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We introduce a resource theory of measurement informativeness. This allows us to define an associated
quantifier, which we call the robustness of measurement. It describes how much “noise”must be added to a
measurement before it becomes completely uninformative. We show that this geometric quantifier has
operational significance in terms of the advantage the measurement provides over guessing at random in a
suitably chosen state discrimination game and that it is the single-shot generalization of the accessible
information of a certain quantum-to-classical channel. Using this insight, we further show that the recently
introduced robustness of asymmetry or coherence is the single-shot generalization of the accessible
information of an ensemble. Finally, we discuss more generally the connection between robustness-based
measures, discrimination problems, and information-theoretic quantities.
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Introduction.—Although quantum states provide a com-
plete description of a physical system at a given time, it is
through theprocess ofmeasurement that classical information
about the state of the system is obtained. How much
information is obtained depends upon the nature of the
measurementmade. Intuitively, somemeasurements aremore
informative than others, depending on how much correlation
can be generated between themeasurement outcomes and the
state of the quantum system. Measurements which are not
able to generate strong correlations, i.e., those which lead to
almost uniform measurement outcomes for all quantum
states, are naturally less informative than measurements
which can lead to deterministic results.
The study of how informative a quantummeasurement is,

is not new. There has been a series of papers studying this
question from an information-theoretic perspective [1–14].
The novel approach we adopt here comes from introducing a
resource theory of measurement informativeness.
In recent years, there has been much interest coming

from quantum information in studying quantum properties
and phenomena taking a resource-theoretic perspective,
whereby one treats the property or phenomenon of interest
as a resource and tries to quantify it from an operational
perspective. The prototypical example of such a quantum
resource theory is the theory of entanglement [15,16], but
there have been many other resource theories put forward
recently, including asymmetry [17,18], coherence [19,20],
purity [21], thermodynamics [22–24], magic states [25],
nonlocality [26], steering [27], contextuality [28–30],
knowledge [31], and projective simulability [32,33]. For
a recent review article, see Ref. [34].
Here we are interested in returning to the question of how

informative a measurement is, starting from such a resource-
theoretic perspective. Previous works have considered

quantifying measurements in terms of resources such as
randomness or classical communication [2–4,10,12]. Here,
in contrast, we would like to consider a resource theory
of measurements, in particular, where we consider as the
resource those measurements which are informative. A
number of questions arise. Which measurements are most
informative? How can we compare the informativeness of
one measurement to another from this perspective?
To that end, we introduce here a way of quantifying the

informativeness of a measurement by introducing what we
call the robustness of a measurement, which, roughly
speaking, corresponds to the amount of “noise” that has
to be added to a measurement before it ceases to be
informative at all. After showing that this quantity has
the usual desirable properties that one would expect, such
as faithfulness, convexity, and nonincrease under process-
ing, we go on to show that it has a natural operational
interpretation from the perspective of state discrimination,
where it quantifies the best advantage that the measurement
can provide over randomly guessing the state. Moreover,
we also show that the robustness of measurement is
naturally related to a single-shot generalization of the
accessible information of a quantum-classical channel.
Thus, although our starting point was different from
previous work, we indeed find a close connection to many
ideas already explored [1–14], as one might expect.
Using this insight,we return to a similar quantifier thatwas

recently introduced in the context of the resource theory of
coherence or asymmetry [35,36]. We show that the robust-
ness of coherence is a single-shot generalization of the
accessible information of an ensemble. We believe this
signals a more general connection between robustness-based
measures of resources, information-theoretic quantities,
and discrimination-type problems, as we discuss in the
Conclusions.
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Robustness of measurement.—Let us thinkabout (destruc-
tive) quantum measurements starting from a resource-
theoretic perspective. Imagine a scenario with only one
specific measuring device. That is, a box which accepts as
input an arbitrary quantum state ρ (of fixed dimension d) and
performs the measurementM ¼ fMaga with o outcomes on
the system, where each Ma is a positive-semidefinite
operator Ma ≥ 0, [a positive-operator-valued measure
(POVM) element], which collectively sum to the identityP

a Ma ¼ 1. The box returns the measurement outcome a
with probability pðaÞ ¼ tr½Maρ�.
Even if we only have access to the single measurement

M, we still naturally have access to another type of box,
which performs a “trivial” measurement. That is, we
consider a box T ¼ fTaga which accepts quantum states
but produces random outcomes, i.e., which returns a
supposed measurement outcome a with probability qðaÞ
independent of the quantum state measured. Such a
measurement has POVM elements Ta ¼ qðaÞ1.
Using resource-theoretic language, we think of the set of

all trivial measurements as being the free measurements
and any measurement which is not of this form as being a
resourceful measurement, i.e., one which genuinely per-
forms a quantum measurement. We shall refer to this as a
resource theory of measurement informativeness.
It is natural to look at quantitative properties of mea-

surements from this perspective. In particular, given a
particular measurement M, one can quantify to what extent
it is a resourceful measurement. Intuitively, ideal von
Neumann measurements, where each POVM element is
a rank-1 projector Ma ¼ Πa, should be among the most
resourceful measurements.
Here we focus on a single measure, which we term the

robustness of measurement (ROM), which is the analogue
of robustness measures which have been widely studied in
the many quantum information-theory contexts; for exam-
ple, Refs. [35–39]. This particular measure has many nice
properties and a compelling operational interpretation.
The ROM is defined by the minimal amount of noise that

needs to be added to the measurement such that it becomes
a trivial measurement. In particular, if instead of always
performing the measurement M, sometimes a different
measurement N ¼ fNaga is performed, then of interest
is the minimal probability of this other measurement which
would make the overall measurement trivial. Formally,

RðMÞ ¼ min
r;N;q

r

s:t:
Ma þ rNa

1þ r
¼ qðaÞ1 ∀ a;

Na ≥ 0 ∀ a;
X

a

Na ¼ 1: ð1Þ

In the above equation, the minimization is over all noise
measurements N ¼ fNaga and all probability distributions
q ¼ fqðaÞga. In order to have a number of convenient

mathematical properties, we use the convention whereby
the probability of noise is given by r=ð1þ rÞ.
Properties.—As is often the case for robustness-based

measures, the robustness of measurements has a number
of desirable properties: (i) It is faithful, meaning that it
vanishes if and only if the measurement is trivial, i.e.,

RðMÞ ¼ 0 ⇔ Ma ¼ qðaÞ1 ∀ a: ð2Þ
(ii) It is convex, meaning that one cannot have a larger
robustness by classically choosing between two measure-
ments, i.e., for 0 ≤ p ≤ 1,

R½pM1 þ ð1 − pÞM2� ≤ pRðM1Þ þ ð1 − pÞRðM2Þ: ð3Þ
(iii) It is nonincreasing under any allowed measurement
simulation [33]. That is, given access only to a single
measurement M, we can simulate any other measurement
M0 ¼ fM0

bgb (with an arbitrary number of outcomes b)
such that

M0
b ¼

X

a

pðbjaÞMa; ð4Þ

where pðbjaÞ form a set of conditional probability dis-
tributions [such that the matrix ½D�ab ¼ pðbjaÞ is a
stochastic matrix]; i.e., the measurement M is performed
and then the outcome is postprocessed. For any such
simulated M0, we have

RðM0Þ ≤ RðMÞ: ð5Þ
These three properties can be easily shown and follow

the same logic as in other robustness measures. Proofs are
included in the Supplemental Material [40].
It turns out that RðMÞ can be evaluated explicitly. By

defining q̃ ¼ fq̃ðaÞga with q̃ðaÞ ≔ ð1þ rÞqðaÞ, and using
the first equality in Eq. (1) to solve for Na, RðMÞ can be
equivalently written as

RðMÞ ¼ min
q̃

X

a

q̃ðaÞ − 1

s:t: q̃ðaÞ1 ≥ Ma ∀ a; ð6Þ
which is explicitly in the form of a semidefinite program
[41]. However, by inspection, the optimal solution of this
optimization problem can be identified: q̃ðaÞ will be
minimized when equal to the operator norm kMak∞ (since
Ma is positive semidefinite), and hence, we arrive at the
exact expression

RðMÞ ¼
X

a

kMak∞ − 1: ð7Þ

In order to be a valid POVMelement, it is necessary to satisfy
the operator inequality 1 ≥ Ma from which it follows that
1 ≥ kMak∞ and hence, RðMÞ ≤ o − 1. Consider also the
pair
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Na ¼
tr½Ma�1 −Ma

d − 1
; qðaÞ ¼ 1

d
tr½Ma�; ð8Þ

which for any measurement M forms a valid measurement
N ¼ fNaga and probability distribution q ¼ fqðaÞga. This
pair directly implies thatRðMÞ ≤ d − 1. Putting both bounds
together, we have

RðMÞ ≤ minðo; dÞ − 1: ð9Þ

This shows that in dimension d the largest robustness that
can be achieved is RðMÞ ¼ d − 1, which can occur only for
measurements with at least d outcomes.
It is interesting to identify which measurements achieve

this maximum and are maximally robust. First, for ideal
projective von Neumann measurementsMa ¼ Πa, we have
kΠak∞ ¼ 1 for all a, and hence, RðMÞ ¼ d − 1. Consider
furthermore any rank-1 measurement (with an arbitrary
number of outcomes o > d), where Ma ¼ αaΠa. To be a
valid measurement, αa ≥ 0 and

P
aαa ¼ d. Such measure-

ments are also seen to be maximally robust RðMÞ ¼ d − 1.
We will return to the meaning of this later.
Finally, we saw previously that the ROM can be

formulated as a semidefinite program (SDP) in Eq. (6).
This provides a second representation of the ROM in terms
of the dual formulation of the SDP [41], which will prove
insightful for the operational significance of the ROM. As
demonstrated explicitly in the Supplemental Material [40],
strong duality holds, and the dual formulation of Eq. (6) is

RðMÞ ¼ max
fρaga

X

a

tr½ρaMa� − 1

s:t: ρa ≥ 0; tr½ρa� ¼ 1 ∀ a; ð10Þ

where the maximization is now over the dual variables
fρaga, which, due to the nature of the constraints, are seen
to correspond to quantum states.
As with the primal formulation, the dual can be solved

explicitly by inspection. In particular, ρa should be chosen as
a projector onto any state in the eigenspace of the maximal
eigenvalue of Ma. With such a choice, then tr½Maρa� ¼
kMak∞ and RðMÞ ¼ P

a kMak∞ − 1 as required.
Operational significance.—We now turn our attention to

the operational significance of the ROM. Originally, it was
introduced as a distance-based quantifier. Here, we will see
that the ROM is also the advantage that can be achieved in a
state discrimination problem over guessing at random if
only the measurement M is available.
Consider a situation where one of a set of known states

fσxgx is prepared with probability p ¼ fpðxÞgx. Such a
situation is described by an ensemble E ¼ fσx; pxgx. The
goal, as in any state discrimination problem, is to guess
which of the states has been prepared in a given round.
In each round, a guess g will be made of which state
was prepared. Our figure of merit will be the average

probability of guessing correctly, i.e., pguessðEÞ ¼P
x pðxÞpðg ¼ xjxÞ ¼ P

x;g pðxÞpðgjxÞδx;g, where pðgjxÞ
is the conditional probability of guessing the state σg, given
that the state σx was actually prepared. We will consider
two situations: (i) the trivial situation where it is not
possible to measure the quantum states prepared and
(ii) where only a fixed measurement M can be performed
in order to produce a guess.
In case (i), the optimal strategy is to always guess that the

most probable state was prepared, i.e., the state σx such that
pðxÞ ¼ maxypðyÞ (which may not be unique). If we denote
by pmax ¼ maxxpðxÞ, then in this case the probability to
guess correctly is precisely pC

guessðEÞ ¼ pmax.
In case (ii), after measuring the state prepared by using

the measurementM, the most general strategy is to produce
a guess based upon the outcome according to some
distribution PðgjaÞ, which will lead to a guessing proba-
bility of

PQ
guessðE;MÞ ¼ max

fPðgjaÞg

X

x;a;g

pðxÞtr½σxMa�PðgjaÞδg;x: ð11Þ

We are then interested in the state discrimination problem
which maximizes the ratio between these two guessing
probabilities, i.e., the discrimination problem for which
having access to the measurement M provides the biggest
advantage over having to guess at random. Formally, we are
interested in the advantage

max
E

PQ
guessðE;MÞ
PC
guessðEÞ

: ð12Þ

In the Supplemental Material [40], we show that the
advantage is specified completely by the ROM, in particu-
lar, that

max
E

PQ
guessðE;MÞ
PC
guessðEÞ

¼ 1þ RðMÞ ð13Þ

and that the optimal discrimination problem is to choose
uniformly at random from a set of o states fρ�aga which are
optimal variables for the dual SDP (10).
Considering specific examples, for an ideal von

Neumann measurement, we can use it to perfectly guess
which out of d states were prepared, whereas without the
ability to perform a measurement, we would have to guess
(uniformly at random), and hence, the advantage is
pQ
guess=pC

guess ¼ d. As a second example, consider a rank-
1 measurement M ¼ fαaΠaga. For the discrimination
problemwith the o states associated with this measurement,
the guessing probability is pQ

guess ¼ d=o, while the classical
probability is pC

guess ¼ 1=o, and again the advantage is d, as
expected. This shows why such measurements still have
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maximal robustness, since they still allow for a d times
advantage in this context.
Single-shot information theory.—We now demonstrate a

second way of interpreting the operational significance of
the ROM by making a connection to single-shot informa-
tion theory by viewing a measurement alternatively as a
quantum channel which produces classical outputs.
Given a general quantum channel, i.e., a general com-

pletely positive and trace-preserving map Λð·Þ that maps
quantum states to quantum states, a basic quantity of
interest is the accessible information, the maximal amount
of classical information that can be conveyed by the
channel [44]

IaccðΛð·ÞÞ ¼ max
E;D

IðX∶GÞ; ð14Þ

where E ¼ fσx; pðxÞgx, with σx the input states to the
channel, which are chosen with probability pðxÞ, D ¼
fDggg forms a POVM which is measured on the output of
the channel to produce a symbol g with probability
pðgjxÞ ¼ tr½DgΛðσxÞ�, and IðX∶GÞ ¼ HðXÞ −HðXjGÞ is
the classical mutual information of the distribution
pðx; gÞ ¼ pðxÞpðgjxÞ. The accessible information quanti-
fies the maximal amount of classical mutual information
that can be generated between the input and output of the
channel, optimizing over all encodings (input ensembles)
and decodings (measurements).
Since it is based upon the Shannon entropy, Iacc is an

asymptotic measure of a channel. Here, we will consider
an analogous quantity in a single-shot regime, where the
channel will only be used a single time. We consider the
following single-shot variant of the mutual information [45]

IminðX∶GÞ ¼ HminðXÞ −HminðXjGÞ; ð15Þ
where HminðXÞ ¼ − logmaxxpðxÞ and HminðXjGÞ ¼
− log

P
gmaxxpðx; gÞ are the min-entropy and conditional

min-entropy, respectively, and are the entropies associated
with the guessing probability [46,47]. We then define the
accessible min-information as

IaccminðΛð·ÞÞ ¼ max
E;D

IminðX∶GÞ; ð16Þ

where E ¼ fσx; pðxÞgx and D ¼ fDggg are all as before.
A special class of quantum channels are those which

correspond to measurements, i.e., quantum channels which
take as input a quantum state ρ and produce as output the
state

P
atr½Maρ�jaihaj, where fjaig forms an arbitrary

orthonormal basis for the Hilbert space of the output. We
denote by ΛMð·Þ the channel associated with the measure-
ment M ¼ fMaga in this way.
We show in the Supplemental Material [40], that given

this viewpoint, we can express the previous result that the
ROM is the advantage in a state discrimination problem as

IaccminðΛMð·ÞÞ ¼ log½1þ RðMÞ�; ð17Þ

that is, the ROM is also equivalent to the accessible min-
information of the channel ΛMð·Þ associated with the
measurement, which is the maximal amount of mutual
min-information that can be generated between the input
and output of the channel in a single use.
Robustness of asymmetry and coherence.—We now turn

our attention to a closely related robustness-based measure,
the robustness of asymmetry (ROA) [36], which has as a
special case the robustness of coherence [35]. We will show
that the above operational significance of the ROM in terms
of accessible min-information of a quantum-to-classical
channel has a natural analogue for the ROA, where it will
also be shown to be equal to the accessible min-information
of an ensemble (for a suitably chosen ensemble), which can
be thought of as a classical-to-quantum channel.
The ROA is the minimal amount of noise that needs to be

added to a state before it becomes symmetric

ARðρÞ¼min
s;τ;σ

s

s:t:
ρþsτ
1þs

¼σ

τ≥0; tr½τ�¼1; σ¼ 1

jHj
X

h

UhσU
†
h; ð18Þ

where Uh forms a unitary representation of a group H, and
σ is therefore a symmetric state (see Supplemental Material
[40] for more details).
Here we will show that the ROA has an operational

interpretation in terms of the accessible min-information of
the ensemble Eρ ¼ fUhρU

†
h; 1=jHjgh. In particular, for an

ensemble E ¼ fσh; qðhÞgh, the accessible min-information
can be defined (in analogy to the accessible information
[44]) as

IaccminðEÞ ¼ max
M

IminðH∶YÞ; ð19Þ

where M ¼ fMygy is an arbitrary POVM, and pðh; yÞ ¼
pðhÞtr½σhMy�. Then, for ensembles of the form Eρ ¼
fUhρU

†
h; 1=jHjgh, it can be shown that

IaccminðEρÞ ¼ log½1þARðρÞ�: ð20Þ

That is, the ROA quantifies the accessible min-information
of the ensemble formed by application of Uh to ρ. A proof
of this statement can be found in the Supplemental
Material [40].
We finish by noting that while a measurement can be

viewed as a quantum-to-classical channel, an ensemble can
be thought of as a classical-to-quantum channel, taking
the classical random variable h to the quantum state σh. As
such, the ROM and ROA can be seen as capturing
properties of two extremal types of channels, transforming
quantum information from or to classical information.
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Conclusions.—Here we addressed the question of how
informative a measurement is. We introduced a quantifier
of informativeness, which we termed the robustness of
measurement. Our first main finding is to show that this
quantifier exactly characterizes the advantage that a meas-
urement provides (over guessing at random) in the task of
state discrimination. Second, when viewing a measurement
as a quantum-to-classical channel, our quantifier is also
equal to a single-shot generalization of the accessible
information of the channel.
Our starting point was to introduce a resource theory of

measurement informativeness, where we are only able to
perform a single measurement M, and the free operations
are to postprocess the measurement (this should be con-
trasted to a recently introduced resource theory of meas-
urement nonprojectiveness, where the resource is the
nonprojective nature of a measurement [32,33,48]). The
ROMwas shown in Eq. (5) to be amonotone in this respect,
that is, nonincreasing under the allowed operation. A
natural question is what other monotones exist for this
resource theory of measurements and to find a complete set
of monotones which characterize whether or not a meas-
urement M0 is a postprocessing of M (i.e., to establish the
partial order). In the Supplemental Material [40], we show
that a complete set of monotones exists and is given by the
success probability over the set of all discrimination games
[49]. That is, M0 is a postprocessing of M if and only if

PQ
guessðE;MÞ ≥ PQ

guessðE;M0Þ for all E; ð21Þ

where E ¼ fσx; pxgx is any ensemble of states (on the same
Hilbert space as the measurement M), which should be
guessed as well as possible in the discrimination game.
There are a number of interesting directions which we

leave for futurework. First, we focused on a particular choice
of quantifier here, whichwe showed had desirable properties
and interesting operational significance. One can never-
theless define other quantifiers starting from the resource-
theory perspective taken here, e.g., based upon relative
entropy or other distance-based measures. It would be
interesting to understand how the use of other quantifiers
can lead to further insights into the informativeness of a
measurement.
Second, our work fits into a strand or research which

connects robustness-based measures of resources with dis-
crimination-type problems [36,39,50]. Although it was also
known for the case of entanglement that the robustness-based
measure was connected to single-shot information theory
through the maxrelative entropy of entanglement [51], we
believe that this is the first time where this triangle of
connections has been made explicit more generally (see
Fig. 1). Itwould bevery interesting to understand just how far
this triangle of robustness-based quantifier, discrimination
problem, and information-theoretic quantity can be applied.
For example, we conjecture that for any channel, single-shot

accessible information is associated with a robustness of
some type and moreover to a discrimination-type game.
Indeed, we can ask if this triangle of associations holds very
generally: Given any example of a vertex of the triangle,
can one find the associated other two vertices (either in the
single-shot or asymptotic scenario)?
Third, here we have only considered the measurement

outcomes and not the postmeasurement state. It would be
interesting to extend the results here to the case of quantum
instruments, where we also keep the postmeasurement
state. In particular, since we know there is an information-
disturbance trade-off, it would be interesting to investigate
this phenomenon using the robustness ofmeasurement as the
quantifier of information gain.
Finally, in single-shot information theory it is usually

necessary to introduce the possibilities of small errors—and
therefore, approximations—in order to obtain meaningful
results through the use of smoothed entropies. Here, how-
ever, we have not had to introduce such approximations and
smoothing. It would be interesting to consider the role of
approximation and smoothing when considering the mea-
surements from this resource-theoretic perspective.

P. S. acknowledges support from a Royal Society
University Research Fellowship (URF) (UHQT). We thank
Francesco Buscemi for insightful discussions. In particular,
we thank Francesco for pointing out that a complete set of
monotones can be found for measurement simulation in
terms of guessing probabilities.

Note added.—Recently, the independent work of Takagi
et al. appeared online [52]. In that work, the authors show a
general connection between robustness-based measures for
states and discrimination games, as we conjectured here in
our discussion as one link in the triangle.
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