs can be used with confidence.

Although this study clearly demonstrated the potential of this approach, the application of brGDGTs to peat in the following years was very limited. One of the few exceptions was the investigation of a peatland from the French Jura (Huguet et al. (2013), which demonstrated a change in brGDGT distribution in response to short-term warming experiments, highlighting that the brGDGT distribution in peat responds quickly to changes in temperature. In addition, Nichols et al. (2014) analysed brGDGTs in an Alaskan peat core characterized by changes in vegetation. These authors showed that the reconstructed pH in the top of the peat was similar to that of rainwater in the region and that changes in vegetation (from sedge to sphagnum) coincided with a change in reconstructed pH. In addition, downcore changes in MBT/CBT-based temperatures broadly coincide with periods of glacier advance and retreats, together further highlighting the potential for the application of brGDGT-based proxies to peat. However, without peat-specific calibrations, the application to peat remained limited.

6.3 Peat-specific pH and temperature calibrations and first applications

To develop global peat specific temperature and pH proxies and calibrations for brGDGTs, a global database consisting of 470 samples from 96 different peatlands was compiled (Naafs et al., 2017b). This study demonstrated that as was previously seen in mineral soils, the degree of methylation of 5-methyl brGDGTs (reflected in the MBT$_{5me}$ index) was significantly correlated with temperature ($R^2 = 0.76$), whereas the degree of cyclization of a specific set of 5- and 6-methyl brGDGTs was correlated with pH ($R^2 = 0.58$).

$$\text{MBT}_{5me} = \frac{(Ia + Ib + Ic)}{(Ia + Ib + Ic + IIa + IIb + IIc + IIIa)} = 0.44 + 0.02 \times \text{MAAT}$$
Interestingly, the slope of the peat-specific temperature calibration is identical to that observed originally between MBT and temperature for the mineral soil dataset (Weijers et al., 2006a), despite other work showing a strong moisture control on the brGDGT distribution in Chinese soils (Dang et al., 2016). Although the calibrations are slightly different, the overall brGDGT response to temperature is similar in mineral soils and peat, suggesting a common bacterial source. In contrast, the correlation observed in lakes appears to be different (see Fig. 11). This is potentially related to the fact that brGDGT production in lakes predominantly occurs aerobically, whereas in mineral soils and especially peat the majority of production likely occurs anaerobically or in low-oxygen conditions. The implications are that care has to be taken when applying MBT$^5_{\text{sme}}$ calibrations across lithological changes (e.g. from lake to peat) as this might lead to artificial changes in reconstructed temperature.

Because of the error of the peat-specific calibration ($\pm 4.7 \, ^\circ C$) this proxy is likely not suitable to reconstruct small ($< 2 \, ^\circ C$) changes in temperature; hence, application to the late Holocene (last 2,000 yrs), when temperature variations likely were small, should be done with caution. However, the first applications to the early Holocene and last glacial indicate that this method can provide novel insights into terrestrial temperature changes (Zheng et al., 2017; Zheng et al., 2018). For example, Zheng et al. (2017) applied this method to the Hani peat that spans the last 16 kyr. They showed that during the Last Glacial, terrestrial climate in NE China cooled much more compared to that seen in marine records, indicating the influence of Siberian air masses in the region brought by the Westerlies. The Hani temperature record shows a high-resolution deglacial temperature pattern that documents the known millennial-scale climate events such as the Bølling-Allerød and Younger-Dryas, highlighting that this method can be applied in peats to provide detailed insights into terrestrial temperatures across the last deglaciation.
Although the soil calibrations had been applied to lignite (fossilized peat) (Weijers et al., 2011; Inglis et al., 2017), Naafs et al. (2018b) recently for the first time applied the peat-specific calibration to lignites. Using various early Paleogene lignites they showed that brGDGT-based temperatures were 5-10 °C higher than other terrestrial proxy estimates, consistent with sea surface temperature estimates from this time period. These studies provide a glimpse of the potential of brGDGTs in peat and lignite to revolutionize our understanding of terrestrial temperatures during the Cenozoic, especially when combined with other types of GDGTs whose distribution in peat appears to depend on temperature (see section 5.5).

However, the application to peat and lignite is still embryonic and further work is required. First, brGDGT-based based temperatures should be compared with other proxy records from the same peat core to test whether the brGDGTs follow other more established methods and whether the quantitative estimates are robust (although there are very few other quantitative temperature proxies that can be applied to peat). In addition, in the absence of culturable brGDGT producing bacteria, incubation experiments at different temperatures could further investigate the influence of temperature on the brGDGT distribution in peat. Finally, for lignites the influence of subsurface production and changes in thermal maturity on the brGDGT distribution should be properly investigated. In laboratory experiments the degree of cyclization of brGDGTs is influenced by thermal maturation (Schouten et al., 2013), but whether it influences the degree of methylation of 5-methyl brGDGTs, those that are used to calculate MBT'5me, is currently not well constrained.

7. Conclusions

Recent advances in the use of plant, bacterial, and archaeal biomarkers mean that we can now reconstruct key-aspects of past dynamics of peatlands on timescales ranging from the Holocene to Cenozoic. Below we summarize the main conclusions.
1. Higher-plant derived \(n \)-alkanes are one of the most widely used compounds and changes in their distribution and stable isotopic composition are relatively well-studied. We demonstrate that despite a global-scale relationship, care should be taken in relating changes in \(n \)-alkane carbon preference index (CPI) to temperature alone; this is largely due to the lack of clarity on the underlying mechanism for this relationship, e.g. temperature controls on vegetation or microbially mediated degradation.

2. The widely used average chain length (ACL) of \(n \)-alkanes in peat is poorly correlated to climatic parameters such as temperature, potentially due to the nature of peat-forming vegetation. However, it could be indicative of temperature in \textit{Sphagnum}-dominated peats and if changes in vegetation can be excluded. We find no evidence that indicate that changes in redox conditions, vegetation, or moisture significantly influence the ACL in peat.

3. The \(n \)-alkane and \(n \)-alkan-1-ol distributions, especially the ratio of high- to mid-chain \(n \)-alkanes can provide information about past changes in vegetation, complementing macrofossil approaches. For example, the \(\text{C}_{23}/\text{C}_{31} \) \(n \)-alkane ratio can track changes in the abundance of \textit{Sphagnum} – despite being influenced by other factors.

4. Use of occurrence and/or distribution of other higher-plant lipids (e.g. \(n \)-alkan-2-ones, triterpenes, etc) as specific vegetation markers is complicated as sources (e.g. specific type of vegetation) and (down-core) controls on distribution are poorly constrained. These proxies need proper proxy validation, for example by creating a modern reference database of lipids produced by a range of peat vegetation.
5. Peat δ^{13}C$_{n}$-alkane values have multiple controls but can be used to reconstruct past changes in peat vegetation and hydrology (e.g., distinguish between Sphagnum mosses and macrophytes). This holds especially for C$_{23}$ alkane and over periods of significant climate change (e.g. deglaciation).

6. Controls on δ^2H of long-chain n-alkanes in peat are complex. It varies significantly between vegetation type and we urge for caution with the interpretation of δ^2H of long-chain n-alkanes in peat as a pure hydrology proxy.

7. Additional ground-truthing work needed to test if branched n-alkan-1-ols (BNA$_{15}$ proxy) can be used as quantitative temperature proxy. We demonstrate that degree of branching is higher in tropical compared to high-latitude peat, consistent with work from Chinese soils, but application of existing calibration results in unrealistic temperature. Global calibration dataset required.

8. Stanol/sterol ratio holds potential to (qualitatively) interrogate past changes in ombrotrophic bog redox state, especially in combination with other proxies (e.g. testate amoeba). However, experimental interrogation of its veracity and determination of the mechanism behind the proxy are needed.

9. Degree of C$_{31}$ hopane isomerization has potential to reconstruct past changes in peat pH. However, this approach should only be applied to interrogate large amplitude and long-term pH variation. The degree of C$_{31}$ hopane isomerization could also be a useful proxy to trace the input of acidic peat (or eroded lignite) into (marine) sediments.

10. Hopanoid δ^{13}C values have potential to reconstruct changes in peat biogeochemistry (i.e. aerobic methanotrophy). However, due to the small number of (modern) peatlands that have been studied and the lack of consistency
between target compounds, our understanding of hopanoid δ^{13}C values and therefore the CH$_4$ cycle remains limited. To resolve this, a modern reference database is required.

11. Changes in archaeol abundance can provide information on changes in methanogen community and hence operation of the methane cycle in the past. This can be complemented by changes in the abundance of isoGDGTs and potentially changes in the abundance of isoBDGTs, the latter potentially providing insight into the contribution of 7th order methanogens. Although archaeol and isoGDGT-based proxies appear to have utility, exhibiting anticipated responses to downcore changes in water table level, they approaches require thorough proxy validation.

12. Crenarchaeol has potential to be used to trace changes in peat hydrology as Thaumarchaeota are more abundant in dry soil, but fundamental proxy validation (e.g. across peat hydrology gradient or using incubation experiments with different water-logged conditions) is needed.

13. isoGDGT-5 and H-GDGTs have potential to provide (qualitative) estimates of past temperature with an increase in degree of cyclization and formation of “H-links” at higher temperature. But as these are new proxies, additional controls on their relative distribution should be explored, e.g. using culture and or incubation experiments.

14. Changes in the degree of methylation and cyclization of brGDGTs likely provide the most robust temperature and pH proxies for peats. However, a better understanding of the source organism of these lipids is needed.
Building on this we envision that in the next 10 years, multi-proxy biomarker-based studies will provide a holistic understanding of how this crucial part of the climate system has responded to past changes in climate, which may ultimately help to assess how peatlands will respond to future anthropogenic climate change.

8. Acknowledgements

We thank Phil Meyers and an anonymous reviewer for their constructive comments. The core of this research was funded through the advanced European Research Council (ERC) grant “the greenhouse earth system” (T-GRES, project reference 340923), awarded to RDP. We also acknowledge the ACCROTELM Project, funded by the European Commission Framework V under Contract Number EVK2-CT-2002-00166. BDAN also received funding through a Royal Society Tata University Research Fellowship. RDP and RPE acknowledge the Royal Society Wolfson Research Merit Awards for additional funding. JB is supported by a NERC GW4+ Doctoral Training Partnership studentship from the Natural Environment Research Council (NE/L002434/1) and is thankful for the support and additional funding from CASE partner, Elementar UK Ltd.

9. References

Chambers, F., Magny, M., 2010. Peatland archives of late-Holocene climate change in northern Europe. *PAGES News* 18, 4-6

Ficken, K.J., Barber, K.E., Eglinton, G., 1998. Lipid biomarker, δ^{13}C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia. Organic Geochemistry 28, 217-237, doi: 10.1016/S0146-6380(00)00081-4

chemical ionization mass spectrometry. Rapid Communications in Mass
Spectrometry 14, 585-589, doi: 10.1002/(SICI)1097-
0231(20000415)14:7<585::AID-RCM913>3.0.CO;2-N
Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2016. The effect of improved
Hopmans, E.C., Weijers, J.W.H., Schefuß, E., Herfort, L., Sinninghe Damsté, J.S.,
based on branched and isoprenoid tetraether lipids. Earth and Planetary
Huang, W.-Y., Meinschein, W.G., 1979. Sterols as ecological indicators. Geochimica et
Paleotemperature variability in central China during the last 13 ka recorded
by a novel microbial lipid proxy in the Dajiuhu peat deposit. The Holocene 23,
1123-1129, doi: 10.1177/0959683613483617
of n-alkane molecular distributions and δ2H values in surface peats across the
monsoon region of China. Palaeogeography, Palaeoclimatology,
Palaeoecology 461, 77-86, doi: 10.1016/j.palaeo.2016.08.011
Huang, X., Pancost, R.D., Xue, J., Gu, Y., Evershed, R.P., Xie, S., 2018. Response of
carbon cycle to drier conditions in the mid-Holocene in central China. Nature
Communications 9, 1369, doi: 10.1038/s41467-018-03804-w
Occurrence of diploptene in moss species from the Dajiuhu Peatland in
southern China. Organic Geochemistry 41, 321-324, doi:
10.1016/j.orggeochem.2009.09.008
Comparison of free lipid compositions between roots and leaves of plants in
the Dajiuhu Peatland, central China. Geochemical Journal 45, 365-373, doi:
10.2343/geochemj.1.0129
Huang, X., Xue, J., Guo, S., 2012a. Long chain n-alkanes and their carbon isotopes in
lichen species from western Hubei Province: implication for geological
records. Frontiers of Earth Science 6, 95-100, doi: 10.1007/s11707-012-0300-8
influence on early diagenesis of plant triterpenes in the Dajiuhu peatland,
central China. Geochimica et Cosmochimica Acta 123, 106-119, doi:
10.1016/j.gca.2013.09.017
wetness conditions on Sphagnum lipid composition in the Erxianyan
peatland, central China. Organic Geochemistry 44, 1-7, doi:
10.1016/j.orggeochem.2011.12.005
Environmental factors affecting the low temperature isomerization of
homohopanes in acidic peat deposits, central China. Geochimica Et
Cosmochimica Acta 154, 212-228, 10.1016/j.gca.2015.01.031

mass spectrometry detection. Organic Geochemistry 121, 10-21, doi:
10.1016/j.orggeochem.2018.03.012

Lim, K.L.H., Pancost, R.D., Hornibrook, E.R.C., Maxfield, P.J., Evershed, R.P., Soils,
A.A.I.o.M.i.W.-S., 2012. Archaeol: An Indicator of Methanogenesis in Water-

bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City
Hydrothermal Field. Organic Geochemistry 60, 45-53, doi:
10.1016/j.orggeochem.2013.04.010

Lipp, J.S., Hinrichs, K.-U., 2009. Structural diversity and fate of intact polar lipids in
marine sediments. Geochimica et Cosmochimica Acta 73, 6816-6833, doi:
10.1016/j.gca.2009.08.003

Littke, R., Lo Ten Haven, H., 1989. Palaeoecologic trends and petroleum potential of
Upper carboniferous coal seams of western Germany as revealed by their
petrographic and organic geochemical characteristics. International Journal
of Coal Geology 13, 529-574, doi: 10.1016/0166-5162(89)90106-7

Identification of polar lipid precursors of the ubiquitous branched GDGT
orphan lipids in a peat bog in Northern Germany. Organic Geochemistry 41,
653-660, doi: 10.1016/j.orggeochem.2010.04.004

Liu, X.-L., Summons, R.E., Hinrichs, K.-U., 2012. Extending the known range of
glycerol ether lipids in the environment: structural assignments based on
tandem mass spectral fragmentation patterns. Rapid Communications in
Mass Spectrometry 26, 2295-2302, doi: 10.1002/rcm.6355

Liu, Y., Whitman, W.B., 2008. Metabolic, Phylogenetic, and Ecological Diversity of the
Methanogenic Archaea. Annals of the New York Academy of Sciences 1125,
171-189, doi: 10.1196/annals.1419.019

source of n-alkanes and n-alkan-2-ones in a 6000cal. yr BP Sphagnum-rich
temperate peat bog (Roñanzas, N Spain). Organic Geochemistry 57, 7-10, doi:
10.1016/j.orggeochem.2013.01.006

Biomarkers in the Discontinuous Permafrost Zone of Stordalen, Sweden.

decadally resolved records from north-west European peat bogs show rapid
climate changes associated with solar variability during the mid–late

McCartney, C.A., Bull, I.D., Dewhurst, R.J., 2013. Chemical markers for rumen
methanogens and methanogenesis. Animal 7, 409-417, doi:
10.1017/S1751731113000694

McClymont, E.L., Bingham, E.M., Nott, C.J., Chambers, F.M., Pancost, R.D., Evershed,
R.P., 2011. Pyrolysis GC–MS as a rapid screening tool for determination of
peat-forming plant composition in cores from ombrotrophic peat. Organic
Geochemistry 42, 1420-1435, doi: 10.1016/j.orggeochem.2011.07.004

McClymont, E.L., Mauquoy, D., Yeloff, D., Broekens, P., van Geel, B., Charman, D.J.,
Pancost, R.D., Chambers, F.M., Evershed, R.P., 2008. The disappearance of
Sphagnum imbricatum from Butterburn Flow, UK. The Holocene 18, 991-1002, doi: 10.1177/0959683608093537

Sinninghe Damsté, J.S., Ossebaar, J., Schouten, S., Verschuren, D., 2012. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX\textsubscript{86} and MBT/CBT palaeotemperatures from an equatorial African

deposition linked to westerly wind shifts in southern South America. *Scientific Reports* 5, 11670 doi: 10.1038/srep11670

Figure legends

Fig. 1; *n*-alkane distribution of a sample from A) *Sphagnum*-dominated peat from the Harz mountains in Germany, B) Graminoid-dominated peat from the Everglades in the USA, and C) *Ericaceae*-dominated peat from Zalama in Spain. ACL = average chain length, CPI = carbon preference index.

Fig. 2; Correlation between A) the carbon preference index (CPI) and B) the average chain length (ACL) of long-chain *n*-alkanes in a global distribution of peats (insert shows location of peat). Peats are separated into four main vegetation types: woody
angiosperms (red diamonds), woody gymnosperms (green triangles), graminoids (blue circles), and Sphagnum (purple squares).

Fig. 3; Downcore profiles of A) macrofossil distribution (Mauquoy et al., 2008), B) water table depth based on testate amoeba (Mauquoy et al., 2008), and C) humification index together with D) the average chain length (ACL) and E) the carbon preference index (CPI) of long-chain \(n\)-alkanes for the top 100 cm of Butterburn Flow peat from the UK (this study).

Fig. 4; Compilation of all published \(\delta^{13}\text{C}\) of A) \(C_{23}\) (blue circles), B) \(C_{25}\) (pink diamonds), and C) \(C_{29}\) \(n\)-alkane (green squares) from a range of peat-forming vegetation (Ficken et al., 1998; Xie et al., 2004; Mead et al., 2005; Aichner et al., 2010; Brader et al., 2010; Huang et al., 2010; van Winden et al., 2010; Huang et al., 2012a).

Fig. 5; GC-MS chromatogram of the apolar fraction of a peat sample from China from below the acro-/catotelm boundary. A) total ion chromatogram (TIC), B) \(m/z\) 71 highlighting the occurrence of \(n\)-alkanes, and C) \(m/z\) 191 highlighting the occurrence of hopanes and triterpanoids. 2-Me. Diplop. = diploptene methylated at the C2 position (tentative).

Fig. 6; Partial GC-MS mass chromatogram (\(m/z\) 285) of a sample from a tropical (Sabangau - top) compared to a high-latitude peat (Stordalen - bottom), indicating a higher abundance of branched \(C_{15}\) \(n\)-alkan-1-ols (IV & V) over the non-branched homologue (VII) at higher mean annual air temperature (MAAT).

Fig. 7; Total ion chromatogram (TIC) of the polar fraction of a peat sample from China from below the acro-/catotelm boundary.
Fig. 8; Downcore profiles of water table depth based on testate amoeba (Mauquoy et al., 2008), humification index, and archaeol concentrations (Pancost et al., 2011) together with stanol:Δ5-sterol ratio for four peatlands (this study): Butterburn Flo (GB), Bissendorfer Moor (DE), Ballyduff Bog (IR), and Kontolanrahka (FI). Blue shading represents part of the peat that occasionally is above the water table.

Fig. 9; Downcore profiles of concentrations of br-, iso-, and H-isoGDGTs for four peatlands (this study): Kontolanrahka (FI), Butterburn Flo (GB), Bissendorfer Moor (DE), and Ballyduff Bog (IR). Blue shading represents part of the peat that occasionally is above the water table.

Fig. 10; Downcore profiles of A) water table depth based on testate amoeba (Mauquoy et al., 2008) and B) concentration of crenarchaeol for the top 100 cm of Butterburn Flow peat from the UK (this study).

Fig. 11; Modified index of methylation of branched tetraether with C5 methylation (MBT’5me) versus mean annual air temperature for a global database of peat (black circles) (Naafs et al., 2017b), compilation of mineral soils (orange squares) (Naafs et al., 2017a), and African lakes (green diamonds) (Russell et al., 2018).
A) *Sphagnum* peat (5 cm depth)
ACL = 30.2
CPI = 27.2

B) Graminoids peat (0-2 cm depth)
ACL = 28.8
CPI = 7.3

C) *Ericaceae* peat (6-7 cm depth)
ACL = 30.5
CPI = 15.7
<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Species</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnopsida</td>
<td>Sphagnales</td>
<td>S. capillifolium</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. capillifolium</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. fuscom</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. palustre</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. palustre</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. palustre</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. majus</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. magellanicum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. magellanicum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. magellanicum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cupidatum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. fallax</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. fallax</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. rubellum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. rubellum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. fuscum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. capillifolium</td>
<td>Moss</td>
</tr>
<tr>
<td>Bryopsis</td>
<td>Grimmiales</td>
<td>R. lanuginosum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. arbuscula</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. palustre</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramalina intermediella</td>
<td>Lichen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramalina intermediella</td>
<td>Lichen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. islandica</td>
<td>Lichen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. islandica</td>
<td>Lichen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. uncials</td>
<td>Lichen</td>
</tr>
<tr>
<td>Lecanoromycetes</td>
<td>Lecanorales</td>
<td>P. commune</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. tomentosa</td>
<td>Moss</td>
</tr>
<tr>
<td>Polytrichopsis</td>
<td>Polytrichales</td>
<td>P. commune</td>
<td>Moss</td>
</tr>
<tr>
<td>Lycopodiopsida</td>
<td>Lycopodiaceae</td>
<td>H. selago</td>
<td>Vascular plant</td>
</tr>
<tr>
<td>Charophyceae</td>
<td>Charales</td>
<td>Chara sp.</td>
<td>Submerged algae</td>
</tr>
<tr>
<td>Eudicots</td>
<td>Gentianales</td>
<td>V. villosa</td>
<td>Shrub</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. pyrena</td>
<td>Shrub</td>
</tr>
<tr>
<td></td>
<td>Malpigiales</td>
<td>H. revolutum</td>
<td>Moss</td>
</tr>
<tr>
<td></td>
<td>Saxifragales</td>
<td>Myriophyllum spicatum</td>
<td>Submerged macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myriophyllum spicatum</td>
<td>Submerged macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultricularia sp</td>
<td>Submerged macrophyte</td>
</tr>
<tr>
<td></td>
<td>Lamiales</td>
<td>Hippuris vulgaris</td>
<td>Emergent macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hippuris vulgaris</td>
<td>Emergent macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hippuris vulgaris</td>
<td>Emergent macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chara sp</td>
<td>Submerged algae</td>
</tr>
<tr>
<td>Monocots</td>
<td>Poales</td>
<td>C. bigelowi</td>
<td>Sedge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eleocharis cellulosa</td>
<td>Emergent sedge</td>
</tr>
<tr>
<td></td>
<td>Alismatales</td>
<td>Potamogeton pectinatus</td>
<td>Submerged macrophyte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ruppia maritima</td>
<td>Submerged macrophyte</td>
</tr>
</tbody>
</table>

Chart A: \(\delta^{13}C \) for \(C_{23} \) n-alkanes

<table>
<thead>
<tr>
<th>Type</th>
<th>(-45)</th>
<th>(-40)</th>
<th>(-35)</th>
<th>(-30)</th>
<th>(-25)</th>
<th>(-20)</th>
<th>(-15)</th>
<th>(-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lichen</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Vascular</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Submerged</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Chart B: \(\delta^{13}C \) for \(C_{26} \) n-alkanes

<table>
<thead>
<tr>
<th>Type</th>
<th>(-45)</th>
<th>(-40)</th>
<th>(-35)</th>
<th>(-30)</th>
<th>(-25)</th>
<th>(-20)</th>
<th>(-15)</th>
<th>(-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lichen</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Vascular</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Submerged</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Chart C: \(\delta^{13}C \) for \(C_{29} \) n-alkanes

<table>
<thead>
<tr>
<th>Type</th>
<th>(-45)</th>
<th>(-40)</th>
<th>(-35)</th>
<th>(-30)</th>
<th>(-25)</th>
<th>(-20)</th>
<th>(-15)</th>
<th>(-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lichen</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Vascular</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Submerged</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
A)

B)

C)

Retention time (min.)

Intenstity

m/z 71

m/z 191

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Sabangau (MAAT = 26.5 °C)
BNA$ _{15} = 2.55$

Stordalen (MAAT = -1.3 °C)
BNA$ _{15} = 0.36$