
Peer reviewed version
License (if available):
CC BY-NC
Link to published version (if available):
10.1136/bmjspcare-2019-001902

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ Publishing Group at http://dx.doi.org/10.1136/bmjspcare-2019-001902. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Inclusion of Older Patients with Cancer in Randomized Controlled Trials with Patient-Reported Outcomes: a Systematic Review

Francesco Sparano¹, Neil K. Aaronson², Mirjam Sprangers³, Peter Fayers⁴, Andrea Pusic⁵, Jacobien M. Kieffer², Francesco Cottone¹, Jonathan Rees⁶, Mike Pezold⁷, Amelie Anota⁸,⁹, Emilie Charton⁸, Marco Vignetti¹, Chonghua Wan¹⁰, Jane Blazeby⁶, Fabio Efficace¹

¹Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy.
²Department of Psychosocial Research, Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, The Netherlands.
³Department of Medical Psychology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
⁴Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK.
⁵Department of Surgery, Harvard University, Boston, Massachusetts.
⁶Bristol Centre for Surgical Research, Population Health Sciences, University of Bristol, Bristol, UK.
⁷Division of Vascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, New York.
⁸Methodology and Quality of Life Unit in Oncology Unit (INSERM UMR 1098), University Hospital of Besançon, Besançon, France.
⁹French National Platform Quality of Life and Cancer, Besançon, France.
¹⁰Guangdong Medical University, School of humanities and management, Research Center for Quality of Life and Applied Psychology, Dongguan, PR China.

Corresponding author:
Francesco Sparano, MSc
Health Outcomes Research Unit
Italian Group for Adult Hematologic Diseases (GIMEMA)
GIMEMA Data Center
Phone: +39 06 441639837; E-mail: f.sparano@gimema.it

Word count: 2967
Abstract

Objectives

Inclusion of patient-reported outcomes (PROs) in cancer randomized controlled trials (RCTs) may be particularly important for older patients. The objectives of this systematic review were to quantify the frequency with which older patients are included in RCTs with PROs and to evaluate the quality of PRO reporting in those trials.

Methods

All RCTs with PRO endpoints, published between January 2004 to February 2019, which included a patient sample with a mean/median age \geq70 years, were considered for this systematic review. The following cancer malignancies were considered: breast, colorectal, lung, prostate, gynaecological, and bladder cancer.

Quality of PRO reporting was evaluated using the International Society for Quality of Life Research (ISOQOL)-PRO standards. Studies meeting at least two-thirds of these criteria were considered to have high quality PRO reporting.

Results

Of 649 RCTs identified with a PRO endpoint, only 72 (11.1%) included older patients. Of these, 35 trials (48.6%) were conducted in patients with metastatic/advanced disease. PROs were primary endpoints in 20 RCTs (27.8%). Overall survival (OS) was the most frequently reported clinical outcome in studies with metastatic/advanced cancer patients (n=28, 80%). One-third of the RCTs (n=24, 33.3%) were considered to have high quality PRO reporting. Overall, the largest prevalence of RCTs with high quality PRO reporting was observed in prostate and colorectal cancer.

Conclusions

Our review indicates that, not only PRO-RCT based studies in oncology rarely include older patients, but also that completeness of PRO reporting of many of them is often suboptimal.

Key words: older patients, patient-reported outcomes, quality of life, survival, cancer, randomized-controlled trials
INTRODUCTION

Due to the aging of the society, the number of older persons is projected to more than double worldwide, rising from 962 million in 2017 to 2.1 billion in 2050 [1]. As cancer incidence increases with age, the number of older patients diagnosed with cancer is expected to increase over the next decades [2, 3]. Currently, 53.4% of new cancer cases in the US are diagnosed in people aged 65 or over, and the median age at cancer diagnosis is 66 years [4]. However, despite the high incidence of cancer in older people, these patients are frequently underrepresented in clinical trials evaluating new cancer treatments [5-8].

Low recruitment of older patients in cancer clinical trials often reflects age-related exclusion criteria such as comorbidity, reduced life expectancy, polypharmacy and its interaction with chemotherapy [9-11]. Additionally, there is concern that disease symptoms and treatment toxicities may have a greater impact on the health-related quality of life (HRQOL) of older patients, limiting their functional independence and ability to carry out daily activities [12, 13]. Thus, when older patients are included in clinical trials, it becomes particularly important to assess outcomes such as physical, role and social functioning, and HRQOL [14], alongside the more traditional survival outcomes [2, 12].

Compared to younger patients, older people tend to weigh HRQOL as being more important than duration of life when making treatment decisions [15]. However, some earlier research has suggested that HRQOL and other patient-reported outcomes (PROs) are rarely included in the design of randomized controlled trials (RCTs) that involved older patients with cancer [16]. Also, previous reviews have shown that, regardless of the specific cancer populations enrolled, RCTs with a PRO endpoint are frequently poorly reported, thereby limiting availability of high quality data that can robustly inform patient care [17-19].
The main objectives of this review were to quantify the frequency with which older patients are included in cancer RCTs with PROs as primary or secondary endpoints and to evaluate the quality of the PRO results generated in those studies. The secondary objective was to summarize outcomes from the higher quality PRO studies.
MATERIALS AND METHODS

Criteria for trial inclusion

The analysis reported here was based on data collected in the Patient-Reported Outcomes Measurements Over Time In ONcology (PROMOTION) Registry (http://promotion.gimema.it) [20]. This registry includes a wide range of information mainly covering PRO assessment methodology, statistical analysis and outcomes from published cancer RCTs reports. Also, to maximize data quality, detailed information from each RCT is extracted by two independent reviewers and, in case of disagreement, a third senior reviewer is consulted for the final decision. If an RCT generates multiple publications (e.g. a primary paper on clinical outcomes and a secondary paper on PROs), information from all related papers are considered. Data are collected and stored into a password-protected online platform: REDCap system [21]. The studies included in this registry are identified using systematic literature searches with PubMed/Medline, the Cochrane library, PsycINFO and PsycARTICLES. Additional studies are identified through hand-searching of the literature and references of publications are checked to find relevant studies for inclusion. Details on search strategies used for each cancer site considered in this review are reported in the Appendix A. RTCs published since January 2004 which enrolled at least 50 patients (combined arms) and employed at least one PRO measure are included in this registry. Studies published since 2004 are included as the quality of PRO reporting in RCTs was broadly known for the main cancer disease sites before that date [22]. Studies comparing conventional medical treatments (e.g. surgery, chemotherapy, radiotherapy or targeted therapies) are included. Studies on prevention and screening programs, psychological interventions or complementary or alternative medicine are excluded. Only English articles are considered while case reports and conference abstracts are excluded.
Data collection

For the purpose of this review, we first selected from the registry all RCTs published up to February 2019 in breast, colorectal, lung, prostate, gynaecological, and bladder cancer. These are the cancer sites with the highest incidence in the European Union in 2018 [23]. We then included only those RCTs whose patients had a mean or median age of at least 70 years. When the mean/median age was not available for the overall sample, but reported for individual treatment arms, we included those RCTs with mean/median age per study arm of at least 70 years. We chose this age threshold as it is commonly used as a chronological landmark in oncology clinical trials [13, 24]. Two reviewers were involved in screening the RCTs included for current analysis.

Type of information considered

Data considered from each RCT, for the purpose of this analysis, were: basic trial characteristics; information about clinical and PRO endpoints; information about difference in overall survival (OS); and the quality of the PRO reporting, based on the International Society for Quality of Life Research (ISOQOL)-PRO checklist [25] and the Consolidated Standards of Reporting in Trials (CONSORT)-PRO extension [26] (see below for more detail). Clinical endpoints classification was based on the categories used by Hamaker and colleagues [16]: OS, progression-free survival (PFS), toxicity, efficacy, health care utilization, biological parameters, and completion of treatment (Appendix B). Disease stage was classified according to the following four categories: only metastatic/advanced cancer patients, only non-metastatic/local cancer patients, both and unclear. If trials included patients of both...
metastatic/advanced and non-metastatic/local cancer patients, when possible this was reclassified in either categories according to the most represented patient population.

Assessment of the quality of PRO reporting

We evaluated the quality of the PRO reporting using previously defined criteria [27, 28] based on the ISOQOL consensus-based recommendations for reporting PRO in publications of RCTs [25]. This represents one of the most widely endorsed set of guidelines that formed the basis for the CONSORT-PRO extension [26]. Briefly, the ISOQOL checklist consists of a set up to 28 issues that should be reported (in case PRO is a primary endpoint).

We defined an RCT as being of high quality, regarding the PRO assessment, if at least two-thirds of the ISOQOL checklist criteria were met. Further details on criteria definition have been previously reported [27, 28]. All analyses were performed with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).
RESULTS

A total of 950 papers were identified which referred to 649 unique RCTs published in breast, colorectal, lung, prostate, gynaecological, and bladder cancer. Of these, 577 did not meet our age cut-off criteria and the remaining 72 RCTs (11.1%) were included in our analysis.

Overview of study characteristics

Of the 72 RCTs identified, 39 (54.1%) were conducted in prostate cancer, 13 (18.1%) in lung cancer, 10 (13.9%) in colorectal cancer, 5 (6.9%) in breast cancer, 4 (5.6%) in bladder cancer, and 1 (1.4%) in gynaecological cancers. In total, thirty-five trials (48.6%) were conducted in patients with metastatic/advanced disease. The majority of lung (n=10, 76.9%), colorectal (n=5, 50%) and prostate (n=19, 48.7%) studies enrolled metastatic/advanced cancer patients, while the majority of breast (n=4, 80%) and all the bladder (n=4, 100%) studies enrolled non-metastatic/local cancer patients.

Twenty-one RCTs (29.2%) published a secondary paper reporting additional PRO data. In 19 of these RCTs, PROs were included as secondary endpoints, and the average time between publication of the PRO paper and the primary trial publication was 23.4 months (range 0 to 50 months). PROs were a primary endpoint in 20 RCTs (27.8%) and a secondary endpoint in 52 RCTs (72.2%) (Table 1).
Table 1. General characteristics of cancer RCTs including elderly patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Total (n. 72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>International (if more than one country)</td>
<td>No</td>
<td>48 (66.7)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>24 (33.3)</td>
</tr>
<tr>
<td>Industry supported (fully or in part)</td>
<td>No</td>
<td>35 (48.6)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>37 (51.4)</td>
</tr>
<tr>
<td>Disease stage</td>
<td>Only metastatic/advanced</td>
<td>35 (48.6)</td>
</tr>
<tr>
<td></td>
<td>Only non-metastatic/local</td>
<td>27 (37.5)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>8 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Unclear</td>
<td>2 (2.8)</td>
</tr>
<tr>
<td>Overall study sample size</td>
<td>≤200</td>
<td>33 (45.8)</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>39 (54.2)</td>
</tr>
<tr>
<td>Secondary paper on PRO</td>
<td>No</td>
<td>51 (70.8)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>21 (29.2)</td>
</tr>
<tr>
<td>Year of publication</td>
<td>2004-2010</td>
<td>37 (51.4)</td>
</tr>
<tr>
<td></td>
<td>2011-2019</td>
<td>35 (48.6)</td>
</tr>
<tr>
<td>Type of treatment used*</td>
<td>Radiotherapy</td>
<td>11 (15.3)</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
<td>8 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Chemotherapy</td>
<td>26 (36.1)</td>
</tr>
<tr>
<td></td>
<td>Targeted therapy</td>
<td>9 (12.5)</td>
</tr>
<tr>
<td></td>
<td>Hormonal therapy</td>
<td>26 (36.1)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>14 (19.4)</td>
</tr>
<tr>
<td>PRO endpoint</td>
<td>Primary</td>
<td>20 (27.8)</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>52 (72.2)</td>
</tr>
</tbody>
</table>

PRO = patient-reported outcomes; RCT = Randomized Controlled Trial

*More than one option could be chosen
Type of endpoints in RCTs in non-metastatic/local disease

Among the RCTs in patients with non-metastatic/local disease (n=27), PROs were a primary endpoint in 9 RCTs (33.3%) and a secondary endpoint in 18 (66.7%). Toxicity was evaluated in more than a half of the trials (n=15, 55.6%), while survival endpoints were less frequently used: OS was an endpoint in 14 RCTs (51.9%) and PFS in 13 RCTs (48.2%) (Table 2).

Type of endpoints in RCTs in metastatic/advanced disease

Among the studies conducted in patients with metastatic/advanced disease (n=35), PROs were a primary endpoint in 8 RCTs (22.9%) and a secondary endpoint in 27 RCTs (77.1%). In these 35 RCTs, OS was the most frequently reported (n=28, 80%), followed by PFS (n=26, 74.3%), toxicity (n=24, 68.6%), and efficacy (n=21, 60%). (Table 2).

Table 2. Study outcomes of RCTs with metastatic/advanced and non-metastatic/local cancer patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category†</th>
<th>Metastatic/advanced (n=35)</th>
<th>Non-metastatic/local (n=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical endpoint/s of the study*</td>
<td>Overall survival</td>
<td>28 (80%)</td>
<td>14 (51.9%)</td>
</tr>
<tr>
<td></td>
<td>Progression-free survival</td>
<td>26 (74.3%)</td>
<td>13 (48.2%)</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td>24 (68.6%)</td>
<td>15 (55.6%)</td>
</tr>
<tr>
<td></td>
<td>Efficacy</td>
<td>21 (60%)</td>
<td>8 (29.6%)</td>
</tr>
<tr>
<td></td>
<td>Biological parameters</td>
<td>1 (2.9%)</td>
<td>2 (7.4%)</td>
</tr>
<tr>
<td></td>
<td>Completion of treatment</td>
<td>2 (5.7%)</td>
<td>1 (3.7%)</td>
</tr>
<tr>
<td></td>
<td>Healthcare utilization</td>
<td>0 (0%)</td>
<td>4 (14.8%)</td>
</tr>
</tbody>
</table>

*More than one option could be chosen

†Study outcomes categories were based on classification by Hamaker et al, Ann Oncol 25:675-681, 2014.

Overview of the methodological quality of PRO reporting

Twenty-four of the 72 studies (33.3%) were evaluated to have high quality PRO reporting (see full list of references in the Appendix C). Of these, 13 (54.2%) were conducted in
metastatic/advanced disease cancer patients. Overall, the largest prevalence of RCTs with high quality PRO reporting was observed in prostate (n=18/39, 48.7%) and colorectal (n=4/10, 40%) cancer.

Summary of outcomes from higher quality PRO studies in non-metastatic/local disease

Of the non-metastatic/local disease RCTs with higher quality PRO reporting (n=11), four (36.4%) had a PRO as primary endpoint and seven (63.6%) as secondary endpoint. The number of patients enrolled in these trials ranged from 98 to 1532. In four trials (36.4%), PROs favoured the experimental arm and in five trials (45.5%) PROs did not differ between arms. OS was an endpoint in five trials (45.5%). In three of these trials, OS did not differ between study arms, and in one trial OS was better in the experimental arm. In three trials, there were no significant differences observed between treatment arms in either OS or PROs. In one trial, OS did not differ while PROs (role and social functioning) favoured the experimental arm. Another study reported improvement in OS in the experimental group (immediate androgen-deprivation therapy), but PROs (sexual activity, hormone-treatment-related symptoms, hot flushes, and breast symptoms) favoured the control group (delayed therapy). More details are reported in table 3.
Table 3. Summary of outcomes from higher quality PRO studies in non-metastatic/local disease

<table>
<thead>
<tr>
<th>Authors*</th>
<th>Disease</th>
<th>Age of patients (years)</th>
<th>N° patients enrolled**</th>
<th>Treatments being compared</th>
<th>Primary endpoint</th>
<th>Results of the primary clinical endpoint†</th>
<th>Overall survival difference</th>
<th>Main PRO findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescott RJ et al. 2007 Williams LI et al. 2011</td>
<td>Breast</td>
<td>Mean: 72.6</td>
<td>255</td>
<td>The standard treatment of postoperative breast irradiation versus the omission of radiotherapy</td>
<td>PRO</td>
<td>The acute morbidity recorded by clinicians showed that breast erythema was significantly more common in the radiotherapy arm, at 2 weeks from completion of treatment (p< 0.0001). At 8 and 12 months after surgery, breast oedema and telangiectasia were observed significantly more in women who had radiotherapy. At 12 months, breast retraction scores were significantly higher in the radiotherapy group (p=0.003).</td>
<td>Not applicable</td>
<td>Breast radiotherapy is tolerated well by most older breast cancer patients without impairing their overall HRQoL</td>
</tr>
<tr>
<td>Janson M et al. 2005</td>
<td>Colorectal</td>
<td>Mean (SD): 71 (10.8)</td>
<td>98</td>
<td>Colonic stenting versus emergency surgery</td>
<td>PRO</td>
<td>No difference was recorded between treatment groups in mortality, morbidity and stoma rates.</td>
<td>Not applicable</td>
<td>No differences between arms were found.</td>
</tr>
<tr>
<td>Kuhry E et al. 2004</td>
<td>Colorectal</td>
<td>Median (range): 71 (54-83)</td>
<td>1248</td>
<td>Laparoscopic versus open surgery</td>
<td>Disease-free survival</td>
<td>The combined 3-year disease-free survival for all stages was 74-2% (95% CI 70-4–78-0) in the laparoscopic group and 76-2% (72-6–79-8) in the open surgery group (p=0.70).</td>
<td>No difference between treatment arms</td>
<td>The HRQoL, as measured by the EORTC QLQ-C30, demonstrated no difference at baseline. In social function there was a statistically significant benefit of laparoscopic at the two- and four-week assessments (p=0.046 and 0.031, respectively). At the 12-week assessment, a borderline significance was found (p=0.050). In role function there was a significant benefit of laparoscopic at the two-week assessment (p=0.006)</td>
</tr>
<tr>
<td>Fernando HC et al. 2014 Fernando HC et al. 2015</td>
<td>Lung</td>
<td>Median (range): 71 (49-87)</td>
<td>222</td>
<td>Sublobar resection plus adjuvant intraoperative brachytherapy versus sublobar resection alone.</td>
<td>Time to local recurrence</td>
<td>There was no difference in time to local recurrence (HR, 1.01; 95% CI, 0.51 to 1.98; log-rank P=0.98) or in the types of local recurrence.</td>
<td>No difference between treatment arms</td>
<td>There were no significant differences between the study arms in baseline QOL scores and in percentage change of QOL scores from baseline to 3, 12, or 24 months.</td>
</tr>
<tr>
<td>Irani J et al. 2010</td>
<td>Prostate</td>
<td>Mean (SD): group A 71.3 (8.1), group B 73.0 (6.7), group C 73.6 (7.3)</td>
<td>311</td>
<td>Venlafaxine versus medroxyprogesterone acetate versus cyproterone acetate</td>
<td>PRO</td>
<td>Serious side-effects occurred in four, seven, and five patients in the venlafaxine, cyproterone, and medroxyprogesterone groups, respectively, of which none, one (dyspnoea), and one (articularia) were considered related to the drug, respectively (P not reported).</td>
<td>Not applicable</td>
<td>The change in median daily hot-flush score between randomisation and 1 month was -47.2% ([IQR -74.3 to -2.5) in the venlafaxine group, -94.5% (-100.0 to -74.5) in the cyproterone group, and -83.7% (-98.9 to -64.3) in the medroxyprogesterone group. The decrease from baseline was significant for all three groups (p<0.0001). Pairwise comparison of treatment groups adjusted by the Bonferroni method confirmed that the decreases in hot-flush score were significantly larger in the cyproterone and medroxyprogesterone groups than in the venlafaxine group, regardless of the interval considered (p<0.0001 in all cases).</td>
</tr>
<tr>
<td>Fradet Y et al. 2007</td>
<td>Prostate</td>
<td>Mean (range): 75 (47-94)</td>
<td>282</td>
<td>Oral tamoxifen (1, 2.5, 5, 10, or 20 mg/d) versus placebo</td>
<td>PRO†</td>
<td>There was no evidence of a negative effect on PSA inhibition at any assessment.</td>
<td>Not applicable</td>
<td>At 6 and 12 months, tamoxifen decreased the incidence of breast events in a dose-dependent manner, with breast events observed in 86.2%, 60.0%, 55.3%, 23.5%, and 8.8% of patients receiving tamoxifen 1, 2.5, 5, 10, and 20 mg, respectively, compared with 96.7% of patients receiving placebo at 6 months (p<0.0002 for doses >1 mg; p=0.0891 for tamoxifen 1 mg)</td>
</tr>
</tbody>
</table>
In this study PRO and PSA inhibition were co-primary endpoints.

Table 1: Overview of the Study Designs and Endpoints

| Prostate | Median (range): | Conventional-dose (70.2 Gy) radiation therapy versus dose-escalated (79.2 Gy) conformal radiation therapy | Overall survival | Conventional-dose (70.2 Gy) radiation therapy versus dose-escalated (79.2 Gy) conformal radiation therapy | Median metastasis-free survival was 40.5 months in the adjuvant apalutamide group as compared with 16.2 months in the placebo group (hazard ratio for metastasis or death, 0.28; 95% confidence interval [CI], 0.23 to 0.35; **P** < 0.001). | No difference between treatment arms | Group mean patient-reported outcome scores over time showed that HRQoL deterioration was more apparent in the placebo group. Largest-squares mean change from baseline shows that HRQOL deterioration was more apparent in the placebo group. | **Legend:** AE=adverse events; DFS= disease-free survival; EORTC=European Organisation for Research and Treatment of Cancer; FACT=Functional Alterations due to Changes in Elimination; HADS=Hospital Anxiety and Depression Scale; HRQoL=health-related quality of life; IIEF= International Index of Erectile Function; IPSS= International Prostate Symptom Score; OS=overall survival; PGCMS=Philadelphia Geriatric Center Morale Scale; PRO= patient-reported outcomes; PSA= prostate specific antigen; QLQ-BR23= Quality of life questionnaire-Breast23; QLQ-C30=Quality of life questionnaire-Core30; QLQ-CR38=Quality of life questionnaire-Colorectal38; QLQ-PR25= Quality of life questionnaire-Prostate25; QOL=quality of life; SF-36= short-form health survey; SOBQ=San Diego Shortness of Breath Questionnaire.

| Mason M et al. 2013 | Prostate | Median: 71 | 305 | Degarelix versus goserelin plus bicalutamide | Total prostate volume reduction | Total prostate volume decreased significantly from baseline to week 12 in both treatment groups (adjusted difference: -0.3%; 95% confidence interval: -4.74; 4.14%; non-inferiority established). | Not applicable | Decreases in IPSS were greater in degarelix than in goserelin-treated patients, differences being statistically significant in patients with baseline IPSS >13 (-6.7 ± 1.8 vs -4.0 ± 1.0; **P** = 0.02). The number of patients with an IPSS change of ≥3 over baseline was also significantly higher in patients treated with degarelix (61.0 vs 44.3%; **P** = 0.02). |

| Duchesne GM et al. 2017 | Prostate | Median (IQR): | 293 | Immediate androgen-deprivation therapy versus delayed therapy | Overall survival | 5-year OS was 86.4% (95% CI 78.5–91.5) in the delayed therapy arm versus 91.2% (84.2–95.2) in the immediate therapy arm (log-rank test: **P** = 0.047). | Improved in the experimental arm | Sexual activity was lower in the immediate therapy group than in the delayed group at 6 and 12 months (p = 0.0001), with the differences exceeding the clinically significant threshold of 10 points until beyond 2 years. The immediate therapy group also had more hormone-treatment-related symptoms at 6 and 12 months (p = 0.0001), but with differences below the threshold of clinical significance. For the individual symptoms, hot flushes were clinically significantly higher in the immediate group over the 5-year period (p < 0.0001), as were nipple or breast symptoms (p < 0.0001). |

| Smith MR et al. 2018 | Prostate | Median (range): | 1207 | Apalutamide plus androgen deprivation therapy versus placebo plus androgen deprivation therapy, | Metastasis-free survival | Median metastasis-free survival was 40.5 months in the apalutamide group as compared with 16.2 months in the placebo group (hazard ratio for metastasis or death, 0.28; 95% confidence interval [CI], 0.23 to 0.35; **P** < 0.001). | No difference between treatment arms | Group mean patient-reported outcome scores over time showed that HRQoL deterioration was more apparent in the placebo group. Largest-squares mean change from baseline shows that HRQOL deterioration was more apparent in the placebo group. |

Note: Full list of references are reported in the Appendix C. Overall number of patients recruited in the study regardless of those with a baseline PRO assessment; When a RCT had no primary clinical endpoint, we reported the results of the main secondary clinical endpoint; In this study PRO and PSA inhibition were co-primary endpoints.
Summary of outcomes from higher quality PRO studies in metastatic/advanced disease

Of the metastatic/advanced disease RCTs with higher quality PRO reporting (n=13), two (15.4%) had a PRO as primary endpoint and eleven (84.6%) as secondary endpoint. The trial sample sizes ranged from 82 to 3040. In eight trials (61.5%), PROs were better for the experimental arm and in four (30.8%) they did not differ between arms. OS was an endpoint in nine trials (69.2%), in seven of which (77.8%) survival was not different between arms and in only two (22.2%) improved in the experimental arm. In three of nine studies with OS as an endpoint (33.3%), both OS and PROs did not differ between arms, and in one (11.1%) both favoured the experimental arm. In one study (11.1%), OS improved in the experimental group but PROs did not differ between treatment arms, and in four RCTs (44.4%) PRO data favoured the experimental arm while no differences in OS were detected between arms. Further details are reported in table 4.
<table>
<thead>
<tr>
<th>Authors*</th>
<th>Disease</th>
<th>Age of patients (years)</th>
<th>N° patients enrolled**</th>
<th>Treatments being compared</th>
<th>Primary endpoint</th>
<th>Results of the primary clinical endpoint†</th>
<th>Overall survival difference</th>
<th>Main PRO findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price N et al. 2004</td>
<td>Colorectal</td>
<td>Mean: placebo 70.7, experimental 71.3. Median (range): placebo 73.0 (41-90), experimental 71.3 (35-89)</td>
<td>209</td>
<td>Bevacizumab plus FU/LV versus placebo plus FU/LV</td>
<td>Overall survival</td>
<td>Median OS was 16.6 months for the FU/LV/bevacizumab group and 12.9 months for the FU/LV/placebo group (hazard ratio, 0.79; P=0.16)</td>
<td>No difference between treatment arms</td>
<td>Time to deterioration in HRQoL was similar between groups as measured by the CCS and TOI-C scores, but was significantly longer in the experimental arm than in the control arm for the FACT-C total score (FACT-C total, δ ≥9; HR, 0.69; 95% CI, 0.49–0.98; P= 0.0396)</td>
</tr>
<tr>
<td>Aparicio T et al. 2017</td>
<td>Colorectal</td>
<td>Median (range): 80 (75-91)</td>
<td>282</td>
<td>FU versus FU plus irinotecan</td>
<td>Progression-free survival</td>
<td>No significant difference was observed for the median PFS: FU 5.2 months versus irinotecan 7.3 months, HR=0.84 (0.66–1.07), P=0.15.</td>
<td>No difference between treatment arms</td>
<td>The median time before deterioration in QoL (measured with VAS) was 11.9 months (95% CI: 3.6-not reached) in FU versus 17.7 months (95% CI: 10.8-22.0) in irinotecan (P=0.4). Baseline QoL evaluations were not associated with toxicity, reductions in dose-intensity, or unexpected hospitalization in multivariate analyses.</td>
</tr>
<tr>
<td>Berry DL et al. 2006</td>
<td>Prostate</td>
<td>Median (range): 70 (43-88)</td>
<td>770</td>
<td>Docetaxel plus estramustine versus mitoxantrone plus prednisone</td>
<td>Overall survival</td>
<td>Median OS was longer in docetaxel plus estramustine than in mitoxantrone plus prednisone (17.5 months vs. 15.6 months, P=0.02)</td>
<td>Improved in the experimental arm</td>
<td>There were no statistically significant differences in pain palliation between the treatment arms. The sensitivity analyses showed a consistent lack of statistically significant global QoL differences for the two arms.</td>
</tr>
<tr>
<td>Small EJ et al. 2002</td>
<td>Prostate</td>
<td>Median (range): group A 70 (64-75), group B 71 (63-75), group C 70 (63-75)</td>
<td>390</td>
<td>Suramin at a low dose (total, 3.192 g/m2), intermediate dose (total, 5.320 g/m2), or high dose (total, 7.661 g/m2)</td>
<td>Response rate</td>
<td>The objective response rate was 9%, 7%, and 15%, respectively (P=0.10); PSA response rates were 24%, 28%, and 34%, respectively (P=0.082).</td>
<td>No difference between treatment arms</td>
<td>Patients who received low-dose suramin reported improvement in QOL (FACT-General: P<0.01; FACT-Treatment Outcome Index: P=0.01) and decreased levels of depression (CES-D: P<0.0006) during treatment compared with patients in the intermediate- and high-dose arms. After treatment, all groups experienced equal decreases in FACT and CES-D scores.</td>
</tr>
<tr>
<td>Saad F et al. 2002</td>
<td>Prostate</td>
<td>Mean ± SD: group A 71.8 ± 7.9, group B 71.2 ± 8.0, group C 72.2 ± 7.9. Median: group A 72, group B 72, group C 73</td>
<td>643</td>
<td>Zoledronic acid at 4 mg, zoledronic acid at 8 mg or placebo</td>
<td>Proportion of patients having at least one skeletal-related event</td>
<td>A greater proportion of patients who received placebo had skeletal-related events than those who received zoledronic acid at 4 mg (44.2% versus 33.2%; difference = -11.0%, 95% [CI] = -20.3% to -1.8%; P=0.021) or those who received zoledronic acid at 8/4 mg (58.5%; difference versus placebo=5.8%, 95% CI=15.1% to 3.6%; P=0.22).</td>
<td>No difference between treatment arms</td>
<td>Pain scores increased more in patients who received placebo than in patients who received zoledronic acid, but there were no differences in Qol scores among the groups.</td>
</tr>
<tr>
<td>Schroder F et al. 2004</td>
<td>Prostate</td>
<td>Mean: 72. Median (range): 72 (46-95)</td>
<td>554</td>
<td>intermittent vs continuous androgen deprivation therapy</td>
<td>Time to progression</td>
<td>Median time from randomization to progression in the IAD and CAD arms was 34.5 and 30.2 months (not statistically significant)</td>
<td>No difference between treatment arms</td>
<td>Significant differences in QoL, favouring IAD emerged in activity limitation, physical capacity, and sexual functioning. IAD showed benefits in the treatment of advanced prostate cancer with respect to QoL (P not reported).</td>
</tr>
<tr>
<td>Schroder F et al. 2004</td>
<td>Prostate</td>
<td>Median (range): 71 (48.9-85.7)</td>
<td>310</td>
<td>Flutamide versus Cyproterone acetate</td>
<td>Overall survival</td>
<td>There was no significant difference between arms with respect to OS (P=0.1252)</td>
<td>No difference between treatment arms</td>
<td>No differences between groups in sexual function were found.</td>
</tr>
</tbody>
</table>

Table 4. Summary of outcomes from higher quality PRO studies in metastatic/advanced disease
Prostate Cancer

Green HJ et al. 2002
- **Prostate**: Mean, SD (range): 73.3, 6.4 (56-86)
- **PSA response rate**: 82
- **Enzalutamide versus placebo**
- **Overall survival**: Treatment with enzalutamide, as compared with placebo, resulted in an 81% reduction in the risk of radiographic progression or death (P<0.001) and in a 29% decrease in the risk of death (P<0.001)
- **Improved in the experimental arm**
- **Median time to deterioration in FACT-P total score was 11.3 months (95% CI 11.1–13.8) in the enzalutamide group and 5.6 months (5.5–5.6) in the placebo groups (p=0.0001). A significantly greater proportion of patients in the enzalutamide group than in the placebo group reported clinically meaningful improvements in FACT-P total score, in EQ-5D utility index and in the VAS scale.

Beer TM et al. 2014
- **Prostate**: Median (range): group A 72 (41–93), group B 71 (42–93)
- **Enzalutamide versus placebo**
- **Overall survival**: Progression-free survival
- **Median survival was 5.8 years in the continuous therapy group and 5.1 in the intermittent therapy group (HR for death with intermittent therapy, 1.10; 90% CI, 0.99 to 1.23).
- **Non-inferiority of experimental arm not demonstrated**

Hussain M et al. 2013
- **Prostate**: Median (range): 70 (39–97)
- **Enzalutamide versus bicalutamide**
- **Overall survival**: Progression-free survival
- **Median survival**: Overall survival is not yet available.
- **Not applicable**

Langley RE et al. 2013
- **Prostate**: Median (range, IQR): group A 75 (56-92, 69–80), group B 73 (49-90, 69–78)
- **tE2 or LHRHa**
- **Overall survival**: Progression-free survival
- **Data on disease progression and survival are not yet available.
- **Not applicable**

Shore ND et al. 2016
- **Prostate**: Median (range): 71 (48–96)
- **Enzalutamide versus bicalutamide**
- **Progression-free survival**
- **Patients in the enzalutamide group had significantly improved median progression-free survival (15.7 months [95% CI 11.5–19.4]) compared with patients in the bicalutamide group (5.8 months [4.8–8.1]; hazard ratio 0.44 [95% CI 0.34–0.57]; p<0.0001)**
- **Not applicable**

Annao M et al. 2018
- **Prostate**: Median (IQR): arm A 72.9 (67.4-79.05); arm B 77.6 (69.1-83.4)
- **Abiraterone plus prednisone versus enzalutamide**
- **PSA response rate**
- **Enzalutamide achieved greater PSA responses than abiraterone, including a higher proportion of patients with PSA decline ≥ 50% from baseline within 12 weeks (75% vs. 54%, P<0.004, Fisher exact test), and a lower proportion of patients with rising PSA as best response within the first 12 weeks of therapy (9% vs. 20%, P=0.046, Fisher exact test)**
- **Not applicable**

Khalof DJ et al. 2018
- **Prostate**: Median (IQR): 72.9 (67.4-79.05); arm B 77.6 (69.1-83.4)
- **Abiraterone plus prednisone versus enzalutamide**
- **PSA response rate**
- **Enzalutamide achieved greater PSA responses than abiraterone, including a higher proportion of patients with PSA decline ≥ 50% from baseline within 12 weeks (75% vs. 54%, P<0.004, Fisher exact test), and a lower proportion of patients with rising PSA as best response within the first 12 weeks of therapy (9% vs. 20%, P=0.046, Fisher exact test)**
- **Not applicable**

Legend: AEs=adverse events; BPI=brief pain inventory; CAD=continuous androgen deprivation; CES-D=Center for Epidemiological Studies-Depression Scale; CI=confidence intervals; CSS=Colorectal Cancer Subscale; EORTC=European Organisation for Research and Treatment of Cancer; EQ-5D=EuroQoL-5D; FACT=Functional Assessment of Cancer Therapy; FU/LV=fluorouracil and leucovorin; GDS=Geriatric Depression Scale; HR=hazard ratio; HRQoL=Health-related quality of life; IAD=Intermittent androgen deprivation; LHRHa= luteinisng hormone-releasing hormone agonists; MPQ-SF=McGill Pain Questionnaire-Short Form; ORR=Overall response rate, OS=Overall Survival, PFS=Progression-free survival, PRO=Patient-reported.
outcomes, PRO= patient-reported outcomes, PSA=prostate specific antigen; QLQ-C30=Quality of life questionnaire-Core30, QLQ-PR25= Quality of life questionnaire-Prostate25; QOL=quality of life; RR=Response Rate; SREs=skeletal-related events; SWOG=Southwest Oncology Group; tE2= transdermal oestradiol; TOI=C=Trial outcome index; TTF=time to treatment failure; TTP=time to progression; VAS=Visual Analogue Scale

* Full list of references are reported in the Appendix C; ** Overall number of patients recruited in the study regardless of those with a baseline PRO assessment; † When a RCT had no primary clinical endpoint, we reported the results of the main secondary clinical endpoint
DISCUSSION

This comprehensive literature review examined publications extending over the past 15 years and found that, of 649 RCTs that included a PRO assessment, only 72 (11.1%) of the trials had a sample whose mean/median age was 70 years or greater. In only one-third of these 72 studies was the reporting of PROs considered as being of high quality. In view of the aging population and predominance of cancer in older age groups who are often not studied or precluded from trials, this study shows that more research aimed at patients aged 70 years and older meeting higher PRO methodological standards is needed.

Among the majority of higher quality PRO studies, PRO data provided novel information which complemented traditional clinical endpoints. Of the 14 higher quality PRO studies evaluating OS, the majority (n=11, 78.6%) found no significant differences between arms in survival. Of these, in almost half of the cases the PRO results favoured the experimental arm (n=5, 45.5%). For example, in a study conducted in metastatic colorectal patients with cancer, the addition of bevacizumab to fluorouracil and leucovorin was not found to provide OS benefits as compared to a placebo added to fluorouracil and leucovorin [29]. However, time to deterioration in HRQOL outcomes was significantly longer in the bevacizumab arm compared to placebo [30].

A recent US Food and Drug Administration (FDA) analysis of trials supporting registration of new cancer therapies and conducted from 2005 to 2015 found that older people, in particular those aged >75 years, were under-represented [31]. Earlier, Lewis and colleagues [5] found that only 32% of phase II and III cancer trials enrolled older patients, despite the fact that 61% of patients with incident cancers were older. Our results further
extend these data by documenting that, even among RCTs that included PROs in their trial protocol, only few focused on older cancer patient populations.

In a recent review, Marandino and colleagues [32] found that, of 446 RCTs conducted between 2012 and 2016, only 236 included a PRO endpoint. In our review we found that, in the same period, 21 RCTs with a PRO endpoint included older patients. Although it is difficult to make a direct comparison between our results and those of Marandino and colleagues [32] due to differences in the methodology used to identify the studies, our data suggest that fewer RCTs that include an evaluation of PROs are conducted in older patient populations.

In 2011, the EORTC Elderly Task Force indicated that the inclusion of HRQOL, as composite endpoint (i.e. in combination with efficacy endpoint) or primary endpoint, in clinical trials involving older people was one of its priorities [33]. Our results suggest that this recommendation has not been followed unfortunately, as the proportion of RCTs with a PRO as primary endpoint included in our review actually also declined after 2011 (36.6% in RCTs published up to 2011 versus 16.1% in RCTs published after 2011). A recent analysis of the endpoints used in on-going trials conducted in haematological malignancies found that, even in trials developed for older patients, less than one-fifth included a PRO measure [16].

Although there is no consensus on how best to evaluate HRQOL in older patients with cancer, a specific questionnaire developed by the EORTC (i.e., the EORTC QLQ-ELD14) [34] has been available since 2013, and could facilitate implementation of HRQOL in this setting. However, inspection of the US National Institute of Health (NIH) clinical trial registry (ww.clinicaltrials.gov) indicates that, among the 5192 cancer trials recruiting older patients registered from 2014 onward and currently ongoing, only 1045 (20.1%) included a
PRO measure and only 8 used a measure specifically designed for older patients, such as the EORTC QLQ-ELD14 [34].

In our systematic review we found that, not only PRO-RCT based studies do rarely include older patients with cancer but also that methodological rigorousness of many of them is often suboptimal. Indeed, in two-thirds of the studies, the minimum level of adherence to the well-established international quality standards [25] was not reached. One of the reasons for the poor methodological quality of PRO reporting might be the limited space dedicated to PROs in the primary publication, which may result in the underreporting of PRO information. Marandino and colleagues found that, even when PRO results are presented in the primary paper, space dedicated in the results section is less than 10%, and that secondary PRO papers are likely to be published 2 or 3 years after the primary publication [32]. Among the studies included in our review with a PRO as secondary endpoint, only 36.7% dedicated a secondary paper on PRO outcomes, and the average time to secondary publication was two years.

Our study has several limitations that should be noted. First, we only included trials investigating pharmacological, surgical or medical interventions, and excluded studies on prevention, psychological interventions or complementary medicine. This may have excluded some trials conducted specifically on older patients with cancer. Second, we did not perform a meta-analysis on the quantitative data obtained. However, given the heterogeneity of PRO measures used across all studies and large variability in data reporting across studies, we did not make any attempt to perform such analysis. Also, although we used a comprehensive searching strategy, it is possible that some RCTs with a PRO endpoint might have been missed. Lastly, we selected RCTs where the median or mean age was at least 70 years. This selection criterion permitted inclusion of studies that recruited patients with a wide age range, also those younger than 70 years.
Our work also has key strengths. To the best of our knowledge, we have provided the first evidence-based data, from a large sample of RCTs conducted across a wide range of solid tumors, on the frequency of inclusion of older patients with cancer in trials with a PRO endpoint. Also, evaluation of the PRO methodological quality was based on the highest quality standards endorsed by major scientific societies [25, 26]. Finally, our review covered a large time window, which extends over the last 15 years, and reported very up to date studies being published until early 2019.

In conclusion, our analysis indicates that, among cancer RCTs including PROs, the proportion of those conducted in older patients is low. Investigators should minimize barriers that may exclude older people from participating in trials, incorporate PRO outcomes that may be particularly relevant to this population and ensure that the methodology used to collect and analyse PROs meets high quality standards.
Competing Interest: None declared

Funding: this work was supported by the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA).

Authorship Contributions:

study concepts: FE, FS
study design: FE, FS
data acquisition: FE, FS
quality control of data and algorithms: FC, FE, FS
data analysis and interpretation: all authors
statistical analysis: FC, FE, FS
manuscript preparation: FE, FS
manuscript editing: all authors
manuscript review: all authors

Licence for Publication

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ Supportive and Palliative Care and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).
REFERENCES

