The influence of the solvent’s mass on the location of the dividing surface for a model Hamiltonian

R. Garcia-Meseguera, B.K. Carpenterb,*, S. Wigginsa,*

a School of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, United Kingdom
b School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom

HIGHLIGHTS

• Dynamics of a model Hamiltonian representing solvent-solute repulsion are explored.
• Transition State dividing surface (DS) is located as a function of reduced mass of the model solvent.
• The DS can be very far from the saddle point on the PES when the reduced mass of the model solvent is large.
• The exact DS is sampled and trajectories initiated from it is compared with those from an approximate DS.
• The conventional TS can provide a very poor basis for calculating the reaction rate constant.

ARTICLE INFO

Keywords:
Dynamical systems
Dividing surface
Reactions in solution
2019 MSC:
00-01
99-00

ABSTRACT

The Transition State dividing surface is a key concept, not only for the precise calculation of the rate constant of a reaction, but also for the proper prediction of product ratios. The correct location of this surface is defined by the requirement that reactive trajectories do not recross it. In the case of reactions in solution the solvent plays an important role in the location of the dividing surface. In this paper we show with the aid of a model Hamiltonian that the effective mass of the solvent can dramatically change the location of the dividing surface.

1. Introduction

Finding the location of Dividing Surfaces (DSs) in chemical reactions has been the focus of many theoretical studies both for reactions in solution and in vacuum. Of particular interest is the DS, characterized as a hypersurface in phase space, which divides the reagents from products and has the property that trajectories cross it only once before entering a local minimum on the Potential Energy Surface (PES). The importance of this DS is that Transition State Theory calculates the rate constant as the flux of trajectories going through it. Of course, finding the exact DS is not an easy task for reactions of polyatomic molecules and could even be technically impossible for reactions in solutions.

There are several methodologies that try to approximate this DS, as discussed elsewhere [1–6]. These are, in principle, good approximations that rely solely on information obtained in configuration space and that, with the aid of corrections [7–10], have delivered accurate results in the calculation of the reaction rate constant of many different chemical processes. However, as discussed in [11], not every effect can be explained with configuration-space models. One of these effects, which we have called the inertial barrier, arises when changes in shape of a reacting solute are resisted by the solvent because of a timescale mismatch between the solute dynamics (typically 100 fs for transit from a PES saddle point to the next local minimum, in vacuo) and solvent dynamics (typically 1–10 ps, and sometimes much longer, for relocation of solvent molecules in the first shell around the reacting solute) [12–20]. We have previously mentioned a 2 Degree of Freedom (DoF) model that mimics this effect in [11], and in this paper we explore its dynamics in detail.

The construction of the DS for 2 DoF systems using the Lyapunov family of unstable POs was presented in a series of papers by Pollak, Pechukas, and Child in the late 1970s to early 1980s [21–25]. The resulting Periodic Orbit Dividing Surface (PODS) is a hypersurface in phase space arising from the unstable PO. It has been shown to have the required no-recrossing properties described above. Of particular interest was the recognition that as the total energy of trajectories increased, the location of the PODS would change, and that, in general, its

*Corresponding authors.
E-mail addresses: carpenterb1@cardiff.ac.uk (B.K. Carpenter), S.Wiggins@bristol.ac.uk (S. Wiggins).

https://doi.org/10.1016/j.cpletx.2019.100030

Available online 22 April 2019
2590-1419/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
projection onto the PES did not need to pass through the index one saddle point that is considered to be the location of the Transition Structure in many chemical models. In the present paper, we emphasize that it is not only energy which can cause the PODS to move, but at least in some models, its location may also be mass dependent. This feature is of particular relevance to the solvent-derived inertial barrier mentioned above.

The structure of this paper is as follows: in Section 2, we introduce a model potential energy function that approximates the interaction between a reactive system and a solvent and we calculate its Intrinsic Reaction Coordinate (IRC) for different values of the reduced mass of the solvent-like part of the model. In Section 3 we compute the PODSS and show how they vary with the reduced mass of the model solvent. In Section 4 we sample the DSs and compute transit times to the product mentioned above.

3. Periodic orbit dividing surface

One of the reasons for choosing this system was the relative ease on computing the periodic orbits that define the PODSs. These calculations (and all the ones that will follow) were done at an energy of 3.691966889, i.e. slightly above the energy of the saddle point.

In order to understand the properties of the trajectories that depart from the DS we need to sample its points in phase space. The procedure, applicable to a 2 DoF Hamiltonian system, selects points on a 2D surface with fixed total energy (E), where the periodic orbit forms the one dimensional boundary of the DS. The algorithm is as described in [26,27]:

1. Locate an unstable PO.
2. Project the unstable PO into configuration space, which gives a curve in configuration space.
3. Choose points on the curve \((x_i, y_i)\) for \(i = 1, N\), where \(N\) is the desired number of points. The points are spaced uniformly according to distance along the PO.
4. For each point \((x_i, y_i)\) determine \(p_{\text{max}, i}\) by solving for \(x\):
 \[
 H(x_i, y_i, p_{\text{x}}, 0) = \frac{p_{\text{x}}^2}{2\mu_x} + V(x_i, y_i) = E
 \]

5. Note that solution of this equation requires \(E - V(x_i, y_i) \geq 0\), and there will be two solutions, \(\pm p_{\text{max}, i}\).
6. For each point \((x_i, y_i)\) choose points \(p_j\) for \(j = 1, K\), with \(p_{\text{x}, j} = -p_{\text{max}, i}\) and \(p_{\text{y}, j} = p_{\text{max}, i}\) and solve the equation \(H(x_i, y_i, p_{\text{x}, j}, p_{\text{y}, j}) = E\) to obtain \(p_{\text{y}, j}\).

The geometrical structure of the DS sampled in this manner is a one parameter family of circles. The parameter defining the family is given by the distance along the projection of the PO onto the configuration space from Steps 1–3 in the algorithm above, and the momentum-space circles are given by the following equation obtained from the Hamiltonian:

\[
\frac{p_{\text{x}, j}^2}{2\mu_x} + \frac{p_{\text{y}, j}^2}{2\mu_y} = E - V(x_i, y_i)
\]

The geometry of this one parameter family of circles depends on the nature of the projection of the PO into configuration space. In this particular case the PO projections are arcs where a configuration space point on the projection of the PO moves back and forth along the arc. This means that the endpoints of the arc are turning points with \(p_{\text{x}} = p_{\text{y}} = 0\), where the circles defined by Eq. (3) shrink to points. This implies that the geometry of the one parameter family of circles defines a 2D sphere (see Fig. 4 bottom).

In order to follow steps 1 and 2 of the sampling algorithm, it was necessary to fit functions to the POs. These functions are expressed as

\[
\begin{bmatrix}
321.904484 \\
-995.713452 \\
1118.689573 \\
-537.856726 \\
92.976121
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
c
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
0.01
\end{bmatrix}
\]

\[
r_5 = z_1 - z_2, \quad r_6 = z_3 - z_4, \quad \mu_1 = \frac{m_1}{2}, \quad \mu_2 = \frac{m_2}{2}
\]

Fig. 1. Schematic representation (left) and definitions (right) of the model system used in our study.

Intrinsic Reaction Coordinates (IRCs), which are the steepest-descent paths down from the saddle point, in mass-weighted coordinates (see Fig. 3). As can be seen, at the lowest reduced mass for the bath oscillator, the IRC looks like a “normal” minimum-energy reaction path from one well to the other, through the saddle point. However, as the reduced mass of the bath oscillator is increased, it is apparent that system and bath contributions to the IRC are separating, until at \(\mu_x = 100\), they look almost completely decoupled.

Interestingly, though, despite the very different appearances of the IRCS, the potential energy profiles plotted along the IRCS, but expressed only as a function of \(r_i\) look very similar to each other and, in relative-energy terms, quite similar to the system-only potential in Fig. 2 (see Fig. 3). In other words, the differences in system behavior as a function of \(\mu_2\) would be masked if one looked only at the evolution of the potential as a function of \(r_i\).
Also, by the chain rule:

\[\frac{dr}{dt} = \frac{df}{dr} \frac{dr}{dt} \]

Hence the fitting function must satisfy the condition that:

\[p = \frac{df}{dr} \frac{dr}{dt} \]

and so the parameters of the functions were optimized in order to fit positions and momenta simultaneously. Each fitting function was a sum of exponentials:

\[r_2 = c_0 + \sum_{i=1}^{5} c_{2i-1} e^{-(r_1-b)} \]

In Fig. 4 (top) we can see the projection of the calculated PODSs in configuration space. Fig. 4 also includes two approximations to the DS explained in the caption and shows how the three of them respond as \(\mu_2 \) changes. It can be seen that, for low reduced masses, the approximate DSs are close to the PODS. That is because the bath can rapidly adapt to the position of the reactive system. However, as \(\mu_2 \) increases the PODS starts to curve and to displace from the approximate DSs, moving closer to the product well.

From the sampled trajectories we can measure the time taken to reach a determined region (transit time), in this case the PES minimum identified as the product well. Then we can perform the same calculation but with trajectories starting on the DS defined only with \(n_i \) (the blue line in Fig. 4). The blue line corresponds to the common choice for solution phase reactions of assigning the transition state location to the PES saddle point, and assuming that the reaction coordinate is entirely determined by the solute. Fig. 5 is a representation in phase space of the transit times of trajectories that start on the true and approximate dividing surfaces with different initial \(p_0 \), the momentum normal to the dividing surface. The transit times (calculated as the time for \(n_i \) to reach a value greater than that for product minimum) show brighter colors in Fig. 5 as the transit time increases. The expected results for a DS is that trajectories starting with negative momenta normal to the dividing surface \((p_0 < 0) \), i.e. directed to the reactant well, would take longer to reach the product well than those that start with positive momenta. This is clearly the case for the PODS as can be seen in Fig. 5, where \(p_0 = 0 \) (which corresponds to the PO) provides an exact line of demarcation in the transit times. By contrast, the approximate DS shows long and short transit times on both sides of \(p_0 = 0 \), i.e. \(p_0 > 0 \) or short for \(p_0 < 0 \) correspond to recrossing of trajectories, and that the amount of recrossing gets larger as \(\mu_2 \) increases. Thus, the approximate DS becomes a poorer and poorer choice for the transition state as the mass of the bath oscillator increases.

The brighter colored bands visible on the reactant sides \((p_0 < 0) \) in Fig. 5 are associated with the many periodic orbits located in the reactant well. Trajectories that approach these POs can spend a long time before finally crossing over to the product well.

4. Conclusions

We have studied the effect of the mass in the location of the dividing surface on a model representing the interaction between a bath and a...
reactive system. By calculating the PODSs we have been able to demonstrate that, as expected, they comply with the nonrecrossing requirement and to see how the dividing surface changes with the mass of the bath relative to the reactive system. These PODSs have shown that as the mass of the bath increases the actual dividing surface moves further away from the saddle point and also becomes more curved.

Although this simple model is obviously not representative of any real chemical reaction, we believe that it nonetheless provides useful insights for reactions in solution. In particular, when reacting solutes undergo changes in shape that require significant relocation of solvent molecules, the solvent may provide resistance to the reaction. For typical polyatomic organic solvents, it may be that several solvent molecules have to move in order to accommodate the requirements of the reacting solute, and under such circumstances the solvent-induced barrier to reaction may be particularly significant. As Bunker recognized many years ago [12] this effect shows up in the simulation as
a high effective mass for the solvent, and is represented in the present model by large values of μ_2. Common concerns in the modelling of solvent effects are to account for Coulombic interactions, i.e. polar effects. We have emphasized that our model does not seek to do that, and so is obviously incomplete. However, we believe that models which simulate only polar effects, as happens for some dielectric continuum models, are also incomplete. In fact, any models that describe solvent effects solely through changes in the potential energy part of the Hamiltonian will be unable to capture the effects that we have described here, which are consequences of changes in the kinetic energy part of the Hamiltonian.

Appendix A. Fitting Values

See Tables A.1 and A.2.

Table A.1
Coefficients used in Eq. (1) to define the shape of the Hamiltonian.

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>321.904484</td>
<td>-995.713452</td>
<td>1118.689573</td>
<td>-537.856726</td>
</tr>
<tr>
<td>c_5</td>
<td>c_6</td>
<td>c_7</td>
<td>c_8</td>
</tr>
<tr>
<td>92.976121</td>
<td>1.0</td>
<td>1.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table A.2
Coefficients used in Eq. (6) to fit the PODSs for each value of the reduced mass of the bath oscillator (μ_2).

<table>
<thead>
<tr>
<th>μ_2</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.094165263108873</td>
<td>0.016967033896018</td>
<td>65.5958200999274</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.84315847028138</td>
<td>0.0078954748486114</td>
<td>174.799820765531</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>5.98147469345274</td>
<td>0.10851259562613</td>
<td>409.08266661712</td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td>22.56111517645439</td>
<td>0.105015550264872</td>
<td>2364.74381214317</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ_2</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
<th>c_7</th>
<th>c_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.617134920839315</td>
<td>5.94718114129171</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.0598940636386768</td>
<td>49.600810725315</td>
<td>0.3836624093012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.118183618431188</td>
<td>85.251388833634</td>
<td>0.15876348154843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td>0.0550009000221773</td>
<td>323.624788505891</td>
<td>0.0455268000566065</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ_2</th>
<th>c_9</th>
<th>c_{10}</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.36002047343</td>
</tr>
<tr>
<td>1.0</td>
<td>6.05010730708722</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>19.0551458932095</td>
<td>0.783315335293556</td>
<td>0.62214517569231</td>
</tr>
<tr>
<td>100.0</td>
<td>82.7970050172418</td>
<td>0.0571491383435566</td>
<td>21.1545809216056</td>
</tr>
</tbody>
</table>

References

