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Summary 

Whole Genome Duplication (WGD) has occurred commonly in land plant evolution and it is 

often invoked as a causal agent in diversification, phenotypic and developmental innovation, 

as well as conferring extinction resistance. The ancient and iconic lineage of Equisetum is no 

exception, where WGD has been inferred to have occurred prior to the Cretaceous-Paleogene 

(K-Pg) boundary, coincident with WGD events in angiosperms. In the absence of high 

species diversity, WGD in Equisetum is interpreted to have facilitated the long-term survival 

of the lineage. However, this characterisation remains uncertain as these analyses of the 

Equisetum WGD event have not accounted for fossil diversity. Here we analyse additional 

available transcriptomes and summarise the fossil record. Our results confirm support for at 

least one WGD event shared among the majority of extant Equisetum species. Furthermore, 

we use improved dating methods to constrain the age of gene duplication in geological time 

and identify two successive Equisetum WGD events. The two WGD events occurred during 

the Carboniferous and Triassic, respectively, rather than in association with the K-Pg 

boundary. WGD events are believed to drive high rates of trait evolution and innovations, but 

analysed trends of morphological evolution across the historical diversity of Equisetum 

provide little evidence for further macroevolutionary consequences following WGD. WGD 

events cannot have conferred extinction resistance to the Equisetum lineage through the K-Pg 

boundary since the ploidy events occurred hundreds of millions of years before this mass 

extinction and we find evidence of extinction among fossil polyploid Equisetum lineages. 

Our findings precipitate the need for a review of the proposed roles of WGDs in biological 

innovation and extinction survival in angiosperm and non-angiosperm lineages alike. 
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1. Introduction 

The prevalence of Whole Genome Duplication (WGD) in land plants has contributed to the 

widely held view that WGD is an agent of macroevolutionary change [1]. The most striking 

pattern to have emerged is the apparent temporal clustering of WGD events about the 

Cretaceous-Palaeogene (K-Pg) boundary interval [2-4]. Perhaps inevitably, this has led to 

suggestions that WGD facilitated the survival and success of plant lineages in the wake of the 

attendant ecological disturbance and mass extinction [5-7]. Further, polyploid formation at 

mass extinction events is predicted to have been higher, as environmental disturbance and 

stress led to the formation of unreduced gametes [8, 9]. However, the WGD-K-Pg hypothesis 

is dependent on the accuracy and precision of estimates for the timing of WGD events. 

Transcriptomics of Equisetum giganteum have revealed that, like many other land 

plant lineages, Equisetum underwent at least one round of WGD [10]. The phylogenetic 

position of Equisetum on a long depauperate branch makes direct molecular dating 

challenging and hence previous studies have broad confidence intervals around estimated 

ages. Nevertheless, age estimates from synonymous substitutions (Ks) between duplicate 

gene pairs have been interpreted cautiously to reflect a duplication age overlapping the K-Pg 

boundary [10].  

WGD is often proposed as a driver of species diversification [11]. Equisetum seems to 

be an exception, as with only 15 extant species the genus hardly evidences a link between 

WGD and diversification. In lieu of high species diversity, Vanneste et al. [10] have 

suggested that the WGD event may have contributed to the longevity of the lineage, despite 

estimating a relatively recent Equisetum WGD. WGD is also generally proposed as a driver 

of phenotypic innovation [12], however, few studies consider the diversity of extinct forms in 

the context of WGD [13]. This is pertinent to Equisetum which exhibits a rich evolutionary 

history that has been revealed by several recent palaeontological discoveries [14-17]. 

 To test the association of Equisetum WGD and the K-Pg extinction event, we present 

a thorough analysis of the timing of WGD within Equisetales and its putative 

macroevolutionary consequences. We refine the phylogenetic position of putative WGD 

events and use molecular clock methods to show that WGD occurred well before the K-Pg, 

closer in age to the more ancient and profound Permian-Triassic extinction event. Further, we 

show that the WGD is not responsible for the phenotypic distinctiveness of Equisetum. There 

is no evidence that WGD conferred extinction resistance to Equisetales with many Mesozoic 

lineages not making it through the K-Pg mass extinction. 
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2. Materials and Methods 

(a) Transcriptome Assembly 

Assembled transcriptomes were collected from the 1KP dataset for Equisetum diffusum, 

Equisetum hyemale, Culcita macrocarpa, Ophioglossum petiolatum, Tmesipteris parva, 

Selaginella kraussiana, Danaea nodosa and Botrypus virginianus, and an additional 

transcriptome for Equisetum giganteum was obtained from [10]. 

 Paired end short reads were downloaded from the SRA archive for Equisetum 

arvsense (SRR4061754), Equisetum telmateia (SRR4061752) and Equisetum ramossisimum 

(SRR5499399), and assembled following [18]. Reads were trimmed of adapter sequences 

using Trimmomatic v.0.35 [19] using default settings. Assembly was performed using Trinity 

[20] using default settings. Redundant transcripts were removed using CD-HIT with a cluster 

value of 0.95 [21]. Each transcript was converted into the single best amino acid sequence 

using TransDecoder [22]. The assembly of the E. arvense, E. ramosissimum and E. telmateia 

transcriptomes after clustering resulted in 24,187, 58,549 and 61,969 transcripts. 

 

(b) Ks analysis 

We compared rates of synonymous substitution between paralogous genes in E. hyemale and 

E. diffusum, that represent the subgenera Hippochaete and Equisetum, respectively. Analyses 

were performed using default parameters and the ‘phyml’ node-weighting method in the wgd 

package [23-26]. Ks distributions were plotted based on node-averaged values as calculated 

in the wgd package. Gaussian mixture models were fitted to the Ks distribution following the 

wgd pipeline, with the optimal number of components assessed using the Bayesian 

Information Criterion (BIC).  

 

(c) Gene family assignment 

Orthogroups from the transcriptomes were inferred using Orthofinder v.2.2.6 [27] under a 

Diamond sequence search. The Orthofinder analysis initially produced 27,038 orthogroups. 

An initial filtering step was performed to remove orthogroups that did not contain at least one 

representative from 75% of species. Remaining orthogroups were aligned using MUSCLE 

and trimmed using trimal [28]. A second filtering step removed all alignments shorter than 

200 amino acids, resulting in 5,009 orthogroups. Phylogenetic inference was performed on 

each remaining orthogroup under the best-fitting model and maximum likelihood criterion in 

IQ-TREE [29], with 1000 ultra-fast bootstrap replicates [30].  
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(d) Species Divergence Time Estimation 

Single copy orthogroups from the Orthofinder output formed the basis of a dating analysis. 

An alignment of 45,977 amino acids was partitioned by gene for a topology search using the 

edge-linked option (-spp) in IQ-TREE [29].  

 The topology formed the basis of a fixed-topology node-calibrated molecular clock 

analysis in MCMCtree [24]. Node calibrations were specified with a uniform distribution 

spanning the hard minimum and soft maximum constraints (with a 2.5% tail distribution) 

established using MCMCtreeR in R (Table 1) [31]. Previous studies have placed the fossil 

taxon Equisetum fluviatoides as sister to E. diffusum [17]. However, our analyses supported a 

E. fluviatoides as sister to both E. diffusum and E. arvense, and so we established a 

calibration for the divergence of the two subgenera (Supplementary Methods). The mean rate 

was assigned a gamma prior, determined based on the mean number of substitutions along 

the tree scaled by the approximate geological age, with a total of 0.12 substitutions per site 

per million years. To ensure the model sampled from this distribution we fixed the shape 

parameter to two and adjusted the scale parameter to 16 [32, 33]. The analysis was run 

without sequence data to ensure that the effective time priors were compatible with the 

palaeontological and phylogenetic constraints informing the specified node calibrations [34]. 

Using the approximate likelihood method [35], we ran two independent analyses, each for 

5,000,000 generations, discarding the first 1,000,000 generations as burn-in. Convergence of 

each run was assessed using Tracer [36]. 

 

(e) Gene tree and species tree reconciliation 

Gene trees inferred from Orthofinder were reconciled with the dated species tree. Gene trees 

were inferred under a DTL (Duplication, Transfer, Loss) model using a maximum likelihood 

criterion in ALE (Amalgamated Likelihood Estimation) [37]. The reconciliations were 

performed using 1000 ultrafast bootstrap replicates as tree samples. As there is no prior 

hypothesis regarding an ancient hybridization (allopolyploidy) event in Equisetum, we set a 

low prior rate of gene transfer (0.1). The total number of duplications was summed for each 

branch in the phylogeny based on the number of inferred duplications across each of the 1000 

sampled trees for each gene family. 

 

(f) Dating whole genome duplication 
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Gene families inferred to have duplicated along the branch leading to Equisetum were 

sampled from the ALE output (Supplementary Fig S1). To evaluate the hypothesis of a single 

WGD event in Equisetum, we selected gene families that contained a single duplication along 

this branch for a molecular clock analysis. Following [38], gene families were used if they: 

(i) had a clear topological signal of the WGD event, represented by two paralogous copies 

present in all Equisetum species forming two monophyletic groupings; (ii) had a topology 

congruent with current understanding of tracheophyte phylogeny; and (iii) did not have a 

signal of additional duplication events within Equisetum. We conducted a molecular clock 

analysis for each gene family with the same settings as used for the species divergence 

estimation. The 95% Highest Posterior Densities (HPDs) were combined between all gene 

families. Peaks in this combined posterior distribution may represent duplication events 

common to multiple gene families. To determine which gene families coincide with each 

peak, the peaks in the combined posterior distribution were described using Gaussian mixture 

models (GMMs) and the overlap between these peaks and the individual gene posterior 

distributions were estimated using an overlapping coefficient [39]. Gene families with an 

overlap > 0.8 for each respective peak were selected and concatenated. Molecular clock 

analyses were performed for families corresponding to each peak, with the same set of fossil 

calibrations employed as in the species divergence time estimation, with the exception that 

the calibration within Equisetum was cross-calibrated on both sides of the duplication. 

Analyses were performed as for the species divergence estimation.  

 To consider the possibility of multiple WGD events, we repeated the analysis with 

gene families containing at least two duplications (four copies of each gene) in all extant 

Equisetum species, allowing for simultaneous age estimation of two duplication nodes.   

 

(g) Dating of Fossils and Extant Taxa 

We used previously assembled phenotypic and molecular matrices of 77 binary and 

multistate phenotypic characters and the rbcL, atpA, atpB and matK chloroplast genes [17]. 

The matrix contained 49 taxa, including 17 extant and 32 fossil taxa spanning the 

Sphenophyllales + Equisetales as well as outgroup taxa Hamatophyton verticillatum, 

Rotafolia songziensis, Ophioglossum reticulatum (Ophioglossales) and Psilotum nudum 

(Psilotales). 

 We estimated divergence times using the estimates obtained from the molecular 

species divergence analysis as priors on nodes present in this dataset. Fossil tip ages were 

based on a uniform distribution across their occurrence ranges (Supplementary Table 1) and a 
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uniform distribution was placed on the root between 451-384 million years [33]. A stepping 

stone analysis was used to test for the best-fitting clock model in MrBayes v.3.2.6 [40, 41]; 

this showed significant support for the correlated model [42] over the Independent Gamma 

Rates [43] and strict clock models. A correlated rates clock model [42] was implemented 

with the clock rate prior set as a lognormal distribution; the mean of the lognormal 

distribution was estimated from a topological analysis to estimate the tree height scaled by 

the approximate geological age of the root (0.02 substitutions site-1 million years-1) [44]. 

Finally, we set a uniform birth-death prior across the tree [41]. The phenotypic data and each 

gene were partitioned separately, with molecular data analysed under the GTR+Γ model and 

the phenotypic data under the MKv+ Γ model [45]. Four independent chains were run for 

20,000,000 generations. Convergence between the chains was assessed based on the average 

standard deviation of split frequencies (< 0.01), Effective Sample Size (target > 200) and by 

examining the parameters of the chain in Tracer [36].  

 

(h) Rates of Phenotypic Evolution 

To examine the rates of phenotypic evolution across the tree, we performed a morphological 

clock analysis using only the phenotypic dataset with the tree constrained to the topology 

resolved by the combined analysis. A relaxed clock model was used, allowing rates to vary 

between branches.  

 The rate of phenotypic evolution was estimated by sampling the effective branch 

lengths from 1000 points of the posterior distribution; the mean rates were estimated from 

these samples. Only branches from the majority-rule consensus topology were considered for 

further analyses; from the 1000 posterior samples, rates were summarised for branches on the 

posterior tree that matched branches on the majority-rule consensus tree.   

 

(i) Phenotypic Disparity 

The phenotype matrix was recoded following [46], such that non-applicable (NA) states were 

coded as ‘0’ and missing data as ‘?’, to distinguish the two types of ‘missing data’ [47]. The 

distance between taxa was calculated using Gower’s dissimilarity metric [48]. The distances 

were projected into two-dimensional space using Non-metric Multi-Dimensional Scaling 

(NMDS). We plotted a phylomorphospace using the majority-rule (50%) consensus tree from 

the total evidence analysis [49]. The most likely ancestral state was reconstructed along the 

tree by summarising states across 1000 stochastic character maps [50]; the estimated states 

were used to position the nodes within the morphospace. 
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 We calculated mean disparity as Sum Of Variances from the distance matrix [51] 

using dispRity in R [52]. Disparity through time was estimated using the time-slicing 

approach using 10 bins and the ‘gradual split’ model as implemented in dispRity, with the 

probability of a character state being that of either the descendent or the ancestor dependent 

on the length of the branch [52]. 

 

(j) Genome Size Analysis 

Genome size estimates (1C-values) were downloaded from the c-value database [53]. The 

1C-values were estimated for fossil taxa by Franks et al. [54] who derived a linear regression 

model for the relationship between 1C-value and stomata guard cell length. They estimated 

1C-value for members of Sphenophyllales (Sphenophyllum) and Calamitaceae 

(Calamocladus) as well as Equisetum haukeanum. For this analysis we took the values for 

Sphenophyllales and Calamitaceae to be representative of each lineage. We used the linear 

model (y = 1.83x + -5.46) to convert the logged guard cell widths of other fossil Equisetum 

and to a logged 1C-value [14-16, 54, 55]. In total, 21 1C-values were obtained 

(Supplementary Table 1) and were analysed as continuous characters in BayesTraits v.3 [56] 

using a homogeneous continuous random walk model and the ancestral 1C-values were 

estimated at internal nodes. The MCMC was run for 15,000,000 generations, with the first 

10,000,000 generations discarded as burn-in.   

 

3. Results 

(a) Transcriptomic Analyses Reveal Triassic and Carboniferous WGD Events 

The distribution of Ks values in E. hyemale and E. diffusum exhibit at least 3 conspicuous 

peaks: one close to 0.1 representing recent duplicates, another with a mean close to 1, and 

third more ancient peak close to 2 (Fig 1). Mixture modelling supported 4 components, but 

the fourth component had a low mean weight (Fig 1, Supplementary Fig S1). Coincidence of 

these peaks suggests that the WGD event initially identified in E. giganteum is shared 

between both subgenera, though Ks values >2 are increasingly unreliable predictors of WGD 

[57]. 

 ALE analysis revealed rates of duplication that were generally higher on terminal 

branches (likely due to recent local duplication events) and some of the long branches 

included in the study. Among all branches, however, ALE provided strong support for a 

duplication event on the branch leading to Equisetum (Supplementary Fig S2). 240 gene 

families were selected from the ALE output that showed a clear signal of the duplication 
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event. Molecular clock analyses of these gene families supported two clear clusters of ages 

(Fig 2). For each cluster, we found 52 and 51 corresponding gene families that were 

concatenated to form alignments of 21,894 and 19,360 amino acids. These analyses 

suggested a first duplication within the interval 329-307 Ma (Serpukhovian-Moscovian: mid-

late Carboniferous) and a second within 253-233 Ma (Changhsingian-Carnian: latest Permian 

to Late Triassic) (Fig 3).  

 We identified a further 14 gene families with a clear signal of two successive 

duplications with all 4 paralogs retained. The two successive duplications were estimated to 

360-322 Ma (Fammenian-Bashkirian: latest Devonian to mid Carboniferous) and 261-211 

Ma (Capitanian-Norian: late Permian to Late Triassic; Supplementary Fig S3). 

 

(b) An Evolutionary Framework: Triassic-Jurassic origin of total-group Equisetum 

Analysis of the combined molecular and morphological dataset partially resolved the 

backbone phylogeny of Equisetales (Fig 4). Monophyly of Equisetales is strongly supported, 

with Neocalamitaceae as sister to all remaining Equisetaceae, but there is only weak support 

for Neocalamitaceae. As with [17], we resolve Equisetites arenaceus and Spaciinodum 

collinsonii as sister to the total group Equisetum.  

Relationships within Equisetum are poorly resolved; the two subgenera (Equisetum 

and Hippochaete) are well supported, as are the positions of E. clarnoi and E. fluviatoides 

within each, respectively. The relationships of the outgroups are also poorly resolved, 

including the order of divergence of Archaeocalamitaceae and Calamitaceae, although as we 

confirm that Equisetaceae did not originate from within Calamitaceae.  

We estimate a Devonian origin of both sphenopsids and ferns. Sphenophyllales and 

Equisetales diverged during the Carboniferous along with most of the extinct lineages of 

Equisetales, including the Archaeocalamitaceae and Calamitaceae. Equisetaceae and 

Neocalamitaceae diverged during the Permian. We report a Triassic-Jurassic origin of total 

group Equisetum, but a Cretaceous origin of the crown-group, with both extant subgenera 

originating during the Palaeogene (Supplementary Fig S4).  

 

(c) High Rates of Phenotypic Evolution at The Origin of Major Clades 

Rates of phenotypic evolution are heterogeneous across the tree (Fig 4). The origin of major 

lineages is marked by the fastest rates of phenotypic evolution, including Equisetales, 

Equisetaceae and Hippochaete (Fig 4). Generally, phenotypic evolution is much greater 

between higher-order lineages than within them, with slow rates observed within 
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Equiseteceae and most lineages within Calamitaceae, except the branch leading to 

Cruciaetheca.   

 High rates of phenotypic evolution correspond to large distances in morphospace (Fig 

5a). Major lineages cluster tightly within morphospace across both axes, though on the 

individual axes there is considerable overlap. The proportion of total disparity represented by 

extant taxa is low (Fig 5b) and disparity through time analyses show that modern levels of 

disparity are a small fraction of a Carboniferous acme (Fig 5c). Mean disparity, measured as 

the average Euclidean pairwise distance between taxa, is lower in Equisetaceae (0.195) than 

Calamitaceae (0.381), but they do occupy a novel region of morphospace.  

 

(d) Genome Duplication and Genome Size  

Reconstruction of ancestral genome size within Sphenopsida reveals that the largest genome 

sizes are found within extant Equisetum (mean ancestral 1C-value = 17.09pg), in particular 

the subgenus Hippochaete (ancestral 1C-value = 20.9pg) (Fig 6). Across nodes, we observed 

three large increases in genome size: from the base of Equisetum to Hippochaete (17.6pg to 

20.9pg), from the base of Equisetales to total group Equisetum (3.9pg to 11.01pg), and from 

total group to crown group Equisetum (11.01 to 17.6pg) (Fig 6).  

 

4. Discussion  

(a) Duplication and Evolution in Equisetum 

The WGD shared by extant Equisetum was previously proposed as one of several WGD 

events that coincide with the K-Pg boundary [2, 10]. The significance of this clustering of 

events has been explored from various angles: that WGD confers an ‘extinction resistance’, 

that WGD may have provided a means of rapid adaptation amidst ecological disturbance, that 

WGD may be a response to environmental stresses, and that WGD itself might just be a non-

selective consequence [58] of a switch to vegetative reproduction often associated with 

polyploidy [2, 59, 60]. The new age estimates presented here render these hypotheses 

unlikely given that the WGDs predate the K-Pg mass extinction by hundreds of millions of 

years. Indeed, we find no evidence of beneficial evolutionary consequences of WGD in 

Equisetum, suggesting that these events do not universally precipitate changes on the 

macroevolutionary scale across the tree of life.  

Our analyses supported multiple bursts of gene duplication throughout the evolution 

of the Equisetum lineage. Their interpretation as WGD events can be difficult [61], yet their 

clustering within time and the repeated history of WGD across land plants suggests that there 
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is a high probability that they represent WGD events. Though congruent with the findings of 

Vanneste et al. [10], we have better resolved the phylogenetic position of these putative 

WGD events and find that they are likely shared by both subgenera of Equisetum (Fig 1). 

However, the WGD event proposed by Vanneste et al. [10] to have occurred in E. giganteum 

was known only from a single transcriptome and the geological age was difficult to constrain 

using both phylogenomic and Ks methods. Indeed, ages inferred directly from Ks 

distributions can be inaccurate due to sequence saturation and the assumption of a strict clock 

[57, 62].  

Using phylogenomic and molecular clock methods, we estimated both events to have 

occurred long before the K-Pg boundary. Rather, these WGD events are among the most 

ancient detected in land plants, occurring within the latest Devonian-mid Carboniferous and 

late Permian-Late Triassic, respectively (Fig 3). This estimate is comparable in precision to 

recent estimates for other WGD events associated with the K-Pg boundary [63] and serves to 

highlight the power of these methods to constrain the timing of the event to within 20 million 

years, along one of the most isolated branches within living land plants. The discrepancy in 

age for the Equisetum WGD events reported here and by Vanneste et al. [10] may be due to 

the initial paucity of transcriptomic data representative of the lineage and highlights the 

benefits of increased taxonomic sampling and the value of concatenation in estimating the 

timing of WGD events [1]. 

 We reconstructed the evolutionary history of Equisetales using a combination of 

molecular and phenotype data in a Bayesian framework (Fig 4). Broadly, the relationships 

resolved are congruent with previous parsimony-based results [17], though the species 

relationships are less well resolved. The lack of resolution in the phylogeny here may be the 

consequence of the previously-used parsimony methods producing more highly-resolved, but 

less accurate trees compared to Bayesian analyses of morphological data [64, 65]. 

Nevertheless, our results corroborate the distinction between the Calamitaceae and 

Equisetaceae and the hypothesis that both lineages have evolved independently since the 

Carboniferous (Fig 4).  

Crucially, these analyses provide a framework in which WGD can be considered in 

light of both extant and extinct diversity. We have shown that the more ancient WGD event 

took place prior to the divergence of Equisetaceae and Neocalamitaceae, and the more recent 

WGD event appears to coincide with the origin of Equisetaceae, either prior to, or after the 

divergence of Spaciinodum. As well as a establishing a more precise estimate for the timing 
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of WGD, our analyses place WGD within the context of the gross historical diversity of the 

lineage, rather than merely the net diversity that has survived to the present. This represents a 

novel approach to understanding the role of WGD in land plant evolution that is likely to be 

key to more thoroughly testing existing hypotheses, such as the proposed link between WGD 

events and the K-Pg mass extinction event in angiosperm evolution. 

 

(b) Evolutionary consequences of WGD in a non-angiosperm lineage 

The ancient timing of the Equisetum WGD events could be interpreted to strengthen the 

hypothesis that WGD has facilitated the longevity of the lineage [10]. The tentative 

hypothesis that the Equisetum WGD event conferred extinction resistance across the K-Pg 

seems unlikely given our estimates for the timing of the WGD events, and current hypotheses 

linking WGD to success emphasize only short-term advantages. Furthermore, our analyses 

have shown that many polyploid taxa descended from the WGD events are now extinct. 

 WGD events have also been implicated as drivers of phenotypic variance within the 

plant kingdom. Multiple models and a few examples demonstrate how novel traits have 

arisen in the wake of WGD that have been maintained and diversified on a 

macroevolutionary scale [12, 66]. The precise estimates that we have obtained for the timing 

of the WGD events allow us to constrain them within tight bounds on the species phylogeny 

and to consider their impact within the context of subsequent phenotypic evolution. The 

evolution of Equisetales is generally associated with relative stability and few character state 

changes, yet the first WGD event coincides with higher rates of phenotypic evolution (Fig 4) 

and each WGD event also coincides topologically with a movement into a novel area of 

morphospace (Fig 5a).  

 However, extant Equisetum and the fossil taxa that descended from the WGD event 

represent only a fraction of the phenotypic diversity of Equisetales (Fig 5b). In addition, both 

Equisetales and Calamitaceae exhibit fast early rates of phenotypic evolution (Fig 4); 

Calamitaceae also achieved greater disparity (Fig 3a). Indeed, while WGD may have played a 

role in promoting phenotypic novelty, it has not been sufficient to sustain disparity over time 

(Fig 3c). Based on previously identified synapomorphies [17], the first WGD event coincides 

with the evolution of lacunae (vallecular canals), the loss of internode differentiation, 

alternating sporangiophore shields, an increase in sporangium numbers and, possibly, the 

expression of all three reproductive regulatory modules [17]. The second WGD also 

coincides with a number of synapomorphies, including alternating ribs, leaf tips, and a 

reduction in the length of reproductive structures [17]. Throughout the evolutionary history of 
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Equisetales, the accumulation and transformation of characters associated with the extant 

taxa is gradual and many of the distinguishing features, including a compacted strobilus and 

small size, have evolved slowly and in a mosaic pattern over several nodes [17, 67, 68]. This 

suggests that while WGD may have had a role in promoting the diversity of the Equisetaceae, 

it was not a prerequisite to the evolution of disparity within Equisetales.  

 

(c) Genome size correlates with WGD in Equisetum 

Genome size evolution within Equisetales shows that the inferred WGD events may 

also correlate with an increase in ancestral genome size (Fig 6). This is in some ways 

surprising since the signal of genome duplication in genome size estimates rapidly erodes 

across most plant genomes [69, 70]. However, there is also a more recent shift towards much 

larger genomes that does not appear to be associated with a WGD event (Fig 6). As there are 

no extant members of Calamitaceae it is not possible to rule out the possibility that they may 

have undergone their own independent WGD event. However, the small genome size inferred 

for Calamitaceae [54] and relative stasis of fern genome evolution means that we may 

speculate that there may have been no further WGD events in this lineage [71]. Multiple 

WGD events may in part explain the fixed high chromosome numbers shared among extant 

species of Equisetum [71], yet does not appear to explain the distribution of genome sizes 

between the two extant subgenera.  

Clearly, to elucidate a macroevolutionary role for WGD in land plant evolution, it is 

insufficient to consider only extant taxa. Equisetum is a good example, since its extant 

diversity is a poor representation of the taxonomic and phenotypic diversity that existed 

historically within Sphenopsida. Here, we suggest that a combination of palaeontological and 

genomic approaches provides additional power and greater insight when considering the 

impact of ancient or ‘palaeo’-polyploidy.  

 

5. Conclusions 

It is generally accepted that WGD events are agents of macroevolutionary change. Here, we 

have shown that a combination of macroevolutionary and comparative genomic approaches 

can be used to improve estimates of the timing and characterise outcomes of WGD. In 

Equisetum, WGD did not coincide with the K-Pg boundary, nor does it appear to have 

facilitated greater resistance to extinction. Rather, while WGD in Equisetum appears to 

correlate with the occupation of novel regions of morphospace, it has not led to significant 

morphological diversification. The formative role of WGD in the evolutionary history of 
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many angiosperm lineages is generally accepted, yet its role remains to be explored in many 

other plant lineages where rates of WGD are expected to be high. It is possible that differing 

genome dynamics may determine equally different roles for WGD in macroevolution. 
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Figure 1. Node-averaged rates of synonymous substitution (Ks) between paralogous pairs for 

A) Equisetum diffusum and B) Equisetum hyemale. Components among the distributions 

were fitted using the function gmm() in the wgd pipeline.  

 

Figure 2. A histogram showing the combined posterior distribution of ages for the 

duplication node among 240 gene families containing the signal of a gene duplication event 

in Equisetum. Two clusters are defined using mixture models.   

 

Figure 3. Inferred age of the whole genome duplication (WGD) event in Equisetum. Multi-

copy gene families were concatenated to inform a molecular clock analysis for each putative 
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WGD event. The 95% HPD is shown for each speciation node in blue, with the duplication 

events in red.  

 

Figure 4. Total evidence phylogeny of extinct and extant Equisetales. The tree was 

constructed using Bayesian analysis of phenotypic and molecular data with the ages of the 

fossils as tip calibrations and nodes calibrated using estimates from the molecular analysis.  

Rates of phenotypic evolution (low rates in blue, high rates in red) are from the mean 

effective branch rates from a posterior sample of 1000 trees estimated morphological data 

alone. High rates are shown in text next to branches. The position of each putative WGD is 

shown on the tree. 

 

Figure 5. Phenotypic evolution within the Equisetales. A) An empirical phylomorphospace 

showing the distribution of disparity within the order. The distances between taxa were 

calculated using Gower’s index and ordinated using non-metric multidimensional scaling 

(NMDS). Character states for all ancestral nodes were reconstructed and were projected into 

the morphospace with the tree. Convex hulls were fitted around each lineage. Colours 

correspond to different lineages. B) The comparative morphospace occupation of extant and 

fossil Equisetales. C) The evolution of disparity (Sum Of Variances) through time estimated 

from the distance matrix. 

 

Figure 6. The reconstruction of ancestral genome size across the Equisetales. The genome 

size was reconstructed based on both extant and fossil 1C-value estimates. The reconstructed 

size is shown at each node, with the width of the circle proportional to the 1C-value. The 

middle circle represents the mean estimate, while the small and large circles represent the 

lower and upper 95% HPD values, respectively. Branches are coloured to show the evolution 

of large (red) and small (blue) genome sizes. 
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Table 1. Node calibrations employed in the estimation of species divergence and genome duplication ages. The 
calibration on the divergence of Hippochaeta + Equisetum was cross-calibrated in the dating of the genome 
duplication event. 

Node Calibration Distribution Ref 
Tracheophyta 420.7 Ma – 451 Ma. Uniform Morris et al. 
Monilophyta 384.706 Ma – 451 Ma Uniform Morris et al. 

Marratiopsida  318.71 Ma – 451 Ma Uniform Morris et al 
Polypodiopsida 315.1 Ma Truncated Cauchy Clark & Donoghue 

Hippochaete + Equisetum 64.96 – 451Ma Uniform See supplementary text 
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0.99
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0.95
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0.57

0.79

0.98

0.64

0.81

0.7

0.88
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Table S1. Taxa sampled for the total evidence and morphospace analyses. Where available, 1C-values are provided as used in the ancestral reconstruction of 
genome size. 

Taxon Age C-value Taxon Age C-value 

Equisetum arvense - 14.65 Neocalamites sp. 273-259 - 
Equisetum bogotense - 20.65 Neocalamites arrondei 240-210 - 
Equisetum sylvaticum - 12.89 Paracalamitina striata 283-268 - 

Equisetum ramosissimum - 28.2 Cruciaetheca patagonica 295-284 - 
Equisetum scirpoides - 21.25 Cruciaetheca feruglioi 295-284 - 
Equisetum pratense - - Weissistachys kentuckiensis 315-307 - 
Equisetum hyemale - 26.3 Mazostachys pendulata 315-307 - 
Equisetum diffusum - - Pendulostachys cingulariformis 307-299 - 

Equisetum giganteum - 26.14 Palaeostachya decacnema 305-299 - 
Equisetum laevigatum - 25.7 Palaeostachya andrewsi 315-307 - 

Equisetum myriochaetum - 25.65 Calamostachys casheana 315-307 1.99 * 
Equisetum fluviatile - 13.5 Calamostachys binneyana 323-307 - 
Equisetum palustre - 14.25 Calamostachys americana 307-299 - 

Equisetum variegatum - 30.35 Calamostachys inversibractis 315-307 - 
Equisetum telmateia - - Calamocarpon insignis 323-299 - 

Equisetum vancouverense 136-133 - Peltotheca furcata 295-284 - 
Equisetum fluviatoides 66-59 - Protocalamostachys arranensis 350-335 - 
Equisetum haukeanum 136-133 6.85 Protocalamostachys farringtoni 350-340 - 

Equisetum thermale 166 -157 6.08 Rotafolia songziensis 372-359 - 
Equisetum lyelli 145-140 - Hamatophyton verticillatum 372-359 - 

Equisetum laterale 199-164 26.07 Bowmanites moorei 315-307 1.99 * 
Equisetum clarnoi 41-38 20.04 Bowmanites dawsonii 323-315 - 

Equisetum dimorphum 190-180 10.44 Ophioglossum reticulatum - 63 
Equisetites arenaceus 242-227 - Psilotum nudum - 72.68 
Spaciinodum collinsii 247-242 -    

 
 
*Proxy values – a single representative was chosen of the Calamitaceae and Sphenophyllales and by proxy they were given the estimated values of 
Bowmanites and Sphenophyllum, respectively  




