
Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available): 10.1016/j.epsl.2019.115947

[Link to publication record in Explore Bristol Research]

PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at https://doi.org/10.1016/j.epsl.2019.115947. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a

Markus Adloff a, *, Sarah E. Greene b, Ian J. Parkinson c, B. David A. Naafs d, c, Will Preston c, Andy Ridgwell e, a, Dan J. Lunt d, José Manuel Castro Jiménez f, Fanny M. Monteiro d

a School of Geographical Sciences, University of Bristol, University Road, BS81SS, UK
b School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B152TT, UK
c School of Earth Sciences, University of Bristol, Queen’s Road, BS81RJ, UK
d School of Chemistry, University of Bristol, Cantock’s Close, BS81TS, UK
e Department of Earth Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
f Departamento de Geología, CEACTierra, Universidad de Jaén, Campus Las Lagunillas s/n, 23207 Jaén, Spain

ARTICLE INFO

Article history:
Received 7 March 2019
Received in revised form 7 October 2019
Accepted 3 November 2019
Available online 15 November 2019
Editor: I. Halsey
Dataset link: https://github.com/derpycode/cgenie.muffin

Keywords:
Aptian
data assimilation
carbon source
osmium isotopes
volcanism

ABSTRACT

The early Aptian Oceanic Anoxic Event (OAE) 1a represents a major perturbation of the Earth’s climate system and in particular the carbon cycle, as evidenced by widespread preservation of organic matter in marine settings and a characteristic negative carbon isotopic excursion (CIE) at its onset, followed by a broad positive CIE. The contemporaneous emplacement of a large igneous province (LIP) is invoked as a trigger for OAE 1a (and OAEs in general), but this link and the ultimate source of the carbon perturbation at the onset of OAEs is still debated. In this study, we simultaneously assimilate an atmospheric pCO2 reconstruction along with a δ13C record from the Spanish Cau section in an Earth system model to obtain a novel transient reconstruction of emission rates and identify the primary carbon-emitting sources across the negative CIE interval at the onset of OAE 1a. We reconstruct carbon emissions of 4,300–29,200 Pg from a mixture of carbon sources. This estimate is a lower bound, as contemporaneous organic carbon burial is not accounted for. Carbon was first released at slow rates from a 13C-depleted reservoir (e.g. thermo- and/or biogenic methane from sill intrusions). Towards the end of the negative CIE the rate of emissions increased and they became more 13C-enriched, likely from a dominantly volcanic source (e.g. LIPs). New osmium isotope (187Os/188Os) measurements, from the same section as the pCO2 reconstruction and δ13C data, reveal a shift to less radiogenic values coinciding with the change towards mantle-derived carbon emissions as indicated by our modelling results, lending further support to our interpretation. These results highlight that geologically triggered carbon emissions were likely driving the OAE onset.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The early Aptian Oceanic Anoxic Event (OAE) 1a (~121 Ma, Oliebroek et al., 2019) represents one of the largest perturbations of the climate system during the last 200 Myr (Jenkyns, 2010). Although OAEs, including OAE 1a, were first identified in the 1970s (Schlanger and Jenkyns, 1976), it is still unclear exactly how the oceanic system evolved into such an extreme state. Increasing nutrient supply to the photic zone and, to a lesser extent, climate warming may have played a crucial role (Larson and Erba, 1999; Jenkyns, 2010; Monteiro et al., 2012), driving increased productivity and subsurface oxygen demand, and reduced oxygen solubility, respectively. The resulting reduced oceanic oxygen concentrations would have led to enhanced preservation and burial of organic matter (Jenkyns, 2010; Monteiro et al., 2012). However, the driver of this warming and increased nutrient delivery is debated.

While all OAEs are associated with a positive carbon isotopic excursion (CIE), interpreted as reflecting an interval of enhanced burial of organic matter, the onset of OAE 1a is characterized by a distinct negative CIE prior to the positive CIE (Menegatti et al., 1998). Because of the broad temporal coincidence of OAE 1a with the emplacement of the Ontong-Java Plateau, the negative CIE could have resulted from carbon input from (submarine) volcanism initiating the OAE by warming the climate and releasing nutrients to the ocean (e.g. Weissert, 1989). A phase of increased volcanism during the onset of OAE 1a (and other OAEs) is further highlighted

* Corresponding author.
E-mail address: markus.adloff@bristol.ac.uk (M. Adloff).

https://doi.org/10.1016/j.epsl.2019.115947
0012-821X © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
by the observed perturbations of the marine osmium cycle (Tejada et al., 2009; Bottini et al., 2012). However, it is not certain whether volcanic emissions could have caused the negative CIE, so destabilization of methane hydrates has been proposed as an alternative, more 13C-depleted carbon source (Beering et al., 2002; van Breugel et al., 2007; Méhay et al., 2009; Malinverno et al., 2010).

Constraining the carbon source for OAE 1A is crucial as it has implications for the mass and rate of carbon emissions and hence extent of the perturbation estimated from the carbon isotope record. The size of a negative CIE is a function of the mass of emitted carbon and its isotopic composition (e.g. Kirtland-Turner and Ridgwell, 2016), a predominantly volcanic carbon source (CO$_2$), relatively enriched in 13C compared to organic carbon sources, requires massive carbon emissions to match the negative CIE, resulting in high atmospheric CO$_2$ concentrations (e.g. 3000 ppm pCO$_2$ increase (Bauer et al., 2017)). In contrast, the estimated emissions, and hence CO$_2$ concentrations, are much lower if the carbon originated predominantly from more 13C-depleted sources (e.g. 600 ppm for methane emissions (Beering et al., 2002)).

The nature of the dominant carbon source is important to determine the role of Earth system feedbacks in triggering OAE formation in the Aptian and its sensitivity to carbon injections. For instance, predominant volcanic CO$_2$ emissions suggest OAE formation was primarily a response to external forcing while a dominant biogenic methane source would indicate a major role for feedbacks between surface carbon reservoirs and an increased sensitivity to carbon emissions. This could have broader implications for our understanding of the formation of other Mesozoic OAEs since negative CIEs are also known from OAE 1B and the Toarcian OAE, and the presence of a suppressed negative CIE before OAE 2 is discussed (Jenkyns, 2010).

Recently, a continuous pCO$_2$ proxy record across OAE 1A (Naafs et al., 2016) together with a δ^{13}C$_{\text{carb}}$ record from the same site provides an opportunity to identify the carbon source and quantify emissions rates across OAE 1A. The pCO$_2$ record, based on compound-specific and bulk δ^{13}C$_{\text{carb}}$ from the hemipelagic Tethyan Cau section, shows a gradual pCO$_2$ increase during the negative CIE starting around 800–1000 ppm and reaching maximum values of 2000 ± 1200 ppm before the recovery of the negative CIE. This estimate is within the range of previously reconstructed pCO$_2$ values during the Early Cretaceous of 200–2000 ppm (see Wang et al., 2014, for a compilation) and is between pCO$_2$ values predicted for a pure methane and a purely volcanic source. At the same time as the pCO$_2$ increase, organic proxies indicate a 2–5°C increase in local sea-surface temperature (SST) during the negative CIE (Mullerlose et al., 2014; Naafs and Pancost, 2016). Global temperature changes of this magnitude are consistent with a doubling to quadrupling of pCO$_2$, depending on assumptions about the initial pCO$_2$ and the climate sensitivity of the Early Cretaceous. At the same time, biological turn-over and carbonate platform drowning, key features of OAE 1A, have been interpreted as being the results of surface ocean acidification due to increased pCO$_2$ (Wissler et al., 2003; Erba et al., 2010). However, it is debated whether the relative timing, the amount, and the rate of emitted carbon explain the observed changes (Gibbs et al., 2011; Naafs et al., 2016).

In this study, we assimilate the observed negative CIE and reconstructed pCO$_2$ changes from the Cau section in the Earth system model cGENIE (Ridgwell et al., 2007) to constrain carbon emissions across the onset of OAE 1A and to understand their implications for the dominant carbon sources. We also assess the effect of the pCO$_2$ changes on Earth’s climate, as well as quantifying the implications of uncertainties in pCO$_2$ change estimates and duration of the OAE onset for reconstructing the carbon cycle perturbation. Finally, we compare our simulation results to a newly-generated osmium isotope record from the same section, which allows us to reconsider the relationship between the negative CIE and environmental perturbations at the onset of OAE 1A.

2. Methods

2.1. The Cau section

The studied succession belongs to the Almadich Formation, made of a cyclic succession of hemipelagic marls and marlstones of late Barremian–Aptian p.p. age (Aguado et al., 1999; Castro et al., 2008). The interval considered in this study is located in the upper part of the lower member of the Almadich Formation, of Early Aptian age (Desayesites forbesi ammonite zone, B. blowi planktonic foraminifera, see Naafs et al., 2016). The lithologies present are dominant grey marls (beds 0.5–2.5 m thick) alternating with marly limestones (beds 0.3–0.6 m thick), with two levels of dark marls (ca. 0.4 m thick) containing small pyrite nodules. The samples used for Os analyses were taken from the marly limestone levels, that have a CaCO$_2$ content between 36 and 70% wt and TOC contents ranging from <0.7 to 2.4% wt. We assume stratigraphic continuity and a constant sedimentation rate as there is no sedimentological evidence for interruption of sedimentation (hard/soft-ground or erosive surfaces). Also biostratigraphy and nanofossils associations are consistent with a continuous record, at the scale of the resolution available (Aguado et al., 1999; Naafs et al., 2016).

2.2. Model setup and experiment design

cGENIE is the carbon cycle centric version of the Grid ENabled Integrated Earth System model (GENIE), which couples a 3D ocean with a 2D zonally-averaged atmosphere (Edwards and Marsh, 2005), accounting for the biogeochemical cycles of carbon, phosphorus, sulphur, oxygen and stable carbon isotopes (Ridgwell et al., 2007). cGENIE can be run with a vertically-integrated sediment module which builds up deep sea sediments with varying CaCO$_2$ content and carbon isotopic composition, resolving for CaCO$_2$ burial and dissolution (Ridgwell and Hargreaves, 2007) and with a terrestrial weathering module (Colbourn et al., 2013) hence closing the geological carbon cycle. Its design also allows for inversion (data assimilation) experiments (e.g. Cui et al., 2011; Gutjahr et al., 2017, see below).

Here we ran the model on a 36x36 grid with 16 vertical levels in the ocean, and included modules for weathering and marine sediments by which alkalinity is added to or removed from the ocean.

In our model set-up, carbon emissions affect temperature, weathering rates, ocean solubility of gases, and ocean circulation. Wind fields are fixed and prescribed as boundary conditions and hence do not change in response to changing atmospheric CO$_2$ concentration and greenhouse warming.

We configured cGENIE for the early Aptian using paleogeography and bathymetry (see Appendix A), wind fields, and planetary albedo from the Aptian modelling setup of Domnialieu et al. (2006). Temperature effects on biogeochemical production were included, and remineralization profiles adapted to a warmer ocean (John et al., 2014). We spun up the model in a first step (20 kyr) to equilibrate to an atmospheric CO$_2$ concentration of 840 ppm (as reconstructed for the start of the negative CIE in Naafs et al. (2016) and atmospheric δ^{13}C value of −6%, which is at the upper limit of measured values of the modern atmospheric composition (Craig, 1953). Carbonate production is set up as in Ridgwell and Schmidt (2010) to represent a warm, ice-free world. We assume that organic carbon burial did not play a major role for the marine carbon cycle during the interval that we simulate here (see Discussion section), but in order to equilibrate oceanic δ^{13}C in the absence of organic carbon burial, we set the carbon isotopic composition
of the weathering flux to 6.2‰. Initial calcium ion supply from terrestrial weathering is set to 34 Pmol yr$^{-1}$, resulting in an average surface calcite saturation state (4.3) within the reconstructed range for the Early Cretaceous (Ridgwell and Zeebe, 2005). The initial oceanic nutrient inventory was set to 1.06 mmol PO$_4^{3-}$ kg$^{-1}$ ocean water, equalling half of the preindustrial oceanic phosphate inventory. This is based on a model-data comparison of pre-OAE 1a anoxia extents, following Monteiro et al., 2012 (see appendix C). However, sensitivity experiments showed that the initial phosphate inventory has little effect on our results (see fig. D2 in the appendix). During the second spin up stage (500 kyr), the model was run as an open system so that volcanic outgassing, riverine input of solutes to the ocean, and carbonate burial in marine sediments could reach equilibrium.

To constrain carbon fluxes and their isotopic composition across OAE 1a onset, we used a data-driven assimilation approach. Similar studies with single assimilations used the size of negative CIEs to constrain emission rates associated with other major carbon cycle events such as the Paleocene-Eocene Thermal Maximum (PETM, e.g. Cui et al., 2011; Turner and Ridgwell, 2013) making assumptions about the 13C signature of the carbon source. Here however, we intend to reconstruct both the mass and provenance (i.e. isotopic composition) of the emitted carbon. Knowing that a given isotopic excursion can be produced by adding a small mass of very 13C-depleted carbon or a large mass of less 13C-depleted carbon (e.g. Kirtland-Turner and Ridgwell, 2016) this constitutes a problem with two unknowns (mass and composition), the solution for which requires an additional constraint to the CIE size. We hence combined estimates of atmospheric 13C changes with estimates of pCO$_2$ changes (Naafs et al., 2016) to reconstruct carbon emissions across the onset of the OAE 1a negative CIE.

Each time step, cGENIE adds the mass of carbon needed to reach the prescribed pCO$_2$ target to the atmosphere, and then calculates the required isotopic signature of that carbon addition to create the right CIE. We allow a maximum carbon emission rate of 10 Pg yr$^{-1}$ with a 13C not more negative than $-100‰$. We used the Naafs et al. (2016) pCO$_2$ estimates based on Δ^{13}C, the offset between compound specific 13C in organic matter and bulk carbonate 13C (13C$_{\text{carb}}$) (Popp et al., 1998). We assumed that the evolution of 13C$_{\text{carb}}$ reflects marine and atmospheric 13C changes (see Appendix C). For this, we correct sedimentary 13C measurements from the Cau section by applying a 7.7‰ offset to account for different baseline 13C values between atmosphere and biogenic CaCO$_3$. We smooth these data by applying a running mean over 7 data points (see Fig. 1) to minimize the effect of short-term fluctuations. This smoothed sedimentary 13C is characterized by an averaged 1.3‰ negative excursion (maximum value 1.6‰), which is similar to most other measured negative CIE amplitudes for OAE 1a (see Appendix B). This dual data assimilation exercise is analogous to Gutjahr et al. (2017) assessment of the PETM carbon cycle perturbation, except here taking pelagic 13C$_{\text{carb}}$ as a measure of atmospheric rather than surface ocean (DIC) 13C changes, and we directly constrain the rate of emissions using a pCO$_2$ reconstruction rather than surface pH.

We additionally address a number of uncertainties in the data and its interpretation. Firstly, implications of uncertainties in the pCO$_2$ reconstruction are explored by using an ensemble of 5 simulations with different pCO$_2$ trajectories within the uncertainty envelope reconstructed by Naafs et al. (2016) (Fig. 1). This uncertainty envelope accounts for uncertainties in the calibration of the pCO$_2$ reconstruction method to Cretaceous organisms and due to the fluctuability of the 13C curve in Cau outcrop data. Secondly, the duration of the negative CIE at the OAE 1a onset is poorly constrained. We run every pCO$_2$ scenario with a duration of 100 kyr, but since durations between 20 and 300 kyr have been suggested for the onset of the negative CIE interval (e.g. van Breugel et al., 2007; Li et al., 2008; Malinverno et al., 2010; Hu et al., 2012), we repeat some simulations with three different assumed durations: 20 kyr, 40 kyr and 300 kyr. In total, we run 20 inverse modelling simulations, exploring 5 different pCO$_2$ trajectories and 4 different assumptions about durations. Additional sensitivity
experiments were run to investigate the sensitivity to boundary conditions (see Appendix).

2.3. Osmium isotope analysis

Osmium (Os) isotopes and Os and Rhenium (Re) concentrations were determined at the School of Earth Sciences, University of Bristol. Samples were digested in Carius tubes using techniques slightly modified from Shirey and Walker (1995). 0.3–0.5 g of powder was added to the Carius tubes. As the rock contained a significant amount of carbonate (46 m – 62 m of the Cau section consist of a succession of marl and marly limestone, see Quijano et al. (2012) and Naafs et al. (2016) for more information on the lithologies) the powder was decarbonated with a small amount of concentrated HCl prior to sealing. Appropriate amounts of 186Os and 188Re spikes were added to the Carius tubes along with additional HCl and HNO3 to make up 12 ml of inverse aqua regia. The samples were then digested at 230 °C for 48 hours. This technique recovers hydrogenic Os and Re without dissolving any detrital material.

Os and Re separation chemistry and mass spectrometry follows methods recently described in detail elsewhere (Josso et al., 2019). For Os isotope analyses the purified Os was analysed on a Thermo Fisher Triton thermal ionisation mass spectrometer (TIMS) in N-TIMS mode, with instrumental mass fractionation corrected for using the exponential mass fractionation law and a 192Os/188Os ratio of 3.08271. Os concentrations were determined by isotope dilution and the isotope data were spike-striped to yield the sample 187Os/188Os ratio. Total procedural blanks were determined for each dissolution batch and yielded Os concentrations of 0.31 and 1.46 pg, with 187Os/188Os ratios of 0.1783 ± 0.0347 and 0.1745 ± 0.0557 respectively. All data were corrected for the procedural blank with blank corrections usually less than 1% (range 0.04–0% on the concentration and usually less than 1% (range 0.02–3.5%) on the 187Os/188Os ratio depending on sample size and Os concentration. A DTM solution standard was run during the analytical period and yielded a 187Os/188Os ratio of 0.17396 ± 39 (2sd, n = 12), within error of previous determinations of the standard (e.g. Birck et al., 1997). Precision on the standard and samples is similar because they were both run at comparable beam intensity, with the exception of one sample, which has a precision of 12%.

Re isotopes were measured by multi-collector inductively plasma source mass spectrometry (MC-ICP-MS) on a ThermoFisher Neptune using a SEM and corrected for instrumental mass fractionation using the exponential mass fractionation law and a 192Ir/195Ir ratio of 0.59418. Total procedural blanks were determined for each dissolution batch and yielded Re concentrations of 5 ± 2 pg, with Re concentrations determined by isotope dilution and blank corrected using the appropriate procedural blank. Blank corrections for the Re concentrations are less than 2% (range 0.14–4.1%). A 9 ppt solution of the NIST SRM3134 Re standard, doped with Ir, was run during the analytical period and yielded a 187Re/185Re ratio within error of previous determinations of the standard (Miller et al., 2009). One sample (Cau-21) was fully duplicated, because it had elevated Re concentrations, low Os concentrations and gave a low initial 187Os/188Os ratio at a key part of the section. The duplicate analyses gave initial 187Os/188Os ratios just outside of analytical uncertainty, but confirming that there is significant drop in initial 187Os/188Os ratio in the section at this time.

3. Results

The model simulations provide estimates of carbon emission rates and the isotopic composition of the emitted carbon for the onset of the Aptian negative CIE under different pCO2 change scenarios (Fig. 2a-b) and onset durations (Fig. 2c-d). In our simulations, total emissions ranged between 4,300–29,200 Pg C with emission rates between 0.01 and 0.7 Pg C yr⁻¹. The uncertainty in our carbon emission estimates is almost equally attributable to uncertainties in the duration of the event and the pCO2 reconstruction (10,300 Pg C and 13,700 Pg C respectively). Alternative assumptions on initial atmospheric CO2 concentrations, oceanic nutrient inventory and surface ocean saturation state add only minor additional uncertainty to emission rates (see sensitivity studies in Appendix D). The model results imply isotopically light carbon input (mean composition across all scenarios = −42‰) at the start of the negative CIE (46–50 m) for all scenarios. Toward the peak of the negative CIE, our model results indicate a shift towards the input of less 13C-depleted carbon with a mean composition of −6% between 55.5–60.0 m. Additional sensitivity studies (see Appendix D) demonstrate that the necessity for 13C-depleted carbon at the start of the negative CIE is a robust result considering uncertainties in initial atmospheric CO2 concentration, initial oceanic nutrient inventory, initial carbonate saturation state, and different biological production schemes (temperature-dependent or -independent production).

In our simulations the calcite saturation state (Ω) of the surface ocean only decreases appreciably in experiments with carbon emission rates of at least 0.1 Pg C yr⁻¹ (see fig. F1 in Appendix F). In scenarios with slower carbon emissions, surface ocean Ω stays constant or increases slightly. The total Ω change and the associated uncertainty intervals vary between locations and are largest in the tropics (up to ~2.5 in the most extreme experiments, see fig. F2 in Appendix F). Sea surface temperature (SST) changes are more variable with pCO2 change scenario than assumed CIE onset duration, and are largest around Antarctica (see fig. F3 in Appendix F).

The new Os data from Cau (see Fig. 3) show a low concentration of Os with a slight trend towards more radiogenic values (~1) towards the start of the negative CIE (40–45 m). This is followed by increasing Os concentration during the CIE, its isotopic composition shifting to less radiogenic values (~0.4). A brief excursion back to low concentrations of very radiogenic Os (>1.2) half way through the negative CIE onset (~55 m) is based on two data points. All data can be found in Appendix E.

4. Discussion

Our inverse modelling suggests that the addition of 13C-depleted carbon during the start of the negative CIE (Phase A in Fig. 4), followed by sustained input of carbon with a largely volcanic isotopic signature (Phase B, typically between −5 and −8‰ away from subduction zones (Javoy et al., 1986)), reconciles the measured δ13C values and reconstructed pCO2 at Cau (Naafs et al., 2016). Our method results in required ‘net’ carbon fluxes and their isotopic compositions. While we cannot exclude mixes of sources (and sinks) that sum to the right ‘net’ values, this provides information about the dominant carbon source. The requirement for initial carbon emissions more 13C-depleted than volcanic CO2 across our simulations indicates that contribution from organic carbon sources (typically between −10 and −30‰ (e.g. Meyers, 1994)) and methane, the only surficial carbon with a δ13C < −40‰, was necessary to drive the CIE at the OAE 1a onset (see Fig. 2b,d and Appendix). Predominant methane emissions, however, are only required in scenarios with minimal pCO2 rise during the CIE onset. All scenarios require the most 13C-depleted carbon input between 48 m and 52 m. The isotopic composition of the carbon input predicted by cGENIE between 52 m and 58 is consistently less depleted (around or above ~10‰ for most simulations) almost regardless of uncertainty in reconstructed pCO2 or duration. This is consistent only with an appreciable contribu-
tion from a volcanic source. The shift in source from sedimentary organic carbon to volcanism occurs relatively rapidly, within 4 m at Cau or 25 kyr assuming a negative CIE onset duration of 100 kyr and a constant sedimentation rate. Importantly, this difference in isotopic composition between strata below and above 52 m is a robust feature in all simulations and suggests that Earth’s system transitioned from predominant input from an isotopically light carbon source to a heavier one. Scenarios with low pCO₂ increase require another pulse of biogenic CO₂ to reach the lowest δ¹³C values at the end of our simulations, while the isotopic signature of carbon inputs in scenarios with higher emission rates remains close to mantle values.

A shift to a more mantle-like source is supported by published Os isotope data which have been used to infer changes in volcanic activity across OAEs, given that the main source of unradiogenic Os is mantle material (Turgeon and Creaser, 2008; Bottini et al., 2012; Du Vivier et al., 2014). Published OAE 1a Os isotope records from pelagic sections show a shift towards unradiogenic (mantle-like) values during the negative CIE at the onset of OAE 1a (Bottini et al., 2012), suggesting a strengthened Os flux from the mantle. While a direct comparison between Os records from Cau and other sites is hampered by uncertainties in age models and missing stratigraphic ties, records from all sites show similar features. The consistent shift to very unradiogenic Os-isotope values in the Cau record (Fig. 4) is similar to that recorded in other sections and adds confidence to the assumption that strengthened volcanism was the primary control on Os isotope changes recorded across the negative CIE at Cau, even more so given the small amount of preserved organic matter preserved and its platform setting. Similar to other Tethyan sections, the Os record at Cau shows a shift back to radiogenic values before stagnating at unradiogenic values (in phase B in Fig. 4 (Jenkyns, 2018)). Since this excursion is not evident in records from all OAE 1a sections, it might represent a local or regional change with little implications for the reconstructed volcanic strength. In that case the shifts from less to more mantle-like compositions of Os and carbon coincide at Cau (Fig. 4). If the radiogenic excursion at ∼55 m in the Cau section reflects a global change of Os fluxes, the resolution of the pCO₂ reconstruction is
either too coarse to evidence a short-term decline in volcanic carbon emissions, or the relationship between carbon and Os isotopic changes during the onset of LIP emplacement is more complex. At this moment, we cannot test this relationship at other sites because combined records of Os isotopes and inferred pCO2 changes are not available at the required resolution.

Emissions of carbon from an organic matter reservoir are needed to explain carbon isotopic changes at Cau regardless of the pCO2 scenario or assumed duration of CIE onset. However, the exact mechanism of its release at the onset of OAE 1a is not clear. It is unlikely that depleted carbon was emitted due to feedback mechanisms in response to a warming climate (e.g., destabilized methane hydrates), given the small changes in atmospheric pCO2 at that time. There is, however, evidence in support of geologically-triggered emissions of 13C-depleted organic carbon during the onset of OAE 1a. Polteau et al. (2016) showed that magma intrusions into overlying sediments during the formation of the Barents Sea Sill Complex in the early Aptian could have destabilized a considerable mass of organic carbon and led to thermogenic methane emissions. OAE 1a happened at a time of high magmatic activity, including the emplacement phases of the Ontong Java Plateau LIP (e.g., Larson and Erba, 1999). We therefore suggest that at the start of the negative CIE magmatic activity increased under thin crust, intruding into organic-rich marine sediments and causing small releases of 13C-depleted thermogenic gases. This initial phase of increased mantle activity was then followed by a more eruptive phase of LIP emplacement, when large-scale submarine volcanism dominated exogenic carbon emissions and delivered large amounts of new mantle material to the ocean floor. This increased the flux of unradiogenic Os into the ocean through hydrothermal vents as well as weathering of fresh basalt and released vast amounts of mantle-sourced carbon to the atmosphere. Thus, the initial Δ^{13}C decrease and the excursions in Os isotopes and Δ^{13}C are consistent with a scenario in which the recorded CIE and pCO2 change occurred independently: The first through release of sedimentary organic carbon, and the latter through volcanic CO2 emissions.

Our results based on records of atmospheric pCO2 and δ^{13}C are consistent with published model interpretations of Os isotope profiles, which also find that volcanism was the primary carbon source during OAE 1a (Bauer et al., 2017). The mass of emitted carbon in our results is however different from that reconstructed by Bauer et al. (2017) using Os isotopes. The biomarker-based estimate suggests an increase in pCO2 of 200–1700 ppm (Naafs et al., 2016), whereas the model interpretation of 187Os/188Os implies that pCO2 rose by about 3,000 ppm (Bauer et al., 2017).

We tested the implications for carbon sources assuming a continuous CO2 concentration increase of 3,000 ppm, which resulted in increased carbon emissions (0.32 Pg C yr$^{-1}$ assuming a 100 kyr duration, see fig. D4 in the appendix) compared to our scenarios, with isotopic compositions between -20 and -3%. This is still consistent with a predominantly volcanic source, but reduced the need for more 13C-depleted organic carbon release. Temperature proxy records across OAE 1a (Mutterlose et al., 2014; Naafs and Pancost, 2016) are consistent with regional temperature changes of 1–5°C produced by scenarios based on the Naafs et al. (2016) pCO2 reconstruction. The higher (Os based) pCO2 changes result in a temperature rise of 7°C globally in CGENIE, equivalent to 5–6°C in the Tethys which is at the upper end of reconstructed temperature change.

Organic carbon burial is not simulated by our model, meaning that we have to assume that organic carbon burial did not strengthen significantly during the negative CIE onset. Although carbon contents at Cau and at other locations only increase during the recovery of the negative CIE and start of the positive CIE (generally referred to as segments C4–C6 Menegatti et al., 1998; Quíjano et al., 2012; Erba et al., 2015), it is unknown to what degree the marine carbon and Os cycles were influenced by organic matter burial locally and/or globally. Widespread organic carbon burial would shorten the residence time of Os and carbon in the ocean and create a sink for 12C, increasing carbon emission rates needed to produce the observed environmental changes. The results from our experiments should thus be regarded as a low-end estimate of the mass of emitted carbon. However, our experiments indicate that the transition from more 13C-depleted organic carbon input (potentially from sill intrusions) to mantle-sourced carbon (volcanism) is robust against changes in emission rate and total mass of emitted carbon and hence should be detectable despite changes in the amount of organic matter burial.

In terms of timing, high-resolution temperature records (based on palynology and δ^{18}O) at the expanded pelagic section of Pusiano and the shelf section at La Bédoule (Keller et al., 2011; Lorenzen et al., 2013) indicate a time lag between the start of the negative CIE and the main period of warming. This would be consistent with our reconstructed emissions scenarios. At pelagic sections lower sediment accumulation rates and coarser sampling resolutions (e.g. Cismon, Roter Sattel, Pacific DSDP site 463 and Atlantic DSDP site 398), likely prevented the identification of such time lag between temperature proxies and negative CIE (Menegatti et al., 1998; Ando et al., 2008; Naafs and Pancost, 2016).

Major changes in the marine nanofossil community, including dwarfism, and a decline in CaCO3 burial rates, have been observed during the negative CIE and interpreted as an indicator for a decline in calcite surface ocean saturation state due to large carbon emissions (Weissert and Erba, 2004; Erba et al., 2010). The widespread occurrence of surface ocean acidification during OAE 1a as driver of biological turn-over is contested (Gibbs et al., 2011; Naafs et al., 2016). Our simulations show that only scenarios with a large carbon source or short event duration result in an appreciable Ω decline ($\Delta\Omega > 0.5$), globally and locally. A decrease in
saturation state could have imposed significant stress onto calcifiers (Weisssert and Erba, 2004). At Cau, the pCO$_2$ changes and the decline in Ω (around 54 m) began well after the onset of the nanofossil decline, which starts at \sim43 m. In our longer simulations (\geq100 kyr) increased weathering and continental runoff eventually counteract the CO$_2$ dissolution effect, which leads to a recovered or even increased calcite saturation state at the end of these experiments, despite ongoing carbon emissions. Further quantitative comparison of the impact of carbon emissions onto the surface ocean carbonate chemistry in our simulations is hampered by remaining uncertainties. For example, the carbonate system of the pre-OAE 1a Aptian surface ocean is poorly constrained. Particularly the mass of emitted carbon needed to cause appreciable Ω changes and the position of the carbonate compensation depth depend largely on these initial conditions. The slow carbon emission rates predicted by our model are also a function of the duration of the negative CIE onset. Unless the onset took 20 kyr (Malinverno et al., 2010, the smallest current estimate) or less, it is unlikely that carbon emissions could have outpaced the weathering feedbacks that stabilize the surface ocean saturation state (Hönisch et al., 2012). As such, estimated onset durations and the temporal decoupling between changes in calcite saturation state and nanonooid crisis make it unlikely that this major perturbation of the marine nanno-calculator community was a direct result of carbon emissions driving the negative CIE.

5. Conclusion

We used transient model simulations based on combined pCO$_2$ and δ^{13}C records to identify dominant carbon sources and quantify associated emission rates. The simulations show that carbon emission rates of 0.043–1.46 Pg C yr$^{-1}$ reconcile the negative CIE and pCO$_2$ estimates, with the exact rate depending on the assumed duration of OAE onset. Assuming a baseline pCO$_2$ of 850 ppm this is consistent with estimates of moderate temperature change from diverse proxy data. Our results suggest that an initial input of predominantly 13C-depleted carbon was responsible for the negative CIE associated with OAE 1a, but had little effect on atmospheric pCO$_2$. This carbon could have originated from sill intrusions into marine organic rich sediments, potentially releasing thermogenic and/or biogenic methane. Following this initial phase, volcanic (less 13C-depleted) carbon emissions sustained the stagnant part of the negative CIE and fuelled most of the recorded atmospheric pCO$_2$ increase. Our results indicate that organic carbon emissions in form of methane and/or CO$_2$, despite shaping the δ^{13}C curve, did not increase the atmospheric carbon reservoir appreciably. Importantly, this demonstrates that the scale and nature of the Earth system perturbation at the onset of OAE 1a cannot be determined based on the existence of a negative CIE or its size alone. This may also be the case for other negative CIEs in the geological record. Our results further imply the possibility of a time lag between the carbon isotopic excursion and the major phase of carbon emissions, but highly resolved records from other sections are necessary to corroborate this finding. Uncertainties in the amount of atmospheric pCO$_2$ change and duration of the OAE onset create proportionally large uncertainties on carbon emission rates and their initial isotopic composition. Increased accuracy in duration and pCO$_2$ change estimates are needed to narrow down our estimates of carbon flux magnitudes and origins. However, the shift from more to less 13C-depleted carbon emissions is robust against these uncertainties, as are the pure volcanic-like carbon fluxes towards the peak of the negative CIE. We conclude that mantle activity increased in the early Aptian, heating organic-rich marine sediments and releasing thermogenic methane before sustained mantle eruptions led to OAE formation.

Data availability

All Os and Re measurements are provided in the Supplementary Material. The model source code and instructions on how to repeat the simulations presented in this manuscript can be accessed as stated under ‘Code availability’. Specific simulation outputs can be obtained from Markus Adloff.

Code availability

muffin overview

The code for the cGENIE.muffin model is hosted on GitHub. The current version can be obtained by cloning:
Furthermore, we would like to thank our funding bodies: M.A. was supported by the NERC GW4+ DTP and the NERC grant NE/L002434/1. S.E.G. was supported by NERC grants NE/L011050/1 and NE/P01903X/1 while working on this manuscript. FMM was supported by a NERC research fellowship (NE/J019062/1) and a NERC standard grant (NE/N011112/1). B.D.A.N. was funded through a Royal Society Tata University Research Fellowship. W.P. was supported by ERC Grant Agreement no. 340923. J.M.C. has received funding from the Spanish Ministry of Science and Technology (project CGL2014-55274-P) and Research Group RNM-200 (Junta de Andalucía).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.epsl.2019.115947.

References

