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Abstract
Reconfigurable smart structures and robots require interconnects that enable the transfer of forces,
power and data from one modular element to another. This is typically achieved through magnetic
coupling, mechanical clips and male–female electrical contacts. In lightweight structures however,
these methods are impractical due to weight and complexity. In this work we present an
electroadhesive coupling (EAC) controllable interfacial connection for joining lightweight modular
components, which enable simultaneous mechanical joining and electrical pass-through connections
for power and communication. Active adhesion and power transfer are realized by electroadhesion
(EA) using conducting electrodes on lightweight materials such as papers. We present the underlying
EAC concept, materials and structures, and demonstrate this new approach using origami and
kirigami structures to fabricate a modular EAC bridge and a modular EAC cuboid structural
interconnection system. These novel structures have the potential for application in lightweight
robotics, space systems, deployable and self-assembling and self-disassembling systems.

Supplementary material for this article is available online

Keywords: active connection, active power transfer, electroadhesion, electroadhesive
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1. Introduction

Modular robots usually consist of repeated robotic modules
connected together to provide versatile and configurable robotic
systems that can form different structures with different cap-
abilities, and which can adapt to unknown and unstructured
environments [1]. There are four critical elements associated with
a typical modular robotic system: (1) a docking element that
allows physical connections between modules, (2) a locomotion
element that permits the docking function, (3) a computation
element that offers control of the locomotion and docking and

communication between modules, and (4) a power element for
the computation system [2].

Traditional interconnects that enable the transfer of forces,
power, and data from one robotic module to another include
magnetic coupling, mechanical clips, and male–female electrical
contacts [2–5]. This limits the weight and design of the robots.
There is, therefore, a need for lighter, simpler and lower cost
modular interconnection technologies. Electroadhesion (EA) [6]
is an attractive and electrically controllable adhesion technology
that has been widely employed in material handling [7–11],
climbing robotics [12–14], and active attachment [15–20]
applications due to the fact that: (1) EA pads can be produced
using lightweight materials and simple structures, (2) the energy
consumption of EA is low (in the range of mW), and (3) EA can
be used on a wide range of surfaces and to lift almost any
materials, including conductive and insulating materials. Elec-
troadhesion is a controllable technology with potential for use in
interconnecting lightweight modular robotics systems.
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An EA pad is typically fabricated as a pair of spaced
coplanar electrodes embedded in a dielectric. When an EA
pad is in contact with or close to (in the range of mm) a
substrate material and a high voltage (in the range of kV) is
applied between the electrodes, counter charges are induced at
the surface of the substrate, causing EA attractive forces
between the EA pad and the substrate [8, 21]. De-adhesion or
release between two surfaces can be achieved by switching
off the high voltage power supply. This on–off characteristic
can be exploited as an electrically controllable and active
connection mechanism for joining parts [17, 20], such as
lightweight modular structures and systems shown in figure 1.

Germann et al utilized EA for connecting two plastic bal-
loons to show the potential of using EA as an active connection
method for soft modular robotic applications [17]. Multiple high
voltage channels are, however, required to connect several soft
modules together as the EA electrodes are arranged in the inner
side of the balloons. Karagozler et al proposed the use of
electrostatic latching for physical connection, power transfer,
and communication between modules. The adhesion between
modules was based on electrostatic forces between parallel
capacitors. Power transfer and communication were based on
capacitive coupling, which required complex associated elec-
tronic circuits [20]. Here we demonstrate novel lightweight
designs and soft-smart structures using only one high voltage
channel to induce coplanar EA for controllable modular con-
nection and power transfer. We term this simultaneous electrical
and mechanical coupling electroadhesive coupling (EAC).

EAC structures are lightweight and easy to fabricate using
folded laminar materials and ultra-lightweight foam blocks such
as aerogels [22]. A simple embodiment of the EAC system is as
an origami cube made from paper (or similar sheet insulator) and
conducting electrical tracks, such as conductive inks [23] or
adhesive metal foils. The EAC concept is shown in figure 2.
This concept can be used to connect the modular elements
shown in figure 1 to form systems with different structures. An
EAC connection is enabled from the face which is initially
connected to a high voltage amplifier (HVA) (termed the driving
face) and which, upon completion of the connection, is

connected to the second face (termed the driven face) due to the
employment of electroadhesion (see figure 2(b)).

The EAC interfacial interconnect employs two components:
(1) two peripheral electrodes, presented on both driving and
driven faces, that permit the pass-through of electrical supply
from one face to the next (and hence from one module to the
next) and (2) a central interdigitated region present on the
driving face which induces electroadhesive forces between it and
the driven face. The key benefits of this structure include (1)
only one HVA channel is needed for both active connection and
power transfer between lightweight modules, (2) no heavy
mechanical connections or magnets are needed, and (3) the
potential for communication to be transmitted through the power
lines from one module to the next using established power line
communication (PLC) protocols [24]. This approach can be used
to greatly reduce the weight, complexity and cost of the whole
modular connection system.

The reminder of this article is organized as follows. EAC
facial interconnection design, fabrication details and electro-
adhesive force test are presented in section 2. Case studies of the
EAC interconnection and active power transfer concept are
described in section 3. Discussions on how to increase number
of connected modules and further application of laminar (e.g.
paper) electroadhesion for multi-part connected structures are
demonstrated in section 4. Conclusions and future work are
outlined in section 5.

2. EA pad design, fabrication, and force test

EAC components can be readily fabricated using low cost
commercially available metal tapes and laminar materials.

Figure 1. Example lightweight modular structure designs.

Figure 2. EAC concept. (a) Two cubic EAC modules in 3D.
(b) Cross-sectional view of the EAC interface when HV us off (left)
and on (right).
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Here we demonstrate fabrication using copper tape and office
paper. Firstly, we printed an EA electrode geometry onto A4
paper based on pre-defined electrode dimensions that were
designed in SolidWorks. Strips of 6.4 mm wide off-the-shelf
copper tape were used as electrodes. The space between
electrodes was 3.6 mm (see figure 3(a)), since larger EA
forces can be achieved when the electrode width/space ratio
is around 1.8 [21]. Secondly, we manually cut the paper into
designated sizes and bonded the copper tapes onto them based
on the printed electrode patterns.

In order to test the repeatability of the proposed EA
fabrication method, we establised a tangential EA force
measurement apparatus, as shown in figure 3(a). We utilised
an inline miniature S-Beam load cell (Applied Measurements
Ltd, UK) to measure the adhesive force. We applied a linear

rail (X-LSQ150B-E01, Zaber Technologies Inc., USA) to pull
a piece of office paper away from the EA pad after charging
for 30 s at 3.2 kV using an Ultravolt 5HVA24-BP high volt-
age power supply (Advanced Energy Industries, Inc., USA).
The movement speed was 50 mm s−1. We used a NI USB-
6343 X Series DAQ device (National Instruments, UK) to
record the adhesive forces and control the output voltage of
the HVA.

We then fabricated three EA pads using the same pro-
cedure and same geometry and dimensions. The overall
effective electrode area of the EA pads was 76.4 mm ×
70 mm, as shown in figure 3(a). Five tests were conducted for
each EA pad. All tests were conducted at an enclosed cus-
tomized high voltage box. During the EA force measurement,
the temperature was 21.7 °C±0.1 °C and relative humidity
was 53%±1% using a weather station. We measured the
tangential EA force when high voltage was applied to the EA
pads. The results can be seen in figure 3(b), where there was a
maximum relative difference of 11.1% in the average tan-
gential EA forces obtained across the three EA pads. This
difference can be further minimized by using advanced EA
pad fabrication methods, such as flexible printed circuit board
manufacturing approaches [21, 25].

3. EAC active power transfer and connection case
studies

3.1. EAC bridge

The simplest modular EAC structure employs flat sheets
made of an unfolded paper with two simple interdigitated
copper tape electrodes, as shown in figure 4(a). When a
voltage is applied to the electrodes, the paper and copper tape
composite forms an EA adhesive patch that can be used to
attach to the next planar module. When the second module is
attached, the copper tapes on the two modules connect and
power is then supplied to the EA patch on the second module,
ready for it to attach to the next, and so on until a chain of
modules of the required length is formed. The first and/or last
EA patch can be optionally connected to a fixed substrate,
providing anchoring points for the structure.

Based on this chaining principle, we fabricated an EA
bridge, as shown in figure 4(b), where we joined 6 EA
modules to cross a gap between two stands. Each module
weighed only 1.5 g and we used an EMCO E60 HVA
(EMCO High Voltage Corporation, USA, maximum voltage
of 6 kV) to deliver the high voltage (3.2 kV in this case) to the
electrodes. The bridge was strong enough to support itself and
a rubber duck of mass 5.5 g. The EA bridge remained con-
nected while the high voltage as applied. When we removed
the voltage, adhesion between all units decayed to nothing
and the bridge collapsed, as shown in figure 4(c). Please see
the demonstration of this in the supplementary video is
available online at stacks.iop.org/SMS/28/105012/mmedia.

Figure 3. Tangential EA force measurement rig and fabrication
repeatability. (a) Schematic diagram of the tangential force
measurement device. Inset shows EA pad design and dimensions
tests. Yellow arrow shows the direction of movement. (b) Measured
tangential forces of three EA pads with the same geometry and
dimensions shown in (a). Mean and one std deviation for five tests
are shown.
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3.2. Cuboid EAC modules

Previous results have shown that the tangential EA force
along the direction of the electrode lines (here labelled the y
axis) is greater than the force normal to electrode lines (here
labelled the x axis) for interdigital EA electrode designs [17].
We measured the tangential EA force of an EA pad (the same
design used in figure 3(a)) in both the x axis and y axis
direction and found that, for the near squared EA pad design
described in figure 3(a), the relative difference in the amount
of adhesive force in the x axis and y axis was 403.4%, as
presented in figure 5. We define the relative difference as:
(tangential EA force in the y axis - tangential EA force in the x
axis)/tangential EA force in the x axis × 100%. We assume
we could achieve similar amount of tangential EA force in
both axes by increasing the electrode length in the x direction.
We therefore extended the electrode length from 70 to
160 mm and found that for the improved design, only a
relative difference of 10.8% was obtained. Comparison
between these two EA shapes is shown in figure 5.

Based on the improved rectangular interdigital EA
design, we designed and fabricated several cuboid EAC
modules. We define two module types: Type A, with EA pads
on two opposing faces; and Type B, with no EA pads but with
electrical interconnects (see figure 6(a)). The total mass of the
Type A cuboid module was 7.4 g (mass of electrodes: 3.0 g)

Figure 4. The EAC bridge design and prototype. (a) 3D diagram of
an EAC planar module chain with two modules. Inset shows the
EAC module design. (b) Prototype of the EA bridge when 3.2 kV
was applied. (c) The collapsed EA bridge when the voltage was
turned off.

Figure 5. Tangential EA forces in x and y axis directions for the near
square interdigital EA design and the improved rectangular
interdigital EA design.

Figure 6. Cuboid EA modular robot designs and prototypes. (a)
Design of the Type A EAC cuboid module with two EA faces, and
Type B with only power transfer electrodes. (b) Three connected
cuboid EAC modules in normal direction. (c) Three connected
cuboid EAC modules in shear direction.
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pacemakers are recommended to avoid handling these EAC
modules. For space applications the number of connected
modules is unlimited since no gravitational force acts in the
static state and large complex modular structures can be
constructed. More careful designs should be considered when
space applications involve movement, where inertia effects
must also be taken into account.

Paper has been adopted to fabricate cost-effective and
lightweight actuators [26], robots [27, 28], and adhesion
devices [29]. Paper electroadhesion can also be used to
develop a simple and low-cost flexible EA gripper for adap-
tive grasping applications. In order to demonstrate how a
gripper can be integrated into our proposed EAC modular
system we designed a paper-based origami EAC gripper. The
design and dimensions of the gripper and its prototype are
shown in figures 8(a) and (b) respectively. The gripper
weighed only 3.3 g. Since paper is flexible, it can be passively
conformed to curved surfaces. Where shape adaptation under
EA activation is not sufficient, actuators such as shape
memory alloys can be used for shape conforming in order to
grasp objects with a larger range of shapes. In this study the
gripper can be used to grasp not only a large box
(55 mm×55 mm×100 mm, 35.6 g) but also a smaller but
heavier box (48 mm×48 mm×86 mm, 42.9 g). At its base
the origami EA gripper was bonded to a 5 mm thick acrylic
adaptor plate and connected to a vertical linear rail. When
grasping the large box, as shown in figure 8(c), 3.6 kV was
applied. When grasping the smaller, heavier box, as shown in
figure 8(d), 4 kV was applied. Please see the grasping
demonstrations in the supplementary video.

5. Conclusions and future work

Modular robotics have the potential to change how robots are
made, how they grow and adapt, and how they can be
decomposed and reused. Conventional modular robots pre-
dominantly use electromagnets [4] and mechanical connec-
tions [5] to join multiple modules. This limits the weight and
design of the robots. In contrast here we have proposed an
active, electrically controllable, lightweight, and cost-effec-
tive connection and concurrent power transfer mechanism for
lightweight modular robots and structures. We have demon-
strated the EAC system in origami and kirigami structures
using low cost metal tapes and office papers. We have shown
the underlying active and electrically controllable connection
mechanism in an EAC modular bridge, modular cuboid ele-
ments series-connected by EA only, and a low-cost, shape-
adaptive, paper-based origami EA gripper. The proposed
fabrication methods are simple and relatively repeatable,
showing a maximum difference of 11.1% observed in tan-
gential EA forces tests. We have increased EA force gen-
eration by extending the electrode length, reducing force
anisotropy from 403.4% for a square interdigital EA design to
10.8% for the improved rectangular design. Finally, we have
observed that our paper-based origami EA gripper has passive
shape adaptive capability. The 3.3 g origami EA gripper was
able to lift a 42.9 g mass using 4 kV. These soft-smart
structures have the potential to enable a wide variety of low-
cost solutions to deployable structures and adaptive modular
robotics.

The contributions of this paper include: (1) the concept
and presentation of a novel electrically controllable, light-
weight, and cost-effective connection and concurrent power
transfer mechanism realized by low-cost and easy-to-fabricate
paper electroadhesion; (2) the development of an EAC bridge;
(3) the development of a modular cuboid assembly system
exploiting an improved interdigital EA electrode pattern; and
(4) the development of a paper-based origami EA gripper for
shape-adaptive grasping. Future work will include studies
into active self-folding EAC origami modular robots via
shape memory alloys, exploiting lighter materials such as
conductive inks and aerogels in order to increase the number
of connected EAC modules, and equipping EAC modules
with mobility in order to realise more complex and autono-
mous self-assembly. A static EA pad in air is essentially a
capacitor in parallel with a resistor, which is similar to di-
electric elastomer actuators [30]. We will implement the
automatic identification of EAC module attachment by
embedding the EAC module with capacitive self-sensing
methods [31, 32]. Furthermore, data communication between
EAC modules will be pursued using established PLC
protocols.
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