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Abstract

The task of visually identifying similar objects often necessitates multiple, variant observations. As hu-
mans, we actively manipulate conditions towards differing viewpoints, object configurations and more.
Within this process, an agent integrates past and present information to build understanding and inform
future observations. Considering the realm of visual animal biometrics, current approaches typically
operate within a paradigm of evaluating a single iteration or single image. When faced with especially
fine-grained object categories however, single images may provide insufficient evidence alone. In this
thesis, these intuitions are capitalised on to demonstrate that animal identification benefits from an itera-
tive and integrative paradigm; proposing several visual animal biometric processes.

In the context of this work, the task of individual animal identification is investigated to demonstrate
the advantages of enacting such a paradigm. Specifically, considering the automated and minimally
intrusive identification of all individuals in a herd of Holstein Friesian or dairy cattle; a species exhibiting
massively-variant coat pattern visual features, structures and alignments. The idea being to deem such
features as an individually-unique biometric entity and perform online herd identification via an active
robot agent in an agriculturally-relevant setting. Natural challenges arise from these intentions by virtue
of intra-species visual similarities and alignments, surface deformability and occlusion, target position
discovery and more.

This thesis demonstrates (in order) that the evaluation of single dorsal coat pattern still images for identifi-
cation purposes via classical local features and representation learning provides an identification baseline.
In scenarios with partial (self-)occlusion of discriminative features however, identification performance is
improved upon by temporally-integrating architectures operating on image sequences of tracked individ-
uals over time in a passive setting. Whilst this form of approach is sufficient across herds exhibiting little
intra-population similarities, an active identity recovery framework is proposed next. In a realistic simu-
lation environment it is shown that, actively navigating to viewpoint positions that reveal disambiguating
features can improve upon purely passive scenarios; concluding individual cattle identification.

Next, inter-individual navigation is considered, where an agent is tasked with locating individuals in
dynamically moving herds. This culminates in the finding that artificial neural networks can effectively
learn herd-like spatio-temporal distributions from example. Finally, preliminary real-world experiments
provide a proof-of-concept that an Unmanned Aerial Vehicle (UAV) agent can robustly discover and
passively identify individual members of a small herd – combining the tasks of exploration and identifi-
cation.

Altogether, this work suggests that contemporary approaches founded in deep learning in conjunction
with a UAV agent utilising existing technologies can play a viable role in improving livestock welfare
within the growing future of robotic and automated agriculture.
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Chapter 1

Introduction

1.1 Motivation

Motivation of the research presented within this thesis is justified by staggering statistics; of all mam-
mal biomass1 on earth today, just 4% is wildlife [22]. Of the overwhelming majority remainder, 36% is
human and, therefore, 60% of all mammal biomass is livestock. This breadth of human-driven consump-
tion also extends to birds, where 70% of their biomass is chicken and other poultry, and just 30% is wild
(refer to Figure 1.1 for visual context). The effect of which is environmentally devastating; being one of
the largest contributors to greenhouse gases, loss in biodiversity and consumption of arable land [296].
Looking towards mammal husbandry specifically – being largely comprised of bovine and swine [22]
– it forms the vast majority of living mammal biomass on the planet. Considering this fact, dedicating
research efforts towards improving the welfare of livestock is certainly effort well spent. This thesis
consequently directs work towards improving the welfare of cattle mammals, specifically the Holstein
Friesian species.

(a) Mammals (b) Birds

Figure 1.1: Animal Biomass. The estimated proportion of contemporary animal biomass on earth for (a): mam-
mals and (b): birds [22]. In both classes of animals, livestock constitutes the vast majority; cattle and pigs for
mammals, chicken and others for birds [22].

1.1.1 Holstein Friesian Cattle

Holstein, Friesian and Holstein Friesian cattle – more commonly referred to as ‘dairy cows’ – are the
highest milk yielding breeds in existence [304]. Consequently, they represented the majority of cattle

1‘Biomass’ Oxford dictionary definition: “the total quantity or weight of organisms in a given area or volume”.
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breeds in the UK across multiple years [227, 67] and their numbers per-farm have gradually risen year by
year, as visualised in Figure 1.2. On an international scale, the bovine industry is economically significant
globally, producing over $3.5 billion in beef and veal exports in the US in 2010 alone [277]. Current
export requirements and consumer demand require visual identification of livestock [39], which is legally
mandated in some countries/unions [237, 231]. Frameworks developed towards this requirement largely
couple national databases and ear-tagging [140, 43, 283].

(a) Cattle breed distribution (b) Average UK dairy herd size

Figure 1.2: Cattle Distributions. Distributions of cattle breeds and herd sizes within Great Britain and the United
Kingdom. (a): illustrates the 8 most common breeds of cattle in Great Britain in 2008 [67]. The ‘Black & White’
category collectively contains the Friesian, Holstein Friesian, British Friesian and Holstein breeds as they are
difficult to distinguish during census. In total there were nearly 9 million registered cattle in Great Britain in 2008,
approximately 3 million of which were ‘Black & White’ [67]. (b): shows the average size of dairy herds per farm
within the UK doubling over the past two decades [6, 5].

The majority of individual bovine identification revolves around manual (e.g. ear tags, branding [183],
tattooing [39]) or electronic labelling [264]. Meanwhile, the benefits of identification ability contribute
towards improved cattle welfare through health and social monitoring, traceability, control of disease
outbreak and more [124, 292, 39, 46]. Commonly throughout agriculture, cattle, sheep and others are
manually identified via the use of ear tags containing a unique identification number alongside additional
descriptive components [317] (see Figure 1.3). For European cattle, two ear tags (for redundancy) and a
Bovine Identification Document (BID) are mandated by European Parliament regulation 820/97 [237];
which was later repealed and updated by regulation 1760/2000 [238]. Concern however, has been voiced
about the success of manual tagging identification methods [80, 323]. Primarily, the tag is subject to
being lost or damaged beyond recognition [96] and thus alone, may be insufficient in providing long-
term identification. From a welfare standpoint, animal well-being is called into question, as tags may
permanently damage or alter an animal’s ear [151, 79].

Figure 1.3: Bovine Ear Tag. Example of an
EU-mandated bovine ear tag [237] with infor-
mation annotations. Image credit: Velez, J. F. et
al. [317].
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Figure 1.4: Freely Grazing Holstein Friesian Cattle. Visible in the image are the individually-unique dorsal coat
patterns exhibited by the species that are considered in this thesis to be a biometric entity that can be exploited for
individual animal identification.

Accordingly, this thesis proposes to exploit naturally occurring features in Holstein Friesians for iden-
tification. As is exemplified in Figure 1.4, members of the species exhibit individually-unique dorsal2

coat patterns. Coats are comprised of black and white structures and distributions that are proposed
here to be a biometric entity. Under this assumption, animal identity can be inferred from appropriate
two-dimensional imagery. As a consequence, automated and minimally intrusive identification of Hol-
stein Friesians is made possible. In doing so, promising to contribute beneficially towards improving
animal welfare, in rendering physical tagging methods to be unnecessary. A factor which, given the
aforementioned significance of bovine mammals and biomass in the world, we as humans have a respon-
sibility towards addressing. This thesis, therefore, seeks to investigate visual biometric processes for
autonomously identifying individual Holstein Friesian cattle based on imagery of dorsal coat patterns
alone.

Aside from individual identification, lameness detection and gait analysis form a large area of modern
dairy husbandry research – an area which could be assisted by automated visual identification. This
volume of work is motivated by the fact that mastitis and lameness are the most frequently occurring
diseases within dairy cattle [169]. As a result, methods and algorithms applied in reality can ultimately
yield preventative measures in signalling early signs of lameness [214, 149], a problem which causes
milk production loss [324, 114] and potential early culling [87]. Automations in this area of research
reside in vision-based [293, 247, 318, 148] and sensor-based [253, 316, 240] methods to assess animal
gait using various scoring metrics [295, 252].

1.1.2 Collectivity, Acquisition and Agency

Building upon the automatic and minimally-intrusive identification of Holstein Friesians, improvements
to their welfare can go further. In alignment with biological, veterinarian, behavioural and welfare re-
search interests is the goal of studying cattle herds in real agricultural environments. Studies analysing

2‘Dorsal’ Oxford dictionary definition: “on or relating to the upper side or back of an animal, plant, or organ”
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appropriate data could inform on emergent intra-population social hierarchies and constructs [313, 166,
243] as well as overall welfare (e.g. physical, societal) of the herd and its constituent individuals [294],
grazing patterns [116, 117] and more. An example of data permitting such analysis could consist of
recorded individual identities and their positions over the course of a social monitoring experiment. In
this thesis, acquisition of such data is demonstrated to be autonomously attainable with combination of
the proposed techniques. This involves the use of a robot agent, specifically an Unmanned Aerial Vehi-
cle (UAV) quadrotor, able to fly freely in six Degrees of Freedom (DoF) and importantly, stably hover at
a defined position.

Usage of an aerial platform is reinforced by the identification problem itself; in exploitation of exhibited
dorsal features, appropriate imagery containing such a viewpoint must be obtained. Utilisation of a
flying robot, therefore, permits such aerial viewpoints to be readily captured by an on-board camera. In
addition, a UAV agent allows aforementioned herd monitoring goals to be realised in an autonomous
setting. The robot can move freely about the environment, focusing attention on identifying a particular
individual and subsequently, move on to find new individuals to be identified. Achieving this form of
target discovery by environment exploration is costly when UAV flight times are limited by battery life.
Attempting to minimise this cost implies discovering new individuals to be identified more efficiently.
Consequently, this thesis will investigate efficient environment exploration strategies towards discovering
unknown targets.

1.1.3 Fine-Grained Recognition in Animal Biometrics

Fine-grained visual recognition tasks deal with categorising objects with higher levels of specificity than
their basic class. As a simple example, the base class of ‘bird’ for an object ‘eagle’ is easily visually
determinable through modern object detectors [171]. However, differentiating ‘eagle’ from ‘hawk’ poses
difficulty and requires more attention to fine-grained details. More formally;

“Whereas visual recognition research is mainly focused on two very different situations;
distinguishing between basic-level categories (category recognition) or recognising specific
instances (instance recognition), developing algorithms for automatically discriminating
categories with only small subtle visual differences (fine-grained recognition) is a new chal-
lenge.”3

The difficulty is that these discriminative details are often overwhelmed by small changes to viewpoint,
object pose and location in imagery. Recent advances in deep learning has spearheaded state-of-the-art
results on benchmark datasets involving fine-grained object categories with base classes including flow-
ers [284], birds [348, 40, 351, 98], dogs [161, 101, 281], cars [170, 197], and more. These results indicate
significant improvement on hand-crafted feature representations in the ability to learn good discrimina-
tive deep convolutional features [284] – a crucial property of fine-grained recognition algorithms.

This work is no different; (a): cattle generally need to be detected and located in relevant imagery (e.g.
‘Cow’: base class) and (b): individual cattle identities need to be determined (e.g. ‘Amanda’: specific
identity class). The difficulty lies in the fact that, (1): coat pattern features exhibited by individuals can be
incredibly similar in structure, shape and positioning on the body, whilst simultaneously (2): there can be
massively-variant patterns amongst a population. Additionally, Holstein Friesian coat patterns provide
disruptive camouflage [297] that relies on high contrast binary colouration that can pose a challenge
in object localisation [326], relative viewpoint determination and of course, individuals with similar
markings. Examples of visual challenges are given in Figure 1.5, where row (a): depicts pairs of differing
individuals with similar markings and similar spatial distributions of markings over their bodies.

3Quote from Dr Erik Rodner – http://erodner.github.io/researchpage/finegrained.html
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Figure 1.5: Fine-Grained Recognition Task. Examples of identification difficulties present in this work on fine-
grained recognition of individual cow identity classes. Pairwise examples are given where image pairs contain
(a): different individuals and (b): the same individuals.

As a result of particular individuals exhibiting many visual similarities, a single query image may provide
insufficient evidence to determine the identity of the subject cow altogether. Equally, a model evaluating
a single image may be confident in an identity to some unsatisfactory extent. Methods operating on
single images, as is common for fine-grained recognition methods [98, 197, 351], are therefore, funda-
mentally flawed in this specific domain. The extent to which this paradigm of single-image evaluation is
successful on the task of cattle identity estimation is investigated fully in Chapter 3, using hand-crafted
and learnt features. There is consequently, a justified need for an approach that integrates information
from multiple variant observations to disambiguate these cases of identification problem; an identifi-
cation process. This fact has been used for advantage in the area of face recognition [359, 4], where
approaches consider observations separately and form a voting or scoring mechanism, fuse observations
into a single array/matrix [333], observations form the basis of a probability density function [282] and
more [188].

Further to the challenges on the evaluation of single images on fine-grained categories; salient discrimi-
native features are often subtle, and thus, models are sensitive to small perturbations in viewpoint, object
pose, etc. These are exemplified well in Figure 1.5, where row (b): highlights pairs of the same in-
dividuals that are challenging to associate from viewpoint and pose changes. Such perturbations are
caused and exacerbated by variational error from predecessor models (e.g. object/region detector), agent
viewpoint control and object pose autonomy (cattle are live, moving animals). The advantage then, in
evaluating multiple images to build a representation of identity, is that the likelihood of observing dis-
criminative features increases. Put differently, it becomes increasingly likely that some observation will
contain none of these problems caused by perturbations. This is true even when an agent passively ob-
serves live objects like cattle; it takes no actions, but object pose change (e.g. walking, looking) reveals
salient features. This intuition is capitalised on in this thesis, with Chapter 4 exploring multi-observation
fine-grained identification in a passive setting.

People Re-Identification

The very same challenges that are exemplified in Figure 1.5 form the basis of the difficulties surrounding
the well studied area of people re-identification; the task of associating persons of interest across different
camera locations. The core challenges there being: there may be little template knowledge of individuals
(e.g. single viewpoints) and other cameras may obtain new object viewpoints altogether, the problem
can be incredibly open set (there may be no template knowledge of all individuals), target persons may
be heavily occluded (e.g. crowded environments), individual articulation or pose is highly variable and
much more [113].
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Research efforts in this area have traditionally involved hand crafting low level viewpoint and lighting-
invariant features [94, 354, 191, 335] or employing metric learning [48, 352, 191, 347]. Recently how-
ever, Convolutional Neural Network (CNN)-based solutions have shown success in the area by jointly
learning feature representations and comparison metrics in an end to end fashion [72, 49, 7, 320] that has
seen human-level performance surpassed [350]. One such example jointly learns feature embeddings for
image pair classification as well as verification via a Siamese network [358].

In relation to this thesis, proposing a collection of identification processes for individual cattle, there
is rarely a need for verification (i.e. suggesting whether two images contain the same individual or
not). In fact, in time-sensitive scenarios (particularly when operating identity inference onboard a UAV),
verifying many image pairs is perhaps too costly, as Section 3.2 will establish. Instead, single images
are frequently acquired to be classified, meaning that a single feature embedding can be learnt over the
set of categories, much like some approaches to people re-identification [355, 356, 357]. This does
however, carry the assumption that the set of classes is closed, whereas verification models can suggest
newly-encountered categories.

1.1.4 Active Vision

When a sequence of passively obtained images still contains insufficient evidence for an individual’s
identity, despite small variations amongst constituent frames, an alternate approach is justified. An ex-
ample of such an approach falls into the category of active vision, whereby an agent is actively involved
in manipulating intrinsic and extrinsic sensor parameters for some vision task or process. The need for
this case is exemplified in Figure 1.6. In the left-hand image, the metal cup and mug are challenging
to differentiate. It’s only when the mug’s handle becomes visible from a significant change in object
pose that one can confidently state the right object in both images is a mug. This significant change is
unlikely to occur in passively obtained sequences of images. As is the case here, active manipulation of
observation parameters is necessitated.

In relation to the task of individual cattle identification, there may be circumstances where observed
dorsal features alone provide insufficient information gain. Only by observing a very particular viewpoint
or particular set of viewpoints can identity categories be disambiguated, thus necessitating an active
approach. In this work, the agent (a quadrotor UAV) is able to move freely in three dimensions to realise
new object viewpoints in order to observe discriminative features; performing an iterative and active
identification process.

Figure 1.6: Disambiguating Viewpoints. (Left): the metal cup and mug are challenging to differentiate in this
configuration. (Right): the presence of the mug’s handle – a visual feature crucial for visual identification pur-
poses – as a result of object manipulation now permits trivial object differentiation. In the case that this single
viewpoint provides maximal information gain on possible object categories, it is referred to as the “canonical
viewpoint” [78].

6



1.2. RESEARCH OBJECTIVES

1.2 Research Objectives

In this section, principal objectives of the entire thesis are collected and summarised from the aforemen-
tioned motivation of research:

• Characterise the extent to which dorsal coat patterns exhibited by Holstein Friesian cattle are indi-
vidual or unique across small population sizes as an implicit part of the following tasks.

• By assuming coat patterns to be a biometric entity, investigate in how far the paradigm of evalu-
ating a single image is effective on fine-grained identity categories (individual Holstein Friesian
cattle) from a standard aerial viewpoint of dorsal features.

• Demonstrate that supposed model belief in a class and resulting accuracy can be reinforced and
improved by multiple observations over time, whereby inter-sample variations occur naturally
without agent influence; a passive identification process.

• Involve an agent actively within the identification process, whereby particular viewpoints are
sought on a per-individual and per-discovery basis to disambiguate object observations as effi-
ciently as possible; an active identification process.

• Research robust environment exploration strategies via simulations for an agent with local sensing
capabilities towards efficiently discovering the positions of targets in a closed domain.

• Fuse developed components under a common framework executing on-board a real UAV agent
with respect to the computational and physical constraints imposed by use of such a mobile robot
platform.

• Deploy the flying robot to critically assess the performance of the proposed methodologies in
reality by conducting online census of a live cattle herd.

1.3 Thesis Outline and Contributions

In this section, an outline is given for this thesis, alongside the core contributions of each chapter. The
remainder of this thesis consists, firstly, of concluding the opening chapters with Chapter 2 – Back-
ground. This chapter provides appropriate knowledge designed to give the reader an understanding of
the core concepts employed in this work, all whilst aligning relevant seminal and contemporary litera-
ture with the intentions and objectives of this thesis. Second, the five core work chapters are outlined as
follows:

• The first three work chapters outline varying visual biometric processes for the task of an agent
visually inferring the identity of a single individual cow it is positionally local to. The described
methodologies, with increasing levels of agency and complexity, exploit the uniqueness of individually-
exhibited coat patterns for Holstein Friesian cattle.

– Chapter 3 – Single Frame Identification: details the extent to which a traditional, single-
frame evaluation paradigm operates well on the task of fine-grained individual cattle identi-
fication by visually exploiting coat patterns. This demonstration is split into two approaches;
(a): extracting and matching local hand-crafted features and, (b): learning representative
features per-individual with an Artificial Neural Network (ANN). The employed approaches
suggest that the proposed methodologies are well-suited towards extracting or learning dis-
criminative features from fine-grained object categories.

– Chapter 4 – Passive Multi-Frame Identification: investigates the effect of exposing a vi-
sual identification model to multiple, varying iterations comprised of viewpoint change, il-
lumination variation, object pose variability and more. Image sequences are acquired pas-
sively (with no agency) and presented as input, such that salient spatio-temporal identification
features are integrated through time. This form of approach is demonstrated to be benefi-
cial to identification accuracy and confidence, validating the proposed iterative identifica-
tion pipeline. Within this process, a species-wide detector demonstrates robust performance

7



CHAPTER 1. INTRODUCTION

across relevant imagery through off-the-shelf components.
– Chapter 5 – Simulated Active Multi-Frame Identification: proposes a unified framework

for the performance of active identification with a UAV-based agent. Within this, the em-
ployed architecture automatically extracts a sequence of observations or viewpoints that sat-
isfactorily identify the target as quickly as possible. This per-individual and circumstantial
behaviour is then replicated online by the agent upon discovery of a new cow to be identified
in a realistic three-dimensional simulation environment with difficult synthetic identification
scenarios.

• This next chapter deals with an agent autonomously navigating an uncharted environment with a
target recovery objective. Specific to the objectives of this thesis, efficient exploration strategies
are needed for finding (new) cattle to be identified using the UAV, sandwiching local individual
identifications.

– Chapter 6 – Simulated Inter-Individual Navigation: looks towards autonomously yield-
ing effective exploratory strategies for a flying robot moving in a horizontal two-dimensional
plane. The goal being to discover the positions of targets distributed in an unknown envi-
ronment as quickly as possible – a class of the robotic Search and Rescue (SAR) problem.
Learning by example in a supervised fashion, the proposed model is able to reliably dis-
cover a wide variety of target distribution classes, including dynamic moving targets. This
is achieved by a dual-stream architecture learning features from (a): local visual sensing
combined with (b): a global representation of positional history when trained against op-
timal navigation decisions from travelling salesman solutions. This application of a super-
vised learning-based approach is demonstrated to reproduce exploratory efficiency well in
an online setting, outperforming baselines including a popular unsupervised reinforcement
learning algorithm.

• The final work chapter of this thesis deals with providing a proof of concept that the algorithms
and methodologies proposed earlier operate successfully in a real and live setting using a mobile
flying robot agent.

– Chapter 7 – Proof-of-Concept: Real-World Herd Individual Identification: gives find-
ings for experiments operating with a live cattle herd and real-time processing on-board a
UAV agent. Within this task, and for the first time, environment exploration and passive iter-
ative individual identification are combined under a common framework. Details are given on
the employed hardware setup as well as the extensive work and considerations surrounding
the experimental setup for a flying robot. The core contribution lies in validating earlier-
proposed algorithmic choices in a live setting.

To finish, Chapter 8 – Conclusion provides concluding remarks concerning the entire thesis along-
side a summary, noteworthy points of discussion and comments about possible future avenues for work
continuation.
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Chapter 2

Background

2.1 Chapter Overview

This chapter introduces the concepts, ideas and related work aligned with the goals of this thesis. This
chapter is therefore designed to give the reader a fundamental understanding of the underlying conceptual
ideas, seminal related work and otherwise necessary to follow the remainder of this thesis, concluding
the opening chapters. In addition, this chapter also discusses appropriate literature, as well as the extent
of original contribution in that area.

2.2 Active Object Recognition

Active object recognition refers to the problem of visually inferring object classes from a series of obser-
vations that are actively chosen or parametrised by an agent [328]. This form of approach is justified in
application-specific circumstances whereby a single image from some viewpoint does not contain suffi-
cient features to discriminate an object from all others unambiguously (Figure 2.1 illustrates an example
of this case). The realisation of new, suggested observations is completed either by manipulation of the
object itself (e.g. a robot gripping the object rotates its wrist [42]) or, changing the camera viewpoint (an
active sensor). In the case of this thesis, the latter is implemented – the UAV agent moves freely about
the cow being identified to obtain new object viewpoints.

���D�� ���E��

Figure 2.1: Active Object Recognition. Justification of the need for active object recognition in relevant applica-
tions. For the viewpoint shown in (a), this could correspond to any one of the possible object classes shown in (b),
only by actively changing viewpoint or manipulating the object can its actual class be inferred. Image credit : Roy,
D. S. et al. [267].

Seminal work in this well-studied area originates from Wilkes, D. & Tsotsos, J. K. employing a robot
arm-mounted camera to differentiate origami models by realising an object-wise standard viewpoint that
allows the problem to be cast as a feature matching problem [328]. Whilst this form of approach is robust
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to initial viewpoint variation, it does not integrate information from multiple observations, as opposed to
the proposal in this thesis. Since then, relevant works have used model-based approaches with varying
view-based object representations using parametric eigenspaces [38, 37], aspect graphs [118, 265] and
others [276], as well as part-based object representations [71, 266]. In addition, reinforcement learning
has been used to learn disambiguative viewpoints via sensorimotor control [235], this is explored further
in Section 2.3.4.

2.2.1 Next Best View

Within the realm of active vision lies the notion of Next Best View (NBV), in which the goal is to deter-
mine a good, ordered sequence of image viewpoints towards some objective, typically to iteratively build
a complete representation of a scene or object. The application of such algorithms reside in automatic
3D surface/environment reconstruction [21, 246, 145, 329], environment mapping [2, 32] and explo-
ration [31] and even 6D object pose estimation [76]. The core intentions being to (a): generate more
efficient trajectories than simply exhaustively combining all viewpoints, especially since single iterations
(evaluation of a particular viewpoint) may be costly, and (b): focus viewpoint attention on particularly
complex regions (as can be seen in Figure 2.2). Broadly speaking, approaches may be categorised into
surface-based, volume-based or global methods [279].

Figure 2.2: NBV vs. Regular Interval
Scanning. The surface acquisition of a
mug (a);(b): using a NBV algorithm and
(c): without using one. For (c); the model
was reconstructed from eight range images
at regular intervals, where the inside of the
handle was not fully reconstructed. In con-
trast, use of a NBV planner is qualitatively
complete in this area, again across eight
range images. Image credit: Pito, R. et al.
[244].

Seminal work in the area was proposed by Connolly, C. I. in 1985 [59] in formulating a volumetric
algorithm. The method fits a sphere to marginally encompass and to be centred about the target object,
where possible camera views are evenly distributed longitudinally and latitudinally on the surface of the
sphere. A recursively subdivided octree [210] is superimposed on the object in three dimensions with
three possible vertex states: empty, unseen and occupied. Next best views are progressively suggested
based on viewpoints that intersect the largest unseen area.

Classical NBV problems are well aligned with the active individual identification intentions of this work;
a freely moving camera (the UAV-based agent with a gimbal-mounted camera) iteratively builds under-
standing of an object (its identity) by progressively selecting viewpoints with respect to some objective
function (satisfactorily identifying the individual as quickly as possible). The principal separation is that
NBV algorithms generally act upon little or no a priori knowledge; the algorithm occurs entirely online.
This is possible in applications where satisfying the objective function isn’t object class-specific, how-
ever in this work, this isn’t the case. Put differently, next best views identifying individual x are likely
not to apply to individual y as a result of differing coat pattern markings.

In this work, a model-based graph theory approach is proposed with a distinct training phase to build a set
of object class-specific behaviours. To begin, a domain-specific abstraction is formed in modelling ob-
jects (individual cattle) as a cuboid with five visible sides (e.g. top, front, back, left, right, see Figure 2.3),
each with an associated optimal viewpoint. This operates upon the fair assumption that intra-population
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variation occurs only amongst individual coat patterns or put differently, body sizes and proportions are
consistent across a population. In an offline pass, 5! = 120 viewpoint orderings are exhaustively searched
for each individual in a population towards extracting an agent trajectory – a set of next best views – that
identifies the individual whilst minimising the combination of (a): distance travelled and (b): number of
viewpoints (iterations). This individual-wise behaviour is then recreated online by the agent with respect
to the viewpoint from which a target (to be identified) was discovered – for full implementation details,
refer to Chapter 5.
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Figure 2.3: Cow Model Abstraction. The em-
ployed parts-based representation/abstraction
of cattle used in this work for active individ-
ual identification. A three dimensional cuboid
is fitted to spatially enclose the object. Each
of five visible faces (e.g. ‘top’, ‘front’, ‘back’,
‘left’, ‘right’) are attributed a static viewpoint
which optimally views that part with respect to
UAV flight constraints (e.g. minimum height
above ground/cattle).

2.2.2 Viewpoint Fulfilment via Object Pose Estimation

To realise a new viewpoint suggested by a NBV planner, the agent has to be aware of its spatial relation-
ship with the subject object. As such, an estimate of the object’s pose needs to be determined. Estimating
three-dimensional object pose from two-dimensional images is intrinsically difficult. Established meth-
ods lie in point cloud-based approaches [189, 9] requiring additional Red Green Blue Depth (RGB-D)
sensing or via approximative depth images [337, 332, 286]. However, here, housing additional sensing
components on-board the UAV is costly in power consumption, weight, and space. As a result, monocu-
lar Red Green Blue (RGB)-based algorithms [203, 13] are more appropriate in this context.

This work assumes object geometry to be similar across all classes, an assumption that was applied in
the model formulation for active cow identification (refer back to Section 2.2.1 and Figure 2.3). This
is motivated by the domain; all cows are generally of the same shape/scale, given similar ages across
a population. The result is that object scale in an image directly indicates agent-target distance. When
combined with knowledge of camera pitch and yaw, information that is readily available from the UAV’s
sensors, this work proposes this basis to be sufficient to accurately learn and infer an agent-relative
vector between the two. Fusion of these two inputs is performed implicitly in a single deep network that
is trained end-to-end. This area of work is specific to Chapter 5 on active iterative identification, where
it is described fully in Section 5.4.2.
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CHAPTER 2. BACKGROUND

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) have played a vital role in recent successes in natural language pro-
cessing [112], computational chemistry [100, 111], robotics [139, 213], and more relevantly, computer
vision [11]. This surge in popularity has been fuelled by deep, many-layered network architectures fa-
cilitated by recent improvements in General Purpose Graphical Processing Unit (GPGPU) technologies
[171]. The result of which has yielded incredible successes at a vast array of tasks, even famously in-
volving concretely beating the best human player at Chinese board game GO [287, 288], long thought to
be computationally intractable due to game complexity [225].

Drawing biological inspiration [338, 3] and, as the name would suggest; ANNs artificially model arrays
or tensors of individual neurons in some meaningful hierarchical arrangement or network. Figure 2.4
illustrates a simple example of such a network, whereby, a single neuron y j (a vertex) is activated if
the weighted sum of all predecessor neurons xi (with edge weight wi j) satisfies some activation func-
tion:

y j = s
�

wo +
n

å
i=1

wi jxi

�
; (2.1)

where s , w0 denote the activation function (e.g. linear, hyperbolic tangent, sigmoid) and the bias to its
input, respectively. In this form of forward evaluation (forward-propagation, left to right), the network
infers knowledge from a given input. However, the benefit in such a design lies in the model’s ability to
learn neuron parameters (weights and biases) from example. Training the network in this supervised form
is achieved via the back-propagation algorithm (right to left)); where the gradient of an error function is
computed to update (typically randomly) initialised weights according to some learning rate [263].

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.4: Fully Connected ANN. Example of a simple fully connected neural network forming a Multi Layer
Perceptron (MLP). The network can be seen to have three layers; one input layer with four input neurons, one
fully connected hidden layer with five neurons and an output layer with a single output neuron.

2.3.1 Convolutional Neural Architectures for Fine-Grained Recognition

Convolutional Neural Networks (abbreviated to CNN or ConvNet) are deep ANN architectures consist-
ing of multiple convolutional, pooling and fully connected layers, typically used for processing imagery.
Bearing resemblence with the ventral visual stream [181], CNNs draw inspiration from biology [207]
in extracting a hierarchy of increasingly complex object feature representations [70]. Convolutional lay-
ers perform image convolution over tensors where kernel parameters are learned during training via the
back-propagation algorithm [263]. This forms the crucial separation from classical, hand-crafted feature
descriptors in computer vision (see Table 2.1 for examples). In the context of this work, the implica-
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tion is that discriminative fine-grained visual features present amongst members of a population can be
learned.

Algorithm Paper Title Citation
SIFT “Object recognition from local scale-invariant features” [199]

ASIFT “ASIFT: A new framework for fully affine invariant image comparison” [223]
PCA-SIFT “PCA-SIFT: A more distinctive representation for local image descriptors” [160]

ORB “ORB: An efficient alternative to SIFT or SURF” [268]
MSER “Robust wide-baseline stereo from maximally stable extremal regions” [206]
SURF “SURF: Speeded up robust features” [26]

Table 2.1: Hand-Crafted Feature Descriptors. Examples of popular hand-crafted feature description algorithms
prior to deep learning and learned convolutional feature representations.

Seminal work in CNN architectures goes as far back as 1989 when back-propagation with a shal-
low CNN learned features to discriminate handwritten numbers/digits [185] from the famous MNIST
dataset [184]. More recently in 2012, AlexNet [171] (pictured in Figure 2.5) proposed an eight-layer
deep network and demonstrated state-of-the-art performance on ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) 2012 [269], containing a combination of general and fine-grained object
categories (e.g. ‘airliner’ and ‘space shuttle’). This new level of architectural complexity was made
computationally-feasible by the utilisation of GPGPUs for expensive back-propagation, and the proposed
network gave rise to new seminal literature and improvements in CNN research (e.g. VGGNet [289],
ResNet [128], Xception [52], ZFNet [343]).

Figure 2.5: AlexNet CNN. Figures from the seminal AlexNet CNN architecture [171] designed in 2012 to classify
images for the ILSVRC 2010 contest [66]. (Top): the large and 8 layer-deep (for the time) ANN architecture
comprised of five convolutional layers followed by three fully connected layers. Visible is the distribution of
workload to two GPUs (top and bottom layers), with communication occuring at certain depths, illustrating the
complexity of the architecture operating with limited GPGPU capabilities at the time. (Bottom): examples of
learned 11� 11� 3 convolutional filters by the first layer on both GPUs when trained for the ILSVRC. Image
credit : Krizhevsky, A. et al. [171].

In its first incarnation, the 2014 GoogLeNet CNN [302] set new state-of-the-art performance in the
ILSVRC 2014 [270]. Success of the architecture lies in the design of “network in network” [195]
Inception modules parallelising convolutions at multiple scales with dimensionality reduction result-
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ing in many less required parameters. As such, the depth of the architecture can be increased whilst
maintaining computational expense. Deep networks, however, then suffer from a diminishing ability to
propagate gradients back through every layer due to the vanishing gradient problem [132, 134] – a prob-
lem also encountered when training recurrent networks [27, 239] (more on this in Section 2.3.3). This
problem is solved by the addition of two auxiliary classifiers at intermediate depths such that, during
back-propagation the gradient signal is amplified (see Figure 2.6). A subsequent variation on the archi-
tecture implementing batch normalisation [144] outperformed the best result on ImageNet at the time.
Since then, new versions have introduced convolution factorisation (Inception v2) combined with ap-
plying batch normalisation on auxiliary classifier fully connected layers (Inception v2 + BN-auxiliary =
Inception v3) [303] yielding substantial improvements over the start-of-the-art on ILSVRC 2012.
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Figure 2.6: GoogLeNet CNN Architecture. The wide and very deep GoogLeNet CNN architecture proposed in
2014 [302]. The pipeline consists of (a): a small input CNN outputting into (b): nine “network within a network”
Inception modules with (c): gradient signal-amplifying intermediary and auxiliary classifiers that, during training
assist the (d): final output classifier. Image credit : Szegedy, A. et al. [302].

Due to the success of the various incarnations of Inception-based CNNs, especially on fine-grained cat-
egories present in ImageNet, the architecture is demonstrably well-aligned with the visual individual
identification intentions of this thesis. This specifically corresponds to the ability to autonomously learn
and detect particularly discriminative object features on a per-individual basis. Consequently, the archi-
tecture is used in this work to perform individual cattle identification in a standard feed-forward setting
(see Section 7.6.1), but more commonly to extract image-wise feature vectors that are temporally in-
tegrated over multiple iterations or time-steps; a process (Chapters 4, 5 and 7). Methods performing
temporal integration of viewpoints are explored further here in Section 2.3.3. Conversely, in settings
where visual complexity of imagery is low, a simpler solution is preferable. Specific to the work in this
thesis on automating agent-environment exploration decisions based on visual abstractions or simulated
models (see Section 2.4 or Chapter 6), use of shallower networks is demonstrated to be sufficiently ro-
bust. In consideration of computational constraints imposed by processing on-board a UAV-based agent,
this choice becomes important.

2.3.2 Object Detection via Regional Convolutional Neural Networks

Recent improvements in deep CNN architectures have seen them outperform traditional computer vi-
sion techniques in object detection [280, 109] as well as image classification tasks across benchmark
datasets [171]. Regional Convolutional Neural Network (R-CNN) architectures combine these two tasks;
candidate object locations are determined and subsequently classified [109]. Yet, in its original form,
R-CNNs are computationally expensive to train and evaluate. With the introduction of sharing convo-
lutions across proposals in Fast R-CNN [108] and SPPnet [127], significant improvements to efficiency
were made, although region proposal computation remained the bottleneck. Circumventing this prob-
lem, Ren et al. propose the addition of a Region Proposal Network (RPN), which shares convolutional
features with the detection network leading to Faster R-CNN [259] (see Figure 2.7 for an illustration).
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Furthermore, Region-based Fully Convolutional Network (R-FCN) [61] – based on fully convolutional
architectures, such as Fully Convolutional Network (FCN) [198] – go further and avoid the per-proposal
evaluation of Fast and Faster R-CNN. This change results in a significant speedup over Faster R-CNN
on the PASCAL Visual Object Classes (VOC) datasets [61].

Figure 2.7: Faster R-CNN Architecture. The
Faster R-CNN architecture [259] improves
model inference time of previous incarna-
tions [109, 108] by proposing a new, convo-
lutional feature-sharing Region Proposal Net-
work (RPN) combined into a single, unified
detection network. Image credit: Ren, S. et
al. [259].

At the time of writing, the current state-of-the-art in the task of “detect and classify” belongs to real-
time detector You Only Look Once (YOLO)1 [256]. The method casts frame detection as a regression
problem by subdividing the image into S� S-sized cells, each with associated bounding boxes (with
scores) and class probabilities. In this form, the architecture can encode information about the entire
image, as opposed to region proposal methods (e.g. Fast R-CNN [108]). A second, subsequent iteration
yielded improved mean Average Precision (mAP) on benchmark datasets such as, PASCAL VOC [91]
and Common Objects in Context (COCO) [196], whilst executing significantly faster [257] than other
methods – an invaluable attribute when limited computational resources are available for real-time in-
ference on-board a UAV agent. The most recent edition, YOLOv3 [258], proposes a marginally more
complex architecture resulting in more accurate performance. Over the course of this thesis, the evolu-
tion of ANN-based detectors was witnessed such that, Chapter 3 employs the use of Faster R-CNN [259]
(state-of-the-art at the time of work completion) and later chapters utilise the current-best YOLO detec-
tor [256, 257, 258] to capitalise on contemporary advancements (see Chapters 5 and 7).

In the context of this work, the detection and localisation of target objects (cattle) is frequently necessary.
This is since, raw imagery from the agent is general and therefore, we need to determine which parts of
the image (if any) contain objects of interest. In this work, detectors are trained on the Holstein Frieisan
species generally, such that they can be located in relevant imagery. The product of their use yields sets
of Region of Interest (RoI); target-centric sub-images that can then be provided as input into subsequent
architectures estimating identity. In this form, the species detector focusses computational attention on a
single individual’s unique features by minimising the number of background pixels.

2.3.3 Recurrent Architectures for Temporal View Integration

Recurrent Neural Network (RNN) architectures introduce the notion of memory across multiple evalua-
tions of a network by additionally outputting information to the subsequent iteration (as exemplified in
Figure 2.8). This renders them useful for tasks such as image sequence captioning, where the process-
ing of temporal or linked information requires retention, or, as is the case here, viewpoint integration
over time. That is, retaining implicit model knowledge of object identity across multiple observations
or images. This could be required in both passive iterative processes (the agent has no control over ob-

1YOLO website: https://pjreddie.com/darknet/yolo/
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ject viewpoint; Chapter 4) and active iterative processes (the agent actively seeks particular viewpoints;
Chapter 5).

Figure 2.8: Unrolled RNN. Temporally unrolled RNN for t time-steps, where data or memory is passed to the
subsequent iteration. Image credit: Olah, C. [232].

Despite their intuitive simplicity, basic RNNs are unable to learn long-term dependencies [27, 239] via
traditional training methods such as Back-Propagation Through Time (BPTT) [327], Real-Time Re-
current Learning (RTRL) [261] or Truncated BPTT [299]. This is due to the temporal progression of
back-propagated error values being exponentially dependent on the size of weights [133]. First intro-
duced in 1997, Long-Short Term Memory (LSTM) units [135] eradicate this problem by design and are
illustrated in Figure 2.9. The architecture of LSTM cells or units enforce constant error flow, therefore
preventing back-propagated errors from exploding or vanishing [133].

Following the success of LSTM networks, extensions or variations upon the original cell architecture
have included allowing gate layers to examine the cell state (Peephole LSTM) [104], arranging networks
of LSTM cells in a multidimensional grid [159], introducing a depth gate to connect memory cells
of adjacent layers (Depth-Gated LSTM) [336], and many more. Proposed in 2014, Gated Recurrent
Unit (GRU) [50] have been gaining popularity. They combine LSTM forget and input gates together
into a single “update” gate as well as other modifications resulting in a simpler model overall with fewer
parameters than LSTM cells. However, despite all these efforts, Greff et al. [115] find that no variants
significantly outperform the original LSTM architecture over large-scale analysis of eight LSTM variants
covering three popular machine learning tasks. Furthermore, Jozefowicz et al. [157] identify a RNN
architecture that outperforms both LSTM and GRU units at only a small proportion of evaluated tasks.
Consequently, standard LSTM layers are utilised throughout this thesis where recurrency is required for
temporal integration of convolutional features from multiple object observations.

Figure 2.9: Unrolled LSTM-based RNN. Temporally unrolled RNN for three time-steps with the recurrent layer
as a LSTM unit. Visible are the input Xt and output ht components at each time-step. Internally, a first sigmoid
layer chooses to allow or disallow the output of the previous timestep ht�1 concatenated with the current input Xt
to update the cell state, called the the forget gate. Next, consideration of new information additively affecting the
cell state is assessed by a sigmoid input gate it combined with hyperbolic tangent candidate values C̃t on Xt ;ht�1.
Subsequently, the cell state is updated Ct based on previous steps. To finalise, another sigmoid layer combined
with another hyperbolic tangent gate dictate LSTM layer output for this time-step ht . The output ht , cell state Ct
and subsequent input Xt+1 form inputs into the proceeding time-step, completing the pipeline. Image credit: Olah,
C. [232].
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2.3.4 Circumventing Deep Reinforcement Learning for Active Object Recognition

Seminal work in Deep Reinforcement Learning (DRL) occurred in 2013 when researchers from Deep-
Mind Technologies used a Deep Neural Network (DNN) as a function approximator for learning control
policies from high-dimensional sensory input such as images. Trained with a variant of Q-learning to-
wards the goal of replicating human-level performance in playing Atari 2600 games, the term Deep
Q-Network (DQN) was coined [219, 220]. DRQNs [126] extend this work in a recurrent design for
partial agent-environment observability with the utilisation of a LSTM layer [135] in place of the first
post-convolutional fully connected layer (see Figure 2.10). These works gave rise to a new genre of
reinforcement learning research [218, 193, 315, 322], where DRL has demonstrated incredible success
in a broad range of applications [224, 187].

Figure 2.10: Deep Recurrent Q-Network
(DRQN) Architecture. The recurrent DRL ar-
chitecture [126] over two time-steps forming
a Long-term Recrrent Convolutional Network
(LRCN); an ANN comprised of convolutional
layers extracting spatial features temporally
integrated by a subsequent LSTM layer. LSTM
outputs form Q-Values – estimates of long-
term expected reward from executing an action
in a given state [325] – following a final fully
connected layer. Image credit: Hausknecht,
M. et al. [126].

(Deep) reinforcement learning has even played a part in the task of active object recognition [235]; jointly
predicting object labels visually whilst selecting subsequent actions attempting to improve recognition
performance – aligning strongly with the work in this thesis towards active involvement of a freely
moving agent identifying a target subject (as will be explored fully in Chapter 5). One such work involves
use of the GERMS 2015 dataset2 [202], featuring 136 object categories of stuffed toys representing
a variety of micro-organisms, with limited intra-population visual similarities. For each category, the
dataset consists of robot-centric imagery whilst grasping the object amid 1-DoF through-range wrist
rotation. In this form, researchers proposing new algorithms can simulate robot wrist joint values towards
validating their active recognition approach. Included in the original paper [202] is a benchmark solution
founded in Deep Q-Learning, that was later extended by the same authors [201] to train a full architecture
end-to-end.

In regards to the work in this thesis on active identification, the agent (a quadrotor UAV) is modelled to
have significantly more DoF – such as 5-DoF in Chapter 5. The resulting objectivity landscape consti-
tutes higher dimensionality and searching this space becomes costly, especially in reality. Instead here, an
abstract formulation of discrete, finite viewpoint sequences are exhaustively searched for per-individual
least-costly satisfactory solutions (see Chapter 5 for further details). Whilst (deep) reinforcement learn-
ing is proven to be well suited to one-dimensional action selection [202, 201], this thesis proposes its
application to be unnecessarily complex when the finite action set has low cardinality. In other words, if
detailed training information is easily available, then reward-based learning is not required and the state
space to be learned can be explored more efficiently and effectively due to known best solutions. This
intuition is demonstrated in this thesis, with Chapter 5 exhaustively searching abstracted viewpoints, and
Chapter 6 learning from examples of optimal navigation decisions.

2GERMS dataset website: http://rubi.ucsd.edu/GERMS/
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2.4 Environment Exploration

Thus far, methods have been described that identify content based on object presence in a frame or
sequence of frames. Next, methods of active navigation will be reviewed that allow an agent to get
into a position whereby target objects of interest are within the frame to begin with. In other words,
reviewing exploratory strategies needed to discover new individuals in an environment. The search for
targets with unknown locations typically arises in Search and Rescue (SAR)-based applications [194,
319, 271].

2.4.1 Classification for Navigation

Robotic navigational research naturally relies heavily on the categorisation of sensory input. With respect
to visually-motivated navigation, approaches can largely be categorised into map-based and mapless
navigation [34, 68]. Mapless vision approaches – with no global environment representation – can be
found to: be based in optical-flow [274] and template appearance matching [209, 155], landmark feature
tracking [241, 272] and more recently relevant, directly classify visual input via CNNs [110, 254]. As a
particular example, Pomerleau, A. D. seminally employed an ANN to drive an offroad vehicle with input
being a 30�32 visual field in 1991 [245]. Neuron weights were learnt/trained via back-propagation on
expert (human) steering reactions whilst forward propagation yields image categorisation into 30 classes
for vehicle steering (e.g. fsharp left, ..., straight ahead, ..., sharp rightg). In this thesis however, a two-
dimensional global approximation of the environment (storing visited positions) inspired by occupancy
grid maps [35, 36, 234] is formulated, as opposed to post-exploration map-building approaches [222]
and topological map representations [167].

2.4.2 Deep Reinforcement Learning for Exploration

With respect to the portion of the work in this thesis involving agent-environment exploration attempting
to learn efficient, domain-specific navigation policies (i.e. a UAV-based agent efficiently discovering
the positions of cows in a field), a proportion of current research resides in DRL-based approaches. A
general literature review on deep reinforcement learning is given in previous Section 2.3.4. Literature rel-
evant to exploration however, has involved learning agent navigation in complex [216] and similar [344]
environments, map-less navigation [305] achieved visually [121] or via other sensor measurements. One
particularly noteworthy paper employs DRL towards target-driven visual agent navigation in simulated
indoor environments [360] – bearing resemblance with the problem formulation of this work solving
exploratory agency (specifically, Chapter 6). As argued properly in Section 2.3.4, in this thesis, DRL is
not used towards environment exploration because knowledge of what constitutes a good solution (e.g.
via Travelling Salesman Problem solutions) is known, and can be trained against.

2.5 Visual Animal Biometrics

Evolution adapts species to their environments over many generations. In the case of animals in the
wild, exhibited coat patterns have become increasingly tailored towards their surroundings to provide
camouflage or disruptive colouration [60] – examples for various species are given in Figure 2.11. Con-
cerning visual animal biometrics, there is therefore, an intrinsic challenge in automatically detecting
animals exhibiting such coat patterns in relevant imagery. Whilst principally maintaining the visual
theme amongst a species, small perturbations during the formation of coat patterns yield individuality.
The result of which is visible in the form of individually-unique scapular stripes for zebras, dorsal spot
arrangements for manta rays and coat pattern structures, markings and alignments for Holstein Friesian
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cattle. This characteristic is exploited in this thesis, building upon established methodologies for various
species [44, 172, 175]. Applications of automating such processes typically reside in conservation work
[273, 178, 107]. The following Section 2.6.1 discusses one area of conservation research dedicated to
the involvement of flying robots, aligning with this work.

Figure 2.11: Species with Coat Patterns. Examples of several species exhibiting variant coat patterns that have
evolved to their habitat/surroundings in order to provide camouflage or disruptive colouration [60] – as is visible
for Plains Zebra. Figure credit: Burghardt, T. [44].

2.6 Unmanned Aerial Vehicles

Relatively low-cost Unmanned Aerial Vehicle (UAV) are becoming evermore popular tools for the real-
isation of research interests [192, 55], commercial purposes (e.g. power line inspection [65, 153, 190],
wind farm inspection [226, 298]) as well as for consumer aerial photography and videography. With
respect to academia alone, research-impeding factors such as safety, cost, logistics and experiment re-
peatability that are present in manned aerial missions are certainly now less of a problem.

2.6.1 Application in Conservation

One area of applied research where UAVs have made a distinct impact is conservation, which aligns
with the social monitoring interests of this thesis. This follows from wildlife management and conser-
vation missions being adequately solved by unmanned flight systems with medium to low weight/size
payload capabilities. Put differently, manned light aircraft or rotorcraft are usually an overkill. Multiple
existing works assess and ultimately commend the effectiveness of fixed-wing UAVs (see Figure 2.12b)
for aerial surveillance of wildlife over large distances or areas, recommending flight system-specific de-
tails for optimal flights (e.g. electrically powered, hand-launchable) [156, 154]. Boasting long flight
times and possible distance ranges out of single charges/flights due to gliding and efficiency capabilities,
fixed-wing UAV or Unmanned Aircraft System (UAS) platforms are suitable for missions where this is
pertinent. The ability for multi-rotor (typically quad-rotor) UAVs (see Figure 2.12a) to accurately hover
or hold position and orientation, however, is a definite requirement for the monitoring goals of this re-
search. Combined with multi-rotor UAV capabilities for Vertical TakeOff and Landing (VTOL), their
wide availability, low-cost, ease of use and integration with existing software packages as well as many
other factors, they are the clear choice of autonomous aerial vehicle form factor for the purpose of this
project.
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(a) Quadrotor UAV – The DJI Matrice 100; the flight
platform used as part of this thesis.

(b) Fixed-wing unmanned aircraft system. Image credit:
A. Gay, et al. [102].

Figure 2.12: UAV Platforms. Example form factors for commonly-utilised UAV in conservation, research and
consumer sectors

Significant work towards the monitoring or conservation of animals, wildlife management and nature
utilising differing UAV systems and setups has taken place. Looking towards the growing problem
of global deforestation, costly solutions of effective data gathering have typically been employed (e.g.
satellite imagery, airborne sensors, manned flights). Koh et al. [165] propose a low-cost (sub $2000),
autonomous UAV flight system which captures high resolution aerial imagery of target areas automati-
cally. The implication of inexpensiveness being that previously inaccessible data can now be captured by
researchers in developing countries, low budget projects, etc. Non-technical operators can easily create
a flight mission by simply defining GPS waypoints – similarly to the commercial product DroneDe-
ploy [77]; a user-friendly mobile and browser-based application for mapping target areas. In fact, this
use of UAVs for high resolution aerial imagery capture for conservation pursuits is common in research
for aforementioned reasons [106, 105, 309].

UAVs are also commonly being used in the area of conservation research or monitoring of wildlife [136,
168, 1, 262] by counting individuals, capturing high-resolution imagery of animals and more. Van
Gemert, J. et al. use a quadrotor drone and propose a system for forming estimates of animal popu-
lations in particular areas [314]. The authors propose that this could be achieved automatically on-board
the flight system. They compare solutions between the use of a R-CNN or, methods based on bag-of-
words for automated object detection. Similarly in application, Israel, M. describes a UAV system for
the detection of roe deer fawn and other animals [146]. The animals are often found sleeping or rest-
ing in farm areas where they could be killed by agricultural machinery. The system uses an on-board,
lightweight thermal infra-red camera for animal detection which flags GPS coordinates to a human op-
erator for animal capture and release in to the wild. In a fashion similar to DroneDeploy [77], users
manually define a scanning region and a flight path is automatically generated and executed by the UAV.
Very similarly, Christiansen, P. et al. [54] employ the use of thermal imaging for automated animal de-
tection and classification to promote wildlife-friendly farming by detecting animals within user-defined
areas due to be harvested/mowed. As demonstrated, UAV systems have become popular for wildlife and
livestock monitoring in research [30, 248, 102] as a low-cost and effective solution.

In this work, a low-cost quadrotor UAV flight platform is used to ascertain the identities of individual
Holstein Friesian cattle using an on-board RGB camera. The important feat being that area surveillance is
performed with online and active agency towards efficient target discovery and robust identity estimation,
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instead of passively analysing obtained imagery/footage offline. Consequently, the flight platform – the
DJI M100 (depicted in Figure 2.12a) – was modified to house computational processing on-board (see
Section 7.2 for further hardware details).

2.6.2 Aircraft Principal Axes and Control

In the utilisation of aerial platforms, it is necessary to define consistent reference frames alongside ap-
propriate aircraft control algorithms, as this section will explore. The aircraft coordinate frame utilised
throughout this thesis is illustrated in Figure 2.13 and is outlined as follows. Specifically, f : roll, q :
pitch, y: yaw RPY angles operate counter-clockwise about x;y;z denoting the longitudinal, lateral and
vertical axes, respectively. Additionally, +x is aligned with the front of the aircraft, +y with the left hand
side and +z is in the upwards direction globally; forming a right-handed Front Left Up (FLU) aircraft
reference frame. The most commonly used alternative specification is aircraft Front Right Down (FRD)
to be aligned with North East Down (NED) geodetically.

Figure 2.13: UAV Coordinate Frame. Illustrated
UAV Front Left Up (FLU) coordinate frame commonly
used in aerospace engineering with corresponding roll,
pitch, yaw (RPY) angles denoted by f ;q ;y , respec-
tively. The front of the aircraft is aligned with the
+x axis and positive rotations are performed counter-
clockwise.3

The control of UAV position, orientation (attitude) and more is implemented via Proportional Integral
Derivative (PID) control. Throughout this thesis however, low-level dealings are abstracted away from
programmers of the employed UAV flight platform; control is implemented internally via PID. The
choice of UAV is the DJI Matrice 100, and full hardware considerations are given in Section 7.2. It
is however useful to understand how such control operates in order to reasonably diagnose exhibited
flight behaviours. PID controllers are implemented on-board the UAV for controlling its position and
orientation. When the user requests a goal state, a PID controller for each aircraft DoF (yielding six
independent variables: x;y;z;f ;q ;y) smoothly realises that position/orientation. PID control for a single
variable is described in the following paragraph and is depicted in Figure 2.14.

For a goal value r(t) (the setpoint) at time t, the current error e(t) is calculated from the difference be-
tween the setpoint and the current measurement of the variable y(t) (process variable). From the error
term e(t), proportional, integrative and derivative control tuned by scalar gain values Kp;Ki;Kd , respec-
tively is summated to yield a control adjustment u(t) that is performed. From there, a new measurement
is taken of the process variable y(t), completing the cycle. Then typically, when the new measurement
y(t) is sufficiently similar to the setpoint r(t) (the error e(t) is below some threshold), this will be in-
dicated to a higher monitoring process. Note that real implementations often selectively use individual
components for domain-specific purposes (e.g. PI, PD, P), as is the case in Section 5.4.1 implementing
a proportional controller for camera angle control.

3UAV image credit: DJI
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Figure 2.14: Proportional Integral Derivative (PID) Controller. Diagram illustration4of an iterative PID con-
troller attempting to control a measured variable y(t) towards a goal value; the setpoint r(t).

2.6.3 Geodesy

Geodesy, also known as geodetics, refers to the scientific field of understanding the intrinsic properties
of the earth’s shape geometrically, its gravitational field as well as its orientation in space [228]. In
the context of this thesis, established geodetic systems are used to discuss agent/UAV positioning in
relevant reference frames alongside transformations between those reference frames, as required by the
Application Programming Interface (API)s used in this work.

To begin, the most commonly known positioning system is GPS [249], a radio navigation system com-
prised of 31 satellites in sub-synchronous earth orbit owned by the United States government. Devices
with GPS capabilities can localise to metre-level accuracy given line of sight to � 4 satellites. Resulting
localisations arrive in the form of the World Geodetic System (WGS)-84 [63] coordinates (a commonly-
used Geographical Coordinate System (GCS) standard) to define any point on the earth:

(j : latitude; l : longitude; h : altitude); (2.2)

where j 2 [0;90]°N or [0;90]°S, l 2 [0;180]°E or [0;180]°W , h 2 R+m. This spherical coordinate
system is fixed to the earth (hence being indepedent of the earth’s on-axis rotation) such that j = 0°
intersects the equator and l = 0° intersects the Prime Meridian.

Figure 2.15: Earth Geographical Coordinate
Systems. Illustration5of the earth and rele-
vant Geographical Coordinate System (GCS).
The ECEF originates from the earth’s centre
of mass with orthogonal axes intersecting true
north and the intersection point between the
equator with the Prime Meridian. Spherical
GPS coordinates (l ;j) allow local reference
frames to be defined at some length h: altitude,
typically aligned with East North Up (ENU) or
North East Down (NED).

Next is the earth’s Cartesian reference frame: Earth-Centered Earth-Fixed (ECEF), which is also inde-
pedent of the earth’s rotation, with the point (0;0;0) defining the earth’s centre of mass [56]. The x-axis

4Diagram credit: Arturo Urquizo – https://commons.wikimedia.org/wiki/File:PID.svg
5Diagram credit: Mike1024 – https://en.wikipedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_

relationships.svg
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of ECEF is aligned with latitudinal and longitudinal coordinates 0° and 0°, respectively, and z is aligned
with true north. To complete the definition, the y-axis also has latitudinal value 0° but is orthogonal to
both x;y in a right-handed coordinate system.

It is often desirable to describe agents resolved globally in either of these GCS in a local Cartesian frame.
This manually placed frame is usually aligned with the earth’s axes in order to maintain operational
simplicity; typically, East North Up (ENU) or North East Down (NED) for the x;y;z axes, respectively.
As such, transformations are required when interchanging employed GCS to describe the agent’s position
with respect to the earth. In this work, WGS-84 coordinates are often transformed into a local Cartesian
frame via ECEF; this mathematical process is described fully in Appendix B.

2.7 Multi-Object Tracking

Multi-Object Tracking (MOT) refers to the task of predicting the trajectories of a set of objects over
the course of a sequence of images. Initial object regions are typically tracked via the paradigm of
“tracking-by-(re)detection” [291, 334], where a popular approach involves a classifier trained online
testing candidate regions [346, 158, 20] amongst alternatives [29, 41, 89, 278]. The challenge in asso-
ciating objects across constituent frames resides in object autonomy, camera motion and the birth and
death of trajectories; object instances entering and leaving the frame. In relation to the work at hand,
use of “tracking-by-detection” is employed to track individuals in aerial image sequences, where initial
object regions are inferred from object detectors. Tracklets (object regions over time) are then given
to components inferring identity iteratively; over multiple variant observations. Specifically, Chapter
4 on passive iterative identification associates candidate trajectories via the Kernelised Correlation Fil-
ter (KCF) algorithm [131], whilst later Chapters 5 and 7 capitalise on real-time detection advancements
using YOLO [256, 257, 258] in conjunction with simple association heuristics.

2.8 Cattle Identification Methods

The problem of automated biometric bovine identification has been well-studied over associated litera-
ture. Automated approaches can largely be separated into three categories [17]: (1): those that utilise
cattle muzzle patterns, (2): rarer systems that employ retinal biometrics [10], facial features [180, 45]
(equally applicable to pigs [125]) or body scans [14], or as is the case here, (3): those that exploit coat
pattern characteristics [204]. Note that advanced non-biometric computerised vision schemes for identi-
fication exist too, including work that takes advantage of the European cattle ear-tagging mandate [237]
by applying text and character recognition in order to match tagged individuals against respective Bovine
Identification Documents [317].

2.8.1 Muzzle Patterns

Bovine muzzle patterns were first introduced as an individually-unique, dermatoglyphic trait [217] as
far back as 1922 [242]. This seminal work was extended in 1993 where significant differences in cattle
dermatoglyphics across breeds were discovered [23]. Muzzle patterns form the foundation of significant
research into semi-automated bovine identification methods [176, 179, 162, 308]. In many cases, stan-
dard feature-description algorithms such as Scale-Invariant Feature Transform (SIFT) [199] or Speeded
Up Robust Features (SURF) [26] are employed [8]. In particular, Noviyanto et al. utilise SIFT on
160 manually-acquired muzzle prints of 20 individuals after applying ink to the cattle’s muzzle [230],
similarly to Minagawa et al. [215].
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These semi-automated solutions are operationally improved by approaches operating on muzzle images
alone [177, 229, 82, 24, 342, 85, 99]. As an example, Awad et al. combine SIFT and Random Sam-
ple Consensus (RANSAC) for feature extraction and filtering to achieve strong identification accuracy
on muzzle images [19, 18]. More recently, robust muzzle differentiation has been achieved by meth-
ods involving ANNs on hand-crafted features [84, 83] as well as basic, shallow convolutional architec-
tures [173].

Figure 2.16: Cattle Muzzle/Nose. Example
of the cattle muzzle used as a dermatoglyphic
biometric trait [242]. Identification is per-
formed by analysing spatial ridge features
distributionspermitted by taking muzzle/nose
print images using ink imprints. Image credit:
Baranov, A. S. et al. [23].

To reiterate, whilst effective use of muzzle patterns as a biometric entity is provenly robust across differ-
ing species [23] in aforementioned literature, acquisition of satisfactory imagery is inherently cumber-
some and difficult. To begin with, muzzle prints were painstakingly and intrusively manually acquired
by transferring applied ink from the cow’s muzzle to paper for subsequent analysis. This is no longer
the case given contemporary image analysis algorithms (e.g. [174, 306, 200, 86, 307, 81]) operating
on muzzle images. However acquisition of such images is difficult and requires heavy preprocessing,
given the small size of the region (and the corresponding minimum resolution of features), viewpoint
variability from animal autonomy, illumination difficulties from moisture variation and lighting change
(especially since muzzle regions are particularly monotonal). Further still, reliably producing muzzle
images automatically must pass a robust detection stage. There is therefore, a justified gap in litera-
ture for easily-automated and minimally-invasive identification algorithms. A gap this thesis attempts to
address.

2.8.2 Coat-Pattern Analysis

To re-iterate, Holstein Friesian cattle exhibit individually-distinctive black and white (sometimes brown
and white) patterns and markings over their bodies due to piebald6 spotting [236, 75]. Dorsal patterns
alone, as exemplified in Figure 2.17, form complex visual alignments and structures. The application
goal of this thesis is, therefore, to exploit visual uniqueness exhibited in dorsal markings to perform
automated and minimally-intrusive individual identification. Acquisition of appropriate imagery is rel-
atively straightforward; aerial images can be captured by downward-facing cameras in barn or with
low-cost UAV-based agents outdoors – as is tested in both cases in this thesis. The obvious downfalls to
this biometric assumption is that the proposed methods are inherently limited to (a): species exhibiting
such coat patterns to begin with, and (b): individuals of a population that exhibit sufficient pattern varia-
tion – a general requirement in biometrics [44]. As a simple example, two entirely black individuals are
impossible to differentiate under this assumption, and alternative biometric methods would have to be
sought.

First attempts to utilise Holstein Friesian coat patterns for identification are very limited. Martinez-Ortiz,
C. et al. [204] propose use of Principal Component Analysis (PCA) to infer nearest neighbour identity

6‘Piebald’ Oxford dictionary definition: having irregular patches of two colours, typically black and white.
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Figure 2.17: Holstein Friesian Cattle. Example image of Holstein Friesian cattle grazing freely at the University
of Bristol’s Wyndhurst veterinarian farm in Langford Village, UK. Imagery was acquired aerially via the use of a
DJI Inspire MkI UAV utilised later in this thesis for offline model training and validation (see Chapters 3, 4). With
respect to original contribution in the application field, the goal of this thesis is to exploit visible per-individual
coat pattern uniqueness for minimally-intrusive visual identification purposes.

from known high-dimensionality templates. The authors additionally propose use of a scale invariant
feature, specifically SIFT [199], to locally describe exhibited pattern characteristics. The core logic being
that when two images containing the same individual are compared, there will likely be more feature
similarities (matches) than when two different individuals are examined. This consequently formed
inspiration for the first part of this thesis describing individual identification via matching local coat
pattern features (see Section 3.2). The novelty in the methodology employed here, however, lies within
the realisation that a proportion of extracted features will not contribute beneficially to identification (as
is visible in Figure 2.18). As such, can the properties and attributes of such features be effectively learnt
and ultimately, discriminated during evaluation (see Section 3.2.2)?

Figure 2.18: Pairwise Local Feature Matching. Individual identification of cattle from pairwise image compar-
isons. Features are extracted on a query image and compared against those from a known set of templates. Image
pairs containing (a): the same individual will likely contain more feature similarities according to some matching
metric compared to (b): pairs with differing individuals. Image credit: Martinez-Ortiz, C. et al. [204] .

Additional identification difficulties arise in unconstrained imagery from varying viewpoints and the
non-rigidity of animals, that is, skin deformation due to changes in pose and articulation. It is for this
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reason that this thesis employs the use of fully affine-invariant feature extraction algorithm Affine Scale-
Invariant Feature Transform (ASIFT) [223, 339, 340] to explicitly model affine deformations of the
cattle coat (see Section 3.2). This thereby increases the number and quality of the matchable base-
lines compared to alternative local descriptor techniques such as SIFT [199]. This traditional feature-
based approach is built upon by directly applying convolutional ANN architectures to learn individually-
characteristic features automatically in a supervised manner (see Section 3.3). The core takeaway being
that, within the scope of the experiments conducted in this thesis, (a): individually-exhibited dorsal coat
patterns are sufficiently distinctive across experimented herd sizes (e.g. � 100) and, (b): the method-
ology and pipelines proposed here can reliably infer identity from such patterns. Importantly, and with
respect to the application of individual cattle identification towards agricultural automation, this can
occur with little disturbance to the animals.

2.9 Summary

To summarise the topics presented within this chapter (in order) alongside their relationship to this work,
the following table is given with reference to relevant parts in the work chapters of this thesis:

General Topic /
Sub Topic

Review
Section Specific Work Topic Specific Work

Chapter/Section(s)
Active Object Recognition 2.2 Active Iterative Individual Identification 5
Next Best View 2.2.1 Viewpoint Sequence Generation 5.4.5
Object Pose Estimation 2.2.2 Agent-Target Displacement Estimation 5.4.2
Artificial Neural Networks 2.3 - -
CNNs for Fine-Grained Recognition 2.3.1 Identity Classification / Feature Extraction 3.3 / 4.4, 5.4.4, 7.4.3
Object Detection via R-CNN 2.3.2 Identity Classification / Species Detection 3.3.1 / 4.3
Recurrent Architectures 2.3.3 Temporal Viewpoint Integration 4, 4.4, 5.4.4, 7.4.3
DRL for Active Object Recognition 2.3.4 - -
Environment Exploration 2.4 Exploratory Agency 6
Classification for Navigation 2.4.1 Exploration Problem Discretisation 6.3
DRL for Exploration 2.4.2 - -
Visual Animal Biometrics 2.5 - -
Unmanned Aerial Vehicles 2.6 Data Acquisition / Real-World Experimentation 4.2, 7.3 / 7
Application in Conservation 2.6.1 Cattle Census 7.6
Principal Axes and Control 2.6.2 UAV Setup and Control 7.5
Geodesy 2.6.3 GPS Coordinate Fulfilment 7.5.3
Multi-Object Tracking 2.7 Individual Region Tracking over Frames 4.4, 5.4.1, 7.4.1
Cattle Identification Methods 2.8 - -
Muzzle Patterns 2.8.1 - -
Coat-Pattern Analysis 2.8.2 Local Feature Matching 3.2
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Chapter 3

Single Frame Identification

3.1 Chapter Overview

This chapter primarily aims at demonstrating that automated visual identification of Holstein Friesian
cattle can occur effectively, to a certain extent, through the traditional computer vision paradigm of
evaluating a single image. Holstein Freisians exhibit coat patterns that are exploited in this thesis for
individual discrimination. The difficulty lies in intra-population visual similarities, a factor which in-
creases proportionally with the size of the population, rendering this task an example of fine-grained
identification.

Pitfalls to the concept of single frame identification are experimentally highlighted by individual- and
circumstantial-specific causes. These issues are addressed by later chapters whereby multiple, varying
images of an individual are analysed in a passive and active setting. However, within the scope of this
chapter, an effective demonstration is given for single-frame identification across two approaches:

1. Local Feature Matching (Section 3.2): utilising a standard feature descriptor in computer vision
(ASIFT [223]) for matching local features in preprocessed RGB-D imagery towards effectively
recovering individual identities. Deployment of this approach however, comes at significant com-
putational cost.

2. Deep Learning (Section 3.3): employing a R-CNN-based architecture for individual cattle iden-
tification operating on top-down imagery acquired in a real-world agricultural environment, sim-
ilarly to the section above. In doing so, convolutional architectures are validated on the task of
selecting, learning and discriminating features that contribute towards individuality for each mem-
ber of a population.

The key takeaway is that the utilisation of dorsal features alone as a biometric entity is demonstrably
viable across the population sizes used in this chapter (�100 individuals). The consequence of which is
significant; the automatic and minimally-intrusive identification of Holstein Friesian cattle is eminently
possible.
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3.2 Local Feature Matching

The objective of this section is to provide a baseline for identification using traditional techniques. This is
achieved by automating the visual identification of individual Holstein Friesian cattle from dorsal RGB-D
imagery taken in a real indoor farm environment using classical, hand-crafted features. This section
contributes a dataset and proposes a system that can reliably derive animal identities from top-down stills
by firstly, depth-segmenting animals in RGB-D frames, and then extracting a subset of local ASIFT coat
descriptors predicted as sufficiently individually distinctive across the species. Predictions are generated
by a Support Vector Machine (SVM) using Radial Basis Function (RBF) kernels for predictions based
on the ASIFT descriptor structure. Learning such a species-specific identity model is shown here to be
effective, and robustness to poor or complex input image conditions such as the presence of multiple
cattle, bad depth segmentation, etc. is demonstrated. The proposed system yields 96:6% identification
accuracy over a testing dataset covering a herd of 25 individuals from the published FresianCattle2015
Dataset.

Figure 3.1: Proposed Cattle Identification Approach. The approach taken in this chapter segments animal regions
via fitting a depth model, and then extracts ASIFT descriptors over the detected area. A SVM is used to learn a
species-wide predictor of descriptor-individuality employed to select and use features for cattle identity recovery.

3.2.1 Dataset

Data Acquisition

Data acquisition was implemented at the Wyndhurst Farm at Langford Village, UK filming cattle exiting
the milking file and freely walking towards holding pens1. As can be seen in Figure 3.2, the passage-
way is sufficiently narrow in order to ensure a one-way system (it would be difficult for a cow to turn
around in that space), which later aids the rotation-normalisation phase in image preprocessing (since
all cows should face the same direction; facing right). A top-down operating Kinect 2 sensor was used
in conjunction with a dedicated workstation for aligned RGB-D recording. Data was captured from this
overhead perspective at approximately 4m above the ground, where, 16-bit depth imagery at a resolution
of 512�424 and raw RGB video at 1920�1080 at 30fps (full high definition) was recorded.

Image Preprocessing

Cattle in the raw image frame (as exemplified in Figure 3.2) are first segmented against the background
and normalised for rotation. Towards this goal, associated depth maps were thresholded at empirically

1Many thanks to Dr Sion Hannuna and Dr Neill Campbell for acquiring, labelling and preprocessing this dataset.
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Figure 3.2: Raw Capture Examples. Raw RGB image examples captured by a Microsoft Kinect 2 camera affixed
statically above the one-way walkway connecting milking files and holding pens at the University of Bristol’s
Wyndhurst Farm for veterinarian teaching and research in Langford Village, UK.

determined minimum and maximum sensor distances t1 = 2m; t2 = 3:4m respectively, then binarised
such that silhouettes are generated for the cows in the frame. Second, erosion and dilation were used to
perform hole-filling on these silhouettes.

The resulting intermediates contain clutter in the scene at the same height as the cattle as well as sec-
ondary cattle that are only partially in the camera’s field of view. Connected component analysis was
used to remove any blobs smaller than “cow size” from the camera’s fixed viewpoint. Finally, PCA was
applied to each blob individually and the major axis (first principal component) is utilised to rotate each
of the masks and its corresponding RGB data such that it is aligned with the horizontal axis. The result
being that images are normalised, containing a single horizontally-aligned cow segmented against the
background with its head on the right-hand side. Fulfilment of this process yielded the dataset used here.
The FriesianCattle2015 Dataset consists of 274 preprocessed images of 35 individuals and is published
online2. Figure 3.4 provides example images from this dataset, whilst Figure 3.5 illustrates examples of
preprocessing failure cases that are not included in the final published set.

Figure 3.3: Dataset Acquisition Location. Aerial imagery of the University of Bristol’s Wyndhurst farm in Lang-
ford Village, UK. Enclosed within the red perimeter is the extent of the farm’s land and fields. The barn location,
where indoor data was acquired for this chapter, is highlighted by the yellow marker. Also shown (left) is the
location of the farm within the UK. Images courtesy of: Google Earth Pro.

2FriesianCattle2015 dataset: https://data.bris.ac.uk/data/dataset/wurzq71kfm561ljahbwjhx9n3
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Good Quality Segmentation Examples. Example instances from the FriesianCattle2015 dataset that
have been well preprocessed; constituting a single, horizontally-aligned cow segmented against the background.
The occlusion of the head (visible in some cases) was deemed to be acceptable since they were observed largely
not to contain visual features important for identification (as is indicated later in Figure 3.7) and introduce the
potential for significant spatial variation.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Erroneous Preprocessing Cases. Examples of erroneous preprocessing cases – highlighting limita-
tions of the approach – that were subsequently not included in the FriesianCattle2015 dataset due to the following
reasons; First, (a)-(b): partial occlusion of the subject cow as a result of the individual walking out of the cam-
era’s field of view. Second, (c): poor depth segmentation resulting in significant partial occlusion. Finally, (d)-(f):
multiple individuals present in segmentation due to their proximity during RGB-D acquisition.
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3.2.2 Implementation

Feature Extraction and Filtering

Feature extraction upon images is performed by the C++ distribution of ASIFT [223, 340], which, ex-
tends the vanilla SIFT algorithm [199] to account for all affine deformation components via simulating
camera longitude and latitude coordinate manipulation to solve the two outstanding affine transforma-
tion components originating from camera tilt. The remaining 4 affine parameters are solved for by the
SIFT algorithm itself. Whilst feature extraction could have been performed here instead via SIFT, it
was deemed that effective tilt variation created by object deformations due to the animals walking, neck
movement, etc. would be difficult to recover. Note however, that the choice in the utilisation of ASIFT
instead of SIFT comes at the cost of significant additional computation time. Extracted ASIFT features
are then filtered to limit features to have position within the animal area by discarding features spatially
situated outside the segmentation boundary as exemplified in Figure 3.6. This stage is performed in order
to make steps towards removing erroneous visual features created artificially by the segmentation bound-
ary itself. This is achieved by overlaying ASIFT feature f 2Cowi coordinates fx; fy in the composited
image (see figure 3.4 for examples) onto the corresponding mask image MI (see figure 3.9a) yielded by
the aforementioned preprocessing stage (see section 3.2.1). If the pixel value at that coordinate is white
MI[ fx; fy] = 255, feature f is retained, otherwise it is discarded.

(a) Object mask image MI (b) Composited RGB object image

Figure 3.6: Extracted and Filtered ASIFT Features. Mask image (a) pixel values MI[x;y] are used to retain
(green) features spatially positioned within the segmentation boundary for the composited image (b). Features
located outside the animal region are discarded (red).

Species-Specific Model of Descriptor Individuality

Many of the extracted and filtered ASIFT features in the animal region still carry little or no infor-
mation about the identity of the individual itself. Put differently, features may be spatially situated in
plain/monotonal areas carrying no individual structures, encode the highly variable silhouette, the tail or
other non-individual features, markings or visual structures. To learn which subset of feature descrip-
tor structures is individually characteristic or, put differently; contributes beneficially towards individual
identification, a RBF-SVM was trained. Specifically, there was a desire to predict features as either indi-
vidually characteristic or not based on the structure of the associated 128-wide descriptor vectors alone.
The associated binary ground truth was obtained by placing a threshold on the term D f 2 [�1;1] for a
feature f 2Cowi:

D f =
jMintraj
jIintraj

�
jMinterj
jIinterj

; (3.1)

where M denotes pairwise feature matches for feature f for matching an image pair of the same individual
(intra) or different individuals (inter). Lastly, I denotes the set of all training pairs. Accordingly, high D f
values denote that feature f is distinctive to its class and vice versa. A suitable threshold t was determined
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following D f computation upon the training data set. ASIFT features with D f > t and D f � t were
binarily labelled positively and negatively, respectively. The feature training set of �7;000 image pairs
(of individuals not used in later testing) together with this supervisory data was subsequently provided for
SVM training. A grid search was performed a priori in order to determine suitable SVM training values
resulting in C = 2 and g = 0:25. 10-fold cross validation was subsequently completed, achieving 85:6%
accuracy on the training data. Highest-performing threshold value t = 0:18 on D f was then selected
qualitatively as a result.

Resulting feature-wise classifications are depicted in figure 3.7, where the effectiveness of this model
is clearly visible in removing segmentation boundary features whilst retaining those situated around
individually-unique dorsal markings. The trained SVM is utilised by the subsequent feature matching
stage to predict the importance and direct the inclusion of features for consideration during identity
recovery.

Figure 3.7: Application of Individuality Model. Feature acceptance (green) and rejection (red) following thresh-
olding on respective feature D f values with t = 0:18. Rejected features can be seen to typically sit near highly
variable segmentation boundaries.

Feature Matching and Identification

Image-image comparison employing ASIFT feature matching is performed by its released C++ imple-
mentation3. Following feature extraction and filtering via the processes described in previous Section
3.2.2, retained features are matched for some image-image pair via the algorithm described in the orig-
inal ASIFT article [340]. This process involves utilisation of the SIFT feature matching method [199]
followed by filtering out matchings that are not consistent with an epipolar geometry via the Optimized
Random Sampling Algorithm (ORSA) method [221].

Matching results are sequentially produced by performing feature-feature matching upon all possible
image pairs. The results are comprised of the number of common features (matches) found for a par-
ticular image pair following aforementioned filtering. That is, (a): enforcing features to reside within
the animal region, (b): filtering non-contributing features via the individuality model and (c): verifying
matches geometrically described as follows.

Image-image matches are verified geometrically by aligning image pairs vertically (see figure 3.8, row
4; lines between corresponding features forming a match are rendered in red). Only matches/lines which
are less than �3° off the median are retained. This equates to a basic, relaxed linear model, which,
was found to significantly improve true positive and negative identification success rates. Subsequent
to filtering using the trained SVM, features comprising a match for an image pair are binarily classified
2 f�1;1g. Matches where both features are predicted to be characteristic to cattle via the individuality
model are retained.

3ASIFT source code and articles: http://www.ipol.im/pub/art/2011/my-asift/
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Figure 3.8: Examples of Identification Process with Successful and Unsuccessful Image-Pair Comparisons.
Row 1: RGB images and row 2: corresponding depths image. Row 3: images yielded from preprocessing with
retained and discarded features following feature-importance prediction in green and red respectively. Rows 4,
5: examples of feature matching and geometric filtering on the same individual (left 3 examples) and different
individuals (right 3 examples).

3.2.3 Experiments

Performance analysis for individual identification is accomplished by applying a threshold to the match-
ings quantity matrix (each test image vs. each test image without self-comparisons). Entries into this
matrix contain the number of matched features for every possible image pair following aforementioned
filtering. This threshold is varied to observe the effect upon true positive and true negative identification
success rates as illustrated in Figure 3.9.

To showcase the improvements to scalability via the full individuality model in the proposed approach,
two datasets are generated for training and testing arbitrarily from the larger FresianCattle2015 dataset.
A subset of the collection is used in order to reduce computational expense. Figure 3.9 illustrates com-
parative results via Receiver Operating Characteristic (ROC) curves. The training dataset sampled from
the FresianCattle2015 dataset consists of 10 individuals, 83 images and the testing dataset consists of
25 individuals, 191 images – yielding 1912 = 36;481 testing image-image pairwise comparisons. At
Equal Error Rate (EER), the model achieves 96.6% identification accuracy on this data (accompanied by
69% feature-importance prediction accuracy). Disabling the individuality model was observed to result
in a small decrease in identification accuracy as given by the ROC curves of Figure 3.9b. Figure 3.9a
illustrates a significant reduction in the threshold on the quantity of mutual features for an image-image
pair to be considered a match, whilst exhibiting a slight increase in overall accuracy (96:6% versus 96%).
This highlights the ability of the individuality model in identifying and discarding features that do not
beneficially describe dorsal coat patterns.

One important consideration is the computational cost of this implementation. Feature extraction alone
(generating ASIFT feature descriptors) was found to require approximately 30 seconds per image. The
addition of subsequent identification implementation processes further deteriorates overall identity re-
covery time – rendering it computationally infeasible in online scenarios (e.g. online, near real-time
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identification operating on-board a UAV). Whilst efforts have been made in the parallelisation of ASIFT
[58, 310], performance remains insufficient when coupled with the processes required with the identifi-
cation pipelines described here in this thesis. Consequently, the testing population size and number of
images per individual are arguably limited in these experiments. Whilst this serves well as a proof-of-
concept experiment, it ultimately highlights the unsuitability of this approach in a live setting required in
this work.

(a) (b)

Figure 3.9: Experimental Results. (a): True positive and true negative rate vs. the feature acceptance threshold
(minimum number of acceptable pairwise feature matches) with and without using the individuality model (marked
no SVM). (b): ROC curves marginally confirm the effectiveness of the individuality model (orange) vs. basic ASIFT
matching (blue).

3.2.4 Section Conclusion

This section finds that for an arbitrary subset of the larger FriesianCattle2015 dataset – imagery as can be
routinely generated in farm environments – it can be concluded that the application of an individuality
model for filtering local descriptors is beneficial. The employed pipeline led to a best accuracy of 96:6%
over the small testing set. More widely speaking, this clearly demonstrates that Holstein Friesian dorsal
coat patterns are sufficiently visually distinctive/individual for identification purposes given a small pop-
ulation. This success may be subject to a caveat involving sufficient individual resolution and general
image quality. This section has demonstrated that the proposed approach scales well across small herd
sizes but, as mentioned previously, suffers as a result of the high computational cost associated with
ASIFT feature extraction per-image. This renders identity evaluation of large population sizes computa-
tionally infeasible and justifies the implementation of a contemporary deep learning approach described
in the following section. Correspondingly, future work could quantify the tradeoff between identifica-
tion accuracy and execution speed via employing alternative feature descriptors (e.g. SIFT [199], SURF
[26], ORB [268]). Furthermore, the method proposed here performs verification of whether two pre-
sented images contain the same individual or not. In operating individual identification on-board a robot
agent, verifying whether a current image matches some template knowledge is inefficient, despite possi-
ble search acceleration via k-d trees [28] or similar. The task at hand is intrinsically a classification task;
the UAV agent acquires an image and seeks to infer the identities of cattle present within it.
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3.3 Identification via Deep Learning

In this section, a demonstration that computer vision pipelines utilising deep neural architectures are
well-suited to perform automated individual identification of Holstein Friesian cattle in an agriculturally
relevant setup is given. This is achieved via demonstrating that off-the-shelf networks can perform
robust end-to-end identification of individuals in top-down still imagery acquired from fixed cameras.
Additionally, this section introduces and operates upon a new dataset named FriesianCattle2017 of in-
barn top-down imagery. This section shows that an individual identification model fuelled by a R-CNN
exploiting dorsal Friesian coat uniqueness on 940 RGB stills (containing 89 unique individuals) taken
after milking in-barn achieves an accuracy of 86.1%. This test suggests that, an application of marker-less
Friesian cattle identification is not only feasible using standard deep learning components – it appears
robust enough to assist existing tagging methods. At the time of writing, this work was the first to apply
deep learning to the task of automated visual bovine identification.

3.3.1 Individual Identification Implementation

In order to achieve the goal here of individual Holstein Fresian identification via deep learning, a R-CNN
ANN/DNN architecture is employed. Specifically, the employed network architecture is a R-CNN adap-
tation of the VGG-M 1024 CNN described alongside a series of other proposed architectures [47]. Ac-
quired images are passed through the R-CNN ultimately resulting in a set of estimated object bounding
boxes and respective identity estimates. Whilst a simpler CNN could have been employed solely on pro-
vided object regions, the benefit of individual detection and localisation occurring as in implicit process
is beneficial in applicational settings due to computation time and otherwise. What perhaps this merging
of processes fails to account for is circumstances involving a new, previously unseen individual. In this
case, the target is perhaps unlikely to be detected whereas a robust species-wide detector would likely
provide the desired result. The simple image to ID pipeline is illustrated in Figure 3.10.

Figure 3.10: Identification and Implicit Detection Pipeline. Off-the-shelf baseline layout utilising still image
input and comprising a VGG-M 1024 [47] R-CNN trained end-to-end for individual Holstein Friesian cattle iden-
tification and localisation.

Formalisation of this identification and implicit detection and localisation task begins with defining the
possible classes for proposed object RoIs yielded from the R-CNNs RPN:

CID = fbackground;cow0;cow1; :::;cowmg; (3.2)

where jCIDj= m + 1 to include the negative class case. Inference on an image I with the R-CNN yields
a set of n bounding box rectangles:

B = fbbox1
pred ;bbox2

pred ; :::;bboxn
predg (3.3)

defined spatially by the tuple:

bboxi
pred = ((xi

1;yi
1);(xi

2;yi
2));

where 8 0 < i� n:
(3.4)
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Also, associated with each predicted object RoI is a class membership probability vector yielded by the
network:

P = (p0; p1; :::; pn);

such that
n

å
i=0

pi 2 P = 1; jPj= jCIDj and 8pi 2 P; pi 2 R+;
(3.5)

as enforced by a softmax function. The final content prediction ci
pred of a predicted RoI bboxi

pred is taken
to be the maximal element of P:

ci
pred = argmax

p2P
; (3.6)

where ci
pred 2CID. Note that class background is somewhat ambiguous; it potentially now incorporates

a new, unseen individual not typically associated with the background itself. The hope is that given
sufficiently strong training, such a case is not paired with an erroneous identity c 2CID�background or
is not detected whatsoever.

3.3.2 Dataset: FriesianCattle2017

This dataset consists of 940 RGB images based on data capture carried out in the previous Section 3.2.1.
Of those images, there are jmj= 89 distinct Holstein Friesian individuals such that:

CID = fbackground;cow0;cow1; :::;cow88g
and jCIDj= 90:

(3.7)

The data was captured over a two hour-long session via the use of a Microsoft Kinect 2 camera affixed
statically over the walkway between holding pens and milking stations in a real indoor farming envi-
ronment. The camera was configured to capture top-down still images of cattle dorsal coat patterns at a
rate of 0.5 Hz. Whilst data capture could have instead been triggered via depth sensing of appropriately
sized and placed blobs – potentially removing the occurrence of individuals partially outside of the image
frame – depth sensing capabilities are not equipped on-board the UAV agent performing individual iden-
tification in Chapter 7 and it is desirable to replicate this scenario as closely as possible in preparation. A
more in-depth discussion of dataset acquisition, preprocessing steps, etc. is given in the aforementioned
section 3.2.1. Example images of individuals from the dataset are given in Figure 3.11.

Figure 3.11: Indoor Dataset Exam-
ple Instances. Example rotation-
normalised still images from the in-
door dataset used in this and the
previous section. (rows): Example
individuals and (columns): example
instances (or frames) for a particu-
lar individual from the FriesianCat-
tle2017 dataset. The camera was af-
fixed statically above a walkway be-
tween holding pens and milking sta-
tions in a real agricultural environ-
ment.
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Ground-Truth Labelling

The use of a R-CNN intrinsically requires training data to include ground truth object bounding boxes
as well as class labels for each object RoI. The dataset ground truth labelling process was therefore a
two-fold task:

1. Bounding Box Annotation: After user annotation of bounding boxes in an image, the generated
data was stored in an XML format aligned with that required by the Faster-R-CNN framework
and Convolutional Architecture for Fast Feature Embedding (Caffe) [150] for instance annotation.
Annotations were performed manually in adherence with the labelling guidelines of the VOC chal-
lenges [92] – specifically, the VOC2012 guidelines [93]. Manual annotations were accomplished
sequentially utilising a custom-built Graphical User Interface (GUI) application (see Figure 3.12)
where users can “click and drag” rectangles over object RoIs.

2. Individual/Class Labelling: Following bounding box annotation, the users were sequentially pre-
sented each labelled RoI and asked to identify the individual cow contained within the presented
bounding box (see Figure 3.13).

Figure 3.12: Bounding Box Annotation Program. Custom-built GUI application for ground-truth object bound-
ing box annotation written in OpenCV [147]. For each dataset image, the user can manually “click and drag” a
rectangle over individual cattle RoIs (green rectangles) in accordance with the VOC2012 labelling guidelines [93]
and accept (blue rectangles) or re-draw their input.

(a) Labelling query example with differing individuals and therefore, the user
would press key ‘n’.

Figure 3.13: Class Labelling Program. Screenshot from the GUI application designed to aide the process of
categorising image instances into individuals so as to generate ground-truth individual identity data. The user is
presented with two green bounding boxes side-by-side yielded from the labelling process depicted in Figure 3.12
and is asked whether the two bounding boxes contain the same individual or not.
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Labelling Challenges

It was found that in a significant proportion of dataset images, one or more individuals would be partially
occluded; either by another individual or being spatially positioned partially outside of the image frame
boundaries. This creates a fundamental and philosophical question with respect to the manual ground
truth labelling stage; how visible should an object be for the user to label it? More abstractly, what
constitutes valid parameters for object visibility? Specific to the use case here, in some instances, an
individual’s tail was found to be somewhat upwards and away from the body. This poses the question:
should the ground truth bounding box annotation include the tail in these situations? Its inclusion would
imply that many erroneous background pixels are also included within the annotation. The same problem
applies equally for a cow’s head and legs/feet to a certain extent.

Fortunately, these questions and problems are answered by guidelines created for the VOC challenges
[92]. For ensuring consistency in ground truth dataset labelling, all instances are labelled to adhere to the
guidelines listed below for the entirety of this thesis. In particular, the VOC2012 guidelines [93] state:

• What to label: all objects of the defined categories, unless: you are unsure what the object is, the
object is very small (at your discretion) or less than 10-20% of the object is visible.

• Bounding box: mark the bounding box of the visible area of the object (not the estimated total
extent of the object). Bounding box should contain all visible pixels, except where the bounding
box would have to be made excessively large to include a few additional pixels (<5%) e.g. a car
aerial.

• Occlusion/truncation: if more than 15-20% of the object is occluded and lies outside the bounding
box, mark as “Truncated”. Do not mark as truncated if the occluded area lies within the bounding
box.

Data Augmentation

During data capture, cows were free to walk from a holding pen to a milking station as they pleased (see
section 3.2.1 for more details on data acquisition). This results in per-individual variation in the time
spent within view of the static acquisition system. Consequently, the number of images (or instances)
obtained per individual are not balanced across the population – the mean being m = 15 images with
standard deviation s = 19:9. Figure 3.14 shows the distribution of instances per individual over the data
acquisition period.

Figure 3.14: Instance-Individual Distribution. Histogram of the number of original (non-synthesised) instances
(images) per individual cow (m = 15, s = 19:9).
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To balance the number of images per individual for training purposes, the dataset was augmented via
image synthesis. The target number of instances was chosen to equal the maximum number of original
(non-synthesised) instances for any particular individual (in this case, 127 images for Cow 11). Addi-
tional images were synthesised by rotating original images by some random angle a about the image
centre (xc;yc) whilst maintaining the original image resolution for dataset consistency. Bounding box
coordinates/parameters were also transformed by angle a . New bounding box coordinates (xb;yb) were
computed via:

xb = (xa� xc)cosa� (ya� yc)sina + xc

yb = (xa� xc)sina +(ya� yc)cosa + yc
(3.8)

where (xa;ya) denotes bounding box coordinates prior to image rotation and (xc;yc) denotes the image
centre. This stage yields an angled bounding box annotation for the respective object outline. However,
since the Faster R-CNN implementation currently does not support the parametrisation of object rotation
(bounding box angle), an orthogonal bounding box is generated via min;max functions of transformed
coordinates. That is, for a bounding box defined spatially by bboxa = ((x1

a;y1
a);(x2

a;y2
a)) which is ro-

tated by random angle a to become bboxb = ((x1
b;y1

b);(x2
b;y2

b)), the resulting image-frame-orthogonal
bounding box bboxc is generated by the following equations for a top-left image origin:

x1
c = min(x1

a;x1
b)

y1
c = min(y1

a;y1
b)

x2
c = max(x2

a;x2
b)

y2
c = max(y2

a;y2
b)

(3.9)

The negative implication of this is that more erroneous background pixels are often included within
ground truth object RoIs as a result of cattle being largely rectangular in shape. Furthermore, transformed
bounding box coordinates were bounded within the dimensions of the image frame.

Despite the synthesis process, the resulting augmented dataset was not altogether perfectly balanced
(equal numbers of instances for all individuals). This is since many of the original images contain more
than one individual. When synthesising new images with multiple cows present originally, possible
surplus instances for other individuals are created. Whilst this problem could easily be avoided by only
synthesising on images with one individual present, a significant proportion of original instances contain
multiple individuals. To only synthesise on such images would effectively reduce the scope of the training
data and potentially lead to model over-fitting.

To re-balance the augmented dataset following synthesis, a simple algorithm is employed whereby sur-
plus instances are removed. If a particular individual has a surplus, synthesised instances are sequen-
tially inspected and potentially deleted until a target class cardinality is reached. For an individual with
a surplus, synthesised instances are deleted if they contain only one individual. In the case that the
instance being inspected contains multiple individuals whom also all have a surplus, the instance is
marked for deletion. This is not a perfect solution, since the distribution of individuals within instances
is non-uniform. The yielded dataset following this process is therefore likely to still be unbalanced, but
nevertheless an improvement.

Training-Testing Data Partitioning

Following synthesis, the yielded dataset is partitioned into training/testing sets towards the goal of per-
forming two-fold cross validation. Algorithm 1 is employed for partitioning the dataset into appropriate
bins since it would be inappropriate to evaluate the network’s performance on synthetic instances; images
that have already been trained upon in their original form.
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Algorithm 1 Training/Testing Data Partitioning. Algorithm for splitting datasets comprised of syn-
thetic and original instances into randomly generated bins for training and testing towards k-fold cross
validation. Note that the functions: getInstances(x) and getSyntheticInstances(x) return the list of
original (non-synthesised) and synthetic instances respectively for individual x.

1: f olds 2
2: max f indMaxInstances(individuals)
3: for ind in individuals do
4: bin size jgetAllInstances(ind)j

f olds
5: non synth randomShu f f le(getInstances(ind))
6: synth randomShu f f le(getSyntheticInstances(ind))
7: if jnon synthj< bin size then
8: non synth splitIntoBins(non synth; f olds)
9: for i in f olds do

10: label data[ind][i]:test non synth[i]
11: label data[ind][i]:train synth + non synth[0 : i�1]+ non synth[i + 1 : end]
12: end for
13: else
14: all instances non synth + synth
15: all instances splitIntoBins(all instances; f olds)
16: for i in f olds do
17: label data[ind][i]:test all instances[i]
18: label data[ind][i]:train all instances[0 : i�1]+ all instances[i + 1 : end]
19: end for
20: end if
21: end for

3.3.3 Single-Frame Individual Identification

For this task, the augmented (including synthesised images) FriesianCattle2017 dataset of indoor still
images was used. Following synthesis on the 940 original instances for 89 individuals, the �11,000
yielded instances were randomly segmented towards two-fold cross validation as per algorithm listing
1. However importantly, synthesised instances were never included in testing sets (see Section 3.3.2).
As mentioned previously, the VGG M 1024 CNN [47] network adapted for R-CNN is employed here.
Training end-to-end for 100;000 iterations and a batch size of 32 for both folds, the mAP values given in
Table 3.1 were obtained. Figure 3.15 illustrates occasions where identification failed, producing incorrect
results. These were found to be due to observable visual similarity across individuals, multiple cow
proximity/alignments and frame boundary clipping.

Note that region predictions from the R-CNN are accepted as true positive provided there is sufficient
overlap with a same-class ground truth bounding box via a binary threshold t = 0:5 placed on scalar
value ov describing rectangle-rectangle overlap via Intersection over Union (IoU):

ov =
bboxGT \bboxpred

bboxGT [bboxpred
(3.10)

where bboxGT and bboxpred denote the ground truth and predicted bounding box regions respectively.
Categorised detections are subsequently used to compute class precision and recall data and mAP is
computed via the corresponding Area under Curve (AuC).

44



3.4. COMPARATIVE STUDY

(a) (b)

(c)

Figure 3.15: Single-Frame Identification Failures. Shown are ground-truth/prediction examples where single-
frame cattle identification failed due to: (a) no corresponding ground-truth annotation after following VOC la-
belling guidelines [92, 90], (b) individual visual similarity and (c) region proposal error due to multi-cow align-
ment/proximity.

mAP (%)
Task Fold 1 Fold 2 Average

R-CNN Identification &
Localisation

87.21 84.93 86.07

Table 3.1: Single Frame Individual Identification Accuracy. Classification mAP for single frame individual
identification and localisation on the indoor FriesianCattle2017 dataset over 2-fold cross validation via the use of
the VGG M 1024 CNN [47] architecture.

3.4 Comparative Study

The two approaches employed towards identifying individual cattle from single images are fundamen-
tally at odds operationally. The result is that directly comparing the performance of the two approaches
is not necessarily fair. On the one hand, the classical approach applies feature-feature matching between
template and query image pairs, whereas convolutional networks infer identity from single images and
require a distinct supervised learning phase. This section, however, provides a limited comparison by
providing results on one-shot learning using a CNN and image augmentation on the very same dataset
used for the former, classical approach.

Imagery used here is the testing set from the FrieisanCattle2015 dataset (refer back to Section 3.2.1 for
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more details) consisting of 191 preprocessed images of 25 individuals. These are the exact same images
that the local feature matching approach used for testing. A single image was randomly subtracted
from each of the 25 categories to seed one-shot learning, meaning that yielded results are not directly
comparable. These images were then augmented4 with a combination of random cropping, scaling,
rotation, blurring and more to produce sufficient levels of training data, with 500 instances per category
(including the original non-augmented image). The resulting training dataset was then used to train
the VGG CNN-M architecture over 50 epochs to provide a fair comparison, identically to the R-CNN
architecture used in earlier Section 3.3 minus Region Proposal Network (RPN) components. The network
architecture is fully illustrated in Table 3.2, whilst Figure 3.16 illustrates accuracy versus training steps,
where 10% of the training set was retained for validation.

Table 3.2: VGG CNN-M Architecture. The VGG CNN-M architecture used here to perform a comparative study
between the two approaches to individual cattle identification proposed in this chapter. The architecture is pub-
lished as part of several other network proposals in the original paper [47]. The network architecture is identical
to the one used in the earlier proposed deep learning approach (see Section 3.3) employing Faster R-CNN, except
that it is used here as a standard CNN (i.e. the RPN is removed and the whole image is classified). Table credit:
Chatfield, K. et al. [47]

Figure 3.16: Accuracy vs. Training Steps. Graph of
training and validation set accuracy5 versus training
steps. The VGG CNN-M [47] architecture was trained
for 50 epochs on 500 synthetic augmented images from
a single image source for each category (including the
one original non-augmented seed image). As can be
seen, significant overfitting of the training set is ob-
served to occur.

Comparative results, indicated in Table 3.3, demonstrate that the feature-feature matching approach out-
performs one-shot learning, despite operating on a marginally larger testing set. The problem lies in the
fact that all augmentations are seeded from a single image for each category, where the individual will be
in some particular articulation/pose that is replicated over 499 instances. The resulting trained CNN will
not be invariant to change in individual pose, as is regularly observed in the testing set where individuals
walk in and out of frame. This highlights the importance of sufficient quantities of variant labelled train-
ing data for representation learning. Where this is difficult to acquire, and identification times are not an
issue, local feature matching appears to offer more accurate end results over small populations.

Approach Test Instances Accuracy (%)
Local Feature Matching 191 96.6
One-Shot Learning CNN 166 62.65

Table 3.3: Comparative Performance Results. Quantification of comparative performance for the two approaches
to individual identification proposed in this chapter. Note that the ANN-based approach utilises a subset of the
dataset for model training, resulting in fewer testing instances, meaning that the results are not directly compara-
ble.

4Images were augmented using: https://github.com/aleju/imgaug
5Noisy signals have been smoothed using the Savitzky-Golay filter [275].
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3.5 Chapter conclusion

This chapter demonstrates that the task of automatic individual Holstein Friesian identification exploit-
ing dorsal coat pattern uniqueness can operate well under a single-frame, single iteration evaluation
paradigm. Importantly, this process can take place with minimal intrusion in practically relevant set-
tings, in contrast to the majority of existing identification frameworks revolving around physical animal
tagging.

Specifically, this task is achieved via a traditional descriptor approach followed by a contemporary ap-
proach founded in deep neural architectures. With respect to the former – employing ASIFT feature
description and matching on dorsal coat patterns – identification performance is strong across a small-
sized herd. The computational cost however, is significant to the point where it is infeasibly applicable
in online settings, as required by this thesis in performing live identity estimation on-board a UAV robot
agent.

This problem is alleviated by the latter approach; training a R-CNN to not only identity individuals, but
also to detect and locate them in real-world imagery in an agriculturally-relevant environment. Across a
larger population (consisting of 89 individuals), accuracy is strong, whilst per-image inference time is in
the manageable region of sub one second for online computation. As a result of identification success,
convolutional-based architectures are shown to be well suited towards learning and distinguishing the
properties of unique dorsal pattern and structure exhibited by the species individually. Whilst results
obtained here are strong under the paradigm of evaluating a single image, the following chapter will go
on to show that: identification estimates yielded from relevant models benefit from exposure to multiple
frames containing the individual in question under observation parameter variation.
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Identification via Selective Local Coat Pattern Matching in RGB-D Imagery. In IEEE International
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Chapter 4

Passive Multi-Frame Identification

4.1 Chapter Overview

Passively-acquired videos of individual cattle filmed by an aerial robot will naturally contain viewpoint,
object and illumination variation. Considered in their entirety therefore, sequences of images contain
complementary and superior information as opposed to single images. Given that operation on fine-
grained categories necessitates the observation of subtle discriminative features, multiple variant frames
increase the likelihood of their visibility altogether. In this chapter, this intuition is investigated in begin-
ning to introduce multiple iterations to individual identification. This occurs here in a passive and offline
setting, where the agent has no control over observation parameters in order to showcase the benefit of
simplicity.

Passive iterative identification is achieved by a proposed video processing pipeline (see Figure 4.1 below)
consisting of standard components to efficiently process dynamic aerial herd footage captured via the use
of a UAV. The proposal consists of a trained species-wide detector feeding tracked individual-wise RoIs
into a temporally-integrative architecture inferring cattle identity.

This chapter is organised firstly into Section 4.2 describing the acquisition and pre-processing of the
dataset via the use of a UAV. Next, Section 4.3 outlines a component of the complete video processing
pipeline performing species detection. Section 4.4 then details the iterative identification component of
the pipeline, finishing with conclusions for this chapter in Section 4.5.

Figure 4.1: Proposed Iterative Identification Pipeline. Aerial video processing pipeline with separation of species
detection and individual identification components, added KCF [131] tracking unit for fast trajectory extraction,
and enhanced temporally-integrating individual identification component combining an Inception V3 network
[303] feeding into a standard LSTM unit [135] to utilise complementary information as revealed progressively
across several frames in tracked RoI streams.
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Figure 4.2: UAV Acquisition of a Friesian Cattle Herd. Representative frame from the AerialCattle2017 dataset
captured by a DJI Inspire MkI UAV filming at�5 meters above the ground. Individual cows are resolved at approx-
imately 300�100 pixels within frames resolved at 3840�2160 pixels captured at a frame-rate of 24 fps. The ani-
mals’ distinctive black and white coat patterns are clearly resolved and are used as an individually-characteristic
biometric entity.

4.2 Dataset: AerialCattle2017
In order to train and evaluate the efficacy of the proposed approaches, this chapter utilises the AerialCat-
tle2017 dataset captured in a practically relevant scenario1. This dataset is published online for public
use2. The dataset consists of 34 herd videos of cattle captured from an aerial standpoint of grazing
fields at the University of Bristol’s Wyndhurst veterinarian farm in Langford Village, UK. Each video
is approximately 20 seconds in length and is captured from a top-down perspective (see Fig. 4.2). For
each video, cow regions were extracted and used to produce cropped videos containing single individu-
als (examples provided in Fig. 4.4). Following individual cropping, the resulting individual-centric RoI
dataset contains 23 individuals and a total of 160 videos for a mean of m = 7 instances per individual
with standard deviation s = 3:87.

Figure 4.3: AerialCattle2017 Dataset Acquisition Location. Aerial image3of the Wyndhurst Farm in Langford
Village, UK. (Red): marked boundaries of the field where data acquisition, resulting in the AerialCattle2017
dataset, took place.

1Many thanks to Professor Becky Whay for assisting with the capturing of data used in this chapter.
2AerialCattle2017 dataset: https://data.bris.ac.uk/data/dataset/3owflku95bxsx24643cybxu3qh
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Figure 4.4: Aerial Dataset Examples. Example frames from individual-centric RoI streams extracted from outdoor
UAV-acquired video footage forwarded as input into the LRCN identity-recovery architecture. (rows) Example
individuals (different RoI streams) and (columns) example instances (or frames) for that individual. The aspect
to be noted is the variation exhibited across multiple frames for instances that reveal further salient identification
features that the proposed architecture exploits (e.g. ID = 1). As well as this, the inclusion of erroneous pixels
from other individual(s) can be overcome with information extracted from frames prior to the event (e.g. ID = 3).

4.2.1 Acquisition

The aerial video dataset was acquired4 via the use of a DJI Inspire MKI UAV, quadrotor or drone and
its integrated camera/3-axis gimbal system (see figure 4.5), the DJI Zenmuse X3. It was flown above
a herd of approximately 30 young Holstein Friesians in a nursery field (acquisition location depicted
in Figure 4.3). During flights under the supervision and oversight of veterinarian researcher Professor

Figure 4.5: DJI Inspire MKI UAV5. Quadrotor platform manufactured by DJI utilised for UAV-based data cap-
ture. The Zenmuse X3 – the integrated 3-axis gimbal and 4K resolution camera – is situated at the bottom of the
aircraft (for further camera specification details, see Section 7.2.1

3Images courtesy of Google Earth Pro.
4Special thanks to Dr Colin Greatwood for piloting the UAV to acquire this dataset.
5Image credit DJI.
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Becky Whay, footage was captured over an hour-long period at a raw resolution of 3840� 2160 pixels
at 24 fps. Over the 34 acquired videos, the UAV height from the ground was varied by 5 m decrements
starting at 25 m and with the lowest height being 5 m – note that altitudes were varied only in-between
video capture. This allowed the cattle to become gradually accustomed and comfortable with the physical
and sonic presence of the UAV – after initially exhibiting signs of some anxiety towards it according to
Professor Whay. Flights were performed in accordance with the Civil Aviation Authority (CAA)’s UAV
regulations mandating maximal flight altitude, distance from properties/objects outside of the operator’s
control, etc. [16].

4.2.2 Ground Truth Labelling and Cropping

To produce ground-truth bounding box and class labels, the first frame of each video was extracted and
considered as for the indoor, still-image dataset. Object bounding boxes were manually annotated for
these frames in accordance with labelling guidelines created for the VOC challenges [90, 92]. As for
the aforementioned FriesianCattle2017 dataset (see Section 3.3.2), labelled bounding boxes were subse-
quently manually categorised into respective individual classes using the labelling tool developed there
(for illustrative examples, see Figure 3.13). To generate ground-truth bounding boxes for all subsequent
frames of each video, an instance of the KCF tracking algorithm [131] was initialised for each RoI as per
the pipeline depicted in Figure 4.1. Bounding box coordinates are updated over frames and were directly
used to crop images to individual cow size. Clipped/lost regions were manually deleted to adhere to the
VOC labelling guidelines. Cropped RoIs containing single cows were then saved as independent videos
and grouped according to their original class label. Example frames yielded from this process are given
in Figure 4.4.

4.3 Species Detection and Localisation

The first component in the video processing pipeline architecture depicted in Figure 4.1 deals with de-
tecting and locating Friesian cattle in given imagery. Candidate regions are then later provided as initial-
isation to individual-wise tracking components. In this section, an object detector is trained on:

1. in-barn imagery from the previous chapter (the FriesianCattle2017 dataset, see Section 3.3.2)
2. frames extracted from outdoor, UAV-acquired video footage (the AerialCattle2017 dataset, see

Section 4.2)

Figure 4.6 illustrates detection examples on both types of images. The intention is that in training on
multiple image domains, where significant background, object, etc. variation occurs, the trained model
generalises well to unseen images in learning domain-agnostic features.

The deep network utilised to address the goal of automated Friesian detection and localisation is the
R-CNN adaptation of the VGG M 1024 CNN published as part of several other network architecture
proposed by the Visual Geometry Group at the University of Oxford [47]. The core architecture consists
of 5 stacked convolutional layers – which are shared with the RPN – plus three fully connected layers
(the final with softmax activation). The architecture is illustrated in Figure 4.7. Instead of training from
scratch, network weights were initialised with a model trained on the ImageNet database [66] supplied
with the Faster-R-CNN Python implementation [259] founded within the Caffe framework [150] for
ANN applications.
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(a) Indoor detection examples. (b) Outdoor detection examples.

(c) Rejected background region proposals on an indoor
dataset instance.

Figure 4.6: Species Detection and Localisation. Examples of species detection and localisation for the (a): indoor
FriesianCattle2017 and (b): outdoor AerialCattle2017 datasets using the R-CNN model as well as (c): examples
of discarded background region proposals (i.e. :cow). (Blue): Ground truth bounding boxes for object class cow
and (red): predicted candidate object bounding boxes with class membership score values.

Figure 4.7: Species Detector Network Architecture. The employed neural architecture for performing species-
wide detection and localisation within two-dimensional imagery. The architecture is the VGG M 1024 CNN [47]
adapted for faster R-CNN. Network output is a set of candidate object regions with associated classification scores
for a given input image.

4.3.1 Quantitative Findings

Cattle detection and localisation was implemented using the VGG M 1024 CNN [47] adapted for use
within the Faster R-CNN framework [259]. Written to support a Python API, the software implementa-
tion of Faster R-CNN is founded upon the Caffe deep learning library developed by Jia et al. [150].

The dataset used for evaluating detection and localisation performance of the R-CNN was formed as a
union over frames from the FriesianCattle2017 (see Section 3.3.2) and AerialCattle2017 (described prop-
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erly in Section 4.2) datasets. This combination of indoor and outdoor imagery yields improved solution
generalisation and avoids simplification of the detection task towards a single agricultural environment by
introducing background, individual resolution and illumination variation. All original (non-synthesised)
images were used from the FriesianCattle2017 dataset. Every 12th frame (or at a rate of 0:5 Hz given 24
fps source footage) for each AerialCattle2017 video was extracted. This combination yielded the final
dataset consisting of 1077 images. Two-fold cross validation was performed over this set.

Region predictions from the R-CNN are accepted as true positive provided there is sufficient overlap with
a same-class ground truth bounding box via a binary threshold tov = 0:5. Rectangle-rectangle overlap is
computed via IoU:

ov =
bboxGT \bboxpred

bboxGT [bboxpred
(4.1)

where bboxGT and bboxpred denote the ground truth and predicted bounding box regions respectively.
Categorised detections are subsequently used to compute class precision and recall data. mAP is com-
puted here via the AuC for generated precision-recall curves (see Figure 4.8).

Figure 4.8: Precision-Recall Curve for Detection. Detailed section (x;y 2 [0:8;1]) of the precision-recall curve
for cattle detection and localisation over two-fold cross validation.

Table 4.1 summarises the two-fold cross-validated performance results, whilst Figure 4.8 illustrates a
detail from the corresponding precision-recall curves. This evaluation demonstrates that the task and
data tested are very well suited to the employed R-CNN framework. It produces near perfect results of
correctly localising cows across both dataset domains and successfully concludes the first component of
the iterative identification pipeline illustrated in Figure 4.1.

Figure 4.9 depicts some of the few examples where cattle detection failed. Examined failures consisted of
(a): erroneous detections created by the alignment and proximity of multiple cows or (b): false positive
detections of partially-visible cattle having no corresponding ground-truth label due to the VOC labelling
guidelines on object visibility/occlusion, though, these cases are observably marginal.

mAP (%)
Task Fold 1 Fold 2 Average

Species Detection
& Localisation

99.02 99.59 99.3

Table 4.1: Species Detection Accuracy. mAP values for two-fold cross-validated performance tests for the task of
cattle detection and localisation. mAP scores are computed via AuC for generated precision-recall curves shown
in Figure 4.8. As demonstrated, the R-CNN cattle detector produces near perfect results for the task of correctly
localising cows across the tested datasets.
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Figure 4.9: Species Detection and Localisation Failures. Shown are examples where cattle detection failed due
to (left): multi-cow alignment and (right): a controversial erroneous detection due to a lack of ground truth label
in adherence with the VOC2012 labelling guidelines [93].

4.4 LRCN-Based Identification of Tracklets

As has been briefly discussed previously, video – as opposed to a single still image of a scene, event
or environment – intrinsically provides an additional (temporal) dimension of information exploitably
relevant to individual identification. This section discusses a method for incorporating information from
subsequent frames into the identification estimate6. The benefit is that complementary information is
revealed progressively via new observation viewpoints resulting from camera and target movement, etc.
In the specific case of this thesis, observation conditions vary due to movement of the UAV flight plat-
form itself (i.e. varying wind speeds and direction, localisation inaccuracy via GPS), individual cattle
movement and more.

In the vast majority of cases, an individual cow can be tracked well within herd videos using the high-
speed KCF tracking algorithm [131], given a good initialisation RoI yielded from the predecessor species
detector. These tracklets – sequences of varying individual cattle regions over time – are classified into
identities here. Successful tracking originates from cattle walking relatively slowly – D’Hour et al. find
the average Holstein walking speed to be 1.37 m/s over distances of 5.6 and 3.2 km for two trials [69].
And in addition, the segmentation task in an outdoor agricultural setting is somewhat trivial7 for top-
down, aerially-acquired footage. Furthermore, cattle are unlikely to suddenly start walking backwards
or change their heading by more than say �30°. Thus, if cowx is present in frame fi, it is also likely to
be present in fi+1

8.

These factors combined with the fact that UAV-captured source footage will exhibit positional and ro-
tational variation due to winds, GPS inaccuracy, etc. contribute towards variation in viewpoint, object
configuration and/or scale (for examples, see Figure 4.4). Consequently and importantly, this often re-
veals the presence of further salient discriminative visual features useful for identification purposes. Such
continual assessment of an object’s identity over time under varying parameters permits class predictions
to be refined and improved iteratively – provided the model can effectively integrate spatio-temporal fea-
tures – forming much of the motivation for this thesis and its primary contribution.

ANNs featuring LSTM layers [135] fundamentally operate on temporally-based data series, rendering
them intrinsically oriented towards the goals of the task here. Whilst alternative forms of recurrent
and memory-bearing networks/layers could be employed here, the proven success of LSTM-based ar-
chitectures over others provides adequate justification of its use here (see Section 2.3.3 for a detailed
comparison of alternative architectures). In application to the evaluation of video and image sequences
of length n, constituent individual image frames are considered sequentially. For some frame fi, output
from a LSTM layer is fed as input to the subsequent iteration for frame fi+1. In the case of the task here,

6In operation on identifying individuals in video data in this section, only videos acquired via the use of a UAV and as part
of the AerialCattle2017 dataset (see Section 4.2) are used here. Other datasets FriesianCattle2015 and FriesianCattle2017 are
comprised of singular image frames only.

7Black and white cow targets with a typically green grass background.
8Given a sufficiently frequent frame-rate in source footage.
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following processing of frame fn, a final class-prediction vector is yielded for the entire input sequence
via a fully connected layer employing softmax activation.

Convolutional feature representations of input frames fi are extracted prior to input into the LSTM layer
using a pre-trained Inception V3 CNN [303]. The network is trained on single images of individual
identities and feature maps are extracted just before the final output classifier. Such a combination of a
CNN and LSTM layer(s) – first introduced by Donahue et al. [73] – is referred to as a LRCN architecture
and is employed here for the task of spatio-temporal individual identification. Figure 4.10 illustrates the
standard LRCN pipeline used. It is proposed that this core identification pipeline can then be easily
integrated into surrounding components of the complete video processing architecture as illustrated in
Figure 4.1.

Figure 4.10: Recurrent Convolutional Architecture. Unrolled identification refinement pipeline for an input video
based on the LRCN architecture [73]. Visual features for input video frames f f1; f2; :::; fng are extracted via an
Inception V3 CNN [303] trained to identify individuals from single images. Feature maps are extracted from the
penultimate layer for input into a single LSTM layer with 256 units ultimately yielding an identity prediction for
the entire image sequence.

4.4.1 Experiments

The dataset used for this task originates solely from the outdoor video dataset (AerialCattle2017) and
consists of 46,430 cropped image frames and 23 individual cows over 160 videos. Tracklet instances
were sequentially split into 40-frame long spatio-temporal streams. Performing this stage for the entire
data corpus resulted in 1064 labelled streams, each containing a single individual over time. This data
was then partitioned9 into a ratio of 9:1 (that is into 957 and 107 streams), for training and testing
respectively. Note that consequently, training and testing instances may originate from the same original
video and thus, may be visually similar.

To perform identification refinement, the Inception V3 network [303], an extension of GoogLeNet [302],
was fine-tuned on the 23-class training dataset. More specifically, each frame from the 957 training
streams was used to fine-tune Inception weights originally trained for the ILSVRC [270]. Subsequently,
all frames from each training stream were passed through the re-trained network. The 2048-wide vector
yielded at the ‘pool3-layer’ was captured in each case. Convolutional frame-wise representations for each
stream were then used to train a single LSTM layer comprised of 256 cells followed by a fully connected
layer with jclassesj= 23 neurons and softmax activation. This architecture was selected following exper-
iments with alternative network architectures (e.g. multiple stacked LSTM layers, varying the number
of cells, etc.) resulting in worse final identification performance on the validation set overall.

Figure 4.11 illustrates improving prediction accuracies on the training and testing datasets over 1,000
epochs, with identification results given in Table 4.2. For each prediction, an ordered vector of size
jclassesj = 23 is produced with individual-wise class confidences 2 [0;1] subject to the condition that
the vector summates to 1. The predicted class label is taken to be the index of the maximal value in

9Data partitioned using the train test split SciKit-Learn Python machine learning library function: http://
scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.
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4.4. LRCN-BASED IDENTIFICATION OF TRACKLETS

Figure 4.11: Training Towards Individual Identifica-
tion. Detailed section of prediction accuracy on the train-
ing and testing/validation set for identification at differ-
ent stages of LSTM training over 1,000 epochs10 on the
training and testing datasets consisting of 957 and 107
streams, respectively.

Figure 4.12: Precision-Recall Curve for Video Iden-
tification Evaluation. Detailed precision-recall curve
(x;y2 [0:8;1]) for LRCN identification on retained testing
data consisting of 23 possible cow classes for 107 testing
video streams.

that vector. A prediction is then considered a true positive if the predicted and ground truth class labels
match.

Accuracy (%)
Task Training Testing

LRCN Individual Identification 99.79 98.13

Table 4.2: Video Individual Identification Accuracy. Classification accuracies of the LRCN setup after training
for 1,000 epochs on the 1064 instance-strong video stream dataset (training set: 957 instances and testing: 107)
containing image sequences of individual Holstein Friesians. Each instance consists of 40-frame image sequences
comprising � 1:5s of video.

Figure 4.12 shows a detailed section of the precision-recall curve for the iterative identification task,
whilst some examples of false positive classifications are given in Figure 4.13. For erroneous predictions,
the individuals referred to by predicted and ground truth class labels were visually similar. The quantity
(number of white, black or brown patches), position and shape/structure of coat pattern features were
found to bare strong resemblance across mistaken labels.

(a) IDPRED = 3, IDGT = 10. (b) IDPRED = 11, IDGT = 14.

Figure 4.13: Video Identification Failures. Examples of false positive classifications from LRCN identification on
the AerialCattle2017 dataset. In all failure cases, dorsal features are observably visually similar in structure and
positional distribution on the body.

10Signals smoothed using the Savitzky-Golay filter [275].
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4.4.2 Quantification of Iterative Identification Advantage

In this section, the primary intention is to quantitatively and qualitatively reveal how a paradigm of
performing identification over multiple iterations is beneficial as opposed to the traditional approach of
evaluating a single frame. Towards this goal, figures/graphs have been selected to illustrate the internal
operational mechanics of the LRCN model towards uncovering some of its inherent “black box”-like
properties; its behaviour to relevant inputs.

To begin, what is meant here by model confidence and identification satisfaction is given to remind the
reader. Output of neural network models with a final softmax function-activated layer is a jclassesj-
dimensional vector K where:

K = fk0;k1; :::;kng (4.2)

subject to:

8ki 2 K; ki 2 (0;1) and
n

å
i=0

ki = 1; (4.3)

where n = jclassesj and ki 2 R+. Each value ki is interpreted here to be the model’s inferred confidence
in the class ci for some input I, where classes = fc0;ci; :::;cng. If a particular probability value k j
satisfies a defined threshold k j � a; a 2 R+, identification confidence in the class c j is considered
satisfactory.

As a first step towards justifying the need for a multi-iteration paradigm at all, model accuracy was
collected across all 107 testing instances utilised in the previous experiment (see section 4.4.1). This is
exemplified in Figure 4.14a, where a clear trend visibly indicates that overall accuracy increases versus
exposure to multiple subsequent images/frames and corresponding feature vectors – equally applying
to model confidence in some category (see Figure 4.14b). This demonstrates the success of the trained
LRCN model beneficially integrating spatial convolutional features from multiple sources. Whilst the
trend line itself is not perfectly linear and/or uniform, an increased testing sample size would solidify
trend appearances. These results then serve as a proof-of-concept for future experiments upon larger
datasets consisting of more instances and more classes. The core takeaway of this analysis is that:
individual identification demonstrably benefits from exposure to a progressive stream of subject-wise
visual information.

(a) Rank-1 accuracy vs. frames. (b) 5-rank model confidence vs. frames.
Figure 4.14: LRCN Model Performance vs. Progressive Frame Exposure. Graph (a): model accuracy versus
exposure to subsequent complementing frames. At each frame iteration j, the maximal element of the yielded
confidence vector argmax(K j) = c j is taken to be the predicted label. If the prediction matches the ground truth
c j = cGT for that testing instance, a correct classification is attributed to that instance at frame j. This is repeated
over all 107 instances for all 40 frames to produce an accuracy metric versus frames. Graph (b) illustrates 5-rank
model confidence (see equation 4.2) in some class label versus frames.
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Importantly however, in the vast majority of testing cases, evaluation of the first frame in the sequence
provides sufficient evidence for the ground truth identity. As can be seen in Figure 4.14a, 86=107 =
80:37% are actually predicted correctly. The traditional approach of evaluating a single frame there-
fore, is demonstrably strong, highlighting the success of the predecessor species detection component in
providing appropriate individual-wise RoIs that are identified here. Upon exposure to new frames un-
dergoing variance, discriminative features are revealed progressively, improving accuracy overall. This
additionally suggests that object regions are well-associated and maintained over image sequences from
the KCF tracking algorithm [131].

Figure 4.15 illustrates the number of frames required to identify the individual in question to confidence
level a . The takeaway being that for complete model confidence (a � 1;� 100%11) in some correct or
incorrect label, the LRCN must be exposed to multiple iterations featuring visual variation. However, the
single-frame paradigm is mostly sufficient when this constraint is slightly relaxed (e.g. a = f0:9;0:95g).
Finally, it is visible that there are some testing instances – irrespective of model confidence requirements
– that require the multi-iteration identification approach described in this chapter.

Figure 4.15: Frames Required for Identity Confidence Threshold Satisfaction. Histogram of the number of
frames/images required incrementally in order to satisfactorily identify a particular testing individual-wise video
stream to confidence levels a = f0:9;0:95;1g.

Hand-picked testing instances of particular interest are depicted in Figure 4.16 illustrating occasions
where multiple frames were required to result in the correct identity prediction, whilst Figure 4.17 illus-
trates similar graphs for the only three failures out of all 107 testing instances. With respect to multi-
iteration successes (Figure 4.16), there appear to be several classifications of graph characteristics that
relate to: (a);(c);(e) a complete switch in prediction (to the correct label) at some event e, (b);( f ) fluc-
tuations in the correct label and (d) complete identity prediction confusion until some event e. This is
similarly the case for identification failure cases shown in Figure 4.17. The important takeaway of both
examples of successes and failures is that the rate of change in model confidence versus time is relatively
high. This corresponds to the visual information revealed at event e or frame fi providing an abrupt spike
in the knowledge required for the model to solidify confidence in a particular identity/class. Put differ-
ently, the LRCN-based identification pipeline seemingly does not integrate spatio-temporal features as
gradually as the original Figure 4.14 illustrating average confidence versus frames might suggest. It is
rather the observation of one particular disambiguating frame and its constituent discriminative spatial
features that appears to solidify model confidence in some category.

To finish, a short experiment in which the ordering of frames in testing instances was randomised ob-
served a negligible difference in attainable prediction accuracy. This corresponds to the fact that temporal
features themselves are unimportant in this experimental context, it is rather the observation of particular
spatial features occurring at some stage that prevails and LSTM layers offer a convenient and demon-
strable ability in meaningfully combining this evidence.

11Absolute confidence a = 1 is not possible due to softmax enforcing non-zero elements 8ki 2 K – see equation 4.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: LRCN Model Confidence Versus Time/Frames. Hand-picked interesting examples out of 107 testing
instances where multiple frames were required to ultimately yield the correct identity prediction – some particular
discriminative feature for that category becomes visible at frame fi (e.g. frame number 8 for graph (e)). For
each example, model confidence vs. exposure to subsequent complementing frames in the 40 frame-long image
sequence is shown, where green and red denote confidence in the correct ground truth class cGT and all other
incorrect labels, respectively. Resulting from softmax enforcing confidence summation to 1 (see equation 4.3),
symmetry is visible for some instances within particular frame windows – graph (c) illustrates this occurrence
well. The graphs in (a), (b) demonstrate that employing a simpler mechanism of a voting scheme on frames
considered individually would fail in some circumstances.
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(a) (b)

(c)

Figure 4.17: LRCN Identification Failure Cases. Example graphs of model confidence versus time/frames for
failed instances, where the incorrect label was ultimately predicted. These failures were found to result from intra-
category visual similarities from viewpoint origination (see Figure 4.13), and a lack of variation across the 40
frames of the respective spatio-temporal streams.

4.5 Chapter Conclusion

This chapter proposes a novel architecture successfully realising automated passive iterative individual
Holstein Friesian cattle identification in an agriculturally-relevant outdoor field environment. As part of
this, pipeline components solving species-wide detection and localisation as well as individual tracking
are successfully established in providing strong initialisation to later components. This pipeline extends
the work completed in the previous chapter operating within a single-frame, single-evaluation paradigm
to demonstrate that identification directly benefits in prediction accuracy from an iterative process. More
specifically, the exposure of multiple iterations (frames) to the identification model proposed here under
varying observation conditions and parameters is proven advantageous as a result of the employed archi-
tecture and pipeline successfully extracting and classifying salient spatio-temporal features for subject
target individuals.

This being said, throughout the identification process conducted here, the UAV was flown entirely man-
ually and merely captured data. It was not informed by the identification process and therefore can be
regarded as a completely passive scenario; captured video footage was analysed by the LRCN-based
pipeline in an offline setting. Whilst it has been shown that this can prove sufficient in the presented sce-
narios, work in the subsequent chapter will explore actively involving an agent within the identification
process towards improved accuracy and efficiency in a comprehensive simulation environment.
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Supplementary Information

Publication associated with this chapter:

1. W. Andrew, C. Greatwood, T. Burghardt. Visual Localisation and Individual Identification of
Holstein Friesian Cattle via Deep Learning. In IEEE International Conference on Computer Vision
Workshop (ICCVW), pages 2850-2859, 2017. https://doi.org/10.1109/ICCVW.2017.336.

Accompanying published datasets available at:

• FriesianCattle2017:
https://data.bris.uk/data/dataset/2yizcfbkuv4352pzc32n54371r

• AerialCattle2017:
https://data.bris.ac.uk/data/dataset/3owflku95bxsx24643cybxu3qh
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Chapter 5

Simulated Active Multi-Frame Identification

5.1 Chapter Overview

This chapter introduces active vision to the identification process. To this point, individual identification
of cattle has occurred in an entirely passive setting; firstly, by evaluating a single captured image and
second, evaluating multiple temporally-variant frames of a subject. Put differently, the agent has had no
influence on the identification process up until this point. Accordingly, this chapter proposes a method for
extracting and observing individual-specific viewpoint trajectories that satisfactorily identify the subject
as quickly as possible. This method is comprised of a multi-network DNN pipeline that infers identity
from sequentially presented imagery. The choice of imagery (the object viewpoint) is taken care of by the
same architecture actively seeking new viewpoints that reveal salient information about that particular
subject whilst minimising the distant travelled to observe said viewpoints (as is costly on-board a UAV-
based agent). The validity of such an approach is demonstrated in realistic three dimensional simulations
of a small population size with manually generated textures designed to contrive difficult identification
cases.

This chapter is organised, first and foremost into a brief introduction (Section 5.2) and next, a formal-
isation of the mathematical foundations this chapter utilises throughout (see Section 5.3). Thirdly, im-
plementation choices and details are given for individual components together forming the proposed
active identification pipeline in Section 5.4. This is followed by appropriate experiments, results and
accompanying findings (Section 5.5), finally finishing with concluding remarks in Section 5.6.

5.2 Introduction

This chapter presents a solution for an agent actively and visually identifying a single subject individual
from a larger population. The agent is considered here to be able to move freely about three dimensional
space and can point its camera in any orientation, thus having 6 DoF: x;y;z and camera roll (f ), pitch
(q ) and yaw (y) – much like a real-world UAV. The intention is to perform identification by integrating
information from multiple frames or iterations, where each frame is captured from a new viewpoint. New
viewpoints are chosen by the agent to maximise the likelihood of identifying the individual in question.
The choice of observations adhere to minimising the distance travelled by the agent and minimising the
number of observations. In this form, the agent performs active identification of the individual whilst
attempting to minimise the cost of the solution. An important question that arises from this problem
formulation revolves around termination criteria. That is, how does the agent deem a target individual
to be identified? Here, this criteria is set to be the identification model being confident in some identity
to belief level a in some identity class. Solving this form of identification agency, this chapter proposes
a pipeline comprised of several deep architectures that are trained individually to together form the
complete framework. As a result, examples of what constitutes a good solution are determined and
presented to the architecture performing active identification.
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5.3 Mathematical Formalisation

5.3.1 Representations

Within this chapter and its corresponding simulation environment, the world is modelled as a continu-
ous three dimensional environment E. Note that, wherever applicable, a right-handed coordinate sys-
tem/frame is employed throughout and time is discretised; ti 2 ft0; t1; :::; teg.

Agent

The agent G takes continuous three dimensional coordinates in E:

~G = (Gx;Gy;Gz); (5.1)

where coordinate (0;0;0) is the origin of E and ~G defines the centre of mass of the agent/UAV model.
Alongside its position is the current agent yaw rotation value expressed as a heading Gy 2 [�p;p] aligned
with the quadrants of atan2(�). The reference frame of the agent is aligned with a Front Left Up (FLU)
axis (see Figure 5.1 for illustrative purposes). Additionally, the camera gimbal system is assumed to be
rotationally independent and its orientation or “look at” point defined by C = (Cq ;Cy) denoting camera
pitch and yaw angles, respectively, with:

Cq 2 [0;�p];
Cy 2 [�p;p]:

(5.2)

Finally, to maintain memory of belief in identity of an encountered individual, the agent maintains a
vector:

K = (k0;k1;k2; :::;kn);

where n = jRj; ki 2 (0;1); ki 2 R+;
n

å
i=0

ki = 1;
(5.3)

encoding per-identity confidence values as yielded from a softmax function. Note that the set R =
fr0;r1; :::;rng defines the set of targets described in the following section. Accordingly, the state of
the agent for some time-step t is therefore given by the following tuple with components summarised in
the following Table:

St = (~Gt ;Gt
y ;Ct ;Kt): (5.4)

Symbol Description
~G Global 3D agent position vector in the world/environment.

Gy Agent yaw heading.
C Camera gimbal parameters Cq ;Cy denoting camera pitch and yaw angles respectively.
K Memorisation of confidence in observed identities.

Note that camera gimbal roll parameter Cf is ignored in the formulation here and indeed in this chapter
as well as the remainder of this thesis. The camera is assumed to always be level with the horizon – made
possible in reality via the use of a 3-axis gimbal system – such that image variance from rotation is not
introduced. This is especially important since convolutional architectures are intrinsically not invariant
to object rotation [330].
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Targets

As is common in computer vision applications, targets representing individual cattle are defined here
in an abstract form; as a three dimensional cuboid. A target r 2 R is thus, spatially defined by three
orthogonal lengths:

r = rl� rw� rh; (5.5)

where l;w;h denote cuboid length, width and height, respectively, with values chosen as:

rl = 2:7m;
rw = 1:03m;
rh = 1:65m;

(5.6)

as approximately for an meanly-sized, middle-aged female Holstein Friesian [312]. Targets take a global
position 2 E:

~A = (rx;ry;rz); (5.7)

centred within the target itself, alongside a yaw heading value rq . To complete the definition, each
individual target in an experiment is assigned an exclusive unique identifier:

rID 2 [0; jRj�1];
rID 2 Z;

(5.8)

in correspondence with synthetic textures generated for the simulation environment (for examples, see
Figures 5.12 and 5.18).

5.3.2 Active Identification

With respect to active identification, for some visual observation Ii made by the agent with state Si of a
target r j 2 R at time-step i, we want to fulfil a new state configuration Si+1 to conduct a new observation
Ii+1 that maximises the agent’s confidence k j 2 Ki+1 in the target r j (currently being observed). Put
differently, the intention is that the new observation Ii+1 made from new configuration Si+1 – comprised
of a new agent position command together with new camera pitch and yaw angles – maximises the likeli-
hood of the model identifying the current target r j whilst minimising solution cost overall (cost function
design is discussed later in Section 5.4.5). For the target r j to qualify as being deemed to be satisfactorily
identified, a corresponding confidence value k j 2 (0;1) (yielded from the active identification model)
must exceed a defined threshold a 2 (0;1);a 2 R+. New, subsequent agent states are computed via a
function mapping:

f (Si)�! Si+1; (5.9)

or more explicitly;
f (~Gi;Gi

y ;Ci;Ki)�! ( ~Gi+1;Gi+1
y ;Ci+1;Ki+1); (5.10)

and are target specific with respect to an individual’s dorsal coat pattern and markings. The goal there-
fore, is to learn the function f (�) such that it can be deployed for online and active individual identifica-
tion when it is required as such.

Within the function f (�) from equation 5.10 mapping from one state to another to be fulfilled, simplifica-
tions can be made towards expression of the problem under more manageable terms. Firstly, the agent’s
yaw can be ignored since it is maintained from iteration to iteration to be aligned with a manually-
defined reference frame. Specifically within this chapter operating in simulation, the front of the aircraft
is kept aligned with +y throughout experiments. Instead the camera rotates in z or yaw as required.
Second, goal camera parameters Ci+1 = (Cq ;Cy) are also ignored here as their determination is trivial
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in keeping the image frame centred about the target currently under identification investigation (full so-
lution described in Section 5.4.1). Finally, the consequent confidence vector Ki+1 can be ignored as it
is a passive component of the agent’s state which is just observed and updated per iteration. The result
of these simplifications reduce the original problem to mapping the agent’s current state to a new goal
position:

f (~Gi;Gi
y ;Ci;Ki)�! ~Gi+1; (5.11)

that maximally improves the confidence estimation in the current individual to a satisfactory level a with
minimal overall cost.

5.4 Implementation

A summary of the implemented active identification pipeline is visually depicted in Figure 5.2. In order to
accomplish the simplified learning of function f (�) established previously in equation 5.11, the mapping
itself is solved by a “divide and conquer” approach. The justification being that the parameter search
landscape remains vast, complex and ultimately computationally intractable despite simplification of the
core function approximation. The generation of appropriate training data itself is therefore difficult, as
intuitively, what is a good active identification solution? Instead, the problem is broken down into core
components described as follows.

Firstly, in order to ever yield a new goal agent position ~Gi+1 that observes an unseen target viewpoint,
an understanding of where the target in question is positionally situated must be formed:

x (Ii;Ci)�! ~Di: (5.12)

Function x (�; �) takes the current image (containing target r j) and camera parameters as input to produce
the three-dimensional position vector ~D between the agent and the target’s centre of mass in the agent’s
reference frame. Following transformation and in summation with the agent’s current position ~G, this
forms a global position estimate of ~A = (rx;ry;rz) for the target r j that permits new viewpoints to be
fulfilled. Here, function x (�; �) is approximated by a deep network performing 3D regression as described
properly in Section 5.4.2, whilst Figure 5.1 illustrates the estimation concept.

Figure 5.1: 3D Target Displacement Estimation. Illustration1of the Agent-Target Estimation (ATE) problem
formulation estimating the 3D displacement between the agent and the current target ~D. The agent G and target ri
have FLU-aligned axes. The position of ri is approximated via ~A = ~G + TW (~D), where TW (:) transforms an input
vector into the world frame given knowledge of the agent’s camera attitude Cq ;Cy .

1UAV image credit: DJI
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Second, to complete potential fulfilment of a new observation viewpoint, a determination or estimation
of the target’s pose relative to the agent must take place. Put differently, an estimation of what area or
segment of the target is currently being observed must be formulated in order to inform the identification
process. In order to achieve this and abstract away from complex formulations, the problem is cast as a
discrete classification problem here, as described properly in Section 5.4.3.

Now that a potential new observation viewpoint can actually be fulfilled, motivation of such an un-
dertaking is informed by a third component estimating target identity rID. This task is intrinsically a
classification task (described properly in Section 5.4.4) yielding identity confidence vector K. If this
process does not satisfactorily identify the target in question (i.e. yielding model confidence in excess of
a threshold a), a new observation is needed under observation parameter variation.

The fourth and final component is utilised when a single image was not sufficient in identifying the
current target r j visually. Its goal is to produce a new agent-centric position ~Gi+1 that maximises the
likelihood of identifying r j whilst maintaining minimal overall solution cost (see Section 5.4.5 for full
implementation details). This is accomplished in utilising the outputs of predecessor networks as in-
puts to this network component by providing contextual information regarding the current identification
problem. The full network architecture and its constituent individual components are given in Figure
5.2.

Within this chapter, the area in which local and active identification is deemed to occur is defined spatially
by:

l = 4m;
w = 4m;
hl = 5m; hu = 7m;
with x 2 [�l; l]; y 2 [�w;w]; z 2 [hl;hu] and x;y;z 2 R;

(5.13)

for a target model placed at the origin, where x;y;z comprise possible 3D coordinates within the opera-
tional bounding box. These values (defined in metres) are chosen to mimic and optimise the constraints
imposed by real experimentation. Chosen with the size of real cattle targets in mind (as defined in equa-
tion 5.6), in conjunction with possible exploratory agency grid cell size, application and domain-specific
requirements dictate suitable choices of parameters given above in equation 5.13. Minimum possible
height value hl = 5m is the direct result of previous Chapter 4 in which, cattle eventually displayed com-
fort towards a UAV operating at that altitude. Note that this chapter operates within a realistic simulation
environment only. For full implementation details, refer to Appendix A.
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Group Network Name Notation Section Input(s) Output(s)
(a) Target Detector T D 5.4.1 Image I RoI
(b) Agent-Target Estimator AT E 5.4.2 RoI, Cq ;Cy ~D
(b) Visibility Estimator V E 5.4.3 RoI, Cq ;Cy V E0

out ;V E1
out

(c) Identity Estimator IE 5.4.4 RoI ID
(d) Exploratory Agency EA 5.4.5 Image I, Visit map M NA = a; a 2 A
(e) Local Active Identification LAIDN 5.4.5 LAIDNin V = ~LAIDNout

Figure 5.2: Complete Active Identification Pipeline. Illustration of the complete pipeline for the performance
of active and online identification. Assuming the camera is pointed at an individual to be identified, processing
begins with sensory sampling; the agent’s current camera gimbal parameters pitch and yaw, camera image and
environment visitation map are retrieved (more on exploratory agency in later Chapter 6). The corresponding
image is given as input into (a): performing target detection and localisation yielding an individual-wise bounding
box or RoI. This smaller image in conjunction with camera rotation parameters are given as input into (b):
networks estimating the the three dimensional vector between the agent and target as well as which segment of the
target is currently visible. The same RoI is also given as input into (c): which concatenates this RoI with images
of the current individual from previous iterations to perform iterative identification on a sequence of images. The
original image I is also used to (d): yield global exploratory decisions that are fulfilled after the individual has
been identified (again, more on this in later Chapter 6). Finally, (e): outputs from predecessor networks are
concatenated to form LAIDNin input into a MLP trained to produce a three-dimensional vector V the agent will
displace itself by that identifies the individual in question with minimal cost (a combination of flight time and
number of iterations). Identification is halted once an identity estimate (c) is confident in some identity above
threshold a , at which point, exploratory agency prevails to discover new individuals in the environment to be
identified.
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5.4.1 Target Detection and Localisation (T D)

Target (simulated cattle) detection is performed by state-of-the-art and real-time detector YOLO v22

[257]. The goal of this stage is two-fold: (a) detecting whether target(s) are currently present in the
image and (b) localising an image RoI or bounding box to each detection. The primary takeaway is that
in complete operational success, this stage yields sub-images containing a particular single target only,
whilst minimising the quantity and resulting proportion of background pixels. Successor networks then
take these regions as target-centric image inputs (refer to Figure 5.2 for the full operational pipeline).
Note that image regions are resized non-proportionally to a fixed array size 224�224�3 for divisibility
by 32 and input into subsequent networks mandating static input tensor size.

Difficulties in this work-flow arise when some image I contains multiple individuals, therefore potentially
yielding multiple detections. The question is: which detection should be selected and provided as input
to subsequent networks or, which individual is currently being identified? Since targets are kept central
in the original image via the “look at” functionality described in Section 5.4.1 to maximise target pixel
coverage likelihood, the central-most satisfactorily confident detection is chosen.

Viewpoint-Dependent Training Data Generation

To generate appropriately labelled training data that is subsequently used to train the YOLO architec-
ture (see Figure 5.3 for an example), a random cow model ri 2 R is placed at the origin and a random
Agent/UAV position is generated:

~G = (Gx;Gy;Gz);
where Gx 2 [�w;w]; Gy 2 [�l; l]; Gz 2 [hl;hu] and Gx;Gy;Gz 2 R;

(5.14)

where w; l;hl;hu defined in equation 5.13 denote the boundaries of the area for local active identification.
Appropriate gimbal pitch Cq and yaw Cy values for that position are computed such that the model centre
of mass given by the coordinate (0;0; cowh

2 ) is intersected by the camera optical axis using equations 5.15
and 5.16 respectively. The result being that the cow model is perfectly central in the synthetic UAV
image as depicted in Figure 5.3.

Cq = tan�1

 p
jGxj2 + jGyj2

Gz� cowh
2

!

(5.15)

Cy = atan2(�Gy;�Gx) (5.16)

Next, eight 3-dimensional coordinates were manually generated and verified such that they enclose the
target cow model spatially – defining a three-dimensional object bounding box (see Figure 5.3a). All
that remains is to generate the ground truth 2D image bounding box signifying an object annotation
or RoI. This is achieved by appropriately projecting 3-dimensional bounding box coordinates onto the
image plane. To obtain pixel coordinates (x;y) for a 3-dimensional point in the world coordinate system
P = (X ;Y;Z), the point P must be expressed in the camera coordinate system yielding Pc. In order to
achieve this, the world-to-camera homogeneous transformation is utilised:

Pc =

2

664

Xc
Yc
Zc
1

3

775=

2

664

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

3

775

2

664

X
Y
Z
1

3

775 ; (5.17)

2Whilst there exists a newer, improved iteration of the detector in the form of version 3 [258], at the time of writing
there are no suitable interfacing libraries/API’s between YOLO (founded in DarkNet) and TensorFlow, as utilised here. This
isn’t the case for earlier versions of YOLO and hence; version 2 and DarkFlow are used here. Darkflow repository: https:
//github.com/thtrieu/darkflow
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where ri j; i; j 2 [1;3] and tk; k 2 [1;3] denote world-to-camera rotation and translation parameters, re-
spectively. Rotational parameters ri j are determined by Euler angles for the axis sequence ZY Z with
values p

2 ;�Cq ;�Cy respectively. This camera reference frame relative point is then computed in uvw
space via:

2

664

u
v
w
1

3

775= K

2

664

Xc
Yc
Zc
1

3

775 ; (5.18)

where K denotes the camera projection and intrinsic parameter matrix defined by:

K =

2

664

fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1

3

775 ; (5.19)

where fx; fy denote focal lengths and cx;cy denotes the principal point in the image plane. Finally, image
pixel coordinates (x;y) can then be obtained via similar triangles:

x =
u
w

and y =
v
w

: (5.20)

(a) Projected 3D bounding box coordinates in the image
plane.

(b) Resulting 2D object bounding box yielded from
min(�);max(�) on projected points.

Figure 5.3: Target Detection Instance Synthesis Example. Example of instance synthesis used for providing
training examples to the target detection network. Eight model-bounding world coordinates are expressed with
respect to the camera reference frame and projected onto the image plane to form the final required 2D object
bounding box provided as a single training instance.

For each of the eight projected pixel coordinates (xi;yi), the final 2D image bounding box defined by
((xa;ya);(xb;yb)) is generated via:

xa = argmin
i2[0;8)

xi;

ya = argmin
i2[0;8)

yi;

xb = argmax
i2[0;8)

xi;

yb = argmax
i2[0;8)

yi;

(5.21)

where i2 Z. This ground truth annotation is ultimately written to a Extensible Markup Language (XML)
file – accompanied by the corresponding image – structured identically to the VOC format utilised in
earlier chapters (see Section 3.3.2).
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“Look At” Functionality

Whilst throughout training data synthesis, a single cow is placed at the origin and thus, camera angles
Cq ;Cy are computed to centre the model in the image I, in reality these angles cannot be rawly computed
– we do not know the positions of targets. As such, it is necessary to employ functionality to “look at”
a target, centring it in the image. This is achieved by taking a chosen detection RoI = ((xa;ya);(xb;yb))
and computing it’s centre point via:

bx = xa +
xb� xa

2
;

by = ya +
yb� ya

2
:

(5.22)

Similarly, the image centre point is also computed:

cx =
Iw

2
;

cy =
Ih

2
:

(5.23)

Per-dimension pixel error between centres is then:

rx = bx� cx;
ry = by� cy:

(5.24)

Finally, error values are then used to find the relative angle between the image and RoI centre points,
subsequently expressed as a clockwise north heading and issued as a camera yaw control value:

Cy = (atan2(rx;ry)+p) mod p: (5.25)

The camera pitch angle Cq is approximated via a simple proportional controller. A relative pitch angle
displacement is found by:

q = Kp �
q

(cx�bx)2 +(cy�by)2; (5.26)

where Kp denotes the constant proportional gain component empirically set to Kp = 0:08. For a full
explanation of proportional controllers, refer back to Section 2.6.2. The final absolute camera pitch
angle is fulfilled by taking the current camera pitch angle into consideration Cq := Cq +q .

5.4.2 Agent-Target Estimation (AT E)

For this process, the goal is to learn to approximate the function in equation 5.12:

x (Ii;Ci)�! ~Di: (5.27)

where Ii, Ci = (Cq ;Cy), ~Di denote the target RoI image, camera gimbal parameters (pitch and yaw)
and agent-target relative vector all at time-step i, respectively. That is, for a given camera gimbal con-
figuration and a corresponding image (containing a target), what is the three dimensional agent-relative
displacement vector between the agent and observed target in the agent’s reference frame?

Due to the relative image simplicity in this process operating in simulation, it is achieved with a slight
architectural modificaiton of simple CNN AlexNet [171], similarly to later Chapter 6. The change is
made to permit the input of dual value tuple Ct as well as the image It into the DNN. Secondary input
is achieved via a 2-unit input layer and single fully connected layer with 64 hidden units. The output
is then concatenated with the tensor yielded from the second fully connected layer in AlexNet. A final,
linearly-activated output fully connected layer with 3 outputs ~Dt = (xD;yD;zD) concludes the network
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architecture. Figure 5.4 illustrates the employed architecture. Back-propagation and optimisation is
achieved via Mean Square Error (MSE) loss and Stochastic Gradient Descent (SGD) for the regression
task.

Figure 5.4: Agent-Target Estimation Network Architecture. Modified dual-input CNN/DNN architecture based
on AlexNet [171] for estimating the 3D vector between the agent and a visible target given an input 224�224�3
image and corresponding camera pitch, yaw angles Cq ;Cy , respectively.3

Estimation performance of the relative displacement vector between the agent and some target is assessed
in the following paragraphs. Tests were conducted across 2;000 newly generated instances. For a single
instance and, similarly for training data synthesis, an agent position ~G = (Gx;Gy;Gz) is randomly gener-
ated in Local Active IDentification Network (LAIDN) bounds as according to equation 5.13. Addition-
ally, a random target individual ri 2 R with i 2 [0;9] is placed centred at the origin with random heading
Cowy . A model prediction is then compared against a generated ground truth label via MSE.

Figure 5.5: Distance Versus Mean-Squared Error. Graphs illustrating the presence or absence of relationships
between (top left): 3D Euclidean and (all other): dimension-wise agent-target distance and the corresponding
MSE in the network estimated displacement vector ~D.

3Figure rendered using: http://alexlenail.me/NN-SVG/.
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Figure 5.5 illustrates overall Euclidean distance and dimension-wise MSE versus the ground truth agent-
target distance in the respective axes over the 2;000 testing instances. As can be seen in those graphs,
the model demonstrates a slight tendency towards increased positional error in dimensions x;y over
increasing distances owing to reducing object resolution. The general takeaway is that this component
of the wider pipeline introduces relatively significant variable error. The result of which influences
estimates of the target’s position ~A and, will therefore affect the ability of the agent to realise newly
sought viewpoints. This is demonstrably overcome in later experiments (see Section 5.5), however future
work could integrate more precise monocular pose estimation methods [186, 13, 62].

5.4.3 Visibility Estimation (V E)

Within this process, the aim to is to establish which area, portion or segment of a target individual is
currently being observed. The intuition being that once an agent is aware of the context of an obser-
vation, it can execute position-relative and individual-wise actions towards the observation of another,
desired segment to solidify identity confidence. Put differently, if we theorise that we are currently ob-
serving the right side of ri, and have some knowledge that this target has an identifying mark on its left
side, we’re able to suitably select actions that would lead to that left side (given knowledge of our own
position).

Knowledge of the current form of target observation alone is powerful, but simultaneously limiting in
that it fails to encode past observations. Complete output for this stage is consequently two-fold:

1. V E0
out : of cardinality jV E0

out j= jV Eclassesj subject to åjV Eclassesj�1
i=0 = 1, this vector represents model

confidence in the segment currently being observed.
2. V E1

out : also of size jV E1
out j = jV Eclassesj and with all values initialised to 0, this vector integrates

current observation V E0
out with past knowledge such that an understanding of which segments have

already been observed is formed.

The secondary temporally-integrating output vector V E1
out is computed in an additive manner;

V E1
out := V E1

out +V E0
out ;

where 8v 2V E1
out ; v 2 R; v :=

(
0 if v < 0
1 if v > 1:

(5.28)

A relatively simple model is adopted here for current target visibility estimation, as depicted in Figure
5.6. The problem is cast as a classification task with five possible classes to match the five visible faces

�%�D�F�N

�)�U
�R�Q�W

�/�H�I�W

�5�L�J�K�W�7�R�S

Figure 5.6: Cow Model Abstraction. The em-
ployed parts-based representation/abstraction
of cattle employed in this chapter. A three di-
mensional cuboid is fitted to spatially enclose
the object. Each of five visible faces (e.g. ‘top’,
‘front’, ‘back’, ‘left’, ‘right’) are the possible
classifications of which segment of the target
the agent is current observing.

77



CHAPTER 5. SIMULATED ACTIVE MULTI-FRAME IDENTIFICATION

of a cuboid placed on the ground:

V E0
out 2V Eclasses = f“top”;“front”;“right”;“back”;“left”g: (5.29)

This decision, whilst adequately justifiable in the context of the task at hand (i.e. identifying arguably
cuboid-shaped cows) generalises well to other classes of identification problems requiring fine-grained
identification and retains model simplicity. Furthermore, it can easily be replaced with more complex
solutions as required, given the modularity of the architectural design employed here.

(a) (b)

Figure 5.7: Ground Truth Target Segment Assignment. The manner in which ground truth labels are assigned
for a randomly generated training instance. (a): When Cq � b ;b = tpitch = 60°, the segment classification is ‘top’,
otherwise (b): when the “look-at” pitch angle is too small, the corresponding visibility class is assigned via the
heading intervals shown in this subfigure.

Training data is generated by – very similarly to the other networks at this level – randomly generating an
agent position within local active identification boundaries given by equation 5.13. The camera is then
pointed at the object centre via equations 5.15 and 5.16. A random cow with random heading is placed
at the origin. An image RoI containing the target is computed via the aforementioned target detection
(T D) stage. Candidate RoIs are then binned into a class c 2V Eclasses via:

c =

8
>>>>>>>>><

>>>>>>>>>:

“top”; if Cq > a
“front”; if y < b

2

“right”; if y < p�b
2

“bottom”; if y < p�b
2 +b

“left”; if y < p� b
2

“front” otherwise,

(5.30)

where heading angle y is generated via:

y =

(
jCy j; if Cy < 0
(p

2 �Cy)+ p
2 otherwise,

(5.31)
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to convert a computed yaw angle via atan2(�; �) from the range [�p
2 ; p

2 ] to the clockwise heading/bearing
range [0;p] (see Figure 5.7b). Figure 5.7 illustrates the ground-truth label generation process. Threshold
angle values a = tpitch = 60°, b = t f r = 50° for ground-truth labelling were empirically selected.

Network architecture is identical to that of the previous agent-target estimator (AT E, see Section 5.4.2,
especially Figure 5.4) apart from the final layer. The final fully connected layer’s activation function
is simply changed to softmax for the classification task here, the number of output neurons increased
to jV Eclassesj and a categorical cross-entropy loss function is used. 10;000 training instances were
synthesised for back-propagation with 10% retained as a validation set, achieving a best accuracy of
90:58%.

5.4.4 Identity Estimation (IE)

As established in Chapter 4, identification – even in a passive setting – demonstrably benefits from a
multi-image process when operating on objects with fine-grained visual differences, such as Friesian
cattle. Not only is this reflected in the motivation for this chapter, but this fact is capitalised on within
this particular component tasked with identity estimation. As before, this refers to estimating the identity
of the single individual contained within a set of image RoIs. As a result of the success demonstrated
by the architectural choices made in earlier Chapter 4 (see Section 4.4), an almost identical architecture
and data flow is implemented here as well. To recap, this consists of; (1): GoogLeNet/Inception [302]
– a very deep and wide CNN – extracting frame-wise feature maps4 supplied to (2): LSTM units5 for
temporal information integration. This form of spatio-temporal CNN/LSTM combination is referred to
as a LRCN architecture, first proposed by Donahue et al. in 2015 [73].

LRCN Model Training Process

Actually training this LRCN-based model is non-obvious and relies upon a 2-stage process for both
training data synthesis and model training. Fine-grained implementation details for the staged training
approach are given as follows, whilst listing 2 summarises the approach algorithmically.

1. CNN training data generation: The task here is to synthesise/generate appropriate training
data for GoogLeNet/Inception towards the goal of individual-wise feature extraction. To do so,
the agent is placed at a randomly generated position within local active identification bounds
(l;w;hl;hu) as according to equation 5.13. The camera gimbal is pointed at a point situated slightly
above the origin (the centre of mass of the cow target model). A random cow model is placed
centred about the origin with a random heading angle. A single training data instance then consists
of a 224�224�3 RGB input image yielded from the YOLO detector (see Section 5.4.1) and the
corresponding jRj-D ground truth identity vector label. n of these single instances are synthesised
to yield the final CNN training dataset.

2. CNN model training: The Inception CNN is then trained end-to-end for 50 epochs via SGD with
momentum [250] using categorical cross-entropy loss and a fixed learning rate e = 0:001 on the
n-strong dataset synthesised above. Of those instances, 10% are retained as a validation set.

3. LSTM training data generation: With the outer CNN trained for identity-wise feature extraction,
training data can now be synthesised for LSTM training. This is achieved by again randomly
placing the agent within local active identification spatial bounds. A random target with random
heading is again placed at the origin. However now, the agent is randomly displaced s f v� 1 = 4

4Feature maps are a 1024-D sized vector computed by averaging the (x;y) axes for the 7� 7� 1024 sized vector yielded
from the last dropout layer following 2-dimensional average pooling (the “pool 5b” layer). Feature vectors are then concatenated
into a single s f v�1024 temporally-consistent vector with s f v = 5 to match the number of abstracted object segments (e.g. top,
front, back, left, right).

5The recurrent architecture used here consists of a single LSTM layer comprised of 256 units with dropout probability 0:2.
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times within the defined boundaries with the cow model remaining static to match the number of
defined object segments (i.e. top, front, back, left, right). At each position, the camera is pointed
at the origin and the detected object RoI (via YOLO) is passed through the trained Inception
CNN up until the final fully connected layer and averaged (as described above in Section 5.4.4)
yielding a 1024-D feature vector for each image. These feature vectors are concatenated to form a
single 5�1024 input training vector. As before, the corresponding identity vector of size jRj-D is
included as the instance’s ground truth label and m training instances are synthesised.

4. LSTM model training: Finally, the LSTM is trained on the dataset generated from the previous
stage with the Adam optimiser [163] and categorical cross entropy loss. As before, the model is
trained for 50 epochs and 10% of instances are retained as a validation set.

Algorithm 2 LRCN Training Algorithm. Algorithm for synthesising and training the employed LRCN
via a staged approach.

1: for i in n do
2: img; label generateIDInstance()
3: dataCNN [i] [img; label]
4: end for
5: CNN trainNetwork(dataCNN)
6: for i in m do
7: img; label generateIDInstance()
8: for j in s f v do
9: f eatures[ j] CNN(img;until layer = ”pool 5b”)

10: img randomlyMoveAgent()
11: end for
12: dataLRCN [i] [ f eatures; label]
13: end for
14: LRCN trainNetwork(LRCN;dataLRCN)

5.4.5 Local Active Identification (LAIDN)

Network Architecture

The goal here is to suggest a new viewpoint to be realised by the agent that identifies the target in
question as quickly as possible. This position is formulated based on identity information from past
and current observations of the individual in combination with the context of the current observation;
the current spatial relationship between the agent and the target. Consequently, inputs to the LAIDN
consist of vector outputs from predecessor networks concatenated into a single 22-D vector with size
3 + 5 + 5 + 5 + 4 = 22:

LAIDNin = [AT Eout �V E0
out �V E1

out � IEout �EAnext ];
with jLAIDNinj= 22:

(5.32)

Network output is simply a three dimensional position displacement vector in the agent’s reference
frame:

~LAIDNout = (DGx;DGy;DGz): (5.33)

Fulfilling this agent-relative position is trained to maximise the identification confidence in the current
target. Since the input and output vectors are dimensionally simple, the corresponding network archi-
tecture can follow suit. As such, a network architecture consisting of an input layer followed by two
fully connected layers with 64 neurons is used here, yielding a simple MLP-based ANN. The employed
network architecture is illustrated in Figure 5.8.
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Figure 5.8: LAIDN Architecture. ANN/MLP architecture for locally identifying a target individual. Input is a 22-
D vector consisting of concatenated inputs from four predecessor networks whilst output is a 3D vector specifying
a agent-relative goal position.6

Agent Exploration Considerations

In this section, implementation details are given for the algorithmic integration of the subsequent Chapter
6 (outlining environment exploratory agency) within the complete, unified framework performing active
identification proposed in this Chapter. Without having to refer to that chapter directly, the intention is
to integrate the cost of fulfilling the next exploratory action into the evaluation of an active identifica-
tion solution. Put differently, after identifying a particular target individual, the agent performs a new
exploratory action towards discovering other individuals to be identified. Fulfilment of that new action
should be considered when evaluating the efficiency of an active identification solution (an ordered se-
quence of viewpoints). Possible exploratory actions a 2 A performed by the agent are the four possible
discrete navigation directions for a two-dimensional plane: forward, backward, left or right.

The following figure (5.9) illustrates the motivation for the inclusion of the subsequent exploratory action
into identification configurations where a single image, single iteration is insufficient. Assuming that
both paths – consisting of sequences of observations – successfully identify the individual in question
(the LAIDN is confident in the correct identity over threshold value a), the right-hand path is clearly less
costly in distance and therefore overall identification time. This is true in consideration of the exploratory
action to be taken post identification, thus motivating the consideration of this factor in calculating the
cost of an implemented identification path.

Figure 5.9: Flight Path Cost Considerations. The exploratory action carried out subsequent to identification
should be considered during path cost/optimality calculation. (Left): this path is more costly in distance (and
therefore time) than the flight path shown in (right) due to the observation point not being spatially intersected
by the path the UAV would take between its current and goal position dictated by the subsequent environment
exploration action.7

6Figure rendered using: http://alexlenail.me/NN-SVG/
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Cost Function Design

In order to generate suitable training data for local active identification, an understanding of what consti-
tutes a ‘good’ solution must be established. As is common in machine learning, a domain-specific cost
function is designed here. In relation to the desired experimental outcome at hand, as mentioned previ-
ously, first and foremost, there is an obligation to identify an individual with confidence above a threshold
value a 2 (0;1);a 2R+. Secondarily, and the crucial consideration during training data synthesis, there
is a requirement to achieve this identity confidence as quickly as possible. This desire is motivated by the
nature of utilising a UAV robot; overall flight-time is limited by battery capacity. In addition, there may
be many environment areas requiring exploration, certain individuals may require longer than most for
identification, etc. – these factors therefore justify achieving satisfactory identification quality as quickly
as possible.

The cost of a generated LAIDN solution is directly computed via the estimated time required to complete
it. One solution instance s consists of a starting position, n�2 subsequent viewpoints and finally a single
subsequent exploratory action to be enacted expressed as relative displacement vectors:

s = fLAIDN0
start ; ~LAIDN

1
out ; ~LAIDN

2
out ; :::; ~LAIDN

n�1
out ; ~EA

n
nextg: (5.34)

The cost of such a solution is computed to be a combination of (1): the time taken to fulfil each displace-
ment vector (fly between the resolved positions) finishing with the next exploratory action and (2): at
each LAIDN stop, the amount of time required to perform respective computation. For (1); time between
consecutive LAIDN viewpoints i; i + 1 is approximated via an assumption of constant average velocity
using Euclidean distance:

t(si;si+1) =

q
å3

k=1(ak�bk)2

v
; (5.35)

given that v = d
t , where a;b denote positions resolved within the global reference frame by:

a =

(
s0 for i = 0
s0 +åi~si+1 for 0 < i� n�1;

(5.36)

and similarly;

b = s0 +
i+1

å~si+2: (5.37)

Velocity value v = 0:5m=s was empirically selected to represent the average velocity of the UAV flight
controller fulfilling some target position from some starting position. Similarly, (2) is assumed to be
constant, and a value of b = 0:5s was empirically selected for average visual on-board inference and pro-
cessing time per iteration. The overall cost J of a LAIDN solution s with respect to time is then:

J(s) =
n�1

å
j=0

t(s j;s j+1)+b (n�2); (5.38)

where as shown before in equation 5.34, n denotes the number of LAIDN stops/viewpoints culminating
in the fulfilment of a subsequent exploratory action to be taken.

7UAV image credit: DJI
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Training Data Generation

Synthesising training data for this network – performing active identification on individuals – is consid-
erably more involved than predecessor networks. Firstly, as usual, the agent is randomly placed within
boundaries via equation 5.13. The camera is pointed at the object centre using equations 5.15, 5.16 and a
random cow with random heading is placed at the origin. A target RoI is generated from the correspond-
ing rendered image using the target detector (T D). The sub-image is subsequently given as input into the
identity estimator (IE), if it successfully predicts the correct identity with confidence above the threshold
a , this single image, single iteration was sufficient, thus a new configuration is randomly generated re-
peatedly until this is no longer the case. Otherwise therefore, this particular configuration requires active
identification. In this case, LAIDN training instance generation commences.

Figure 5.10: Optimal Segment Viewpoints. Visualisation of target-relative optimal viewpoint definitions for each
of 5 possible segments v 2 V Eclasses, where V Eclasses = f“top”;“front”;“right”;“back”;“left”g. These position
definitions are given as examples for LAIDN training example synthesis (see Section 5.4.5 for a full explanation of
this process).

Single instance synthesis is outlined as followed. Firstly, for a randomly generated agent position A0 =
(xa;ya;za) in LAIDN bounds, the corresponding image I and camera parameters Cq ;Cy are given to
the visibility estimation network (see Section 5.4.3) to determine which cow segment is currently being
observed:

v = V E(I;Cq ;Cy) (5.39)

where v = V E0
out is a one-hot vector encoding some element of V Eclasses. This current segment observa-

tion vector v then forms the root of an acyclic, directed tree T = (V;F). The tree is grown exhaustively
for all permutations of remaining segment visitation orderings given the root segment v. This yields a
tree with jV j = 65 (since jV Eclassesj = 5), with every immediate parent-child vertex coupling having a
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hamming distance of 1. As part of defining a new segment to be observed (excluding the root node), node
attributes are accompanied by a 3-dimensional position that optimally views that segment (given camera
parameters e.g. FoV, image resolution) – see Figure 5.10. An example of the grown tree is given below
in Figure 5.11 with jV Eclassesj = 5, as established in equation 5.30. Connecting edge attributes define
the Euclidean distance between parent and child 3-dimensional waypoints later forming components of
solution cost computation via equation 5.38. To conclude tree growth, the ending position:

An = A0 + ~EAnext (5.40)

that fulfils the next exploratory action ~EAnext given the LAIDN starting position A0 is added as a new
vertex to all sink nodes along with respective connecting edges (as depicted in Figure 5.11). This final
position is fulfilled by all branches.

[1;0;0;0;0]

[1;1;0;0;0] [1;0;1;0;0] [1;0;0;1;0] [1;0;0;0;1]

[1;1;1;0;0] [1;1;0;1;0] [1;1;0;0;1] ...
...

...

...
...

...

An An An

Figure 5.11: Segment Visibility Tree Growth. Example of a training instance generation tree given an initial
segment observation: ‘top’. Nodes represent accumulative segment visitation down the connection depths of the
tree in various orderings – the root note will have observed one segment only, whilst all sink nodes will have
observed all segments and represent the position to be fulfilled according to the subsequent exploratory action
~EAnext given the LAIDN starting position A0. Every generated tree will always have depth jV Eclassesj+ 1 = 6.

Following full tree growth, tree traversal occurs in order to determine the least-costly branch (defining
an ordered set of spatial way-points/viewpoints) identifying the individual at hand to a satisfactory level
(� a), given the particular random initialisation (e.g. agent position, individual identity and heading
orientation heading). This is achieved by determining all possible paths from the root source node to
all sink nodes. These paths are then used to replay iterative identification in a passive setting; at each
vertex (denoting a 3D waypoint/position that optimally views that segment) of a path, the image yielded
as a result of pointing the camera at the model centre is added to a growing sequence of images. After
each image addition, the last frame is copied to fill the remaining parts of the sequence such that a
length s f v = 5 is satisfied (see Section 5.4.4) and the sequence is given as input to the LRCN-based
identity estimation network (IE). If the given image sequence satisfactorily identifies the individual,
the cost of this solution (calculated via equation 5.38) is established as a baseline and traversal of that
path terminates. For all subsequent path traversals (iterative identification replay), if the current cost
exceeds the baseline, traversal ceases for that path. Conversely, if another path satisfactorily identifies
the individual with lower cost, it is established as the new baseline solution. In this way, the least
costly ordering of 3D viewpoints that identifies the individual at hand to a satisfactory level is extracted
and provided as a singular training instance. The overall active identification solution is then separated
into per-iteration individual LAIDN training instances, concluding the synthesis process for a single
example.
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5.5 Experiments and Findings

In this section, conducted experiments are described alongside corresponding analysis and discussion.
With respect to this section and the previous describing model implementation, wherever relevant, ‘ran-
dom’ numbers are generated using the Pseudo-Random Number Generator (P-RNG) Mersenne Twister
algorithm [208]. This section is organised into experiments on a simple jRj = 2 population (Section
5.5.1) and second, the full herd identification experiment with ten contrived difficult identification cases
is described in Section 5.5.2.

5.5.1 Baseline Experiment: 2-Strong Population Case

To commence experimentation and in order to verify the validity of the implemented active identification
framework, a baseline experiment is conducted in this section. Whilst the experimental setup is relatively
simple, it directly verifies whether the framework is able to extract and realise a good ordered sequence
of low-cost observations that identify the target individuals to a satisfactory level. The setup consists of
a population comprised of 2 individuals only (i.e. jRj = 2). Both cows are visually identical; having
completely non-textured coats (black), apart from individual #1, who has one white mark placed on its
right side (see Figure 5.12). Given this simple population R = fr0;r1g, in order to visually differentiate
the individuals most efficiently, an agent should always intend to observe the right side of the current
target. If the resulting observation contains a white spot, the individual is r1, otherwise it is r0. This
experiment validates the question; with the active identification synthesis and training setup here, does
automatic extraction and replication of this simple behaviour occur with low online cost?

(a) Texture: Individual r0 (b) Texture: Individual r1

(c) Rendered: Individual r0 (d) Rendered: Individual r1

Figure 5.12: Individuals Forming the Two-Strong Population. Depiction of the (a);(b): individual textures
with overlaid uv texture map and (c);(d): corresponding renderings in the simulation environment (using Gazebo
[164]) for the two individuals comprising the full population for the baseline 2-strong population experiment.

In order to process this new population, some networks must be re-trained on new, appropriately syn-
thesised data. This being said, existing model weights yielded from generic training was found to be
sufficient for the: target detector (T D), agent-target estimator (AT E) and visibility estimator (V E) net-
works and thus, they were not re-trained. However, the identity estimator (IE) and consequently local
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active identification (LAIDN) networks are not exempt from re-training necessity for trivial reasons. As
such, the aforementioned synthesis and training procedures were followed (for IE, see Section 5.4.4,
LAIDN Section 5.4.5). Training and validation accuracies versus training steps are illustrated in Figure
5.13 for IE and similarly, Figure 5.14 illustrates LAIDN MSE loss.

(a) Inception CNN (b) LSTM

Figure 5.13: 2-Strong Population Identity Estimator Training Accuracy. Training8and validation set accuracy
versus training steps for the identity estimation network training on (a): single image instances and (b): s f v = 5-
strong random sequences of feature vectors extracted using the network trained for (a).

Interestingly, model accuracy in both the training and validation datasets for IE training on single frames
(see Figure 5.13a) is observed to peak at the � 1;200th training step corresponding to � 73% accuracy.
When considering the simplicity of the identification task on just two classes – as opposed to significantly
higher accuracies achieved on larger population sizes in earlier Chapters 3, 4 – this value is peculiar. The
cause is that randomly synthesised instances given as training to the identification estimation component
themselves may be impossible to differentiate. Put differently, generated images may simply not contain
the right side of individual necessary to differentiate the classes. Since generated camera positions in
the y-axis are randomly distributed positively and negatively, approximately 50% of generated images
will have the right side visible. Thus, the best the network can do in this scenario (occurring half of
the time) is randomly guess the identity. Since there are two possible classes, it is correct half of the
time yielding the achieved � 73% accuracy overall. This is overcome by the LRCN-based identified
observing a maximum of five viewpoints, where the likelihood of one particular viewpoint containing
the right-hand side is very high, as reflected in model accuracy in Figure 5.13b.

Figure 5.14: 2-Strong Population LAIDN Training Loss. Training and validation set MSE loss versus training
steps for the local active identification network (LAIDN) training on 9;000 examples, with an additional 1;000
instances comprising the validation set.

8For this graph and others in this chapter, the training signal was smoothed using the Savitzky-Golay filter [275].
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Figure 5.15: Local Active IDentification Network Baseline Experiment Successes and Failures. Examples suc-
cesses (top group) and failures (bottom group) for local active identification operating on the two-strong popula-
tion case for randomly generated initial configurations. Ground truth identities are given on the left-hand side for
observation sequences that terminate when the model is confident in some single identity to level � a;a = 0:8.
Accordingly, graphs of model confidence in the (green): correct and (red): incorrect labels, respectively versus
exposure to the number of frames is given for each instance in the right-most column. Since operation here is
performed on just two individuals and softmax enforces output confidence vector summation to 1, these graphs are
symmetric about confidence value k = 0:5.
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Row Parameter description Value %
(a) Total testing iterations 20;000 -
(b) Overall correct 17;869 89.35%
(c) Single iteration count 12;586 62:93%
(d) Single iteration correct 10;983 87:26%
(e) Single rhs visible 6;447 51:22%
(f) LAIDN count 7;414 37:07%
(g) LAIDN correct 6;886 92.88%
(h) LAIDN rhs visible 3;620 48;83%

Table 5.1: Baseline Experiment Performance Statistics. Table detailing performance statistics for the baseline
experiment consisting of a population comprised of two near-identical individuals. Listed values denote (a): the
total number of testing iterations and (b): the number of correct identity predictions, (c): of all the testing itera-
tions, how many randomly generated configurations were deemed to be satisfactorily solved by the first observation
(identity confidence > a) and accordingly (d): how many were correct predictions, whilst row (e): denotes the
proportion of those configurations in which the right hand side of the individual (containing the single spot or
not) was actually visible. Finally, rows (f)-(h): similarly denote the frequency, performance and initial right side
visibility when multiple iterations (and thus LAIDN) were deemed necessary to successfully identify the target
individual, respectively.

(a) Online LAIDN solution costs (b) Number of viewpoints required

Figure 5.16: Baseline Experiment Histograms. Histograms for the baseline experiment on an abstracted two-
strong population case, where: firstly (a): of the 7;414=20;000 = 37:07% test instances where the initial viewpoint
was insufficient to identify the target individual and thus, active identification was required (refer to Table 5.1 for
more statistics), what is the distribution of calculated solution cost (in seconds)? Second, (b): again for the 7;414
testing instances requiring active identification, what is the distribution of new viewpoints (iterations) required to
satisfactorily identify the subject with confidence � a . Given the exceeding majority solve the testing instance
in two iterations, this indicates success in the method reliably seeking to observe the target’s right hand side, as
confirmed qualitatively in Figure 5.17.

In order to accredit an initial configuration with being solvable in a single iteration, the corresponding
observation should have visibility of the right side of the individual in question to some extent. To
deem whether this is the case, the randomly generated cow heading/yaw Cowy 2 [0;360]° and initial
agent/UAV position ~G = (Gx;Gy;Gz) values are considered. First, the heading of the agent relative to the
origin (where the target individual is placed) is determined:

h = atan2(ya;xa); (5.41)

and is converted into a x-axis aligned heading value such that h 2 [0;360]°. If the resulting heading is
within 90° either side of the individual’s right side (Cowy +90°), the configuration is deemed to be suffi-
cient for successful single iteration, single observation evaluation. Table 5.1 illustrates achieved results of
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this form by the active identification pipeline. As can be seen there, not only does the training algorithm
reliably synthesise suitable example data, the proposed architecture is able to robustly perform efficient
active identification in an online setting whereby the agent attempts to view the target’s right hand side
immediately (as can be observed qualitatively in Figures 5.15 and 5.17). This experiment then serves as
a proof-of-concept in the proposed methodology operating successfully on a dummy case, intrinsically
seguing into the following experiment involving a larger-sized population with difficult identification
cases.

(a) ID = 0 (b) ID = 1

Figure 5.17: Active Identification Model Attention vs. Iterations. Realised per-individual model viewpoints
over multiple iterations for active identification testing instances highlighting iterative model attention. In these
plots, the current target is placed at the origin with x;y axes indicated and x;y 2 [�4;4]m (local identification
boundaries). Iteration colour legend; (blue): iteration 2, (orange): iteration 3, (lime): iteration 4 and (pink):
iteration 5. White cross markers illustrate cluster means for each iteration, indicating replication of the globally
best strategy of seeking the target’s right side. Note that the first iteration position (the initial agent position) is not
shown here as it is just a uniform (pseudo-)random position in LAIDN boundaries and thus, reveals no information
about the behaviour of active identification.

5.5.2 Full Experiment: Simulation Results for Active Identification

In the full experiment described in this section, the population size is increased from the previous exper-
iment consisting of two individuals to mimic a small-sized herd; jRj= 10. This 10-strong population is
comprised of individually-unique uv-space textures that were manually created/painted to provide dif-
ficult identification cases. Identification difficulties arise from members of the population necessitating
particular viewpoints in order to differentiate certain individuals. In some cases even, multiple view-
points must be observed in any ordering for identification success to occur (examples of these identity
pairs: f2;3g;f4;6g). The full synthetic population is illustrated in Figure 5.18. Justification of the choice
to manually provide difficult cases requiring active identification in simulation resides within: first, in
reality, an incredibly large population size would have to be registered in order to observe this behaviour
(intra-population visual similarities increase with its cardinality). Second, operating in simulation allows
extensive results to be concluded in a non operationally-costly setting such that, these results can serve
as a proof-of-concept.

The experiment begins with re-training relevant models towards the new population. As for the two-
strong population, components: T D, AT E and V E – solving target detection and localisation, agent-
target 3D transform estimation and target segment visibility estimation, respectively – do not need to
be re-trained here. The identity estimation network (IE) is re-trained on synthesised imagery utilising
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Figure 5.18: jRj = 10 Active Identification Population. Depiction of the jRj = 10 textures and corresponding
identities for the task of verifying the active identification pipeline proposed in this chapter. Each texture was
manually created to yield difficult identification cases that require an active approach for differentiating identities.
ID = 0 presents the only case with absolutely no markings. Importantly, note that this Figure depicts perfectly
orthographic views for illustrative purposes (all features are visible) whereas within the simulator, the perspective
camera model negates this possibility.

the algorithm/process given in Section 5.4.4 and Algorithm 2. Model training accuracy versus epochs
for this component is given in Figure 5.19, whilst results and accuracies of model training on this data is
shown in Table 5.2. Note that the maximum image sequence length given as input into the LRCN is set to
s f v = jV Eclassesj= 5, to match the number of possible object viewpoints (e.g. top, front, right, back, left).
As this parameter selection matches the cardinality of the discrete viewpoint set V Eclasses, five differing
viewpoints should always be sufficient to identify the target subject (providing they are realised well).
Next, training data for the network performing active identification (LAIDN) was synthesised and used
to train the MLP architecture, again using the process described in details on the original implementation
(see Section 5.4.5).

Row Model #Instances Train:test ratio Validation Accuracy (%) Figure
(a) IE 10;000 9 : 1 78:66 5.19a
(b) LRCN 2;000 9 : 1 100 5.19b
(c) LAIDN 20;000 9 : 1 68:43 5.20

Table 5.2: Model Re-training Results/Statistics. Results and statistics for the model training process towards
(a);(b): identity estimation and (c): active identification. These are the only models that require re-training when
operating on a new population in simulation.

(a) Inception CNN (b) LSTM/LRCN

Figure 5.19: Identity Estimation Accuracy vs. Training Steps. Identity estimation model training9 and validation
set accuracies for (a): the single frame evaluation CNN and (b): the LRCN-based identification network operating
on generated image sequences versus training steps over the given 9;000=1;000 train/test instances.
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To validate the performance of the full active identification pipeline, 100;000 testing instances are as-
sessed here. For each instance, an initial random agent position is generated local to the origin as ac-
cording to equation 5.13, at which a randomly selected target identity with random heading/orientation
is placed. Note also that the subsequent exploratory action to be fulfilled post-identification is also
randomly selected from the set of possible actions (e.g. A = f f ;b; l;rg, see subsequent Chapter 6 for
further description of the exploratory framework). What follows are the results over all testing instances
alongside corresponding analysis and discussion.

Row Parameter description Value %
(a) Total testing iterations 100;000 -
(b) Overall correct 78;955 78.96%
(c) Single iteration count 88;095 88:10%
(d) Single iteration correct 71;771 81:47%
(e) LAIDN count 11;905 11:91%
(f) LAIDN correct 7;184 60.34%

Table 5.3: Online Performance Statistics. Model performance statistics for online testing of (a): 100;000 newly
generated LAIDN scenarios yielding (b): complete identity recovery correctness. Row (c): gives the count and
percentage of testing instances where the model was confident in some identity� a after seeing a single frame and
the corresponding (d): correctness of that prediction. When this is not the case, (e): LAIDN is entered resulting
in ( f ): active identification correctness score on the synthetic and difficult jRj= 10 population.

To begin, online performance results are given in Table 5.3 operating over the entire test set. In the vast
majority of cases, nearly 90%, the random initial agent position satisfactorily identifies the target in a
single iteration;� 80% of which are actually predicted correctly. This success is attributable to generated
viewpoints containing large amounts of identifying features, despite random initialisation as a result of;
(a): the implemented texture project method and (b): the population itself. For (a): and put differently,
as can be seen in the full set of textures (see Figure 5.18), given a perfectly orthographic projection, a
top-down view is the canonical viewpoint across the population. Whilst this perfection is not observed
in reality due to feature resolution and camera perspective from the pinhole camera model, random
initial viewpoints consisting of top-down imagery, particularly when centred above the target, still reveal
salient identification features. In consideration of (b); the spatial distribution of features for the two-
strong population meant that certain viewpoints (e.g. left side) gain no information whatsoever. This
is no longer the case here, certain viewpoints now immediately eliminate candidate identities meaning
the network can make a more informed estimate or guess. If this estimate is sufficiently confident, the
evaluation of this single iteration is deemed satisfactory. As an example for the population here, were an
agent to observe the left side of a random subject with no discernible markings, this immediately implies
that the subject must be either one of ID = f0;1;7g.

Figure 5.20: LAIDN Training Loss. Graph illustrating LAIDN model training and validation MSE loss for 1;000
epochs on 20;000 training instances (10% of which are retained as a validation set).

9Noisy training accuracy has been smoothed in both graphs and others in this chapter using the Savitzky-Golay filter [275]
for visualisation purposes.
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Across the 100;000-strong testing set, LAIDN was enacted 12% of the time, where, 60% of those in-
stances were correctly predicted. Figure 5.21 illustrates how particular identities affect identification
recovery performance. Notably, particular identities can be seen to cause high true and false positive
rates from the identification difficulty levels owing from varying spatial distribution of features. Most
interestingly is ID = 0 with no visual markings whatsoever, from which all other identities are founded
upon texturally. This identity is observed to yield highest false positive rates across single and multi-
frame evaluation. This is since many other identities are identical to ID = 0 bar one particular feature
and thus, one particular observation/viewpoint. Instances where the agent observes multiple viewpoints
containing no markings mean that model confidence in ID = 0 will be high, perhaps even above the
threshold a = 0:8. Future work will look towards varying this threshold and its effect on true and false
positive rates.

Figure 5.21: Identity-Wise Success/Failure Rates. True and false positive rates for each identity for (blue, or-
ange): single iteration evaluation and (green, red): instances where multiple iterations were required (hence using
the LAIDN). The original population (bottom) are included here again for comparative purposes.

Figure 5.22 depicts the distribution of online LAIDN solution costs as well as the distribution of correct-
ness versus iterations. In those graphs, it is visible that incorrect LAIDN solutions have lower mean cost;
calculated to approximate the time required by the agent to identify the target individual. This equates
to LAIDN solutions finishing in fewer iterations and/or realising lower cost viewpoints that incorrectly
satisfy confidence threshold a prematurely. In Figure 5.23, the spatial distribution of two-dimensional
viewpoints realised by LAIDN iterations is illustrated alongside the per-individual likelihood for re-
quiring certain numbers of active iterations to satisfactorily identify the target. Visible there are cases
where the random initial single frame is exceedingly sufficient to identify the individual in question (e.g.
ID = f4;6;8g), especially ID = 8, where any view of the top of the animal reveals its identity. This
crucial feature is often visible for the randomly generated agent positions and thus, LAIDN is rarely
entered for these individuals. Whilst cases that require multiple viewpoints to confirm identity have
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high concentrations of realised agent positions/viewpoints across iterations (e.g. ID = f0;2;7g). As ex-
pected, the visible spatial distributions across iterations are far more chaotic and un-organised than the
two-strong population case – merely viewing the target’s right side is no longer the globally-best strategy
across the population. Instead here, the LAIDN proposes agent displacement based on past and current
estimates of target identity, and since there are many individuals and corresponding possible viewpoint
sequences, suggested new positions demonstrate variability. This spatial variability per-iteration is then
compounded by the random nature of the initial agent position along with variable per-dimension error
from the network estimating agent-target displacement (see Section 5.4.2).

(a) Online LAIDN solution costs (b) Number of required viewpoints

Figure 5.22: Active Identification on jRj = 10 Population Experiment Histograms. Histograms for (a): online
LAIDN solution costs when prediction was correct and incorrect over the 11;905 testing instances where it was
enacted and (b): the distribution of iterations/frames/viewpoints required to satisfactorily identify the current
target.

To finish, Figures 5.24 and 5.25 then go on to illustrate a number of hand-picked LAIDN examples
ultimately yielding identification estimation success or failure, respectively. Visible are examples where
particular viewpoints yield erroneous identity estimates that are overcome (since confidence threshold
a = 0:8 is not satisfied) in later observations and vice versa. As can be seen in many of the examples,
visibility of a particular individual’s crucial identification feature is often very marginal. This is since
the realised viewpoint reveals the presence of the feature with minimal cost; highlighting the success of
the LAIDN training data synthesis algorithm in minimising generated solutions lengths and the identity
estimation model’s ability to correctly differentiate individuals with partial feature observability (often
at low spatial resolutions). Note that this will also be a contributing factor to the seemingly arbitrary
nature of yielded agent position distributions (as shown in Figure 5.23). In their entirety, the complete
results obtained in this experiment – achieving 79% accuracy across 100;000 test instances – indicate
the success of the full identification recovery pipeline in performing robustly, even across a difficult set
of synthetic individuals.
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Figure 5.23: Identity-Wise Iteration Distribution. Illustrations of per-identity iteration distributions. For each
identity, (left): uv texture, (middle): spatial distribution of LAIDN iterations (> 1) and (right): normalised his-
togram for iterations required to satisfy identity confidence threshold a = 0:8. For spatial distributions, (blue):
iteration 2, (orange): iteration 3, (lime): iteration 4 and (pink): iteration 5. Note that the first iterations denoting
the random initial agent position are not plotted here.
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Figure 5.24: Example LAIDN Successes. Hand-picked interesting examples of LAIDN successes involving the
model actively seeking new viewpoints to satisfactorily identify a target. In each example (rows), the ground truth
identity is given (refer back to Figure 5.18 for comparison) followed by constituent frames and the corresponding
graph of identity estimation model confidence versus iterations (frames).
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Figure 5.25: Example LAIDN Failures. Identically to Figure 5.24, this figure presents a selection of observed fail-
ure cases across varying numbers of frames along with the identity estimation model’s confidence versus exposure
to subsequent frames.
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5.6 Chapter Conclusion

This chapter gives details for an active identification pipeline operating on realistic and static three dimen-
sional cattle models in simulation. The proposed model is comprised of several foundational networks
that approximate the agent’s surroundings and the context of its current identification scenario. Approx-
imations allow an attentive child model to suggest new viewpoints that optimise identification success
whilst minimising solution cost. Across simulated cases, performance of this operational paradigm is
demonstrably strong across a baseline experiment with two almost identical individuals. This opera-
tional success generalises to a small population size of synthetic individuals designed to create difficult
identification cases. These experiments provide a proof-on-concept that the proposed framework can ro-
bustly extract and replicate a sequence of individual-specific and context-specific viewpoints that identify
the target as quickly as possible.

In aligning this chapter within the wider context of this thesis as a whole, the task of identifying a single
particular individual is now solved in multiple ways, concluding the first part of this thesis. This has been
progressively demonstrated across (1): single frame evaluation, (2): passive frame sequence evaluation,
and in this chapter, (3): frame sequence evaluation with active, per-situation viewpoint selection. When
an active identification paradigm is not completely necessary (e.g. a single dorsal image of the individual
in question is sufficient to identify it with respect to some larger population set), earlier chapters provide
robust architectures to solve these simpler cases. These solutions assume the agent is local to the individ-
ual in question; the target is visible and thus, can be detected – performing local individual identification.
However, the intention of this thesis is to identify the group collectively, therefore, the agent needs to
perform a global action to discover new targets to identify. It is this task – actively navigating an un-
charted environment towards efficiently discovering unvisited individuals – that the subsequent chapter
will explore.
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Chapter 6

Simulated Inter-Individual Navigation

6.1 Chapter Overview

This chapter discusses deep learning for solving static and dynamic search and recovery tasks – such
as the retrieval of all instances of actively moving targets (cows) – based on partial-view, UAV-like
sensing. In particular, abstracted tactic and strategic exploratory agency is demonstrably implemented
effectively via a single deep network that optimises in unity: the mapping of sensory inputs and po-
sitional history towards navigational actions. A dual-stream classification paradigm is proposed that
integrates a first CNN for sensory processing, with a second for interpreting an evolving long-term map
memory. In order to learn effective search behaviours, given agent location and agent-centric sensory
inputs, this design is trained against optimal navigational decision samples for different multi-target dis-
tribution classes. Recovery performance is quantified across an extensive range of scenarios; including
probabilistic placements and dynamics, as well as fully (pseudo)random target walks and herd-inspired
behaviours. Detailed results comparisons show that the design can outperform naı̈ve, independent stream
and off-the-shelf DRQN solutions. Altogether, the proposed dual-stream architecture can provide a uni-
fied, rationally motivated and effective architecture for solving online search tasks in dynamic, multi-
target environments.

6.2 Introduction

In this chapter, a map-based, unified deep learning framework (see Figure 6.1) is proposed; applicable to
recovery tasks in structured environments where an agent with local sensing and spatio-temporal long-
term memory is tasked with visiting, within a confined space as quickly as possible, each of a known-
sized set of static or dynamically moving targets. In the special case where agents return and target lo-
cations are fully known over time and space, the task can be mapped to the static or dynamic Travelling
Salesman Problem (TSP) [130], respectively. Practical solutions for this problem class have in the past
been computed using Dynamic Programming [129], Ant Colony System optimisation [74, 88, 53] and
Evolutionary Computing [95, 120, 141, 311] and more [285, 103, 152]. Within this chapter, a more
realistic scenario is considered: where target locations are initially unknown, consequently requiring
exploratory agency. In the wider context of this thesis, this equates to: given an unexplored field con-
taining cattle individuals we’d like to find and identify, what search strategies should be employed, with
efficiency in mind?

The described recovery task may classically be interpreted as a Partially-Observable Markov Decision
Process (POMDP), described in various surveys on visually-motivated robotic navigation [34, 68] prior
to deep learning. However in this chapter, the task is proposed to be cast into a framework for optimising
deep recurrent classification. That is, mapping positional history and current sensory inputs to new
navigational actions via a single DNN. Similar to Zhang et al. [345] in their recent work on reinforcement
learning for exploration, explicit long-term memory is integrated into the design, experimenting with
both storage of spatial as well as spatio-temporal information – as is depicted in Figure 6.1.
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Figure 6.1: Unified Dual-Stream Deep Architecture for Search and Recovery Tasks. The proposed design mod-
els the interpretation of sensory (tactical) and historic navigational (strategic) information within a single deep
network (dotted yellow), which allows for unified back-propagation of navigation decision errors across both do-
mains. Starting at the top right, the flow chart shows the agent’s sensory input I, that is either (a) an abstracted,
or (b) rendered, nearby environment sample. The input is processed via (c) a sensory/visual CNN utilising a ba-
sic AlexNet [171] design. In a second parallel stream, an evolving positional history memory M (holding either
(d) spatial, or (e) spatio-temporal long-term information) is used as tensor input into (f) a network interpreting
exploratory histories. Both streams are concatenated into (g) a shallow integration network that culminates in a
softmax map towards a score vector output V over the possible navigational actions a 2 A. During training, the
entire deep network (dotted yellow) is optimised based on triples (I;M;V ) using one-hot encoding of V and cross-
entropy loss. During inference at time step t, the network receives a sensory input I and (h) selects the top-ranking
navigational action (a) based on V , which is (i) performed and, in-turn, (j) the positional history M is updated.
In order to initiate a next iteration time-step t + 1, a new sensory I is sampled from the environment E closing the
operational loop.

Alternative approaches reside naturally in reinforcement learning, which is argued against in Section
2.4.2. The argument primarily focusses around an unsupervised learning phase being unnecessary; the
positions of simulated targets are known and TSP solutions provide optimal decisions that can be trained
against using the proposed classification architecture (see Figure 6.1). When however, the distribution
of targets is unknown or challenging to accurately model (as is the case for real cattle targets), searching
for reasonable exploration/exploitation policies using reinforcement learning makes intuitive sense1. A
different approach could employ a particle filter; the agent iteratively refines estimates of target distribu-

1Implementing an unsupervised learning phase in reality may however be very challenging from an operational standpoint
(e.g. UAV flight times are relatively low �10 minutes, thus requiring many batteries, flights would require constant human
supervision, the search may not converge in reasonable time).
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tion over multiple observations, with significant research existing in the related area of robot localisation,
mapping and navigation [123, 64, 119]. The resulting distribution estimate however, still requires nav-
igating towards visiting all targets. This complete process bears strong resemblance with the proposed
architecture – target observation positions (explicitly recorded in long-term memory) implicitly indicate
the distribution of other targets and actions are selected towards exploring those areas – except that these
components are unified under a single recurrent classification pipeline.

In order to focus on the core of the proposed methodology and to be able to operate on tractable compu-
tational grounds, real-world layouts are abstracted from here in the form of:

1. modelling time discretely,
2. representing space as a simple, discrete two-dimensional grid world and,
3. assuming grid-cell agent localisation to be resolved perfectly.

Despite the simplification, this abstraction is proven effective in real-world settings via the proof-of-
concept experiments conducted in subsequent Chapter 7. Proposed as early as 1990 [300], grid worlds
remain popular for exploring the viability of AI solutions today [211, 345]. In this chapter, agent-centric
visual sampling – approximating a low-flying UAV with a downward-facing camera – is generated either
from:

1. occupancy of local sub-grids of the world as content-independent abstractions, or
2. rendering from 3D Gazebo simulations [164, 345] for domain-specific, high-resolution images of

particular target and environment content (e.g. grazing cattle herds). See Appendix A for the full
implementation details on the simulation environment.

In the remainder of this chapter, Section 6.3 details formalisation of the problem mathematically, be-
fore describing training data synthesis of ground-truth actions in Section 6.4. Section 6.5 discusses the
proposed solution and implementation, and subsequently, Section 6.6, describes experiments alongside
quantitative findings. Finally, in Section 6.7 conclusions are drawn and future work indicated.

(a) 0� t � 10 (b) 20� t � 30 (c) 40� t � 50

Figure 6.2: Examples of Solved Testing Episodes. Depiction of 75 example episodes where the agent (trained on
the base case: Random (PT)) has recovered all targets at varying degrees of efficiency (avg. 19 steps for 5 targets
over 20k samples – compared to lawn-mower pattern requiring � 41 steps). (Pink): target positions uniformly
randomly generated (specifying target distribution: P) at the beginning of an episode, (blue): past agent positions,
(green): current/finishing agent position, and (black): unvisited grid positions. Instances are sorted (a) - (c)
according to the difference in generated and optimal solution lengths t = jSj� jSGOj.

6.3 Problem Formalisation

6.3.1 Base Case – Static Target Recovery

For target recovery in a grid world E under discrete time ti 2 ft0; t1; :::; teg, let the environment E be de-
fined as a rectangular 2D matrix with dimensions w�h. The agent G and static targets ri 2 R both have
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discrete coordinates (x;y) within the map boundaries:

0� x < w; 0� y < h;
where x;y 2 Z:

(6.1)

Exactly jRj targets are placed according to some unknown (possibly random) distribution P in this world.
Note that G may take position anywhere, whilst multiple targets cannot occupy the same map position at
any time-step:

8i; j 2 jRj; tk 2 ft0; t1; :::; teg : ri
x 6= r j

x ^ ri
y 6= r j

y;

where i 6= j and i; j 2 Z:
(6.2)

Possible agent actions a2A are the four possible navigation directions for non-boundary coordinates:

forward (�y)
backward (+y)

left (�x)
right (+x)

(6.3)

or A = f f ;b; l;rg, respectively for a top-left origin. Particular actions are inapplicable in the case that
they would move the agent outside the map, e.g.:

if Gx = Gy = 0;
AjG = fb;rg; 8w;h > 0:

(6.4)

Performing one particular action (e.g. “move right one unit”, or x := x + 1) is defined to take one agent
step in discrete time t. The agent is deemed to have recovered a target ri iff:

Gx = ri
x and Gy = ri

y (6.5)

at some time-step t j. A recovery solution S to an episode (i.e. visiting all ri 2 R) is defined as an ordered
action sequence given initial agent coordinates (e.g. S = [ f ; f ; l;b;r;r;b], Ginit

x = Ginit
y = 1). An episode

terminates in S once full target visitation is achieved, or in failure due to time expiry: t > te. The quality
of a solution S is defined by its cardinality jSj (time/steps required to visit all ri 2 R), the quality of
exploratory agency is defined as the average solution quality (e.g. measured as target recovery rate)
computed by scenario sampling given P.

Per time step, let the agent G be provided with two observable inputs:

1. its own current position (Gx;Gy) in coordinates of E such that Gx 2 [0;w), Gy 2 [0;h), Gx;Gy 2 Z
and,

2. an agent-centric 3�3 grid image I resolving target occupancy in E topologically adjacent to G’s
location – in essence, neighbouring targets and unoccupied cells can be sensed, as depicted in
Figure 6.1 (a) and Figure 6.3.

For the base case, this abstracts from realistic visual inputs (such as Figure 6.1 (b)) and provides a
content-independent problem isolation of tactical sensing from more fine-grained visual recognition
tasks. The current agent position Gx;Gy is continuously recorded to keep a w� h spatial occupancy
map M up-to-date, encoding for each position of world E:

1. if exploration has taken place and
2. if the agent is currently located there (see Figure 6.1 (d)).

M in this form provides long-term external memory of positional history. Given this complete setup, the
problem can be stated as:

How well can deep learning solutions learn how to optimise for fastest search and
rescue of all targets given only samples of navigation decisions (I;M;a)?
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(a) 3�3 pixel sensory abstractions. (b) 50�50 pixel simulation renderings.

Figure 6.3: Agent-centric Visual Field Examples. Examples of the two possible types of agent-observable visual
input I of the environment from (a): sensory abstracted visual field or (b): Gazebo-rendered simulation environ-
ment (see Appendix A for implementation details on the simulation environment).

Figure 6.4: Ground-truth (I,M,a) Tuple Examples. Examples of ground-truth (I;M;a) tuples for newly-generated
episodes. Inputs consist of image I (top row): agent-centric visual field and M (bottom row): occupancy map
of visited coordinates whilst output is a: corresponding ground-truth/optimal action given the inputs for some
episode configuration, agent starting coordinates and target distribution P.

6.3.2 Dynamic Case – Actively Moving Target Recovery

Here, the base case is extended for target motion over time – thus, distribution of targets P is now
three-dimensional. Targets now apply individual actions ai 2 Aext at velocity 1

s u=t (spatial grid units per
time-step) – whereas the agent displaces at velocity 1u=t. Velocity with s = 3 is selected, yet s > 1 to
make agent-target visitation eventually always possible. The action set is extended here to include action
‘do nothing’ denoted by n yielding:

Aext = f f ;b; l;r;ng (6.6)
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to permit optimised agent-target path intersection. Furthermore, single cell target occupation conditions
given in Equation 6.2 are mandated 8ti 2 ft0; t1; :::; teg. Architectural and temporal modifications are
enacted on the agent’s memory such that both agent and recovery locations are encoded spatio-temporally
in the map (see Figure 6.1 (e)), i.e. time annotations are memorised (see Figure 6.5). Specifically,
changes to M involve an additional w�h dimension yielding new total size w�h�2, where:

1. Target location memorisation (M[:; :;0]): upon Gx = ri
x^Gy = ri

y at some time-step t j, the respec-
tive grid coordinate is marked with integer l = 50. This encodes agent-target spatial and temporal
visitation attributes.

2. Agent location memorisation (M[:; :;1]): Gx;Gy is marked with integer l = 50 recording recent
agent environment coordinate visitations.

Importantly, prior to these evaluations made at each ti, every non-zero element of M is decremented by
one. These modifications are made to account for individual target motion since: (a) we want to encode
the uncertainty of target locations – knowledge of target whereabouts is solidified upon visitation and
decays over time (due to random walk) according to Rayleigh’s asymptotic approximation [255] and
consequently (b): memory of past environment agent positions now encodes less information regarding
potential unvisited target coordinates. Put differently, these modifications allow the system to learn about
the uncertainty of target locations by relating agent path over time and spatio-temporal memory – note
that this information reveals properties of target motion beyond target placement statistics according
to P.

(a) Target location memorisation M[:; :;0] (b) Agent location memorisation M[:; :;1]

Figure 6.5: Temporal Occupancy Grid Map Example. 2D Sliced example of three-dimensional spatio-temporal
occupancy map M at time ti for a completed episode with environment E dimensions w = h = 10. For ease of visual
representation, individual 2D slices M[:; :;0] and M[:; :;1] are encoded as grayscale images here (each element of
M was linearly scaled from range [0;l ] to [0;255]).

6.4 Ground Truth Synthesis

To generate ground-truth solutions to new episodes – containing shortest routes visiting all targets –
for the purpose of training data synthesis of appropriate navigation decisions (I;M;a), three strategies
(detailed as follows) are employed. Since at this stage target positions within E are known, the problem
is equivalent to the TSP, which has been well studied [129, 74, 88, 53, 95, 120, 141, 311, 285, 103,
152].
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6.4.1 Fast Approximation: Closest Unvisited Target (CU)

Approximative solutions are generated fast by determining the position of the closest unvisited target
ri 2 R, selecting an appropriate action a 2 A towards visiting ri and repeating until all targets have
been visited. This forms an approximation in a Nearest Neighbour (NN) fashion to any environment
configuration irrespective of environment parameters w;h; or target set cardinality jRj. Note that this
method may only sometimes produce optimality, as is reflected quantitatively in Table 6.1.

Action selection is determined by first finding the angle q between the agent G and the closest unvisited
target ri using:

q = atan2(ri
y�Gy;ri

x�Gx): (6.7)

Second, the action a 2 A is selected via p
2 intervals:

a =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

rand(f f ;rg); if q = p
4

rand(fb;rg); if q =�p
4

rand(fb; lg); if q =�3p
4

rand(f f ; lg); if q = 3p
4

f ; if p
4 < q < 3p

4

b; if � 3p
4 < q <�p

4

l; if 3p
4 < q <�3p

4

r; otherwise.

(6.8)

Where rand(X) randomly chooses an element x 2 X .

6.4.2 Optimal Solution: Permutation of Targets (PT)

Any valid solution to an episode will visit all targets sequentially in some ordering. Globally-optimal
solution(s) will therefore be some ordering on R that consist of the shortest number of moves (minimal
jSj) given Ginit

x ;Ginit
y and P. The number of possible orderings is factorially dependent on the cardinality

of the target set, that is, within O(jRj!) A particular target sequence is then fulfilled by selecting relative
angle-appropriate actions (see equations 6.7 and 6.8) in a process akin to line rendering or rasterisation
in images.

Target sequence orderings are generated via exhaustive tree search/growth. For the directed tree T =
(V;F), vertex attributes denote the target that node visits vi

attr = r for r 2 R, v 2V , whilst edge attributes
detail the optimal navigation action sequence connecting two targets determined via line rendering (e.g.
[ f ; f ; l;b;r;r;b]) using equations 6.7 and 6.8. The only exception is the root node v0, which is defined to
represent agent starting coordinates Ginit

x ;Ginit
y within a particular episode. A child vertex and connecting

edge for some vi is added for all unvisited targets such that:

8vi 2 T (V );vi 6= v0 : deg�(vi) = 1: (6.9)

A solution to the episode is formed by finding a sink vertex v j with deg+(v j) = 0 and traversing upwards
until the root source vertex v0 is found with deg�(v0) = 0. During graph traversal, action sequence edge
attributes are pushed onto a Last In First Out (LIFO) stack to form the final solution S. Optimality score
for a solution is taken to be the number of actions, length of the action sequence or size of the queue
jSj.

An intrinsic elegance of this solution is its independence in complexity from environmental dimensions
w� h, rendering it generalisable to higher-granularity environments (e.g. real-world robotic problems)
with negligible runtime overhead. Whilst this approach guarantees optimality, it would be preferable to
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use the alternative, aforementioned “Closest Unvisited Target” strategy (see section 6.4.1) for large jRj
due to exponentially-growing computational complexity (see figure 6.8).

/0

f0g f1g f2g

f0;1g f0;2g f1;0g f1;2g f2;0g f2;1g

f0;1;2g f0;2;1g f1;0;2g f1;2;0g f2;0;1g f2;1;0g

Figure 6.6: Target Orderings Graph. All possible Permutations of Target (PT) orderings for R = f0;1;2g; jRj= 3.
Edges represent Euclidean distance between vertex (target) coordinates in E. The root node /0 represents the
agent’s starting coordinates within E: Ginit

x 2 [0;w�1]; Ginit
y 2 [0;h�1] for some generated episode.

6.4.3 Exhaustive Coordinate Search

As an alternative solution guaranteeing optimality, this approach exhaustively searches every possible
coordinate within E. This comes at the obvious significant cost of computation time increase owing to
solution complexity now being wholly dependant on environment dimension parameters (w;h). However,
the benefit of this approach lies within its guarantee of eventual optimality with no knowledge of P (target
spatial distributions). Tree growth formalisation is given as follows.

The tree T = (V;F) is defined here as a directed, acyclic graph subject to the conditions:

argmax
vi2T (V )

deg+(vi) = jAj= 4

and 8vi 2 T (V );vi 6= v0 : deg�(vi) = 1;
(6.10)

where each vertex v2T (V ) represents a grid coordinate vx;vy 2E. At the root node, v0 directly represents
the agent’s starting coordinates Ginit

x ;Ginit
y . Connecting edges f 2 T (F) thus denote a single legal action

a 2 A (see Equation 6.4) connecting adjacent grid coordinates (graph vertices), therefore:

8uv 2 T (F) :
q

(ux� vx)2 +(uy� vy)2 = 1

where u;v 2 T (V ):
(6.11)

To bound computational costs (recursion depth) within reasonable time/memory constraints, a threshold
is placed on paths with no new target visitation of length � fmax. This tree is grown recursively until a
solution is found at a certain depth – directly encoding the number of moves required to solve the instance
– which is not exceeded by other branches. If a better solutions is found by an alternative branch, it is
established as the new maximal recursion depth.

As can be seen in Figure 6.7, graph complexity, even for small w;h; jRj and fmax is expansive. This solu-
tion was quickly therefore found to be computationally infeasible given reasonably natural environment-
operational parameters (e.g. w;h � 5 and jRj � 4). Additionally, within the problem space here, in
generating new ground-truth episodes, target locations are generated and thus known. As a result, the
use of this solution is unnecessary, but useful in pure exploratory circumstances. Since the aforemen-
tioned PT strategy equally guarantees optimality, this ground-truth synthesis method was not brought
forward for further experimentation or usage.
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(a) w = h = 2, Ginit
x = Ginit

y = 0,
R = ff1;1g;f1;0gg, jT (V )j= 23,
argminjsj2jSj = 2 and fmax = 3.

(b) w = h = 2, Ginit
x = Ginit

y = 0,
R = ff0;1g;f1;0gg, jT (V )j= 55,
argminjsj2jSj = 3 and fmax = 5.

(c) w = h = 3, Ginit
x = Ginit

y = 1,
R = ff0;1g;f0;2gg, jT (V )j= 76,
argminjsj2jSj = 2 and fmax = 3.

Figure 6.7: Exhaustive Coordinate Search Graph Examples. Various examples of the directed, acyclic graphs
yielded by exhaustive coordinate search under varying parameters. Node colours are defined here as (red): default
node colour, (blue): root node, (green) non-optimal solution to the problem and (yellow): the optimal solution
(least amount of moves). Vertex number attributes represent the current length of this solution (distance from the
root node) whilst edge f 2 T (F) letter attributes denote ai 2A connecting two adjacent grid coordinates. Resulting
complete graphs for: (a) a simple 2�2 environment size and maximum search depth fmax = 3, (b) increased search
depth fmax = 5 and (c) larger environment size w = h = 3.

6.5 Implementation

6.5.1 Recurrent Network Architecture

As previously introduced, Figure 6.1 illustrates and explains the end-to-end deep architecture used here.
The reader can observe there that network output consists of a class membership score vector V with
jV j = jAj and åv2V = 1 as enforced by a final softmax-activated fully connected layer. In general, the
model-selected action a 2 A is taken to be the maximal-likelihood value of V . Note that, if enacting a
results in the agent moving outside of the environment boundaries, a random valid action is performed
instead and equally, loop-detection may also alter action selection (see Figure 6.1 (h)). Furthermore,
note that the grid occupancy/visitation map M (see Figure 6.1 (e)) intrinsically forms spatio-temporal
memory for the agent with explicitly-defined architecture. This is as opposed to popular recurrent units
such as GRUs [50] and LSTM [135] where the encoding and selection of temporal knowledge is implicit
and hidden. Since all information of the path can contribute to learning information about distribution P
and target movements, full and explicit long-term memory should intuitively perform well without such
designs. Furthermore, since all training instances are modelled temporally independent/non-correlated,
standard batch-based training can be employed here as opposed to resource-intensive back-propagation
methods for recurrent architectures such as BPTT [327] and RTRL [261].

6.5.2 Infinite Loop Detection

An inherent property of model output (i.e. next-step action selection) is the potential for performing
infinite agent loops. In their simplest forms, infinite loops are easily detectable via direct substring
search into past actions (e.g. f f ;b; f ;b; :::g, fr;b; l; f ; :::g). However, specific substring rules for more
complex loop formations – consisting of many actions – are difficult to formulate and do not generalise
well. Instead, loop detection here is primitively indicated in the event that the agent visits a particular
grid coordinate a times (value a = 3 is empirically set to minimise solution length).

Upon indication of a loop, action selection control (see Figure 6.1 (h)) is given to an alternate algorithm,
which in turn navigates the agent towards the closest preferred unvisited location in the occupancy map
M for current Gx;Gy. This is achieved by examining occupancy map values surrounding the agent in a
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binit = 1 radius. Unvisited coordinates in that radius form an action voting table for action selection. If
no unvisited location exists within that radius value b , it is incremented b := b + 1.

6.5.3 Training Setup

Synthetic training data produced by the selected ground-truth synthesis method is utilised to train the
dual-stream DNN model defined previously. For training end-to-end, a single instance (I;M;a) consists
of inputs: agent-centric visual input I and occupancy grid map M, whilst output is an one-hot action-class
vector encoding ground-truth action a used for back-propagation. To verify pure ground-truth classifica-
tion performance, k = 10-fold cross validation is performed over the respective experimental dataset. At
each fold ki, training is performed for 50 epochs over the partitioned training set with weights initialised
randomly from a truncated normal distribution and a batch size of 64. Parameters are optimised via cat-
egorical cross-entropy loss using SGD with momentum [250] and fixed learning rate e = 0:001. Mean
and standard deviation cross-validated classification accuracies for each experiment (where applicable)
are given in Table 6.1: (h).

6.5.4 Baseline Algorithms

Three baseline methodologies are implemented here to compare and assess the performance of the pro-
posed dual-stream, unified deep learning approach against:

Naı̈ve Solution (NS)

As a simple, naı̈ve strategy to provide a primitive baseline, an algorithm is employed whereby if (1): an
unvisited target is currently present within the visual field (verified by examining M), select an angle-
appropriate action towards it using Equation 6.8. Otherwise, (2): navigate towards a next unvisited
location using the same voting strategy given in Section 6.5.2 (otherwise used to break loops), and repeat
(1) until the episode terminates from time expiry or complete target visitation.

Deep Recurrent Q-Network (DRQN)

Also implemented is an off-the-shelf DRQN [126] for comparison employing a 1000-time-step strong
experience replay buffer. This baseline is established to validate the hypothesis that exploratory agency
benefits from known solution samples and the inclusion of structured, map-based long-term memory.
Visualisation of the environment was modified with a white border surrounding the map used to create
the partial visual input I given to an agent. This serves to provide agent knowledge of the environment
boundaries – which is an implicit property of the occupancy grid map M’s architecture for the method
described here. Additionally, target visitation is visually signified to the agent who can then no longer
receive reward from that target.

Split Stream Network (SSN)

To validate the motivation of the proposed dual-stream approach – that exploratory agency benefits from
information exchange between sensor and positional history inputs trained under a single architecture
– the architecture is split here during back and forward propagation. That is, resulting split stream
networks 1 and 2 optimise on (I;a) and (M;a) using network architectures (c) and (f) as given in Figure
6.1, respectively. Network outputs are element-wise summated and normalised to yield the final action-
class score vector used for action selection.
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(a) (b) (c) (d) (e) (f) (g) (h)
Loop

Detected

(%)

> 1 Loops

Detected

(%)

> 100

Moves

(%)

Optimal

Solution

(%)

� 10

Difference

(%)

t > te
Moves

(%)

Target

Recovery Rate

(d=t)

10-fold CV

mAP

(%)

Baselines for NS - - 8.13 0.34 5.96 0 0.260�0.113 -
6.6.2 Static Recovery DRQN [126] - - 58.09 0.02 2.18 45.56 0.237�0.092 -

(random targets) SSN (PT) 56.31 63.16 23.52 0.66 3.89 0.01 0.217�0.112 68.95�0.256
Learning Random (CU) 37.49 53.01 9.64 2.21 13.76 0 0.262�0.113 67.84�0.237

6.6.1 Static Random (PT) 32.45 46.78 7.57 2.85 15.72 0 0.265�0.1141 71.15�0.233
+ Recovery Fixed Grid 0.94 100 0.76 99.06 99.06 0.63 0.337�0.054 91.47�0.696

6.6.4 (agent location Equidistant 54 82.01 19.63 21.78 45.75 0.91 0.333�0.109 83.66�0.182
memorised) Gaussian 24.46 30.17 0.58 39.99 78.61 0.07 0.616�0.143 75.81�0.515

6.6.3 (simulation) Random (+S) 36.73 44.94 6.88 6.53 35.72 0.164 0.289�0.109 73.97�0.175
(agent+recovery Random (+M) 70.16 78.9 25.55 2.08 12.67 0.59 0.261�0.115 70.17�0.276

6.6.5 locations Equidistant (+M) 47.59 74.79 7.41 30.25 60.87 0.16 0.380�0.0852 84.99�0.224
memorised) Gaussian (+M) 23.52 63.6 3.28 45.46 78.28 0.15 0.622�0.1413 77.30�0.429
Learning Random Walk - - 79.17 0.08 0.93 12.23 0.155�0.176 60.91�0.418

6.6.6 Dynamic Herd Walk - - 77.18 0.88 3.18 21.39 0.225�0.128 62.33�0.273
Recovery Herd Walk (+S) - - 61.35 0.12 2.90 5.67 0.203�0.0984 63.26�0.181

Table 6.1: Performance Overview. Row sections in the table group results of the proposed approach across three
task categories, and against three baselines, respectively: 6.6.2: Baselines for recovery of static, randomly placed
targets all outperformed by 1the dual-stream approach; 6.6.1+6.6.4: Static Recovery attempting to learn recovery
under various spatial target distributions P; 6.6.3: Using Gazebo Simulations (+S) instead of abstracted sensing;
6.6.5: Additionally Memorising Recovery Locations instead of only agent locations, shows superior results for
all 2;3non-random target placements; 6.6.6: Dynamic Recovery attempting to learn recovery under target motion
including 4Gazebo simulated herd dynamics. Columns hold the following values: (a): % of episodes where a
loop was detected; and (b): of those cases, % of episodes where another, subsequent loop was detected; (c): %
of episodes where the model required more steps than simply exhaustively exploring every environment position
(for fixed w = h = 10); (d): % of episodes where the generated solution length was equal to the optimum; and
(e): % of instances where the model generated a solution less than 10 moves longer than the optimum; (f): %
of instances where time expiry (model failure) occurred with te = 300; (g): m �s target discovery rates (no. of
target recoveries per time-step); (h): 10-fold cross validated ground-truth classification mean average precision
mAP�s .

6.6 Experiments

Importantly, throughout experiments and indeed other places in this chapter, ‘random’ numbers are gen-
erated using the P-RNG Mersenne Twister algorithm [208] but are referred to as random. The number
of targets is fixed to jRj= 5, environment E dimensions are set to w = h = 10 and unless specified other-
wise, 20;000-episode strong training datasets are synthesised per experiment containing approximately
400;000� instances of (I;M;a) data tuples. Note also that the agent’s initial position is randomly gener-
ated at the beginning of every episode Ginit

x 2 [0;w�1];Ginit
y 2 [0;h�1]. Targets remain static throughout

episodes (solving the base case given in Section 6.3.1, where distribution P is two-dimensional) in all
experiments up until those given in Section 6.6.6. For testing, 20;000 newly generated episodes are
presented to the trained models to solve, model recovery performance is then measured and reported.
Results for all experiments are given above in Table 6.1 and evaluated in detail over the following sub-
sections.

6.6.1 Episode and Ground Truth Generation

In this experiment, the two aforementioned ground-truth synthesis strategies (see Section 6.4) are com-
pared and contrasted – that is, Closest Unvisited Target (CU) and Permutation of Targets (PT) – for
training data generation utilised for subsequent model training. Figure 6.8 illustrates comparative re-
sults on newly-generated episodes with fixed environment dimensions w = h = 10 and random target
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distribution P. As theorised for PT, the time required to solve episodes increases factorially with the
number of targets, i.e. O(jRj!), whilst CU requires negligible linear time (see Figure 6.8: (middle)). The
trade-off being that as jRj �!¥, the average difference in generated solution lengths diverge (see Figure
6.8: (left)) – since PT guarantees optimality. Yet, as illustrated in Figure 6.8: (right), employing the CU
strategy yields optimality in the majority of instances (�60%). Comparison of both training synthesis
strategies against validation episodes demonstrably proves that PT prevails (see both Table 6.1 and Fig-
ure 6.9) in learning the conditions for optimal decisions given random target distribution. Thus, the PT
approach is employed for episode solution synthesis for all other experiments and this result (i.e. using
PT) is established as the base case 1benchmark for static, uniformly randomly distributed targets.

Figure 6.8: Ground-truth Synthesis – Comparison of Strategies CU vs PT. Comparison of ground-truth synthesis
methods for newly randomly generated episodes. At each value of jRj, 100 additional episodes were generated
and solved. (Left): average ground-truth solution quality jSj for generated solutions against the number of targets
jRj. (Middle): average time required for solution generation against the number of targets. (Right): normalised
histogram for the difference in generated solution length between CU and PT for 100 instances for each jRj 2 [2;8].

6.6.2 Baseline Comparison

These experiments evaluate the three implemented baseline algorithms (see Section 6.5.4) against the
proposed dual-stream architecture. For each algorithm, targets are uniformly randomly spatially dis-
tributed within E. Resulting performance statistics illustrate under-performance in all aspects in com-
parison to the aforementioned 1benchmark result. The employed naı̈ve approach (NS) yields highest
baseline performance and is accordingly shown for comparison in Figure 6.9 against other benchmark
results achieved by the solution proposed here. Off-the-shelf DRQN [126] demonstrably performs poorly
despite access to experiences containing decisions leading to reward. This occurs arguably as a result of
the agent having no global notion of current environment localisation necessary to locate possible future
reward in an overall context. Splitting inputs into separately-trained neural network streams (SSN) is
also shown to yield poor performance since model exposure to any single input (I or M) alone is in-
sufficient in producing optimal reasoning (the problem becomes increasingly partially-observable). This
being said, knowledge of occupancy grid M (encoding Gx;Gy, visited cells, etc.) inherently encodes
more information on E than I, which is reflected in findings of significantly higher mAP classification
accuracy in the network optimising on (M;a) alone. Additionally, performing end-to-end training on
two separate networks to address this imbalance attributes significant additional computation over the
proposed dual-stream network architecture.

6.6.3 Simulated Full Visual Input (+S)

To this point, sensory environment observability has been encoded by small 3�3 sensory abstractions.
To simulate a more realistic target location recovery assignment – where visual target detection is no
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Figure 6.9: Model Solution Length Difference. Normalised histogram of the difference in generated solution
length using models trained with Closest Unvisited (CU) and Permutation of Targets (PT) ground-truth synthesis
strategies against the global optimum over 20;000 test instances. Distributions when using the naı̈ve solution (NS)
and Gazebo simulator [164] (PT+S) are also included. See Table 6.1 for further detailed performance statistics.

longer trivial – the task of visual outdoor farming census related to [12]; discovering cattle positions
within a field using a quadrotor UAV is introduced. The task is simulated utilising randomly-oriented
3D cattle models within the Gazebo robot simulation environment [164] (see Figure 6.10: (top)). The
simulation environment is used to directly replace the agent’s sensory field I with a 50� 50 pixel im-
age (see Figure 6.10: (bottom)) for a 100° FoV camera, whilst M remains identical in architecture and
operation. The UAV is flown in discrete 2m increments within the horizontal xy-plane at fixed height
z = 3:5m.

The experimental setup remains identical to the benchmark case with agent and cattle targets uniformly
randomly spatially distributed. Whilst obtained results (see Table 6.1 and Figure 6.9) indicate an advan-
tage for the simulator case, these results are not directly comparable within the setup used here, since
environment observability improves in a three dimensional projection beyond 2D gridding given the
camera FoV (see Figure 6.10: (bottom)), object shadows, etc. Whilst efforts could have been made to
strictly enforce agent visibility to a 1 grid ground cell radius (as for the grid world), this would have
failed to model real scenarios well since visual artefacts (e.g. shadows) are present in real-world sensing.
Note that the employed visual processing CNN architecture (AlexNet [171]) clearly demonstrates that it
can recover and utilise additional visual information found in such realistic robotic scenarios (see Table
6.1, Section 6.6.3).

6.6.4 Learning Static Recovery under Spatial Distributions

Experiments to this point have dealt with fully random uniform target distributions. Here it is shown that
simpler and arguably more realistic spatial distributions can also be learnt (naturally, far more effectively)
under the solution proposed here. Three additional distributions are employed as follows:

Fixed Grid

As a baseline distribution case, targets are distributed in a fixed, static grid across episodes (spatial
distribution P is known completely), whilst agent position initialisation varies as before. Since there are
many orders of magnitude less possible environment initialisation configurations, wh�jRj= (10�10)�
5 = 95 – since only the agent position is varied per-episode – one would expect highly improved model
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Figure 6.10: Visual Simulation Environment. (Top): overview of the Gazebo-powered [164] simulation (+S)
environment for a randomly generated static episode. (Bottom): example 50�50 pixel images from the simulated
downward facing UAV camera provided as input to the agent.

performance, which indeed turns out to be the case both in pure ground-truth classification accuracy and
online model performance (see Table 6.1, row ‘Fixed Grid’).

Equidistant Grid

Targets are distributed spatially in a grid that satisfies target-target NN equidistance (Voronoi-like distri-
bution) – a property that is observed in real cattle-herd distributions [301]. The position of the grid in E
is varied randomly per-episode and inter-target NN spacing satisfies 2 grid-unit spacing. Since the grid is
fixed in shape across episodes, positional knowledge of just two targets provides full information of re-
maining target positions. Ergo, the problem is then vastly less complex than the fully random case, which
is reflected in strong model performance on this distribution (see Table 6.1, rows ‘Equidistant’).

Gaussian

Target positions are sampled from a two-dimensional Gaussian with constant parameters mx = 3, my = 5
and sx = sy = 1 at the beginning of each episode. Values are sampled from the distribution until unoc-
cupied environment coordinates are generated. Results demonstrably show strong model performance
in efficiently discovering target positions – relatable to an ability to effectively learn the distributional
parameters of the underlying 2D Gaussian P (see Table 6.1, rows ‘Gaussian’).

6.6.5 Memorising Recovery Locations (+M)

In these experiments, the visitation map M is modified such that target locations are marked upon agent
visitation. This small implementation detail leads to improved performance upon all tested, non-random
target distributions, that is ‘Equidistant’ and ‘Gaussian’. These improvements occur intuitively; previ-
ously discovered target positions directly encode information about a non-random P. This is demonstra-
bly not the case for fully random distributions – knowledge of randomly positioned target ri reveals no
information about the position of r j (where i 6= j), and thus, yields no increase (i.e. slight decrease) in
performance (see Table 6.1, compare rows 4, 5 and 10).
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6.6.6 Learning Dynamic Multi-Target Recovery

Thus far, targets have remained static throughout episodes. Here, the implementation is extended to
include individual target motion in two forms (a): random walk and (b): herd-inspired motion. Formal-
isation of this, now dynamic recovery problem, is given in Section 6.3.2. Note also that infinite loop
detection – applicable to the static recovery task – is disabled in this context.

Random Walk

Targets implement random walk via random action selection rand(A) with a fixed velocity of 1
3 u=t (one

grid unit every 3 time-steps). To determine globally-optimal solutions towards training data generation,
e = te = 300 random actions are pre-determined for each target such that Equation 6.2 – mandating
single grid cell target occupancy – remains satisfied for every time-step ti 2 [0;e]. The yielded matrix
containing target coordinates over time is then exhaustively searched for each possible combination of
future target visitation orderings towards finding the shortest solution using a full ‘lookahead’ extension
of the PT solver.

Herd-like Motion

Looking towards more realistic scenarios closer to a robotic UAV application in ‘smart farming’, cat-
tle herd-inspired distribution initialisation and motion is applied. Targets are initially distributed in an
equidistant grid (as for Section 6.6.4) with random position in E. Herd-inspired motion is implemented
with an overall group direction di 2 A randomly selected at the beginning of each episode. Direction di
is applied to each target at velocity 1

3 u=t with a 10% per-individual likelihood that they instead perform
a random action rand(Aext) excluding in-axis directions for di (e.g. if di = r, Aext = f f ;b;ng).

This motion behaviour approximation is supported by literature observing collective dynamics for graz-
ing cattle herds [353]. Finally, upon reaching the boundaries of E, a new group direction di+1 is randomly
selected where di 6= di+1. Identically to random walk, e = te = 300 individual motion actions are pre-
determined and solved for optimally via the full ‘lookahead’ extension of the PT solver.

Results Discussion

Following network training on the random walk experiment, the so far employed 20;000-episode dataset
cardinality was found to be insufficient for optimal performance leading to significant model over-fitting
(see Figure 6.11a). This observation directly illustrates the significant increase in problem complexity
introduced by individual target motion. Increasingly larger datasets improving validation accuracy were
thus synthesised at the cost of overall computation time. However, reasonable synthesis, training and
evaluation times were quickly exceeded – here it was opted to empirically limit dynamic experiment
datasets to 60;000 episodes as a reasonable accuracy versus time trade-off. Findings suggest that there is
more validation accuracy to be gained – albeit with diminishing returns – by providing even larger sets
of episode datasets (see Figure 6.11a).

Quantitative ground-truth classification and online model performance statistics given in Table 6.1 demon-
strably indicate the capability of the proposed unified network to generalise well to the case of individual
target dynamics. In particular, herd-inspired motion generally improves search and recovery capabilities
(see Table 6.1, compare rows 13 vs 14 and 15). Finally, experimental outcomes to this point culminate
in the last, highlighted experiment: ‘Herd Walk (+S)’, combining target dynamics enacting herd-like
motion and visual sensory input rendered via the cattle-census simulation environment (see Section
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6.6.3 and Figure 6.10). As for the static case, increased environment observability is observed and re-
duced partiality in view compared to the 2D case. Yet, the experiment clearly validates the employed
dual-stream, single network architecture in yielding competitive exploratory decisions whilst processing
higher resolution, complex visual imagery in unity with spatio-temporal navigational memory.

(a) Training and validation set accuracy vs. training
steps for different dataset cardinalities

(b) Dataset cardinality or size vs. final validation accu-
racy

Figure 6.11: Training Evolution of Classification Accuracy for Dynamic Targets. Classification accuracy for
training and validation sets over 50 epochs over optimal generated target motion datasets (implementing random
walk) with various numbers of thousands of episodes used for training. Refer back to Table 6.1, bottom row for
quantitative findings. Signals in (a) have been smoothed using the Savitzky-Golay filter [275].

6.7 Chapter Conclusion

This chapter demonstrates that recovery tasks can be effectively modelled by combining visually-motivated
sensing and map-based positional histories under a single deep classification architecture, comprising the
combined optimisation of both information streams in unity. This approach is shown to outperform the
various tested baselines including split stream optimisation; justifying the employed dual-stream archi-
tecture. The proposed architectural choices demonstrably generalise well to a wide range of scenarios,
target distributions and dynamism given training data comprised of good or optimal decision strategies
yielded from travelling salesman solutions or otherwise. Concluding this part of the thesis dealing with
environment exploration, it has been shown that costly unsupervised methods can be circumvented; ef-
ficient exploration strategies can be learnt from example under a single architecture. Work to this point
now segues naturally into the following part detailing real experiments, combining local individual iden-
tification and exploratory agency on a real cattle herd.

Supplementary Information

Publication associated with this chapter:

1. W. Andrew, C. Greatwood and T. Burghardt. Deep Learning for Exploration and Recovery of
Uncharted and Dynamic Targets from UAV-like Vision. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1124-1131, 2018. https://doi.org/10.1109/
IROS.2018.8593751.

The source code, dataset and video accompanying the publication is available at:

• Source code:
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– https://data.bris.ac.uk/data/dataset/2zot65rxlmgqq23au92qwkaa3x
– https://github.com/CWOA/gtrf

• Video:
– https://vimeo.com/280747562
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Chapter 7

Proof-of-Concept:
Real-World Herd Individual Identification

7.1 Chapter Overview

This chapter presents the culmination of this thesis in operating a series of experiments performing live
and online identity recovery of a small jRj = 17-strong cattle herd1. This is all performed on-board a
UAV-based agent with limited available computational resources, payload size and weight restrictions
as well as overall flight time constraints. Within this task, the viability of models exercising effective
exploratory strategies in reality is assessed, validating the transition from extensive synthetic and simu-
lated cases presented in Chapter 6 to real quadrotor operation2 within a significantly larger exploratory
domain. Furthermore, components performing iterative and integrative individual identification (Chap-
ter 4) are validated in a live setting, strengthening the proposal that this is indeed an effective strategy
for object classes requiring fine-grained identification – certainly across the small population assessed
in this chapter. Over the preliminary set of experiments conducted in this chapter, results provide a
proof-of-concept in suggesting this approach to be viable, whilst highlighting points for experiment and
algorithmic improvement given future work.

This chapter is organised into: firstly, providing details on the hardware setup and respective choices
used in this chapter (Section 7.2), followed by a description of the dataset acquisition, labelling and
augmentation process used here to train relevant architectures in Section 7.3. Third, specific algorithmic
and software implementation choices are given in Section 7.4, primarily discussing the modifications
required to transition from simulated to real inputs. Fourth, Section 7.5 discusses the extensive prepara-
tion details required for the realisation of experiments involving the flight of an autonomous UAV agent.
Next, conducted experiments are described in Section 7.6 alongside results and discussion points with
finally, concluding remarks for this chapter provided in Section 7.7.

7.2 Hardware

This section provides details on the hardware setup used here across experiments involving a real UAV-
based agent. The complete setup, along with relevant component interactions, is depicted in Figure
7.1 and consists of the UAV flight platform itself with many components housed on-board the platform
and remote devices that control the operation of the aircraft. Wireless communications bridge the gap
between the basestation and flight platform. However, all inputs and autonomous control are processed
and issued on-board the UAV – the remote devices primarily act in a supervisory role. The flight platform
and corresponding components housed on-board the UAV are illustrated in Figure 7.2.

1Special mentions of thanks go to Dr Colin Greatwood for piloting the UAV throughout this chapter in acquiring the dataset
and supervising during autonomous flight experiments.

2Note that for every UAV flight, all CAA regulations for drones [16] were abided by.
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Figure 7.1: Full UAV Hardware Architecture. Full UAV hardware architecture with labelled components and
interactions on-board the flight platform itself (DJI Matrice 100) and its wireless interactions with remote devices
exercising ultimate supervisory control. Communication interfaces between individual components (in green) are
also given. Fully manual aircraft control is completed by the remote controller where a live camera feed is visible
on an attached smart device. All programmatic commands are issued via ROS-based API calls over a serial
connection between the Jetson TX2 (the primary on-board computer performing ANN model inference) and the N1
flight controller. Control of this form is initiated remotely via SSH over a WiFi connection and monitored live via
ROS. Presence of a second on-board computer (the DJI Manifold) is necessitated by proprietary drivers guarding
decoding live imagery from the Zenmuse X3 camera and gimbal system. The image is thus continually acquired,
decoded and communicated via ROS to the Jetson TX2 by a wired Ethernet connection introducing � 0:4s latency.

7.2.1 UAV Flight Platform

The DJI Matrice 100 – often abbreviated to M100 – is a configurable, performance quadrotor UAV
specifically designed and marketed towards developers.3 Available at a relatively low cost (�£3000),
the M100 is a complete, all-in-one platform, requiring minimal assembly out of the box (full vehicle
specifications are given in Table 7.1). Crucially, the on-board DJI N1 flight controller can be interacted
with with a ROS-based API4 including commands to fulfil relative target positions, autonomously take-
off, land and more5. Importantly for use in this thesis, the platform has flight capability for up to 1kg of

3DJI Matrice 100: https://www.dji.com/matrice100
4DJI SDK repository: https://github.com/dji-sdk/Onboard-SDK-ROS and https://github.com/dji-sdk/

Onboard-SDK
5Full list of supported ROS commands: http://wiki.ros.org/dji_sdk
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(a) Aircraft front (b) Aircraft rear

Figure 7.2: Finalised UAV Platform. Front and rear images of the complete DJI Matrice 100 UAV flight platform
having just landed from test flights with selected individual components labelled. In flight, bright LEDs indicate
the front and rear of the aircraft clearly to the operator whilst the status indicator LED at the rear of the aircraft
displays battery level warnings, satisfactory GPS coverage, compass calibration requirements and more. Currently
the status indicator is reporting in yellow that the controller is not connected. Additional LEDs on the LiPo battery
itself indicate remaining charge in 1=4 intervals.

payload – sufficient for the components required here (e.g. camera, on-board computers) – at the cost of
decreased flight time. Structurally, the main body features modular expansion bays and racks to house
additional such components. As a result of these features, the use of the M100 is popular in literature;
with work specifically found in autonomous pylon inspection [142], vision-based autonomous landing
on moving platforms [57], wilderness Search and Rescue (SAR) [341] and more [182].

Parameter Value
Maximum Speed 17m/s (no payload, no wind)
Hovering Time 13 min (1kg payload)
Maximum Takeoff Weight 3.6kg
Maximum Wind Resistance 10m/s
Maximum Speed of Ascent 5m/s
Maximum Speed of Descent 4m/s

Table 7.1: UAV Specifications. DJI Matrice 100 advertised flight platform specifications.6

On-board Processing Devices

The justification of the decision to perform visual processing on-board the flight platform resides in
several core contributing factors:

• Latency: the visual processing of imagery on-board alleviates the fluctuating latency cost involved
in wireless transmission of an image to a remote processing station and its subsequent response.

• Dependency & Range: dependencies on a remote processing station limit the ease of deployability
in new environments and introduce range constraints for wireless data transmission.

• On-board Embedded System (OES) GPU Compute Capabilities: contemporary low-cost devices
(as used in this thesis) are sufficiently capable of GPU-based computational load and, are physi-
cally small and lightweight whilst exhibiting minimal power consumption.

6Full DJI M100 manufacturer specifications: https://www.dji.com/matrice100/info#specs
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The Nvidia Jetson TX27 is a credit card-sized System on Chip (SoC) (50� 87mm) designed specifi-
cally with providing dedicated on-board processing power in mind. What makes the TX2 special is its
GPGPU compute capabilities, featuring 256 CUDA cores under Nvidia’s new PascalTM architecture –
rendering it suitable for the deep learning inference pipeline requirements of this project. Also an im-
portant consideration for mobile platform implementations (e.g. wheeled robots, UAVs) is its low power
consumption, even under heavy computational load (maximum 15W8). The TX2 ships pre-installed on
a fully-expanded development kit board manufactured by Nvidia, as illustrated in Figure 7.3a. As it
would be impractical in both space and weight to install the full board onto the M100, instead a suitable
carrier board – featuring fewer interfacing expansions – is used. The Connect Tech Inc. Orbitty carrier
board9 is specifically compatible with the Jetson TX1 and TX2 chips. It was selected for its minimal
addition to the overall height profile (see Figure 7.3b) and range of required interfaces; Ethernet (for
network communications with the DJI Manifold), USB (for serial communication with the M100’s N1
flight controller), HDMI and SD-card (for recording flight data during experiments).

(a) Full Nvidia Jetson TX2 development kit.10 (b) Jetson TX2 installed on the Orbitty carrier board.11

Figure 7.3: Selected UAV Computer. The Nvidia Jetson TX2, selected On-board Embedded System (OES) for
performing visual processing on-board the DJI M100 flight platform.

Similarly, pictured in Figure 7.4, the DJI Manifold12 is a small computer specifically designed to be
installed on-board the M100 UAV. At its core, the Manifold is essentially a DJI-adapted version of the
Nvidia Jetson TK1, the first generation of the Jetson series. Whilst it is not ideal to also house this com-
puter on-board the M100 (given the additional weight, space and power consumption), the installation of
this additional on-board computer is necessary for two reasons:

1. To access and decode the image feed provided by the X3 camera (see Section 7.2.1), a proprietary
library operating on a specific decoding chip on-board the Manifold is the only way of doing so.
Thus, the DJI Manifold computer is the only device capable of decoding the raw X3 image feed.

2. Computational load under full operation is intensive on a single device, especially resource-constrained
computers such as the TX2. The addition of the Manifold permits some computation to reside on-
board, somewhat alleviating the computational pressure.

7Nvidia Jetson TX2: https://developer.nvidia.com/embedded/develop/hardware
8Jetson TX2 manufacturer specifications:

https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
9Jetson TX2 carrier board: http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/

11Image credit:
https://devblogs.nvidia.com/wp-content/uploads/2017/03/JTX2_Devkit-e1488775199359-624x615.png

11Image credit:
http://connecttech.com/wp-content/uploads/images/product-images/ASG003/ASG003_Orbitty-AngleA.jpg

12DJI Manifold: https://www.dji.com/manifold
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Figure 7.4: DJI Manifold. The DJI Manifold OES installed on-board the DJI Matrice 100 UAV flight platform.
The computer is necessary to decode raw imagery received from the DJI-manufactured camera and gimbal system.

Camera & Gimbal System

As an integrated camera and gimbal setup, the clear choice to accompany the M100 flight platform is the
DJI Zenmuse X313. The X3 is an integrated camera/gimbal system that captures high resolution video or
images (camera pointed out in Figure 7.2a). Use of a gimbal allows the camera to be independent of the
movement of the flight platform resulting in stabilised footage and reducing potential blurring. Equally,
via use of the M100 API, one can issue absolute and relative rotational commands (for f :roll, q :pitch,
y:yaw) such that the camera can be programatically pointed at objects of interest. Note also that the
camera setup is physically attached to the flight platform via four rubber grommets to isolate in-flight
motor vibrations affecting resulting imagery. Full specifications of the camera are given as follows in
Table 7.2.

Parameter Value
Diagonal Field of View 94°
Aspect Ratio 16 : 9
Maximum Resolution 4096�2160
Maximum Acquirable Resolution (via ROS) 960�720
ISO Range 100�3200
Roll Range �90°
Pitch Range [�90;40]°
Yaw Range �320°
Maximum Angular Velocity 10 °=s

Table 7.2: Camera and Gimbal Specifications. Parameter and value specifications for (top): the DJI Zenmuse X3
camera and (bottom): supporting 3-axis gimbal14.

Modifications

Some modifications were needed in order to install and house the additional components on-board the
flight platform described as follows:

• WiFi mounting plate: with respect to the Jetson TX2, a custom mounting plate was designed and
manufactured for its WiFi antennas permitting Wireless Local Area Network (W-LAN) commu-
nication with the basestation router and laptop (as shown in Figure 7.1). The plate is intended to

13DJI Zenmuse X3 integrated camera and gimbal system: https://www.dji.com/zenmuse-x3
14Full manufacturers specifications: https://www.dji.com/zenmuse-x3/info#specs
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reside at the rear of the aircraft and conform to the dimensions imposed by the existing component
racks. Design considerations included minimising overall weight whilst allowing maximum cus-
tomisation with respect to antenna placement. Measurements were taken using electronic callipers
and used to design the plate in Computer-Aided Design (CAD) software15 shown in Figure 7.5a.
The 2D design was then laser cut to clear 3 mm acrylic and mounted to the aircraft with WiFi
antennas pre-installed (see Figure 7.5b).

(a) CAD drawing. (b) Mounting plate in situ with WiFi antennas installed.

Figure 7.5: Custom-made Antenna Mount. (a): CAD drawing illustration and (b): image of the custom designed
and built mounting plate for housing the on-board computer WiFi antennas.

• TX2 power source: a small additional device is needed in order to power the Jetson TX2 from
the UAV’s battery. This is necessary because the output voltage of the on-board Lithium Polymer
(LiPo) battery (powering all components of the flight platform) is 22:2V, whilst the acceptable
input voltage range of the Orbitty TX1/TX2 carrier board is [9;14]V. To solve this problem, an
intermediate voltage regulation device16 is used to step down the voltage received from the M100
main battery to 12V. As part of this, a XT60 adapter was soldered to the connection with the battery
via the M100’s circuit board and an appropriately-sized male barrel connector to the power output
for the TX2.

7.3 Dataset

A challenging effect of performing experimentation in a real-world setting is the lack of and difficulty
in acquiring and labelling suitable training data for models involved in the experiment’s full operational
pipeline. Whilst for the case presented in Chapter 5, respective model training data can be synthesised
easily alongside perfect ground truth labels, this is in reality obviously no longer the case. To this end
– and much like the acquisition of the earlier AerialCattle2017 dataset (see Section 4.2) – several UAV
flights were performed over a two-week experimental period consisting of two phases: (a) data acqui-
sition and subsequent (b) conduction of experiments. In-between these phases, manual ground truth
annotation took place alongside augmentations for the respective components. These flights were con-
ducted in the same agricultural fields throughout this period on the same herd population of 17 yearling
Heifer17 Holstein Friesians. Comprising herd members are illustrated as follows in Figure 7.6.

Note that for all operations involving the UAV in flight above real cattle, appropriate ethical approval was
sought and confirmed by the University of Bristol’s animal ethics committee board. The purpose being
to validate operational risks imposed by the UAV agent itself and its autonomous operation upon the
welfare of the animals, and the measures put in place to satisfactorily alleviate these risks to a manageable
level. Every flight was conducted in accordance with these constraints. The corresponding University
Investigation Number (UIN) is: UB/18/064.

15Mounting plate designed in Draftsight: https://www.3ds.com/products-services/draftsight-cad-software/
16The Quanum QM12V5A-UBEC.
17‘Heifer’ Oxford Dictionary definition: “a cow that has not borne a calf, or has borne only one calf”.
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Figure 7.6: Final 17-Strong Cattle Population. Sample still images of “ID: reference name” of all 17 yearling
heifer Holstein Friesian individuals comprising the full herd population used for experimentation throughout this
chapter. All 17 individuals are females that will be later used for milk production at the Wyndhurst Farm. This
population was constant across the two week-long experimental period.

7.3.1 Acquisition

Dataset acquisition was accomplished over two day-long recording sessions at the University of Bristol’s
Wyndhurst Farm in Langford Village, UK18. Fully manual and semi-autonomous flights were carried out
over the acquisition period all whilst recording video at a resolution of 3840�2160 (4K) at 30fps via the
on-board Zenmuse X3 camera gimbal system. The result was a raw dataset consisting of 37mins from
15 videos over 14 flights occupying 18GB (further statistics given in Table 7.3). The specific area of
operation for UAV flights depicted in Figure 7.18 was kept constant during acquisition and throughout
experimental testing also. Also importantly, the population of cattle consisting of 17 individuals was
kept constant during this period too.

Motivated by previous successes in gradual acclimatisation of the animals to the physical and sonic
presence of a large object in flight directly above them at relatively low altitudes (�10m) achieved for the
AerialCattle2017 dataset (see Section 4.2), a similar approach was employed here. To remind the reader,
this process involved taking off from a distant position in an adjacent field to a high altitude of 50m and
gradually getting closer to the herd in three dimensions over the course of several flights. Video was
captured during these acclimatisation flights yielding individuals to be resolved at low resolutions under
a variety of viewpoints and poses. As behavioural assessments indicated a build up of comfort towards
the UAV, increasingly high resolution imagery of individuals was acquired as a result of UAV-herd
flight proximity. Since the algorithmic operation of identification components here intend to operate on
completely aerial (straight down) viewpoints per individual, efforts were spent in animal acclimatisation
on this class of flight behaviour. It was found that upon each subsequent visit, a short amount of time
(�10 minutes) was required to reacclimatise the animals for that day session.

18Many thanks again to Wyndhurst Farm Manager, Kate Robinson and all others involved for facilitating UAV flights over
the herd during the data acquisition and experimental period.
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Figure 7.7: Example Aerially Acquired Frames. Extracted frames from video acquisition flights illustrating
the magnitude of variation of imagery owing to changing UAV height above the ground, illumination variation
(e.g. casting shadows, low light) across the recording sessions as well as background change. Also visible is the
significant challenge in both labelling and actual online model performance presented by the close proximity of
individuals to one another. Each frame has annotated values f ;l ;h;q approximating latitude, longitude, height
above the ground and heading (where N : 0;360°;E : 90°;S : 180°;W : 270°), respectively.
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7.3.2 Ground-truth Labelling

Given the acquired set of 15 raw videos, the ground-truth labelling process involves extracting and an-
notating appropriate data for the respective tasks and components of (1): target detection yielding cow
RoIs that are (2): differentiated by the identity estimation model. This extraction and labelling process is
visually summarised in Figure 7.9 and is described as follows with associated raw dataset statistics given
in Table 7.3:

(a) Frame Extraction: constituent frames for each source video are extracted and saved to file at a
rate of 1Hz. This value is chosen to minimise subsequent manual labelling and annotation time
whilst permitting sufficient time to elapse for image variation to occur (e.g. viewpoint change,
animal movement, illumination variation). Extracted frames are manually inspected to assure the
presence of labelling material (some cow(s) are present in the image), frames that do not fit this
criteria are discarded.

(b) Bounding Box Labelling: every resulting frame (containing at least one target) then has ground
truth bounding boxes manually annotated via a custom GUI (as for the labelling process for earlier
datasets in this thesis; see Section 3.3.2).

(c) Region Labelling: At this point, the now rectangularly annotated frames are still at the high source
resolution of 3840� 2160 pixels. However, images acquired online/on-board the UAV are maxi-
mally captured at 960� 720 pixels. Since flights will be performed at �10m in height above the
ground, cattle targets are resolved at�150�150 pixels (under the assumption that cows are approx-
imated to be�2�2m) – more on this in Section 7.4. Thus, it is desirable to provide training data in
which cattle are resolved to �150�150 such that the model learns features at the same resolution
inference will be performed on. Correspondingly, and, since input images are non-proportionally
resized to fixed input tensor size for the YOLO detector (set to 736� 736 to satisfy divisibility
by 32), square regions are extracted via another custom GUI (Figure 7.8 illustrates the annotation
interface). In doing so – given that data acquisition flights were performed at higher �20m height
above the ground for animal acclimatisation to the UAV – targets were approximately resolved at
the correct dimensions.

(d) Manual Individual Identification: alternatively to region labelling for target detection, target cen-
tric RoIs are manually identified here for input as training data into the identity estimation model.

Figure 7.8: Region Labelling GUI. Example screenshot of the custom-built GUI for manually annotating 736�
736 pixel square regions for input as training data into the cattle detection model. Annotated ground-truth target
labels are show in red and the user is asked to click and drag square regions (shown in green) over targets
and accept them (blue regions) until all targets have been covered. Each accepted image region is saved to file
alongside region-relative transformed target bounding box annotations. Note that targets are sometimes naturally
duplicated across saved regions, whilst partially occluded annotations are discarded altogether.
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Figure 7.9: Full Dataset labelling process. Illustration of the complete ground truth dataset labelling process for
the identity estimation and target detection models from source input 3840�2160 resolution videos acquired using
the UAV. At each stage, the number of frames/regions/RoIs is listed as according to Table 7.3. (a): individual
frames are extracted from source videos at 1Hz with solely background frames (containing no cattle) manually
discarded. Next, (b): target bounding boxes are manually annotated yielding a set of target-centric RoIs that are
either (d): manually identified for input as training data into the (e): identity estimation model or (c) 736� 736
pixel regions are manually annotated such that targets are resolved at a desired resolution of � 150�150 pixels
(given a UAV flight altitude of � 20m) for training input into (f): the target detection and localisation model.

Videos Extracted frames Usable frames Extracted Square Regions Individual RoIs
Number 15 2285 553 1423 3120

Storage space (GB) 18.3 9.5 2.4 0.4 0.03
Time (mins) 37 - - - -

Table 7.3: Dataset Labelling Statistics. Table of various statistics regarding the dataset size at specific points in
the extraction and labelling pipeline. Overall, 37 minutes of video were considered for labelling, resulting in 1423
target detection examples and 3120 individual-centric RoIs. Extracted square regions have dimensions 736�736
to match the acquirable image size from the UAV’s on-board camera.

7.3.3 Augmentation

To synthesise additional data yielding a larger data corpus for respective ANN model training – alle-
viating model over-fitting and improving model generalisability and robustness – image augmentations
are performed on original imagery19 over both: target detection and identity estimation datasets re-
sulting from the aforementioned labelling pipeline. With respect to identification data, the purpose of
augmentation here also being to balance the number of training instances across the population. The
per-class distribution of original non-synthetic images is shown in Figure 7.10. Example augmentations
are shown in Figures 7.11 and 7.12 towards the task of target detection and individual identification,
respectively.

19Image augmentations are implemented by the ‘imgaug’ project published at: https://github.com/aleju/imgaug
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Augmentations for both detection and identification training datasets are performed stochastically with
the possibility for any combination of the operations listed as follows according to a per-operation like-
lihood value: horizontal & vertical flipping, crop & pad, affine transformations (scale, translate, rotate,
shear), Gaussian, average or median blurring, noise addition, contrast variation and small perspective
transformation. Note that ground truth bounding box annotations are also transformed according to the
random augmentation sequence.

Figure 7.10: Original Instance Distribution. Distribution of real, non-synthetic images across each of 17 possible
cow identities with mean m = 195:3;s = 68:99 and median= 189. Note that this graph indicates which individuals
exhibited higher comfort towards the presence of the UAV, as reaffirmed later in Section 7.6.

Figure 7.11: Target Detection Augmentations. Examples of image augmentations for 736�736 pixel regions that
– in conjunction with augmented ground truth bounding box annotations – are provided as training instances for
the detection model founded upon the state-of-the-art YOLO detector [257].
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Figure 7.12: Individual Augmentations. Random examples of image augmentations on the final training set
comprised of individual-wise RoIs. For each identity, the top image is a random non synthetic example from which
augmentations will have been initialised on.

7.4 Model Implementations

In this section, implementation details are given for the components, pipelines and models that together
comprise the software that operates on-board the UAV flight platform for real, online experiments per-
formed in this chapter. This mostly consists, here at least, in giving details on the modifications made
to transition from operation on simulated inputs to a real-world agricultural environment and limited
computational resources. An overview of the complete online experimental pipeline operating on-board
the UAV is illustrated as follows in Figure 7.13. Principally, the goal is to perform exploratory agency in
reality whilst passively and iteratively identifying targets as they are discovered within the environment.
At each exploratory iteration (fulfilment of an exploratory action e.g. up, down, left or right one grid
cell), n = 5 samples are taken over a short period of time to allow (a): observation variation of targets to
occur yielding improved identification success and (b): a better global position estimate via averaging
multiple GPS samples over time during which the UAV’s position will settle in each dimension (e.g.
recovering from possible PID controller overshoot).
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Figure 7.13: Full Experiment Pipeline. Illustration of the complete experiment pipeline20. Firstly (a); image
acquisition takes place, whereby n = 5 image and flight platform position samples are taken over a short period of
time and (b): targets are detected on each individual image (Section 7.4.1). Resulting target-centric RoIs are then
either (c): temporally filtered for the best (most confident) detection per grid position to yield the 5�5 pixel image
given as input to exploratory agency (Section 7.4.2), or (d): spatially consistent RoIs over time are concatenated
to form input into the identity estimation pipeline utilising a LRCN (Section 7.4.3).

7.4.1 Target Detection and Localisation (T D)

As for earlier chapter (see Section 5.4.1), target detection and localisation is performed by state-of-the-
art detector YOLO v2 [257], as opposed to solutions founded in Faster R-CNN employed in earlier
chapters (Section 4.3). The motivation being similar or better qualitative and quantitative performance
[257], coupled with faster, even real-time inference – especially important for online computation in this
chapter. The model is retrained here from scratch on the aforementioned dataset consisting of 11;384
synthetic and non-synthetic training images and associated ground truth labels. As a result of expecting
720� 720 images from the UAV camera, the input tensor size was modified to 736� 736 (sizes must
be a multiple of 32) in order to match individual resolution in training and testing at the slight cost of
increased inference time from additional parameters.

Model inference on an image I yields a set of m bounding boxes B = fb0;b1; :::;bmg with associated
object confidence scores. Inference on each of n = 5 image samples then produces this set over time
fB0;B1; :::;Bng. Since all samples are taken over a short period of time (e.g. � [1;2]s) when the agent
is hovering, targets present in I j should also be present in I j+1 under some viewpoint variation that
is beneficial for identification. Association of detections over time (object tracking) is achieved via a
simple spatial model that splits the image equally to match the input size of the exploratory agency
algorithm visual input abstraction – set to 5� 5 pixels in the case here, more on this in Section 7.4.2.
If identification estimation is requested (as indicated by exploratory agency), the RoIs corresponding to
the most confident central cell detections for each image fI0; I1; :::; Ing are concatenated to be temporally
consistent for input into the identity estimation model. With respect to formulating the 5�5 pixel visual

20UAV image credit: DJI
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sensory abstraction for exploratory agency input, the most confident object RoI of each of 25 144�144
pixel cells over the n images are given to binarily indicate target presence. Whilst the MOT model utilised
here is relatively primitive, it is important to re-iterate that the goal of this chapter is to provide a proof-of-
concept and that computational resources are limited on-board the UAV. Investigations into the viability
of replacing the employed strategy with more complex algorithms operating in the predominant “tracking
by (re-)detection” paradigm [278, 29, 41, 51] is certainly a possible avenue of future work.

7.4.2 Exploratory Agency (EA)

Modifications in transitioning the exploratory agency architecture and paradigm described in Chapter
6 to the real-world scenario are relatively minimal. To remind the reader, the employed state-to-action
architecture consists of a dual-stream CNN with the two following inputs (for more specific details, see
the original Section 6.3):

1. Image I: visual sensing abstractions local to (centred about) the agent. In the case here, this is a
x� y pixel image generated from target detections in the original, UAV-acquired image – as for
the non-simulated scenarios in Chapter 6 (see Figure 6.3 for an example). This generation process
consists of centrally cropping the 960� 720 image obtained from the M100 flight platform and
the Zenmuse X3 camera/gimbal system down to square resolution 720� 720 (since exploratory
grid cells are also square) and then linearly scaling to 736� 736 for direct input into target de-
tector YOLO. The image is positionally split into x equally-sized columns and y equally-sized
rows. Target detections indicated by YOLO situated in particular cells – considering bounding
box centre-points – form coloured pixels in the resulting x� y matrix given as input to the ex-
ploratory agency network. An example of this process is given in Figures 7.13 and below in 7.14.
In this simplified form, the exploratory model can be trained easily in simulation and generation
of appropriate training data is not constrained by the difficulty in acquiring and labelling sufficient
real imagery of cow targets.

Figure 7.14: Exploratory Agency Image Input Generation Process. Pipeline for generating images ultimately
provided as one of the inputs into the exploratory agency model. The image is split into 5�5 equally sized cells,
detections that fall into a particular cell are correspondingly marked in a new 5� 5 binary pixel image forming
input I into the EA model. Small pixel images in this form are identical to the sensory abstractions utilised
throughout Chapter 6.

2. Occupany map M: an evolving spatial map of the complete environment encoding the current
agent position, past visited locations and discovered target positions. To enable this, a two-
dimensional rectangular grid must be fitted to the experimental flight area such that the dimensions
of the exploratory map M can be defined spatially by parameters w�h. This fitting process is ob-
viously experimental area-specific and with respect to the field in which experiments take place,
is described generally in the following Section 7.5 and specifically in Section 7.5.2. The determi-
nation of these parameters then directly define the dimensionality of input M into the secondary
CNN that examines current and past positions to inform corresponding agent navigational deci-
sions (see Figure 6.1 for the full dual-stream architecture). Note that the dynamic, spatio-temporal
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occupancy map extension used in previous Chapter 6 is not used here to maintain model opera-
tional simplicity. Instead, when some d% of the w� h map has been explored, it is simply reset
altogether. This behaviour is implemented since targets may now have moved and thus, previously
explored map regions may now contain target(s) one wants to discover.

Note that throughout experimentation in simulation conducted for Chapter 6, the agent’s initial position
Gx;Gy within the exploration grid was always randomised to yield model generalisability. This is now no
longer the case here; the UAV agent takes off and lands from a defined location and proceeds to another
which is some edge coordinate of the exploratory grid. To model this behaviour accurately therefore, in
the synthesis of training data for exploratory agency, the agent’s initial position is created equal to that
in reality (respective to the experiment location, see Section 7.5.2).

7.4.3 Identity Estimation (IE)

Identity estimation is performed by the LRCN architecture here, identically to previous Chapter 5, with
substitution of simulated individuals for the aforementioned augmented dataset of 17 real individuals (see
Section 7.3). Accordingly, the procedure for training is also equivalent – refer to Section 5.4.4 for a full
description of the training algorithm. To summarise; (1): a GoogLeNet/Inception CNN [302] is trained
on individual RoIs non-proportionally resized to 224� 224 pixels with 17 possible classes/identities,
(2): n = 5 same class randomly selected RoIs from the same respective categories are passed through
the trained GoogLeNet until the last layer and feature vectors are combined over the n samples. Finally,
(3): a shallow LSTM network is trained on these sequences of feature vectors.

Figure 7.15 provides evidence of per-category learning of appropriate spatial representations using local
interpretable model-agnostic explanations [260] – qualitatively highlighting the success of the Inception
architecture learning discriminative and fine-grained visual features for each individual. Figure 7.16
illustrates learnt convolutional filters, whilst Figure 7.17 presents quantitative findings on training and
validation accuracy versus epochs for CNN and later LSTM training, respectively. As can be seen,
GoogLeNet trained to identify individuals from single instances achieves 97.13% accuracy on the vali-
dation set whilst the LSTM subsequently achieved 100% after just the first epoch. These results suggest
that in the vast majority of cases, a single iteration evaluation approach is successful, whilst evaluation
of multiple variant iterations permits the final accuracy barrier to be overcome.

Figure 7.15: Per-Class Local Interpretable Model-Agnostic Explanations. Hand-picked local interpretable
model-agnostic explanations [260]21 for each possible cow identity/class/category illustrating the success of CNN
training in learning per-category discriminative features. Green regions for each image depict the superpixel(s)
that were activated in order to yield correct predictions from the Inception/GoogLeNet CNN (not the later trained
LSTM) trained on the 17-strong population.

21Images were created using the released LIME implementation: https://github.com/marcotcr/lime.
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Figure 7.16: Learned Convolutional Filters. Examples of high, mid and low levels of learned convolutional filters
for the identity estimation network architecture – based on GoogLeNet [302] – trained on cow-centric RoIs from
the 17-strong herd population. Filters have been normalised into visible range 2 [0;1].

(a) GoogLeNet CNN accuracy (b) LSTM accuracy

Figure 7.17: Identity Estimator Training Graphs. Training and validation accuracies versus training steps for
the feature extraction CNN with GoogLeNet/Inception [302] architecture providing concatenated feature vectors
from inference on 5 randomly selected same-class 224� 224 RoIs to the LSTM for iterative identity recovery. In
this combination, the pipeline forms a LRCN [73] architecture. Training signals have been smoothed using the
Savitzky-Golay filter [275] for visualisation purposes.

7.5 Experimental Setup

7.5.1 Geofence

A geofence is a virtual geographic boundary defined by a set of GPS coordinates consisting of latitude,
longitude and altitude. The purpose of such a boundary within experiments conducted here is to provide
ultimate supervisory control of the flight platform in case of failure, as is commonly implemented in
UAV-based literature [122, 15, 349]. The intention is that the UAV never actually violates this boundary,
but is there as a last resort in case of software errors, bugs or otherwise. If the boundary is positionally
violated, an error is indicated and corrective procedures are enacted – typically halting the vehicle at that
boundary violation; the chosen reactive measure here.
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Its implementation here begins with the user manually defining the acceptable flight region via a set
of GPS coordinates that together form a polygon for the respective experiment area – Langford and
Long Ashton in the case here. Note that as can be seen in Figure 7.18, the drawn cordon includes the
experiment area itself, the operation zone or ‘runway’ (for takeoff and landing) and the corresponding
passageway between them. This is achieved via the use of freely available software Google Earth Pro,
where the user can manually annotate and label perimeter coordinates and export these in a common
shape and Geographical Information System (GIS) file format. Then, at a rate of 1Hz, the UAV’s cur-
rent GPS coordinates are queried to determine whether they reside inside or outside of the geofence
boundaries via API calls to GeoPandas22. If the UAV is determined to be within bounds, the experiment
continues as normal, if not the user is indicated an error and flight halts immediately to hover at the
violation position. The intention is that the human operator then manually controls the flight platform
back to its landing zone so that the cause of the problem can be investigated via inspection of flight logs
and otherwise.

Note that this GPS-based geofence only affects the horizontal xy (east-north) plane and that similar
software errors/bugs may cause boundary violations in the vertical dimension z or ‘up’. Whilst a 3-
dimensional geofence could be created, the DJI developer API implements a function to receive the
current height above the takeoff point. This value is also inspected at 1Hz when the UAV is situated
within the experiment area to ensure it does not violate a lower bound posing a threat/risk to cattle
targets whilst an upper bound is verified at all times.

Figure 7.18: Langford Enforced UAV Flight Geofence. Illustration23of the enforced polygonal geofence (trans-
parent white area) defined by a set of GPS coordinates in Google Earth for the actual experiment location at
Wyndhurst Farm, Langford Village, UK. If the UAV violates these boundaries, flight halts to hover at the violation
position and control is handed back to the supervising human operator. The employed geofence is selected here to
comply with CAA flight distance regulations from elements outside of operational control [16] (e.g. at least 50m
away from public roads, private houses) whilst simultaneously ensuring the flight platform does not collide with
obstacles (high hedges, trees, etc.). Also illustrated are the two possible runways for takeoff and landing (aeroplane
symbols), corresponding experiment start positions (white markers) and the fitted 40�40m exploratory grid/map
(indicating map scale).

22GeoPandas: http://geopandas.org/
23Image courtesy of Google Earth Pro: https://www.google.com/earth/
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7.5.2 Exploration Map Fitting

Further to the discussion in Section 7.4.2, it is necessary to fit a 2-dimensional grid to experiment and
flight operation areas to allow exploratory agency to take place (refer to previous Chapter 6). The fitted
grid forms the basis upon which the UAV-based agent explores the environment in question to discover
the positions of targets of interest (i.e. Holstein Freisian cattle). Whilst a simple lawnmower pattern
could be employed, as previously motivated, constraints imposed by the UAV’s on-board battery capacity
(especially under high computational load) justify the need for fast search methods. The grid is fitted
with respect to the experiment area/field, and is illustrated above in Figure 7.18 and in Figure 7.19 for
both the flight testing zone (see Section 7.5.5) and the actual experiment area on real cattle.

Similarly to the previous section describing geofence creation, per-location exploratory grids are estab-
lished utilising Google Earth Pro. To begin, the user manually annotates the grid’s origin in the form of
a single GPS coordinate. Subsequently, a decision is made regarding the size of the square s� s m grid
cell that the agent and targets are resolved to positionally with respect to the exploratory grid (Gx;Gy).
From the created grid origin GPS coordinate, orthogonal lines are drawn of length s�w and s�h for the
horizontal axes x and y, respectively, where the exploratory grid then contains w� h grid cells of size
s� s metres. These components together form the exploratory grid that can then be resolved to four
GPS coordinates defining the perimeter of the experiment area that the agent should not violate apart
from fulfilling takeoff and landing. Should this not be the case, the geofence – defined to marginally
encompass this experiment area – provides ultimate position error handling.

Another consideration is that local Cartesian position offset commands are fulfilled by the M100 flight
platform in a reference frame aligned with ENU and that the fitted exploratory grid is unlikely to be
aligned with this frame. As such, the heading of the grid’s positive x-axis is determined24 yEA and is
used to transform exploratory actions and otherwise performed by the agent into the ENU frame. That
is, an agent-centric local position offset command ~V = [Dx;Dy;Dz] is transformed two-dimensionally
via: �

Dx0

Dy0

�
=
�

cosyEA �sinyEA
sinyEA cosyEA

��
Dx
Dy

�
(7.1)

and
Dz0 = Dz; (7.2)

since the exploratory grid vertical or ’up’ dimension remains aligned with ENU. Note that usually, this
process should be performed with respect to the agent’s current attitude (yaw, heading), however, in all
experiments here the agent’s yaw angle Gy is always kept aligned with the exploratory grid’s x-axis and
is thus equivalent.

s(m) w h Olong(°) Olat(°) yEA(°)
Fenswood Farm, Long Ashton, UK. 2:5 10 10 51:234 �2:71289 �68

Wyndhurst Farm, Langford Village, UK. 2 20 20 51:34 �2:77161 �180

Table 7.4: Exploratory Grid Parameters. Table of selected exploratory grid parameters for experiment areas:
Fenswood and Wyndhurst farms conducting flight platform testing and real, live experimentation, respectively.
Parameter definitions: s denotes the square length in metres of a single grid cell that targets are resolved to, w;h
define the width and height of the fitted exploratory grid environment, respectively. Parameters (Olong;Olat) to-
gether define the origin of the exploratory grid defined as a GPS coordinate with a corresponding orientation (yEA)
with respect to the ‘up’ axis. The important choice to note here is that the fitted exploratory domain consisting of
20�20 = 400 cells for real experiments at the Wyndhurst Farm is significantly larger than the 10�10 = 100 grid
used at Fenswood here and throughout Chapter 6 in simulation.

24Utilising Google Earth Pro.
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(a) Fenswood farm, Long Ashton, UK. 10�10 grid. (b) Wyndhurst farm, Langford Village, UK. 20�20 grid.

Figure 7.19: Fitted Exploration Grids. Illustration of the manually fitted exploratory grids for each flight experi-
ment location according to the parameters defined in Table 7.4. In both images, true north is directly upwards with
blue dots marking possible grid positions. White squares show the grid origin along with cell dimensions. Note
that the images are not shown at the same scale and were produced via Google Earth Pro.

7.5.3 GPS Coordinate Fulfilment

Throughout the operation of live flight experiments, the UAV-based agent is frequently issued com-
mands to fulfil particular manually defined GPS coordinates (e.g. takeoff/landing zone, experiment start
position). Frustratingly, at the time of writing, the DJI API currently does not feature a corresponding
function call to realise a target coordinate in GPS. Instead, position commands are issued to the M100
flight platform via local position offsets in metres with respect to a programatically-set ENU reference
frame. As such, in order to fulfil a target GPS coordinate, it must be converted into that same frame.
This is achieved by converting the target GPS coordinate into the static ECEF reference frame, then con-
verting that coordinate into the local ENU frame. Equally, the same process is performed on the agent’s
current GPS position and the resulting local positions are compared. The implementation of this pro-
cess – following common standards established in literature [25, 137] – is fully described in Appendix
B. Note also that throughout this thesis, all references to GPS coordinates refer to the WGS-84 GCS
standard [63].

7.5.4 Flight Simulator

A key component of flight and experiment verification was the use of a comprehensive simulation envi-
ronment. Accompanying the DJI M100 UAV is a piece of software that permits the user to set aircraft
parameters necessary for flight (e.g. application key and ID, GPS module mounting position, baud rate
for serial communication) along with a program to simulate UAV flight. One interacts with the flight
platform in the exact same manner in reality; via the controller as expected, or using API calls to the on-
board flight controller. Thus, software written in this chapter can be fully verified in simulation, which,
especially when dealing with limited battery time, difficulty in suitable weather windows and potential
code bugs crashing the UAV renders the simulation package invaluable during development. Figure 7.20
illustrates the UAV in simulated flight and the accompanying hardware setup. To establish this opera-
tional mode, a USB cable connecting the M100’s N1 flight controller/autopilot and a host simulation
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computer is established. Within the simulation software, the user can manually specify parameters such
as the aircraft spawn GPS coordinates, per-dimension wind speeds, etc.

Figure 7.20: Flight Simulator Setup. The comprehensive flight simulation environment setup permitting software
interactions with the on-board flight controller via the DJI API to be debugged without testing in reality – every
interaction is identical to the real case. The simulation computer running proprietary DJI software connects to the
M100 via USB. The UAV can be flown entirely manually or via function calls through ROS to the DJI API, as is
the case here for autonomously-operating flights.

7.5.5 Flight Testing Area

As indicated earlier, initial testing flight experiments (without real cattle) were conducted in a separate
location at Fenswood Farm in Long Ashton, UK. The purpose being to verify UAV flight components
and automations without the added risk to cattle welfare in the event of failure. Additionally, initial
experiments in a non-critical setting allow operation procedures, kit lists, error handling, etc. to be
established and practised such as:

• Flight logs: appropriate flight experimentation documentation is inherently important for account-
ability and data attribution (e.g. total flight time, battery number, unique experiment ID). To ac-
complish this goal, experiment details are annotated per-flight on a written sheet mounted on a
clipboard.

• Data records: per-flight, the on-board computer logs data relevant to the experiment itself (e.g.
imagery, position fulfilment requests, internal exploratory map memory) to a SD card such that
experimental performance can later be analysed and/or reproduced offline.

• Item checklist: an item checklist was established to ensure all components are correctly brought
for experiments (e.g. spare batteries, propellers, a small toolkit, remote controller).

• Hardware operation: it was found that the order in which components are turned on, activated,
shutdown, etc. is of crucial importance. Thus, orderings and dependencies were established in
written form for future experiments.

• Geofence verification: to verify geofence violation handling, a smaller testing geofence was cre-
ated and the UAV was commanded to fulfil a GPS coordinate outside the geofence.

25Special thanks to Dr Matthew Harper for permitting use of his digital camera.
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Figure 7.21: In-Flight Images. Pictures of the M100 UAV in flight during initial testing25of fully manual (via
the controller) and semi-manual control (via keyboard operation) at the University of Bristol’s Fenswood Farm,
Long Ashton, UK to establish and verify manual and autonomous flight control prior to operating experiments
with increased risk due to the presence of live cattle.

• Ultimate aircraft control: whilst the intention is for completely autonomous flight to take place,
it is important to understand how and to what extent the human operator can exercise ultimate
aircraft control in case of critical failure, software bugs, etc.

• WiFi range: as illustrated in Figure 7.1, a W-LAN connection between the operator’s laptop and
the on-board Jetson TX2 computer is required for experiment monitoring and more. To establish
the maximal possible range between the UAV and the WiFi router whereby communication still
occurs successfully, the UAV was carried directly away from the router. Meanwhile, the operation
laptop sent ping commands to the TX2 at 1Hz. It was found that commands would be reliably
received (albeit with high latency) up until�150 m distance between the UAV and the router (with
direct line of sight; no obstructions). The distance itself was measured via the DJI Go Android
application comparing GPS coordinates.

• Battery capacity: an important factor for conducting experiments is the capacity of the battery
and consequently the total possible flight time of the flight platform under normal use. Over the
flights that were performed here, a maximum flight time of �11 minutes was observed (including
takeoff/landing) despite the heavy payload and high computational expense, which is in keeping
with the manufacturer-suggested flight time of approximately 13 minutes with a 1 kg payload (see
Table 7.1).

• Fail-safe mechanisms: situations where some failure occurs are dealt with employed fail-safe
mechanisms that were verified here in case of: loss of WiFi, critical battery charge (if � 20%,
action: return to home), and more.

• Reference frame verification: differing reference frames for position commands, etc. are easily
confused during development and thus, must be verified in reality.

• GPS coordinate realisation: fulfilling requested GPS coordinates is more complex than at first
appearance due to a lack of API functionality on-board the flight platform. Instead goal coordinates
are transformed to local position offsets via the process described in Section 7.5.3 and Appendix B.

• Local position realisation: verification of accurate local position realisation via the implemented
control mechanisms is of critical importance to many aspects of experimentation. Several features
are implemented in order to limit horizontal aircraft velocity and acceleration (in the xy plane)
so as to lessen vehicle aggression and corresponding noise disturbance. Additionally, maximal
horizontal and vertical error distance components were established – the minimum permitted dis-
tance between the current and requested position before position fulfilment is deemed to have been
successful. This parameter choice, however, was found to be very dependent on component wind
forces – increased wind speeds dictate increased minimum error values.

• Experiment operation: finally, operation of the full herd identity recovery experiment (as is de-
scribed fully in Section 7.6) was exercised and validated with parameters relevant to the flight
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testing location at the Fenswood Farm. To mimic live experimentation as closely as possible, 10
scale Holstein Friesian toy models were utilised such that efforts spent transitioning to real experi-
ments were minimal. As such, the models were individually manually painted (see Figure 7.22) to
form a realistic small herd population. Appropriate training data for respective detection and iden-
tification models was acquired via manual UAV flights at Fenswood Farm. Along with the jRj= 10
toy models, AprilTag fiducial markers were made visible [233, 321] allowing for automatic data
labelling (for examples, see Figure 7.23) via transforming three dimensional toy bounding boxes
into the camera plane via the process described in previous Chapter 5.4.1 on detector training data
generation. The result of these validations meant that relevant models were simply retrained on
labelled imagery of the real 17-strong population and, parameters were altered for operation at the
Wyndurst Farm experiment location.

Figure 7.22: Individually-Unique Painted Cow Models. Ten cow toy models were manually painted with
individually-unique dorsal coat pattern markings to mimic randomly chosen individuals found in the datasets
captured in earlier chapters. The small scale models with dimensions: 5:1�14:2�8:1 cm were used to verify and
validate experiment operation at the flight testing area at Fenswood Farm before conducting experiments on real
cattle where welfare risks could potentially be introduced by system failure of untested setups.

(a) � 3m height above ground (b) � 5m height above ground

Figure 7.23: Outdoor Acquired Training Data Generation. (Top row): example frames from manual flights with
targets automatically labelled via the use of the AprilTag fiducial marker system [233, 321]. Ground truth target
annotations were then used to train models for visual detection and identification. The targets used are toy scale
models of Holstein Friesian cattle utilised to verify experimental operation. Previous Figure 7.22 shows the painted
models. (Bottom row): example auto-labelled individual RoIs at the stated heights above the ground illustrating
the low resolutions of the toy cattle and the corresponding difficulty in detection and identification.
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7.6 Experiments, Results and Discussion

In this section, details, results and corresponding analyses and discussion points are given for experi-
ments conducted in a real, live setting utilising the M100 UAV agent. This is organised, firstly, into
the offline analysis of captured imagery, demonstrating the extent to which a single image evaluation
paradigm is successful alongside corresponding limitations in Section 7.6.1. Subsequently, Section 7.6.2
provides preliminary results and findings for actual autonomous flights with online, live large-domain
environment exploratory agency with individual-wise identity estimation occurring on-board the flight
platform. Third, comprehensive illustrations and statistics are given for the analyses of conducted flight
experiments in Section 7.6.3. Finally, a detailed discussion is given with respect to these experiments
with suggestions for improvements in possible avenues of future work in Section 7.6.4.

As mentioned in the dataset acquisition stage (Section 7.3), the experimental period was carried out over
a two week long session at the Wyndhurst Farm in Langford Village, UK. The first part of this period
consisted of two days dealing entirely with data acquisition and acclimatising the cattle herd to the UAV.
Following this, a brief period of data labelling and corresponding model training took place. Finally, and
as this Section explores, experiments were carried out over three day long sessions with breaks between
acceptable weather windows and UAV battery re-charging. To re-iterate, all flights were performed in
accordance with CAA regulations for drones [16] alongside constraints imposed by the approved ethics
application (UIN: UB/18/064).

Figure 7.24: Environment Coverage. Screenshot of the DJI GO mobile application with past flight paths (white)
overlaid for a small set of experiment flights. The flight paths correspond with example exploratory decisions
depicted in Figure 7.34. Also indicated is the current controller position and orientation (red arrow) and the
dynamically set home point (the GPS position the flight platform will attempt to land at in case of failure, low
battery level, etc.). A smart device running the application is connected to the remote controller via USB providing
telemetry, basic UAV control (e.g. land, return to home), a live camera feed and settings (e.g. exposure settings,
capture resolution). Figure 7.1 illustrates relevant hardware in the employed setup and corresponding interactions.
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Figure 7.25: Experiment Photographs. Photographs26from the conduction of real experiments at the Wyndhurst
Farm in Langford Village, UK. (1st row): the employed setup for experiment operation, (2nd row): attempts (suc-
cessful and not) to displace the herd towards the area of experiment operation, (3rd row): the M100 flight platform
in autonomous flight conducting live experiments and (4th row): closeup images of the herd.

26Many thanks to my father Tim Andrew for assisting with experimentation and capturing these very photographs.
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7.6.1 Offline Model Performance Results

In this section, performance results for components implementing target detection and individual identi-
fication are given for offline operation and analysis. Towards this goal, all imagery captured during real,
live flights is analysed here. The purpose being to assess these models on identical imagery in isolation
from the constraint imposed by online experiments requiring targets to be central in the visual field be-
fore identification commences. Instead here, a concept of “attempt to detect and identify everything”
is employed here to validate such a paradigm. Note however that throughout this section, single image
analysis is performed for identification – as opposed to multi-iteration LRCN-based identification – due
to data storage constraints on-board the UAV. Importantly, models, processes and respective parameters
(neuron weights, model parameters etc.) were kept identical to the online scenario and are thus equivalent
(except that the evaluation of multi-iteration identification is excluded here).

The dataset used for analysis here is the result of all online experiments across the three flight experiment
day sessions. During every experiment, an acquired 720�720 image is saved to file at each exploratory
agency iteration, yielding 1039 images across 18 autonomous flights, 99 of which actually contain tar-
gets/cows that were correspondingly labelled with ground truth bounding box annotations. Again, due to
storage constraints on-board the UAV, only one of the n = 5 samples taken at each exploratory iteration is
recorded to the on-board SD card, meaning that only single frame identification can be assessed offline.
In the next section (7.6.2), improvements are described when operating iterative identification over the
n = 5 samples online.

Tables 7.5 and 7.6 detail individual model performance across detection and identification components,
respectively. To quantitatively conclude about component model performance, the 1039 instance strong
image set was manually labelled including ground truth target bounding box annotations in accordance
with VOC2012 labelling guidelines [92, 93] and corresponding identity labels. With respect to detection
analysis, a detection was deemed a successful true positive provided sufficient IoU (ov � 0:5) for a
predicted and ground truth bounding box given the binary classes: fcow;:cowg.

Descripiton Value
True Positive 109
False Positive 7
False Negative 2
Accuracy (%) 92.4

Table 7.5: Offline Detection Results. Results for the offline detection and localisation of cattle targets from UAV-
acquired imagery using a trained YOLO detector model. Positive detections are 102=109 = 93:6% accurate, whilst
overall accuracy including negatives is 92:4%.

Figure 7.26 depicts examples of complete successes (detection and subsequent RoI identification) along-
side failures in the identification and the detection models/processes individually. Strong illumination
changes causing object shadows, changing contrast and image brightness as well as changing back-
grounds can be seen across the image set, motivating the need for such variation across training exam-
ples in reality (e.g. multiple data acquisition/recording day sessions with varying weather conditions)
and synthetically with image augmentation. In spite of these challenges, the process exhibits detection
and identification robustness (as confirmed quantitatively in Tables 7.5 and 7.6) across success exam-
ples including partially occluded individuals (image #0), contrast (image #1) and viewpoint/distortion
variation due to positional extremity (image #4) and more.

With respect to failures shown in Figure 7.26b, these can be seen to be caused by:

• Identification failure: image #5 depicts an instance of pure identification model failure (false
positive: Aria, ground truth: Evie), despite being provided a good RoI to be identified. As quanti-
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(a) Detection and subsequent identification successes.

(b) Identification and detection failures.

Figure 7.26: Offline Result Examples. Examples of detection and identification successes and failures from offline
image analysis utilising identical models/weights for the online case executing on-board the UAV platform. Red
boxes denote positive YOLO detections with sufficient confidence, text above denotes the predicted identity for that
RoI alongside the model confidence in the respective label, whilst blue text indicates the type of failure.

tatively demonstrated further in Table 7.6, Aria was the cause of multiple false positive identities
as a result of spatially-situated dorsal visual similarities and also in structure to other individuals,
Evie in particular (see Figure 7.6 for reference).

• Poor detection: images #6 and #7 show marginal detection instances yielding partially occluded
individuals and poor corresponding RoIs. These lead to to incorrect identity assessments as a result
of the presence of partial dorsal feature visibility that aligns with other individuals more strongly.

• Multiple detections: image #8 illustrates an example whereby the detection component indicated
multiple nested RoIs for a single target, which was observed to occur somewhat infrequently;
6=118 = 5:08% – further examples are shown in Figure 7.27. Whilst this is not actually a sig-
nificant failure – especially since in all occurrences of this phenomenon, the correct identity was
ultimately yielded – it was observed that the innermost detection typically had notably less con-
fidence. As a result, this class of positive detections could be filtered out with a more carefully
chosen threshold, perhaps at the cost of some valid true positive detections elsewhere.

• Detection failure: image #9 depicts a case of pure detection failure (the bottom-right most individ-
ual) in which an individual was not detected. This occurs arguably as a result of the challenging
illumination circumstance caused by a strong shadow cast by a high hedge/bush partially influ-
encing the cow target itself in conjunction with a rare background (not grass). This particular
lighting situation was a very rare observation that is equally difficult to augment training instances
to account for.

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Name Olivia Sophia Amelia Lily Emily Ava Isabella Mia Ella Poppy Evie Charlotte Aria Evelyn Phoebe Chloe Daisy Totals

True Positive 4 - - 19 - - - 6 - 3 - 1 19 27 19 3 1 102
False Positive - - - 1 1 - - - - - - - 5 - - - - 7
Accuracy (%) 100 95 0 100 100 100 79.2 100 100 100 100 93.6

Table 7.6: Offline Identification Results. Table of per-individual offline identification results and corresponding
accuracies (overall accuracy: 93:6%) for the 109 detection instances on the original dataset of 1039 720� 720
pixel images captured at each iteration throughout real online experiments. Accuracy for ID=12 (Aria) is demon-
strably low because of visual similarities to ID=10 (Evie).
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Figure 7.27: Double Target Detections. Examples of the infrequent occurrence of double, nested target detec-
tions for offline image analysis. In all instances of this phenomenon, both generated RoIs given as input into the
subsequent identification model yielded correct identities.
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pseudo-random CU 90.33 89.41 99.61 0.02 0.43 41.59 0:255�0:057 72.45

Table 7.7: Synthetic/Offline Exploratory Agency Testing Results. Performance statistics for exploratory agency
operating offline across 10;000 randomly-synthesised examples in pixel-image simulation for a 20�20 exploration
environment with 5� 5 agent-environment visibility attempting to discover jRj = 17 individuals. The importance
is that this same trained model was utilised in real, online experiments operating on-board the UAV flight platform
and the Jetson TX2 attempting to efficiently find new individuals to identify. Note that since the environment has
considerably more possible grid locations than the original 10� 10 size, maximal episode lengths are increased
te = 400 to equal that number (20�20 = 400). Refer back to Chapter 6 for full details on exploratory agency.

7.6.2 Online Model Performance

This section presents results across conducted online experimental flights that were completely au-
tonomous. That is, all computation was performed live in real time using the UAV’s on-board comput-
ers (DJI Manifold & Nvidia Jetson TX2). Table 7.8 illustrates quantitative identification results across
all conducted flight experiments. Example image sequences given as input to the LRCN identification
pipeline – yielded from detections across multiple samples – are given in Figure 7.29, alongside cor-
responding model prediction and ground truth labels. Notably, across the small online sample size (18
actual instances), the model performs perfectly. This can be attributed to, firstly, the presence of multiple,
varying individual-centric regions that allow the model to iteratively confirm identity as proved benefi-
cial in earlier Chapter 4. Second, since this iterative identification process is only entered when a target
is central within the agent’s 5� 5 visual field, the viewpoint is optimal with respect to dorsal animal
visibility and pose (only the top of the cow is visible). Additionally, minimal image distortion from the
camera lens is observed and the possibility of target clipping due to the frame boundary as present in the
offline “detect and identify everything” case (see Figure 7.26b) is no longer an issue.

LRCN Identification Single Iteration Identification
# Samples Accuracy (%) Accuracy (%)

18 100 94.4

Table 7.8: Online Identification Results. Performance statistics for the UAV agent performing online identification
of targets via use of the LRCN-based passive iterative identification model on 5 frame-long RoI image sequences
of individuals. Also included are results for normal single iteration identification evaluating the first frame in the
5-image sample sequence.

To preliminarily conclude about whether an iterative identification process is beneficial here – with re-
spect to a small herd size of 17 individuals with distinct visual uniqueness across the population (as can
be inferred from Figure 7.6) – performance of a single iteration paradigm is compared here. Towards
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this goal, the first frame of each of 18 image sequences was passed through the same identification esti-
mation model. As can be seen in Table 7.8, a single iteration identification paradigm does not perform as
accurately over the small sample size (17=18 = 94:4% instances predicted correctly). The single failure
is exhibited as follows in Figure 7.28. As has been explored earlier in offline image assessment (Section
7.6.1), this single iteration identification paradigm suffers from a lack of sample variation and other-
wise leading to losses in accuracy, particularly for individual Aria, as is the case for the single failure
here.

Figure 7.28: LRCN Model Confidence vs. Time (Frames). Illustration of LRCN model confidence in the single
correct and other incorrect identities versus exposure to subsequent frames. In this example, this figure depicts
the single instance where the first frame alone was not sufficient to identify the individual correctly. In contrast,
after significant model deliberation, n = 5 images correctly attribute the correct identity. Frames considered here
qualitatively suggest that movement of the animal’s tail led to discriminative feature occlusion yielding erroneous
visual similarities comparable to Aria (ID=12). Slight model confidence in Phoebe results from similarities in an
all black torso.

Figure 7.29: LRCN Identification Examples. Twelve examples of 224�224 pixel RoI sequences presented as input
into the passive LRCN-based identification pipeline alongside ground truth and predicted labels with associated
respective model confidence values per instance. The maximum input length is LST Mseq = 5 samples chosen to
minimise flight time spent over an individual whilst allowing for some variation across frames from agent or target
motion.
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7.6.3 Flight Analyses

This section gives a selection of figures providing individual and overall flight analyses. In particular,
Table 7.9 gives detailed general statistics. Where relevant, metrics describing environment coverage
quantify the percentage of the exploratory region that has been seen by the agent over the course of a
flight. Note however, that considering this metric to conclusively quantify exploratory performance is
only reasonable under the assumption that targets are completely static. In the case here, cattle move
freely during experiments meaning previously visited/covered locations may now contain targets one
wants to discover. Rather, the intention is for this metric to illustrate in how far the UAV battery can
survive before landing is required. Also importantly, individual flight lengths were subject to variance –
as can be seen in Figures 7.30, 7.31 and 7.32. This is by virtue of varying battery levels; not all batteries
were consistently fully charged and, the exact elapsed time from system boot/initialisation to takeoff was
also inconsistent. As well as this, experiments were sometimes manually cut short if there were no longer
any targets present in the exploratory region (all cows had left the grid) and an empirical assessment
determined that a target would not re-enter before the UAV battery depleted completely. The benefit of
doing so lies in the operation of experiments where on location recharging batteries possibilities (in the
field) is finite and therefore operationally costly.

Row Description Value
(a) Number of experiment flights 18
(b) Average time per exploration iteration 6.35s
(c) Maximum iterations 98
(d) Maximum flight time 10:16 mins
(e) †Maximum environment coverage 85.75%
(f) Median iterations 77
(g) Median flight time 8:09 mins
(h) †Median environment coverage 70.13%

Table 7.9: Flight Experiment Statistics. Resulting flight and environmental statistics across the 18 conducted
experimental flights. †: the percentage of exploratory map cells – for the large domain size consisting of 20�20
grid cells used here for real flights – that were visually observed over the course of the flight.

Figure 7.30: Agent Exploration Paths. Illustration of agent (x;y) coordinates within the exploratory grid versus
experiment iterations (time) over the 18 conducted experiment flights. Experiments shown in the legend are the
highlighted examples shown in Figure 7.31. To complete 90 iterations, which equates to 90=400 = 22:5% of
possible exploratory cells, requires approximately 10 minutes of actual flight time.
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(a) Flights where a single individual was encountered and identified.

(b) Experiments with multiple individuals identified over the course of each flight.

Figure 7.31: Annotated Experiment Flight Paths. Examples of annotated agent flight paths within the exploratory
grid over the entire course of the experiment. In the context of the exploration grid, cell colours are defined as
(black): unvisited locations, (light blue): visited locations, (dark blue): seen or covered locations (given the agent’s
5� 5 cell local environment visibility), (orange): agent starting position, (green): finishing agent position and
(red): discovered target positions. At each target discovery point, local agent-environment visibility is indicated
alongside the corresponding captured 720�720 image with statistics. Also illustrated – by white arrows – is the
agent’s direction of travel at iteration intervals throughout the experiment. Across every experiment, the average
time required per iteration is: 6:35s. The example flights shown here are highlighted in the legend of Figure 7.30.
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(a) Experiment ID = 3 (b) Experiment ID = 11

(c) Experiment ID = 12 (d) Experiment ID = 16

Figure 7.32: Exploratory Agency vs. Time. Examples of agent-environment exploration paths x;y versus iterations
(time) in the z-axis and a corresponding iteration colour gradient for illustrative purposes. As can be seen across
this figure and others (see Figures 7.30 and 7.31), the initial exploratory paths are similar to begin with as a result
of model determinism in the absence of target detection. Put differently, agent paths only diverge when knowledge
of one or more target is gained, influencing future navigation decisions.

7.6.4 Discussion

This section provides discussion points for the preliminary experiments conducted in this chapter along-
side suggestions for improvements within possible avenues of future work. To summarise, the limiting
factors upon the real, live experiment were found to generally lie within elements outside of control,
hardware and experimental setup choices rather than algorithmic choices, which bodes well for further
work employing the techniques proposed in this work and their generalisation.

Environmental factors: An interesting discussion point is simply the fact that the experiment environ-
ment itself was simply imperfect. Principally, as a result of the field being situated alongside an imme-
diately adjacent road, flight regulations do not permit � 50m UAV proximity to structures and beings
outside of human operator control [16]. Thus, experiments were unable to account for a majority pro-
portion of the field and accordingly, the fitted exploratory grid includes just a small subset of the larger
region. The result is that when the animals are faced with a choice of one area containing a loud, possibly
threatening object in flight directly above them or another area without, natural instincts choose the per-
ceived safer area of the field. In practise this meant that the animals would behave naturally (i.e. graze,
sit) in the area of experimentation when the UAV was not present, and leave the area when it was. This
being said, some individuals gradually became accustomed with agent presence, as will be discussed in
the following paragraph.
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Particular individuals: Despite considerable spent effort at the beginning of each day session in accli-
matising the animals to the physical and loud sonic presence the UAV introduces in flight, it was found
that this was ineffective on particular individuals. The result being that these individuals would more
often that not walk away before the agent had sufficient time to collect identification samples, leave the
experiment area of operation before being discovered by the agent or, not even enter the exploratory
region altogether. Thus, there are some members of the population that were never discovered nor iden-
tified (as is reflected in Table 7.6) meaning conclusions regarding identification performance across the
entire population are impossible to draw. Conversely, individuals that were more comfortable with the
presence of the UAV were therefore more likely to remain under the agent when in flight meaning that
multiple samples – consisting of exploratory agency discovery, target detection and iterative identifica-
tion – are obtained. Possible solutions to this problem: spending more time in animal acclimatisation or
more easily, flying at a higher altitude where the sound level will decrease – reasons for why this simple
solution was not employed are given in the following paragraph.

Camera/image resolution: Ideally, to improve aforementioned animal comfort as well as environment
visibility from an exploratory standpoint, the UAV would be flown at a higher selected height above the
ground. The result of doing so would mean that individual target resolution decreases proportionally
with increased height and thus, both detection and identification components would operate on lower
resolution features. Whilst perhaps not a problem for species-wide detection (as proven in the reliable
detection of small toy cows in Section 7.5.5), identification accuracy will suffer as a result of a potentially
insufficient sampling frequency for dorsally exhibited spatial patterns, structures and alignments. Figure
7.33 demonstrates that this drop-off in model accuracy occurs at a very low resolution of 25�25 pixels
in the case here operating on a small jRj= 17 herd size. In the generalisation of this model to larger herd
sizes where, the likelihood of similar-looking individuals is higher, the resolution threshold at which
accuracy falls will increase.

(a) (b)

Figure 7.33: Individual RoI Resolution. Visualisation of (a): varying individual-wise RoI resolutions illustrating
the difficulty in individual identification when presented lower resolutions. Each of the examples above are from the
training dataset – and thus, the network had seen previously – were evaluated by the identity estimation network,
the single incorrect prediction is highlighted in red. The graph in (b): demonstrates the effect on model prediction
accuracy whilst increasing the resolution of the input given as input into the predictor. The graph highlights that
lower resolution inputs are successfully predicted across the small 17-strong herd population where there are little
intra-population visual similarities. Again, note that identification accuracy here was considered on examples
from the training dataset and in reality, this result would likely worsen.

The inherent trade-off with this consideration lies in increasing environment visibility/coverage and
hence quicker target position discoveries versus decreasing identification accuracy and thus overall herd
identity recovery. Parameter balance was established empirically such that targets are at minimum re-
solved to �150�150 pixels at a flight height above the ground of 10m. Then conveniently, this selected
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height corresponds to almost exact 10m2 local visibility (centred about the agent) which was chosen to
equate to 5�5 exploration map coverage given the camera’s horizontal field of view for image resolution
720�720. This is valid under the assumption of constant camera resolution, which is the case here – im-
ages can only be obtained at a maximum resolution of 960�720, and this image is then trimmed square
to 720� 720. The clear solution to both problems would be performing flight at a higher altitude with
a zoom lens or higher resolution camera. However with height increase the potential for image blurring
from camera gimbal imperfection, higher wind speeds, etc. is attributable.

Target distribution class: The exploratory agency component performed live in reality within this chap-
ter was trained on pseudo-random target positional distribution (utilising the Mersenne Twister P-RNG
algorithm [208]) with jRj = 17 targets within a 20� 20 exploratory environment. However, this is ar-
guably not a realistic approximation of the herd’s actual distribution; it was observed that the animals
would sometimes clump together closely, particularly when perhaps uncomfortable with the presence of
the UAV. Other times, the animals would naturally graze freely as one would expect, with seemingly
no discernible distribution; justifying training against pseudo-random examples. The problem is then
that, since the agent sometimes directly affects the herd’s behaviour, it is incredibly difficult to model
or approximate an appropriate distribution class exploratory agency can be trained against. Solutions
lie in a more complex formation of a dynamic target distribution model and improving animal-robot
acclimatisation.

Entering and leaving: Following on from the discussion in the previous paragraph, another incorrect
assumption within the target distribution class approximation (that was trained against) is simply that
the exploratory region has no boundary in reality. As a result, animals are free to enter and leave the
exploratory environment autonomously, whereas the model was trained against the assumption that all
jRj = 17 targets are situated somewhere within map bounds. The issue is that this affects exploratory
strategies when there is inter-target correlation for some positional distributions, therefore excluding
fully random target distributions. This also affects the ability to assess the performance of exploratory
agency within the scope of this chapter, since there is no ground-truth knowledge of which individuals
are within the environment over experiment time or exploration iterations. The obvious solution to this
problem lies within the experiment environment itself being imperfect; other more suitable fields would
allow UAV flight throughout, or a physical barrier could be erected around the exploratory region such
that targets cannot leave. An alternative approach could model dynamic distribution classes whereby
targets can freely enter and leave the environment.

Exploration iteration time: In relation to the exploratory component of experiments conducted here, the
time required by the UAV controller to fulfil a requested position involves significant overheard (on aver-
age, 6:35s per exploration iteration). Since exploratory actions (and resulting agent movements) arrive in
the form of discrete, one grid cell displacements per iteration, the result is that the flight platform spends
a significant proportion of the total flight time attempting to realise goal positions. This inefficiency is
perhaps misspent time; of which there is little due to payload mass and power constraints. This problem
is then magnified by the choice of large environment sizes that are necessary to resolve a single target to
a single grid cell. In the case here – operating on a 40� 40m environment with 2m2 grid cells yielding
a 20�20 exploratory grid – 400 possible grid positions to visit is infeasible given the reality of battery
constraints imposing �10 minute flights and therefore, �100 possible iterations. Instead, the more im-
portant metric is the extent to which the agent covers the exploratory region visually or how much has the
agent seen? Accordingly, across all 18 conducted experiments, the median coverage of the exploratory
grid was approximately 70:13%27, as is depicted in Figure 7.34. Whilst this value is specifically rele-
vant under an assumption of static targets, given target dynamism and autonomy (as is the case for real
cattle), the agent must sometimes revisit previously seen locations, and the small number (�100) of pos-
sible exploratory iterations calls for concern on the average exploratory iteration time and its resulting
implications. It is at this point interesting to note the difference in the design of algorithms for operation

27This value is approximate because aircraft batteries were not always charged completely equally and platform landing
was typically imposed manually, thus varying across flights.
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in a perfect world (in simulation) in comparison to constraints imposed by operational reality. Related
suggestions for future work ameliorating this problem specifically are given in Section 8.3.

Figure 7.34: Environment Explorations. Examples of environment exploration paths and coverage over 10 real
flight experiments – of varying lengths – on the fitted 20� 20 exploratory grid with agent local visibility of 5� 5
cells for a 720� 720 pixel image operating at a height of 10m. Note that the determinism of the exploratory
agency architecture is visible within instances where no target was detected; the bottom-right most exploration
(experiment ID = 18) depicts this baseline movement pattern. Note also the presence across some instances of
seemingly impossible path gaps. This phenomenon is caused by slight position fulfilment errors (particularly in
high winds) due to UAV localisation as a result of inherent GPS inaccuracy. As will be explored, this problem
could be alleviated by a more accurate positioning system (e.g. RTK-GPS system [143]).

Exploration grid resolution: With respect to exploratory agency – in transitioning from the simulated
case to operation in reality – particular assumptions or approximations become inherently flawed, as was
observed in earlier discussion points. In the case here, there is an assumption that a target should be
perfectly resolved to a particular exploratory grid cell, when in fact it could situated perfectly in-between
two positions. The result could entail perceived failure to centre the individual within the image for
identification estimation to actually take place due to camera distortion. The problem lies in the decision
to assume a discrete two-dimensional model of what is intrinsically a continuous world. Solutions could
involve increasing the exploratory grid resolution (the sampling frequency) such that targets occupy
multiple grid cells or assuming continuous agent and target positions (related propositions are discussed
further in Section 8.3).

UAV height/altitude maintenance: Across flights conducted at both locations, it was found that the
UAV exhibited significant positional error in the vertical dimension, especially under high wind forces.
This error was observed to fluctuate massively (approximately �1m) during position fulfilment and also
whilst hovering at a commanded position. The result is that visibility of the environment changes across
iterations and accordingly, samples captured at each iteration. Consequences of such variation impact
subsequent image analysis components; boundary targets may be detected that otherwise would not
have been (and vice versa), individuals may be insufficiently resolved for correct identity analysis, etc.
Solutions to this problem lie within the flight platform’s chosen method of localisation – the M100 utilises
GPS, explaining the exhibited inaccuracy (particularly in the vertical dimension [25, 137]). Instead, a
more accurate localisation methodology could be employed; RTK-GPS, a satellite navigation technique
used to enhance GPS precision providing centimetre-level position accuracy [143].
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Figure 7.35: UAV Height Distribution. Distribution of the UAV height above the ground over � 1;000 samples
with min=9:28, max=11:31, m = 10:02, s = 0:18 following a Gaussian-like distribution curve. The commanded
height value was 10m. Note that each instance actually consists of an average UAV local position value over n = 5
samples to allow the controller to settle, gather multiple images, etc. Thus, this distribution is not necessarily truly
representative meaning UAV height maintenance and fluctuation is actually worse in reality.

7.7 Chapter Conclusion

This chapter demonstrates a proof-of-concept that individual cattle identities can be reliably recovered
live by a robot agent in a real-world agricultural setting. As part of this demonstration, several com-
ponents described in previous chapters are algorithmically and operationally verified in reality here;
primarily the ability for relevant models to meaningfully integrate complementary imagery in live scenar-
ios, and second, the exhibition of online exploratory agency towards recovering herd-like distributions.
In robustly performing these tasks on-board a UAV-based robot with limited computational resources
alongside payload, weight restrictions and more, the proposed technologies serve as validation into fu-
ture agricultural automation possibilities.
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Chapter 8

Conclusion

8.1 Summary

This thesis demonstrates that coat patterns exhibited by the prevalent Holstein Friesian or “dairy cow”
cattle species provide a sufficient basis for individual identification across small population sizes (e.g.
< 100) that are commonplace in real farms [6, 5]. Built upon the assumption of dorsal coat patterns
being an individually-unique biometric entity, this work proposes several visual biometric processes that
exploit such features.

Chapter 3 – Single Frame Identification: to begin, a preliminary demonstration that dorsal features
are appropriate for individual identification is given by assessing single images. Achieved via use of
classical hand-crafted features, robust identification accuracy of 96:6% is achieved over a small 25-
strong population. Use of the ASIFT feature descriptor, however, involves significant computational
expense in extracting, characterising and matching image keypoints. This burden is ameliorated by
a contemporary approach founded in the use of artificial neural networks, specifically convolutional
architectures, achieving 86% mAP on a broader set of 89 individuals. A key separation being that
the supervised learning-based approach operates on closed population sets, whereas components of the
proposed local feature matching pipeline generalise to unseen individuals.

Chapter 4 – Passive Multi-Frame Identification: to that point, the proposed biometric processes dealt
with the evaluation of a single image from an aerial perspective. However, as motivated by the subtlety
of discriminative features for fine-grained object categories, small perturbations in image acquisition,
object viewpoint, object autonomy, light conditions, etc. can prevent observations of crucial features.
In capturing and assessing multiple images, where these small perturbations occur, the likelihood of an
observation containing important features increases. This intuition is demonstrated for a passive agent
with no influence on observation parameters, where accuracy is found to generally increase versus expo-
sure to multiple variant frames that complement identity estimates. This is found to be the case across
small time windows (i.e. 1-2s), where limited variation across frames actually takes place. Quantita-
tively speaking, this multi-frame biometric process ultimately yielded 98:13% identification accuracy on
a testing set of 40 frame-long image sequences, whereas assessing the first frame in each sequence only
achieved 80:47%.

Chapter 5 – Simulated Active Multi-Frame Identification: building upon this identification agency, a
unified model performing active identification is shown to produce robust and efficient results on herds
simulated in a realistic three-dimensional environment. The method consists of a distinct training phase
where object-wise viewpoints are exhaustively searched for containing visual descriptions of individual-
ity. This form of behaviour is then replicated online by a simulated flying robot agent actively seeking
viewpoints for a perceived object identity that disambiguates its class to a satisfactory degree as quickly
as possible. Over the full experiment consisting of ten difficult synthetic identification cases, the pro-
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posed pipeline correctly identifies the individual in question 60:34% of the time when an active multi-
frame identification approach is required and enacted. This chapter concludes the proposal of biometric
processes performing identification of a single individual the agent is spatially local to.

Chapter 6 – Simulated Inter-Individual Navigation: armed with the ability to identify individuals,
consideration of finding the remaining members of the herd – the collection of individuals – is necessary.
Accordingly, exploration strategies that exhaustively search every environment location, amongst other
implemented baselines, are shown to be outperformed by a single deep framework that co-optimises local
sensing and global environment knowledge under a unified architecture. The ability to efficiently dis-
cover the positions of unknown targets is demonstrated to expand to a wide variety of target distributions,
dynamics and behaviours.

Chapter 7 – Proof-of-Concept: Real-World Herd Individual Identification: finally, components are
combined into a single framework performing passive iterative identification of targets found by the
proposed exploratory agency algorithm. This framework operates on-board a real UAV with associ-
ated restrictions on computational power. Experiments are conducted on a collection of 17 live cattle
with demonstrable identification robustness (100% accuracy across 18 samples) for the small herd in a
real-world outdoor agricultural environment. Performing flights in reality identified limitations of the
proposed exploratory algorithm, largely focussing around exploration time and the employed approxi-
mative model of the environment. Accordingly, suggestions for improvement are given in the following
section on future work.

8.2 Discussion

In consideration of automatically identifying individuals in-barn, the setup employed in Chapter 3 (a
fixed camera acquiring an aerial view of a nearly single file walkway) demonstrated promising results.
Algorithmically speaking, both proposed methods displayed problems with the detection of multiple cat-
tle as one, by virtue of their close proximity and disruptive camouflage. Importantly, this occurred in an
area of the barn that constricts space to only allow few individuals in the camera frame at any one time.
Were the camera to be affixed elsewhere (at potentially more open areas), the likelihood of this problem
occurring would certainly increase. Spending effort therefore, on improving inter-individual separation
and detection components is crucial in achieving robust camera location-agnostic identification perfor-
mance.

With respect to autonomous UAV-based identification operating over fields containing cattle, refer to
the discussions in Section 7.6.4 and below in Section 8.3 for operational considerations going forward.
Echoing the comments made in Section 1.1.2, from a biological, veterinarian and behavioural standpoint,
interesting next steps in this experiment lie in individual tracking over time. Whereby analysis of such
data could inform upon grazing patterns [116, 117], social hierarchies [313, 166, 243], herd welfare [294]
and more. A key improvement should however, revolve around further minimising the disturbance to the
animals – thereby minimising influence on their behaviour – by modifying the UAV platform itself for
reducing noise production [290, 205], operating at higher altitudes, etc.

In its entirety however, this work provides a strong case that the automated identification of Holstein
Friesian cattle is viable, robust and efficient within the proposed visual biometric processes. In doing
so, a proof-of-concept is given for removing the necessity for permanent and damaging animal tagging
methods, promising to improve animal welfare in husbandry.

160



8.3. FUTURE WORK

8.3 Future Work

In this section, potential avenues of future work are suggested as follows. Immediate further work will
concentrate on the preparation of the content presented in Chapter 7 for publication.

Exploration grid discretisation: the exploratory grid for agent navigation is approximated in this work to
be a discrete set of coordinates, when in reality, this involves careful, user-selected choice of parameters
when fitting a grid to an environment. Future work could involve investigating modelling the environment
continuously, such that the problem becomes a question of two-dimensional regression. In this form,
discrete 2m jumps are no longer made iteratively, and unexplored areas of the environment can be quickly
explored; an important factor when presented with limited UAV battery life. In addition, the problem of
targets being positioned directly between two grid cells is intrinsically avoided altogether.

Live Active Identification Experiments: whilst Chapter 5 validates the proposed active identification
algorithm in realistic three-dimensional simulations, conducting experiments in reality with a live UAV
agent is a logical progression. These experiments could be performed across several stages (1): on static
fake targets indoors, where agent localisation can be perfectly resolved thanks to motion capture camera
systems, (2): the same experiment but outdoors where position variation is introduced due to GPS, (3): on
real (and now moving) cattle examined individually and finally (4): integrating environment exploration
and active individual identification (when necessary) on a full-sized herd.

The core challenges involving firstly; acquiring and hand-labelling significant imagery per-viewpoint
per-individual such that (a): the space can be effectively searched offline for good trajectories and (b)
constituent models of the active identification architecture have sufficient amounts and variety of labelled
training data. Second, inaccuracies exhibited by models estimating pose, distance and scale via vision
are compounded by agent localisation error from GPS, hence the suggestion of stage (1) where this effect
can be separated. And finally, the introduction of target dynamism involves significant challenge when
latency from processing and/or realising a goal position now renders that decision invalid (e.g. by the
time the agent moves to position x to view the left side of an individual, the cow has moved away). Look-
ing beyond the specific task of identifying individual cattle, applications of the proposed time-sensitive
active viewpoint ordering algorithm using a mobile robot could involve solving (with adaptation) the
kidnapped robot problem [97] (seeking to observe the presence or absence of visual landmarks to disam-
biguate robot location), pick & place objectives mandating object category determination with a robot
arm and more.

Environment visibility: as a result of agent-environment exploratory actions only being performed in the
horizontal xy-plane, the agent’s local visibility of the environment from its on-board camera is always
fixed. There are situations when this is the only option (e.g. indoor environments), however, it would
be interesting to investigate the benefit of involving the additional z dimension in exploratory strategies.
One would imagine the agent initially taking a high, global view of the environment, and subsequently
focusing attention by reducing its height, much like attentional mechanisms in two-dimensional imagery
for fine-grained categories [98].

Category scalability: throughout this work, the finite set of object categories has had relatively low car-
dinality (< 100), in accordance with typical herd sizes and populations in real farms. Investigations into
model scalability would be interesting from a vision perspective in investigating how well the proposed
methodologies generalise to large amounts of fine-grained categories. In addition, it would be biologi-
cally compelling to infer the relationship between population size and exploitable uniqueness amongst
exhibited coat patterns.

Category adaptability: throughout this thesis, possible categories have been fixed across experiments,
corresponding to the population of individuals being constant. When in actuality, farms often add or
takeaway sets of individuals from a field or barn environment. The result is that newly-added individuals
will be falsely identified, and subtracted individuals introduce surplus categories when the problem has
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lowered in complexity. There is correspondingly, a need for model robustness and adaptability on vari-
ation in category cardinality. Future work could investigate automatically indicating newly-introduced
individuals and applying zero-shot learning [331] or some registration process on the new, unseen fine-
grained categories.

Multi-robot or multi-sensor approach: as has been discussed previously, a pitfall of flight operation
in a horizontal plane only means that the scope of local agent-centric sensing is always fixed. Whilst
this could be influenced with the addition of a flight height component, an alternate approach could
involve a dual robot scenario or additional sensing (a zoom camera/gimbal). The idea being that one
robot or sensor maintains a global view of the environment and constituent targets, performing multi-
object tracking. This entity then indicates to another robot or sensor when a particular individual needs
(re)identification, such that fine-grained local identification can take place.

Operational reality: were the full UAV-based herd monitoring system to be deployed in reality, maxi-
mum flight lengths of 10 minutes are quite limiting and may not satisfy experiment intentions (e.g. social
monitoring). Instead, a UAV fleet is conceivable with offset cycles of f f ly;rechargeg such that continual
environment coverage is achieved. Work in this area could focus on (a): swarm-based path planning to
avoid collisions, (b): automatic hand-off of data from a robot going to recharge to another taking over
and (c): autonomous flying robot battery recharging.

Outside of this specific extension, effort should be spent on maximising the work achieved with a single
battery/flight by considering bottlenecks. One key area to do with environment exploration has already
been discussed (see “Exploration grid discretisation” above). The next involves the fact that at each
iteration, multiple data samples are taken of vehicle position, attitude and camera image. These samples
are uniformly acquired over a time window such that values are permitted to settle (position and attitude)
and sufficient variation in imagery is advantageous when estimating identity via the LRCN. This creates
an obvious inefficiency that could be alleviated by firstly: employing a more accurate robot localisation
scheme (e.g. RTK-GPS [143]) in combination with more finely-tuned UAV controller parameters such
that multiple pose samples are unnecessary. Second, as established evidentially in Section 7.6, and indeed
in many other parts of this thesis, well-acquired single images often provide sufficient discriminative
spatial information. Enforcing LRCN-based identification at every request is perhaps unnecessary and
could be retained for cases where the model is unsatisfactorily confident in some identity in order to
improve efficiency per iteration.
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[30] J. A. Berni, P. J. Zarco-Tejada, L. Suárez, and E. Fereres. Thermal and narrowband multispectral remote sensing for vegetation moni-
toring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3):722–738, 2009.

[31] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding horizon” next-best-view” planner for 3d exploration. In
Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages 1462–1468. IEEE, 2016.

[32] P. S. Blaer and P. K. Allen. Data acquisition and view planning for 3-d modeling tasks. In Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, pages 417–422. IEEE, 2007.

[33] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam,
2017.

[34] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for mobile robots: A survey. Journal of intelligent and robotic systems,
53(3):263, 2008.

[35] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots in cluttered environments. In Robotics and Automation,
1990. Proceedings., 1990 IEEE International Conference on, pages 572–577. IEEE, 1990.

[36] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE transactions on robotics and
automation, 7(3):278–288, 1991.

[37] H. Borotschnig, L. Paletta, M. Prantl, and A. Pinz. Appearance-based active object recognition. Image and Vision Computing,
18(9):715–727, 2000.

[38] H. Borotschnig, L. Paletta, M. Prantl, A. Pinz, et al. Active object recognition in parametric eigenspace. In BMVC, pages 1–10. Citeseer,
1998.

[39] M. Bowling, D. Pendell, D. Morris, Y. Yoon, K. Katoh, K. Belk, and G. Smith. Identification and traceability of cattle in selected
countries outside of north america. The Professional Animal Scientist, 24(4):287–294, 2008.

[40] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized deep convolutional nets. arXiv
preprint arXiv:1406.2952, 2014.

[41] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Robust tracking-by-detection using a detector confidence
particle filter. In Computer Vision, 2009 IEEE 12th International Conference on, pages 1515–1522. IEEE, 2009.

[42] B. Browatzki, V. Tikhanoff, G. Metta, H. H. Bülthoff, and C. Wallraven. Active object recognition on a humanoid robot. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 2021–2028. IEEE, 2012.

[43] W. Buick. Animal passports and identification. Defra Veterinary Journal, 15:20–26, 2004.

[44] T. Burghardt. Visual animal biometrics: automatic detection and individual identification by coat pattern. PhD thesis, University of
Bristol, 2008.

[45] C. Cai and J. Li. Cattle face recognition using local binary pattern descriptor. In Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2013 Asia-Pacific, pages 1–4. IEEE, 2013.

[46] V. Caporale, A. Giovannini, C. Di Francesco, and P. Calistri. Importance of the traceability of animals and animal products in epidemi-
ology. Revue Scientifique et Technique-Office International des Epizooties, 20(2):372–378, 2001.

[47] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531, 2014.

[48] D. Chen, Z. Yuan, B. Chen, and N. Zheng. Similarity learning with spatial constraints for person re-identification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1268–1277, 2016.

[49] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Person re-identification by multi-channel parts-based cnn with improved triplet
loss function. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1335–1344, 2016.
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Appendix A

Simulation Environment
To operate outside of the constraints imposed by experimentation on real data and assist with the synthe-
sis of appropriate realistic training, testing and validation data, a comprehensive simulation environment
was created. The environment operates within Gazebo1, an open-source multi-robot simulation frame-
work [164]. Crucially, Gazebo integrates naturally with ROS [251] for asynchronous robot and simulator
control, for which, the implementation of this thesis – operating on-board embedded systems situated on
the UAV – is founded within, both in simulation and in reality. Also a crucial component of the imple-
mented simulation environment is ROS package Hector Quadrotor2 [212] for realistically simulating the
physical properties of a UAV; it is fullly discussed later in Section A.1.

The simulation environment itself (as illustrated in Figure A.1) consists of a ground plane with a realistic,
infinitely-repeating grass texture, moving clouds within a sky box and a simulated sun light source that
casts physically correct shadows on models placed within the environment. Individual cattle models are
also placed within the environment and are discussed further in Section A.2.

Figure A.1: Gazebo-Based Simulation Environment. Screenshot of the Gazebo simulation environment utilised
for model verification and the synthesis of training data, etc. Featured are 10 randomly placed and oriented cow
models with individually-unique textures alongside the simulated UAV agent. Also visible are realistic shadows
created by the sun light source.

1Gazebo simulation framework: http://gazebosim.org/
2Hector quadrotor ROS package: http://wiki.ros.org/hector_quadrotor
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APPENDIX A. SIMULATION ENVIRONMENT

A.1 UAV Model

The complete simulation environment includes the utilisation of a fully simulated UAV. The utilised
ROS package, named Hector Quadrotor [212], consists of sub-packages related to the modelling, control
and simulation of quadrotor UAV systems. Not only can realistic UAV dynamics be modelled, the
package also includes components for simulating fully customisable UAV-mounted sensory instruments
(e.g. camera, LiDAR, depth sensor) via custom XML definitions3. In the case here, a two-axis (pitch,
yaw) gimbal camera mounted on the underside of the aircraft is simulated. An example of this simulated
view is given in Figure A.2 at a resolution of 640�480 pixels with horizontal FoV 60°. Within simulated
experiments conducted in this thesis, the control elements imposed by the physics of the simulated UAV
via the Hector Quadrotor package are abstracted from to retain simplicity and provide a fundamental
proof-of-concept. This is since, in reality the API implemented on-board the utilised UAV flight platform
(DJI Matrice 100, see Section 7.2) for real outdoor flight experiments also abstracts specific control
commands – as may be controlled by a flight position PID controller – away from the user. They are
instead issued in the form of direct position commands relative to a user set reference frame aligned with
the earth’s ENU axis. Consequently, within the simulation environment, the simulated UAV is regarded
as a completely static object in 3D space (with no corresponding physics simulation) and is teleported
from position to position per iteration or timestep, given some action to fulfil.

(a) Simulated UAV (b) Camera feed

Figure A.2: Simulated UAV and Camera Feed. Rendered images of (a): the Gazebo-based simulated UAV utilising
the Hector Quadrotor ROS package [212] and (b): the corresponding simulated 640�480 camera image feed from
the simulated flight platform with the camera pointed directly downwards.

A.2 Cow Model

To obtain a good graphical approximation of a Holstein Friesian cow, a suitably detailed 3D cow model
was selected and purchased from TurboSquid; a popular 3D model marketplace website4. Free and
open-source 3D graphics manipulation software Blender5 [33] was then utilised to alter the model as
required. In particular, an orthogonal projection was employed to generate the uv-map (illustrated in
Figure A.3) used later for texture generation and projection. Additionally, the model was aligned with
the Gazebo reference frame and the origin placed at the centre of the object’s bottom-most xy plane.
Finally, Blender was used to proportionally scale the model to the correct unit length (in metres). The
height value of 1:27m was selected based on the typical height of a middle-aged female Holstein Friesian
[138]. All other axes (x;y) were scaled linearly to retain model proportionality. Individual textures for
this three dimensional cow model are manually generated in appropriate photo editing software. This

3Xacro (XML Macros): http://wiki.ros.org/xacro
4Turbosquid: 3D model marketplace: https://www.turbosquid.com/
5Blender: open-source 3D modelling software: https://www.blender.org/
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A.2. COW MODEL

process consists of drawing desired visual features over the uv-map template that can be seen in Figure
A.3. One distinct disadvantage of uv-mapping in this simple form of top-down, orthogonal projection is
the fact that one cannot describe differing visual details for overlapping model polygons/areas (e.g. the
sides and underside of the cow).

Figure A.3: Cattle UV Map. Planar, top-down uv-map projection for the utilised cow 3D model.
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Appendix B

GPS Coordinate Fulfilment

This appendix describes the necessary steps in fulfilling a requested GPS coordinate using the DJI M100
UAV flight platform, as is frequently required throughout the conduction of experiments in Chapter 7.
This is a consequence of the DJI API not supporting the ability to directly command GPS positions
at the time of writing. Instead, position commands are issued via local position offsets in metres with
respect to a programatically-set local ENU reference frame. Consequently, in order to fulfil a target
GPS coordinate, it must be converted into that same frame. This is achieved by converting the target
GPS coordinate into the static ECEF reference frame, then converting that coordinate into the local ENU
frame. Equally, the same process is performed on the agent’s current GPS position and the resulting
local positions are compared to find an offset. The implementation of this process – following common
standards established in literature [25, 137] – is fully described as follows. Note also that all GPS
coordinates refer to the WGS-84 GCS standard [63].

To remind the reader, ECEF defines the earth’s static Cartersian reference frame independent of the
earth’s rotation with the point (0;0;0) defining the earth’s centre of mass [56]. The x-axis of ECEF is
aligned with latitudinal and longitudinal coordinates 0° and 0°, respectively, and z is aligned with true
north. To complete the definition, the y-axis also has latitudinal value 0° but is orthogonal to both x;y in a
right-handed coordinate system. Converting a WGS-84 GPS coordinate into ECEF begins with convert-
ing the coordinate tuple A = (latitude; longitude;altitude) into appropriate radian counterparts:

f = Alatitude �
p

180
;

l = Alongitude �
p

180
;

h = Aaltitude:

(B.1)

Next, this (f ;l ;h) tuple can be converted into ECEF coordinates via:

Ax = (N(f)+ h)cosfcosl ;
Ay = (N(f)+ h)cosfsinl ;

Az =
�

a2

b2 N(f)+ h
�

sinf ;
(B.2)

where

N(f) =
a2

p
a2cos2f + b2sin2f

=
a

p
1� e2sin2f

(B.3)

with

e2 = 1�
a2

b2 (B.4)
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where a = 6378137:0 m, b = 6356752:314245 m and e2 denote the earth’s equatorial (semi-major axis)
and polar radii (semi-minor axis) and the square of eccentricity of the earth ellipsoidal model, respec-
tively.

Subsequently, this ECEF coordinate (Ax;Ay;Az) is converted into a ENU-based reference frame defined
by another WGS-84 GPS coordinate denoting the origin. In practise, this is chosen to be the GPS
coordinate recorded prior to aircraft takeoff defined geodetically by O = (f ;l ;h) (note that the tuple is
assumed to have already been converted into radians for the latitudinal and longitudinal components).
This origin O for the ENU frame is then expressed in the ECEF reference frame via equation B.2 resulting
in (Ox;Oy;Oz). The positional difference is then found via:

Dx = Ax�Ox;
Dy = Ay�Oy;
Dz = Az�Oz:

(B.5)

The original GPS coordinate AENU = (xE ;yN ;zU) can then be resolved in the defined ENU reference
frame with respect to the origin O via:

2

4
xE
yN
zU

3

5=

2

4
�sinf cosf 0

�cosfsinl �sinl sinf cosl
coslcosf cosl sinf sinl

3

5

2

4
Dx
Dy
Dz

3

5 (B.6)

Finally, to determine the local position offset of two GPS coordinates B;C as required by the M100 flight
platform’s API, one would convert both geodetic coordinates to the local ENU frame via equations B.2
and B.6 and then determine per-dimension error (similarly to equation B.5).
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