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We analyze the electric current and magnetic field driven domain-wall motion in perpendicularly magnetized
ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-
plane and in-plane uniaxial anisotropies. We obtain exact analytical Walker-type solutions in the form of one-
dimensional domain walls moving with constant velocity due to both spin-transfer torques and out-of-plane
magnetic field. These solutions are embedded into a larger family of propagating solutions found numerically.
Within the considered model, we find the dependencies of the domain-wall velocity on the material parameters
and demonstrate that adding in-plane anisotropy may produce domain walls moving with velocities in excess of
500 m/s in realistic materials under moderate fields and currents.
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Introduction. In their seminal paper, Schryer and Walker
discovered an exact analytical solution of the Landau-
Lifshitz-Gilbert (LLG) equation describing a moving one-
dimensional (1D) domain wall (DW) [1]. In this so-called
Walker solution, the magnetization rotates in a fixed plane
determined by the material parameters and magnetic field,
connecting the two opposite in-plane equilibrium orientations
of magnetization. The Walker solution has since been used in
numerous problems of DW motion to successfully explain the
physics of magnetization reversal [2–14].

Recently, out-of-plane magnetized ultrathin films with
Dzyaloshinskii-Moriya interaction (DMI) [15,16] have at-
tracted significant interest [17–27] due to their poten-
tial advantages for high-performance spinorbitronic devices
[19,28,29]. These materials are known to exhibit chiral DWs
[29–31], but so far no explicit dynamic Walker-type solution
has been demonstrated to exist, which significantly hinders
understanding of the DW motion in these systems.

In this Rapid Communication, we report an exact analytical
solution for steady DW motion in out-of-plane magnetized
films analogous to the Walker solution for films with in-plane
equilibrium magnetization. For this solution to exist, a small
in-plane anisotropy is required in addition to the dominant
out-of-plane anisotropy, while the film is still magnetized
out of plane. We consider both current and field driven DW
dynamics in the presence of interfacial DMI and show that
this solution can describe the DW motion observed in recent
experiments [23,24,27].

At nonzero DMI strength, our solution fixes the angle of
magnetization in the DW such that it acquires a strictly Néel
profile. The solution also fixes the angle between the direction
of the current and the DW normal. This angle depends on the
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relative strength of magnetic field and electric current, but,
notably, is independent of the DMI strength. Moreover, in the
absence of DMI we find an entire family of exact solutions
for every angle between the DW normal and the in-plane
easy axis. Although the dynamics in biaxial ferromagnets
has been the subject of many works (see, e.g., [32–36]),
the interplay between DMI and biaxial anisotropy leads to
additional interesting phenomena.

We also demonstrate that one can achieve the highest
propagation velocities for tiltless DWs, i.e., DWs which move
along the current with the DW front strictly perpendicular
to the current (Fig. 1), by appropriately tuning the magnetic
field. As a result, we provide an exact experimentally relevant
[18,23,24,27] way to achieve the maximal DW velocity in a
nanowire for a given current. We note that in thin nanowires,
the direction of current along the wire coincides with the
direction of the in-plane easy-axis shape anisotropy due to
stray fields [37].

Model. We consider an ultrathin ferromagnetic film of
thickness d with interfacial DMI and two anisotropies: larger
out of plane and smaller in plane, and study the dynamic
behavior of magnetic DWs due to an out-of-plane magnetic
field and/or in-plane electric current. Our analysis is based on
the LLG equation with spin-transfer torques [6,33] describing
the evolution of the reduced magnetization m(r, t ) [38]:

∂m
∂t

= heff × m + αm × ∂m
∂t

− (j · ∇)m + βm × (j · ∇)m,

(1)

where r ∈ R2 is the spatial coordinate in units of the ex-
change length �ex = √

2A/(μ0M2
s ) and t is time in the units of

(γμ0Ms)−1, A is the exchange stiffness, Ms is the saturation
magnetization, γ is the gyromagnetic ratio, α is the Gilbert
damping constant, β is the nonadiabatic spin-transfer torque
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FIG. 1. A snapshot of tiltless DW driven by current j and out-of-
plane magnetic field h in a ferromagnetic nanostrip with DMI and
two anisotropies (larger out of plane and smaller in plane along the
strip axis) from a simulation of Eq. (1).

constant, j = h̄PJ/
√

8Ae2μ0M2
s , J is the in-plane current den-

sity, P is the spin polarization of current, and heff = −δE/δm
with energy E in units of 2Ad given by

E (m) = 1

2

∫
R2

[|∇m|2 + (kz − 1)
(
1 − m2

z

) − kxm2
x

− 2hzmz + κ (mz∇ · m′ − m′ · ∇mz )
]

d2r. (2)

Here m = (m′, mz ), m′ = (mx, my), and we introduced the
dimensionless parameters corresponding to the dimensional
out-of-plane and in-plane anisotropy constants Kz and Kx,
interfacial DMI constant D, and out-of-plane field Hz, respec-
tively:

kx,z = 2Kx,z

μ0M2
s

, κ = D

√
2

μ0M2
s A

, hz = Hz

Ms
. (3)

We assume kz > 1 and 0 < kx < kz − 1 to ensure that m =
±ẑ are the only stable equilibria for hz = 0. The energy in
Eq. (2) is appropriate for ultrathin films, i.e., for d/�ex � 1
[39]. Note that Eq. (1) does not include spin-orbit torques,
which may be important in bilayer/multilayer ferromagnetic
structures with heavy-metal layers, where electric currents
run in the presence of strong spin-orbit interaction [40–43].
However, spin-orbit torques affect not just the DW itself,
but the entire magnetization configuration in the film, thus
precluding the existence of Walker-type solutions.

DW profile. We study the dynamics of DWs moving due
to either an applied magnetic field or a spin-transfer torque
from an electric current. By a moving DW with normal
velocity V in the direction of the unit vector n̂ = (nx, ny) we
mean a 1D solution of (1) of the form m = m(r · n̂ − V t ).
Substituting this traveling-wave ansatz into Eq. (1) and writ-
ing m = (sin θ cos φ, sin θ sin φ, cos θ ) yields the following
system of differential equations for θ and φ as functions of
ξ = r · n̂ − V t [38]:

1

sin θ

d

dξ

(
sin2 θ

dφ

dξ

)
+(αV −βj · n̂) sin θ

dφ

dξ

−(j · n̂−V +κn̂ · p̂ sin θ )
dθ

dξ
−kx

2
sin θ sin 2φ = 0, (4)

d2θ

dξ 2
+(αV −βj · n̂)

dθ

dξ
+(j · n̂−V +κn̂ · p̂ sin θ ) sin θ

dφ

dξ

−
(

kz−1 +
∣∣∣∣dφ

dξ

∣∣∣∣
2

−kx cos2 φ

)
sin θ cos θ−hz sin θ = 0,

(5)

where for convenience we defined p̂ = (− sin φ, cos φ).
Equations (4) and (5) need to be supplemented by the

conditions at infinity. With the convention that the positive
velocity (V > 0) corresponds to a domain with m = −ẑ in-
vading the domain with m = ẑ, we require θ (−∞) = π and
θ (+∞) = 0. The DW velocity V is determined by solvability
of Eqs. (4) and (5).

Walker solution. In the absence of DMI (κ = 0), Eqs. (4)
and (5) admit an exact solution for every n̂ with the help
of the Walker ansatz [1], thereby generalizing the results
of Ref. [34] to two-dimensional (2D) film. Namely, setting
φ = φ0 = const and matching the second derivative of θ (ξ )
to the term proportional to sin 2θ yields

hz sin θ − (αV − βj · n̂)θ ′ = 0, (6)

θ ′′ − (kz − 1 − kx cos2 φ0) sin θ cos θ = 0, (7)

(V − j · n̂)θ ′ − 1
2 kx sin θ sin 2φ0 = 0, (8)

where θ ′ = dθ/dξ and θ ′′ = d2θ/dξ 2. This system of equa-
tions produces a Walker-type solution for a steadily moving
DW:

θ (ξ ) = 2 arctan e−ξ
√

kz−1−kx cos2 φ0 , (9)

propagating with velocity

V = − hz

α
√

kz − 1 − kx cos2 φ0

+ βj · n̂
α

, (10)

where φ0 solves

j · n̂(α−β )
√

kz−1−kx cos2 φ0+hz = 1
2αkx sin 2φ0. (11)

The obtained front velocity depends on the propagation direc-
tion n̂, unless j · n̂ = 0. In particular, at hz = 0 the velocity is
maximal in the direction of j. The solution exists only when
|hz| and j = |j| do not exceed critical values corresponding to
Walker breakdown [1,34,44].

In the presence of DMI (κ �= 0) the Walker solution ob-
tained above is generally destroyed. Nevertheless, Eqs. (6)–
(8) are preserved in the special case when φ0 is chosen so that
n̂ · p̂ = 0. This condition is equivalent to

n̂ = ±(cos φ0, sin φ0), (12)

corresponding to a Néel-type DW profile, in which the mag-
netization rotates entirely in the n̂-ẑ plane. We stress that
Eq. (12) is dictated by solvability of Eqs. (6)–(8) and is not an
assumption. In terms of the space-time variables, the solution
is given by

m(r, t ) = [±n̂ sin θ (r · n̂ − V t ), cos θ (r · n̂ − V t )], (13)

where θ is given by Eq. (9), and “±” corresponds to the choice
of the sign in Eq. (12). This is an exact Walker-type solution
valid in the presence of interfacial DMI and describing a 1D
moving DW. Its propagation direction is given by Eq. (12) in
which φ0 solves

hz − 1
2αkx sin 2φ0 ± (α − β )( jx cos φ0

+ jy sin φ0)
√

kz − 1 − kx cos2 φ0 = 0, (14)

for j = ( jx, jy), according to Eq. (11). In general, Eq. (14)
reduces to a fourth-order equation in cos2 φ0, whose roots can
in principle be found for all parameters. Below we consider
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two important cases of purely current or field driven DW
motion, which are simpler mathematically and contain all the
essential physics.

Before concentrating on moving DWs, we consider the
case of no applied field and current, corresponding to static
DWs (for further details, see, e.g., Ref. [45]). With hz = j =
0, Eq. (14) yields four distinct solutions: φ0 = −π

2 , 0, π
2 , π .

Then, inserting the profile from Eq. (13) with V = 0 into
Eq. (2), one obtains the static DW energy per unit length

E0 = 2
√

kz − 1 − kx cos2 φ0 ∓ 1
2κπ. (15)

The DW energy E0 is positive and is minimized by φ0 = 0, π

for |κ| < (4/π )
√

kz − 1 − kx. Furthermore, the DMI contri-
bution is minimized by the “+” sign in Eq. (12) when κ > 0,
and by the “−” sign when κ < 0. These minimizing choices
of φ0 and the sign in Eq. (12) yield global minimizers (up
to translations) of the 1D DW energy under the conditions
θ (−∞) = π and θ (+∞) = 0 for Eqs. (4) and (5), since in
this case both the DMI and the in-plane anisotropy energy
contributions are separately minimized [46]. Thus, the choices
of n̂ dictated by Eq. (12) with the above choices of φ0 and the
sign correspond to the DW orientations with the lowest E0.

We now consider two characteristic cases of moving DWs.
For definiteness, we assume κ > 0 and fix the positive sign
in Eq. (12), corresponding to the minimum of the static DW
energy. It then allows us to think of φ0 as the angle defining the
normal vector in the direction of DW propagation whenever
V > 0. In the simplest case of no current, we find that for
|hz| � hc

z the propagation angle of a DW solving Eq. (14)
satisfies

sin 2φ0 = 2hz/(αkx ), hc
z = αkx/2. (16)

Once again, this equation produces four distinct values of φ0 ∈
(−π, π ] for |hz| below the Walker breakdown field hc

z . Due
to the symmetry φ0 → φ0 + π , n̂ → −n̂ for j = 0, this still
results in two distinct solutions (differing by 180◦ rotations)
with propagation velocities determined by Eq. (10). For both
values, the sign of V coincides with that of −hz, while the
magnitude of V is maximized by φ0 = 1

2 arcsin[2hz/(αkx )].
This choice corresponds to the branch of solutions that con-
nects to the global DW energy minimizers as hz → 0 and
should thus correspond to the physically observed solution.
The DW velocity is

V = − hz

α

√
kz − 1 − kx

2

(
1 +

√
1 − 4h2

z

α2k2
x

) . (17)

In particular, the velocity V and angle φ0 at small fields grow
linear in hz, while for |hz| comparable to hc

z they acquire a
nonlinear character. The magnitude of |φ0| is a monotonically
increasing function of |hz|, whose maximum |φ0| = π/4 is
achieved at the Walker breakdown field |hz| = hc

z . Also, the
DMI part of the DW energy is, in fact, globally minimized by
our sign choice in Eq. (12).

Next, we study the case of purely current driven DW
motion with j = ( jx, 0) along the in-plane easy axis. By
Eq. (14) one DW solution corresponds to a profile with V = 0
and φ0 = ±π/2. For | jx| < jc

x , where the critical “Walker

breakdown” current is

jc
x = αkx/(|α − β|

√
kz − 1), (18)

Eq. (14) has two additional solutions:

φ0 = arcsin

(
(α − β ) jx

kx

√
kx(kz − 1 − kx )

α2kx − j2
x (α − β )2

)
, (19)

and another one obtained by changing φ0 → π − φ0 (and
V → −V in the equation for the velocity). Focusing on the
first solution and substituting the angle from Eq. (19) into
Eq. (10), we obtain

V = β jx
α

√
α2k2

x − j2
x (α − β )2(kz − 1)

α2k2
x − j2

x (α − β )2kx
. (20)

In the purely current driven case the DW velocity in the
horizontal direction Vx = V/ cos φ0 takes a universal form
Vx = β jx/α [see Eq. (10)] also found for current-induced
DW and skyrmion motion in other systems [33,34,47,48]. In
particular, the DW is driven only by the nonadiabatic torque.
As jx is increased, the angle φ0 monotonically increases, first
linearly in jx and then acquiring a nonlinear character closer
to its maximum |φ0| = π

2 at | jx| = jc
x . For larger currents one

would expect |φ0| to remain equal to π/2, consistent with the
above static DW solution.

Other traveling-wave solutions. As we just demonstrated,
the Walker-type solutions obtained for κ �= 0 exist only for
certain specific directions of propagation determined by the
solutions of Eqs. (14) and (12). In contrast, for κ = 0 there
exists a traveling-wave solution for every direction n̂, pro-
vided that hz and j are not too large. To investigate this
further, we carried out numerical simulations of the 1D ver-
sion of Eq. (1) with initial condition m(r, 0) = [n̂ sech( 1

2 r ·
n̂), tanh( 1

2 r · n̂)], where n̂ is given by Eq. (12) with the “+”
sign, and determined the long-time asymptotic DW profile.
For all parameter choices used in our simulations the solution
always converged to a DW moving with a constant velocity
V = V (φ0). In particular, for every propagation direction we
found a propagating DW solution, which coincided with
the Walker-type solution obtained above for the particular
propagation direction satisfying Eq. (14). We illustrate our
findings with simulation results for the material parameters as
in [18]: A = 10−11 J/m, Ms = 1.09 × 106 A/m, Kz = 1.25 ×
106 J/m3, D = 1 mJ/m2, and α = 0.5.

With no current, we carried out simulations for in-plane
anisotropy constant Kx = 0.125 × 106 J/m3 and applied field
μ0Hz = −25 mT, corresponding to |hz| comparable to the
Walker breakdown field hc

z and a relatively small kx [38]. We
then obtained the DW profile and velocity as functions of
propagation direction. The profile was found to be close to
that of the Walker solution, coinciding with it exactly when
φ0 solves Eq. (14). A plot of V (φ0) is presented in Fig. 2,
indicating the points corresponding to the Walker solution
with green dots.

For small values of kx the DW moves with velocity nearly
independent of direction and its magnitude is close to the
velocity of the Walker solution. In this case the DW velocity’s
dependence on propagation angle, V (φ0), is well approxi-
mated by Eq. (10). On the other hand, as the value of kx is
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FIG. 2. The dimensionless DW velocity V at zero current as a
function of the propagation angle φ0 obtained from the solution of
Eq. (1) for kz = 1.674, kx = 0.167, κ = 0.366, α = 0.5, and hz =
−0.0183 corresponding to the parameters in the text. The simulated
data are indicated by the blue dots connected with a dashed blue
line. The red solid line shows the dependence given by Eq. (10) with
j = 0. The green dots indicate the velocity for the Walker solution
from Eq. (17), corresponding to the special values of φ0 obtained
from Eq. (16) and indicated by dotted lines.

increased, the velocity begins to exhibit a substantial depen-
dence on propagation angle and deviates from the prediction
of Eq. (10), except for the Walker solution, even if the latter
still gives a fairly good approximation to its magnitude. When
kx approaches its maximum value of kz − 1 the velocity ex-
hibits a strong directional dependence that is not captured by
Eq. (10), except, once again, for the Walker solution. Note that
the original dimensional propagation velocity V

√
2Aμ0γ

2
0

reaches ∼500 m/s. Thus, the effect of a large in-plane uniaxial
anisotropy is to accelerate the DW by promoting the magneti-
zation rotation in the easy in-plane direction.

Similar results were obtained for current driven DW mo-
tion with no applied field. For example, for Kx = 0.4 × 106

J/m3, β = 0.25, P = 1, and Jx = 5 × 1012 A/m2, we found
that the DW velocity is given by Eq. (10) with hz = 0. This
is consistent with the expected physical picture that the DW
is advected with the velocity Vx = β jx/α along the current
direction.

Motion along the in-plane easy axis. The analysis of the
Walker solution performed above indicates that one can also
select the Walker solution moving in a prescribed direction
given by angle φ0 via an appropriate choice of the relationship
between hz and j. Furthermore, according to Eq. (10), for fixed
hz < 0 and j the maximum velocity of the Walker solution is
achieved for jy = φ0 = 0. Substituting this into Eqs. (14) and
(10) then yields

V = jx for hz = jx(β − α)
√

kz − 1 − kx. (21)

This maximal velocity turns out to be independent of most
of the material parameters, and the required field hz van-
ishes in the special case α = β. Furthermore, these solutions

correspond to moving DWs with no tilt, contrary to those seen
in Ref. [18] without in-plane anisotropy.

Traveling waves for zero damping. It is interesting that the
obtained Walker solution also allows one to construct steadily
moving DW solutions at zero damping, α = 0, for any angle
φ0 by taking the limit α → 0, while choosing hz to satisfy
Eq. (16) with j = 0. Substituting this into Eq. (10) yields yet
another exact solution valid for j = hz = α = 0, in the form
of a DW moving with velocity

V = − kx sin φ0 cos φ0√
kz − 1 − kx cos2 φ0

, (22)

in the direction of n̂ in Eq. (12) and with profile given by
Eq. (13). This solution represents a 1D solitary wave propa-
gating in the direction characterized by φ0 in the Hamiltonian
setting, in the presence of interfacial DMI.

2D simulations. To illustrate the role of the obtained DW
solutions in magnetization reversal, we carried out full numer-
ical simulations of Eq. (1) in a nanostrip. The onset of a tiltless
DW propagation due to both current and out-of-plane field is
given in the Supplemental Material movie [49]. A snapshot
of the steadily moving DW from this simulation is shown in
Fig. 1. We used the same parameters as in 1D simulations
above [38]. The initial state was a single Néel DW across the
strip at j = hz = 0. In the simulation we then applied both
current along x̂ and field along ẑ. For the Néel DW in which m
goes from +ẑ through +x̂ to −ẑ from left to right (see Fig. 1),
the current and field both drive the DW in the same direction
(to the right). We observe that the solution quickly approaches
a nearly 1D steadily propagating DW profile corresponding to
the Walker-type solution constructed above.

Conclusions. We have studied the model of ultrathin
ferromagnetic film with interfacial DMI and two magnetic
anisotropies. When the out-of-plane anisotropy is stronger
than the in-plane anisotropy, we have found an exact 2D
traveling-wave DW solution [Eqs. (9) and (13)] driven by
both electric current and magnetic field. This solution is an
analog of the well-known Walker solution for a 1D steadily
moving DW. The presence of an in-plane anisotropy is crucial
to stabilize this solution, and moreover it allows us to find
analytical expressions for the DW propagation direction and
velocity [see Eqs. (12) and (14)] as functions of all material
parameters.
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