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Summary 14 

 15 

Marine environments have increased in temperature by an average of 1°C since pre-industrial 16 

(1850) times [1]. Given that species ranges are closely allied to physiological thermal 17 

tolerances in marine organisms [2], it may therefore be expected that ocean warming would 18 

lead to abundance increases at poleward side of ranges, and abundance declines towards 19 

the equator [3]. Here we report a global analysis of abundance trends of 304 widely distributed 20 

marine species over the last century, across a range of taxonomic groups from phytoplankton 21 

to fish and marine mammals. Specifically, using a literature database we investigate the extent 22 

that the direction and strength of long-term species abundance changes depend on the 23 

sampled location within the latitudinal range of species. Our results show that abundance 24 

increases have been most prominent where sampling has taken place at the poleward side of 25 

species ranges, while abundance declines have been most prominent where sampling has 26 

taken place at the equatorward side of species ranges. These data provide evidence of 27 

omnipresent large-scale changes in abundance of marine species consistent with warming 28 

over the last century, and suggest that adaptation has not provided a buffer against the 29 

negative effects of warmer conditions at the equatorward extent of species ranges. On the 30 

basis of these results we suggest that projected sea temperature increases of up to 1.5°C 31 

over pre-industrial levels by 2050 [4] will continue to drive latitudinal abundance shifts in 32 

marine species, including those of importance for coastal livelihoods.   33 
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Results and Discussion 34 

 35 

Marine organisms have a temperature range outside of which physiological processes cease 36 

to be optimal. As such, species distributions often correspond closely with physiological 37 

temperature limits [2, 5]. Cold tolerance can determine the position of the poleward edge of a 38 

species range, and consequently, ocean warming is expected to increase organismal 39 

performance, survival and reproductive success at higher latitudes of species ranges. It has 40 

therefore been predicted that warming seas should also drive increases in the abundance of 41 

species at their poleward range side [6]. Equally, warm tolerance is strongly associated with 42 

the position of the equatorward edge of marine species ranges. Hence, as oceans warm we 43 

may expect to find reductions in performance, survival and recruitment at lower latitudes of 44 

species ranges, leading to reductions in abundance at equatorward range limits [4]. 45 

 46 

Importantly, however, space use by marine species is not simply determined by thermal 47 

affinities. Species distributions and abundances are also dependent upon availability of core 48 

ecological resources such as food and substrate, which are not homogenously distributed 49 

across species ranges. Consequently, distributions of species may not be fully predicted on 50 

the basis of the thermal environment and physiological tolerances alone [7]. Moreover, the 51 

temporal population-abundance response of species to warming at any position in their range 52 

may not exclusively depend on their thermal physiology, but also the responses of the species 53 

with which they interact [8]. An additional consideration is that regional temperature shifts are 54 

not the only physical changes in the marine environment associated with climate change, as 55 

parallel changes to storminess [9, 10], salinity [11], acidification [12] and sea ice conditions 56 

[13] have also been reported. To fully understand abundance changes of populations requires 57 

a comprehensive understanding of marine environmental change, as well as the physiological, 58 

life history and ecological characteristics of study species [14]. 59 

 60 

Despite the intrinsic complexities of marine biological systems, analyses from local and 61 

regional datasets suggest that thermal affinities are strong predictors of the responses of 62 

marine species to increasing temperatures [15, 16]. In general, studies have reported that 63 

within local communities warm-adapted species have increased in abundance, relative to 64 

cool-adapted species that have declined in abundance  [2, 6, 15, 16]. However, such studies 65 

tend to be limited to a small number of species and a single locality or region. A more complete 66 

understanding of large-scale patterns of climate-associated local abundance change requires 67 

combining information from multiple studies across broad taxonomic diversity, and across 68 

wider spatial scales that encompass the full realised latitudinal distributions of study species 69 

[17]. In the most comprehensive analyses of marine species to date, abundance responses 70 
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have been interpreted as being at poleward and equatorward limits [2] or “consistent” or 71 

“inconsistent” with climate change [17] based on the findings of the original authors. However, 72 

a fully quantitative approach is required to test the strength of evidence for species-level 73 

poleward abundance increases and equatorward abundance declines within marine 74 

systems over the last century. Here, we consider abundance trends of marine species over 75 

the last century within an explicit latitudinal and quantitative framework.  76 

 77 

We extracted all single-species abundance change observations from a published meta-78 

database covering literature published from 1991 to 2012 [17], and added further records 79 

published from 2012 to 2016. For each record we ensured the direction of abundance change 80 

during the study was recorded (either positive or negative, with respect to time or 81 

temperature), and ensured each record had an accompanying survey location (Figure 1A). 82 

We then identified the relative latitudinal position of the survey location within the known 83 

latitudinal distribution of the species, as determined from occurrence data within the Global 84 

Biodiversity Information Facility (GBIF) database [18]. In total the complete dataset included 85 

540 records of abundance change, across 304 species (average 1.67 records per species; 86 

range 1 to 21) ranging from phytoplankton and macroalgae, to seabirds and marine mammals 87 

(Figure 1B). We then used these data to generate linear models that examined how the 88 

direction of abundance change was dependent on the latitudinal position of the survey, and if 89 

there were any biases in responses associated with hemisphere of study or the survey 90 

methods (i.e. time-span of study, and whether the study was a continuous time series, an 91 

irregularly sampled study, or a two-point comparison).  92 

 93 

Analyses based on our complete dataset of 540 sets of records demonstrated that the location 94 

of sampling within the species range was a highly significant predictor of the direction of 95 

abundance change (Table S1). Specifically, marine species were significantly more likely to 96 

have increased in abundance if a study had been undertaken at the poleward range side than 97 

at the equatorward range side. By contrast species were significantly more likely to have 98 

declined in abundance if a study had been undertaken at the equatorward side than the 99 

poleward range side (Figure 2A). We found no influence of survey methods or hemisphere of 100 

the study (Table S1). We repeated analyses on a subset of the dataset where the original 101 

authors report a statistically significant change in abundance over the study period (185 from 102 

540 records), and again we found the position in the latitudinal range of the species to be the 103 

most important predictor of the direction of abundance change (Figure 2B). Next, we explored 104 

the strength of abundance responses to temperature (or year) using the reported correlation 105 

coefficients (r values) that were available for 77 from 540 records. Again, we found greater 106 
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negative responses occurring at the equatorial range margins and more positive responses at 107 

the polar side of species distributions (Figure 2C).  108 

 109 

Our study relies on published abundance trends being unbiased representations of 110 

abundance changes in the natural environment. However, there is a possibility that 111 

observations of significant abundance change matching expectations from climate change are 112 

more likely to be selected for publication [19]. This effect is plausibly strongest in single-113 

species studies [17], which comprised 68 records in our analysis, so we repeated analyses on 114 

only the 472 records from multispecies studies. Our analyses were robust with respect to 115 

potential publication bias, with position of the study within the latitudinal range again the 116 

strongest predictor of the direction of abundance responses in the multispecies analysis (Table 117 

S1). The reported observations in our dataset are spatially clustered, with the majority of 118 

observations (448 of the 540 records) from the Northern Hemisphere, and were concentrated 119 

in the temperate continental shelf waters of Europe, North America and Japan (Figure 1A). To 120 

investigate potential influence of spatial bias we subsampled the data to exclude records that 121 

were in close spatial proximity to other records from the same species (within the same 1 122 

degree latitude × longitude grid cell). The analysis of this spatially thinned dataset (478 of the 123 

540 records) again resolved latitudinal position of the study within the range of the species as 124 

the most reliable predictor of the direction of abundance change. Taken together these 125 

analyses indicate the data are robust to publication and spatial biases, however further work 126 

is required across undersampled regions and taxonomic or functional groups to fully 127 

understand the global extent of the observed pattern. 128 

 129 

Addressing taxonomic bias, we explored if survey position in the species range was a 130 

consistent predictor of species responses among each of the five taxonomic or functional 131 

groups that were most well represented in the dataset, namely non-larval fishes, larval bony 132 

fishes, seabirds, benthic invertebrates, and zooplankton (Figure 1B). Although we found that 133 

the extent of the response varied significantly among these groups (Table S2), we found a 134 

consistent pattern of observed abundance increases at the poleward side of species range, 135 

and decline at equatorward sides in all taxonomic groups. This pattern was statistically 136 

significant in individual analyses of non-larval fishes, larval bony fishes and seabirds (P < 0.05, 137 

Table S2), with larval bony fishes having a more pronounced positive response at the 138 

poleward side of their range relative to other groups (Table S2, Figure 3). This result highlights 139 

variation among marine organisms (and potentially their varied life stages) in their responses 140 

to warming. Differences among taxonomic or functional groups may be expected due to 141 

variation in life history traits including reproductive rates, dispersal biology, migratory 142 



 

6 
 

behaviour and growth rates [14], which in turn affect opportunities to maximise on ecological 143 

opportunity.  144 

 145 

Clearly not all species and populations followed the general pattern, and such contrasts in 146 

responses to warming may be predicted in situations where thermal constraints are not 147 

necessarily the primary determinant of species ranges. Such situations can arise when the 148 

other physiological (e.g. oxygen availability) or ecological (e.g. food availability) constraints 149 

dominate, although such constraints often covary with temperature (e.g. [20]). Equally, there 150 

are situations where the latitudinal limit of a species is determined by a geographic barrier 151 

such as the presence of a continental landmass, or the absence of suitable substrate to 152 

colonise [21], rather than the thermal environment. Finally, the abundance of many species 153 

will also have been influenced by human activities in recent history, such as habitat 154 

degradation and fisheries, which may have already influenced population sizes and limited 155 

capacity for rapid response to climate warming [22].  156 

 157 

We focused on latitudinal range limits of species, making the broad assumption that latitudinal 158 

gradients correspond with the thermal gradients that species occupy. However, while global 159 

thermal gradients are broadly colder towards the poles, a range of factors influence local 160 

temperature variation across latitude, depth and time. For example, surface ocean currents 161 

and upwelling can drive variation in associations between latitude and temperature [23]. 162 

Equally, the pace of climate change is not homogeneous and can be inconsistent with 163 

latitudinal gradients [21, 24]. Although we found an overall association between time and 164 

temperature across all survey locations in this dataset, it is possible that abundance changes 165 

are more likely to be detected where the pace of climate change has been most rapid [25]. 166 

 167 

A notable result of this study was that populations at both polar and equatorial range margins 168 

are undergoing abundance changes. This is consistent with expectations that marine species 169 

have shifted abundance in line with their full thermal tolerance limits [2], and is important 170 

because it is suggestive of thermal tolerance limits of species being relatively inflexible over 171 

decadal timescales. Specifically, it also indicates that populations of marine organisms at the 172 

equatorial sides of species ranges are unable to adapt at a sufficiently rapid pace to enable 173 

them to thrive in warmer conditions. Evolutionary adaptation to warming conditions may be 174 

particularly slow for species with relatively long generation times such as the marine fishes 175 

[26] which dominate our dataset, but by contrast evolutionary adaptation may be expected to 176 

be more rapid in taxonomic or functional groups with fast life histories such as phytoplankton 177 

[27]. It is also plausible that differential responses of marine species to warming will result in 178 
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abundance shift mismatches between interdependent components of marine communities, for 179 

example predators and their prey [28]. 180 

 181 

We included a wide breadth of studies from across the globe, but ideally more records would 182 

be available from under-represented taxonomic or functional groups, including those of 183 

ecological and commercial importance. Additionally, the available data was strongly biased 184 

towards temperate latitudes and further work is needed to determine whether the same 185 

patterns hold for tropical species. With increased recognition of the value of long-term and 186 

resurvey data, increasing numbers of datasets are becoming available through initiatives to 187 

study broader patterns of biodiversity change [29, 30]. There are also efforts to bring together 188 

and standardise existing datasets over space and time, to enable abundance change 189 

estimates to be made across vast expanses of marine habitat [31]. Thus, it is possible that 190 

future analyses will be able to evaluate temporal abundance changes across much larger 191 

proportions of species ranges than are considered here, enabling a more thorough evaluation 192 

of how physiological, ecological, and life history traits interact with environmental variation to 193 

drive abundance changes within individual species. 194 

 195 

In conclusion, the analyses presented here clearly demonstrate a pattern of local abundance 196 

change that is widespread in marine systems, most likely due to the combination of 197 

physiologically-determined thermal niches and changes in climatic variables. Thus, our study 198 

builds on evidence of climate-associated local abundance changes and sits alongside climate-199 

driven changes in other biological parameters such as the overall distributions of species, and 200 

shifts in the timing of life history events [2]. Average sea surface temperatures are set to rise 201 

further over the course of this century [4] and the frequency of marine heatwaves is increasing 202 

[32]. It therefore seems plausible that local abundance changes linked to physiological and 203 

ecological tolerances will continue to take place at both the poleward and equatorward sides 204 

of species ranges impacting further on local marine assemblages and the coastal industries 205 

that depend on them. 206 
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Main text figure/table legends 222 

 223 

Figure 1 – Spatial and taxonomic coverage of studies analysed. 224 

A) Global distribution of long-term abundance observations used in this analysis. B) Number 225 

of temporal abundance records analysed in each of the nine taxonomic or functional groups 226 

(total n=540). Map relief data from the ETOPO1 Global Relief Model [41]. Photos represent 227 

species in the dataset undertaking responses at range margins consistent with ocean 228 

warming: sea sparkle (Noctiluca scintillans) by M.A. Sampayo; common dolphin (Delphinus 229 

delphis) original source anonymous; Australasian gannet (Morus serrator) by J.J. Harrison; 230 

lined chiton (Tonicella lineata) by M. Knoth; Atlantic salmon (Salmo salar) by H.-P. Fjeld. 231 

Photos from Wikimedia commons licensed under the Creative Commons Attribution licences 232 

2.0 (chiton), 2.5 (salmon) or 3.0 (sea sparkle, dolphin, gannet).  233 

 234 

Figure 2.  Long-term abundance changes depend on the position of sampling stations 235 

within the latitudinal range of species.  236 

A) Abundance changes across all 540 records. B) Abundance changes recorded as significant 237 

in original data sources, 185 records in total. C) Reported r values for abundance change over 238 

time or temperature in original data sources, 77 records in total. The blue shaded area 239 

indicates the 95% confidence interval, while vertical lines represent datapoints that reflect 240 

either positive (1 in binomial model, shown as +1 on axis), or negative abundance changes (0 241 

in binomial model, shown as -1 on axis). See Table S1 for full model details. 242 

 243 

Figure 3. Associations between relative position in latitudinal range and direction of 244 

the abundance change within each taxonomic/functional group.  245 

Abundance changes over the study time periods for A) Fish, B) Larval bony fish, C) 246 

Invertebrates (other), D) Seabirds, E) Zooplankton. These species groups represent the five 247 

most well represented groups within the main dataset. The blue shaded area indicates the 248 

95% confidence interval, while vertical lines represent datapoints that were either positive (1 249 

in binomial model, shown as +1 on axis), or negative (0 in model, shown as -1 on axis). See 250 

Table S2 for full model details. 251 

252 
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STAR★Methods 253 
 254 

Lead Contact and Materials Availability 255 

Further information and requests for resources should be directed to and will be fulfilled by the 256 

Lead Contact, Martin Genner (M.Genner@bristol.ac.uk). This study did not generate new 257 

unique reagents. 258 

 259 

Method Details 260 

We sourced data on the abundance changes of marine species from two sources. First, we 261 

used the database generated by Poloczanska, et al. [17] that covered literature published 262 

between 1991 to 2012, and we extracted the records where abundance was the response 263 

variable. We then checked original papers to ensure observations were from fully marine 264 

species or species dependent on the ocean, and then also checked and assigned direction of 265 

the abundance response over the studied time interval. Secondly, we compiled observations 266 

from literature published between 2012 and 2016 using the same methodology as 267 

Poloczanska et al. [17]. For both sets of records we retained only those where abundance 268 

trends could clearly be attributed to individual species. Each study was defined as a 269 

continuous time series, an irregularly sampled study or a two-point comparison, as determined 270 

from the original paper. Studies were categorised as single-species (reporting trends for one 271 

species only) or multispecies (abundance trends for multiple species reported).  272 

 273 

We included cases where abundance changes were correlated against time and cases 274 

where abundance changes were correlated against temperature. We quantified the 275 

association between time and temperature at study locations using the correlation coefficient 276 

(r) between year and mean annual sea surface temperature (SST). Mean annual SST was 277 

obtained for each latitude and longitude cell from monthly HadISST data, across every year 278 

of a study period [39]. This was performed for 139 of 157 unique locations, based on 279 

availability of consistent mean annual temperature data for the full study period. Overall, 280 

temperature and time were positively correlated in the locations and durations of the original 281 

studies, with an average correlation coefficient r = 0.34. 282 

 283 

To assign positive or negative abundance trends for species at their study location, we used 284 

a three-step sequential process. First, and preferentially, where a study reported a 285 

statistically-significant abundance change, we used those records. Second, where significant 286 

responses were not recorded, but the direction of change was quantitatively described in the 287 

text, then those records were used. Third, where no quantitative assessment was provided 288 

in the text, but a visual image of the abundance data was available, we determined the trend 289 
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from the plotted data. In cases where abundance responses to both temperature and time 290 

were recorded, only the association with temperature analysis was included in analyses. 291 

Where the environmental variable reported was not explicitly temperature or time (e.g. sea 292 

ice), we ensured that the environmental variable was clearly associated with temperature or 293 

time by the original authors. 294 

 295 

Occurrence data for each species were obtained from GBIF [18] via the ModestR tool [33]. A 296 

taxonomy for each species, from species to class rank is required for ModestR, and this was 297 

constructed using taxonomic information from the World Register of Marine Species (WoRMS) 298 

[38]. Any species that had been re-classified since the publication of the paper that the 299 

observation originated from were renamed in line with the accepted WoRMS taxonomy. 300 

ModestR was used to collate, visualise and check species occurrences from GBIF and to 301 

export the geographical coordinates associated with these records as text files (one file per 302 

species). We excluded 0,0 coordinates, occurrences falling on land, and duplicate coordinates 303 

to two decimal places. Where studies were conducted outside the recognised GBIF range 304 

they were assigned 1 for more poleward and 0 for closer to the equator to reflect the extreme 305 

range edge of the particular survey location. 306 

 307 

Some species had occurrence records in both the northern and southern hemispheres. If the 308 

original survey location for a species in the database was undertaken in the Northern 309 

Hemisphere, we deleted from the dataset all coordinates from the Southern Hemisphere for 310 

that species, and vice versa. Species that were the focus of studies in both hemispheres were 311 

treated as two discrete entities, for example being referred to as “Species name N” and 312 

“Species name S”. To avoid erroneous points or outliers having an undue influence on the 313 

species ranges, we removed 2% of the most extreme latitudinal records, 1% from each side 314 

of the range. We then checked resultant records visually for any remaining outliers, which 315 

were then deleted. To ensure latitudinal ranges were well characterised and reliable, any 316 

species left with fewer than 50 observations were excluded from further analysis. After these 317 

checks and deletions, we retained 540 abundance trend records from 304 species. Of these 318 

540 trend records 185 were reported as significant in the original studies, and we generated 319 

a subset comprising only these significant record for some analyses due to the potential for 320 

non-significant trends to introduce type II errors in results. 321 

 322 

To generate a spatially-thinned subset, we subsampled the 540 abundance trend records by 323 

removing repeat data for the same species within each 1° latitude and longitude grid cell. The 324 

dataset was first sorted by species and grid cell, and where two or more records of abundance 325 

change were reported the longest time series was retained (if records covered the same time 326 
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period, we systematically removed the first record in the data list). In total 62 records were 327 

removed from the full dataset to generate this spatially thinned subset of the data. 328 

 329 

Quantification and Statistical Analysis 330 

We calculated the relative latitudinal position of each study sampling location within the range 331 

of the focal species using the formula:  332 

 333 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑟𝑎𝑛𝑔𝑒 =
𝑠𝑡𝑢𝑑𝑦	𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑤𝑎𝑟𝑑	𝑒𝑥𝑡𝑟𝑒𝑚𝑒

𝑝𝑜𝑙𝑒𝑤𝑎𝑟𝑑	𝑒𝑥𝑡𝑟𝑒𝑚𝑒 − 𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑤𝑎𝑟𝑑	𝑒𝑥𝑡𝑟𝑒𝑚𝑒
 334 

 335 

Where equatorward and poleward extremes were identified from the cleaned GBIF records, 336 

we modelled the association between the direction of the abundance change and predictor 337 

variables using Generalized Linear Mixed-Effects Model (GLMER-Model 1) with a binomial 338 

response with a link logit using the lme4 package in R 3.6.0 [34, 40]. We used these models 339 

to analyse several data subsets including: the full dataset, only records with significant trends, 340 

only multispecies studies and spatially thinned data. In these models fixed effects included: 341 

sampling position in species range, study hemisphere, study timespan, and study type 342 

(continuous time series, irregular or two-point). Random effects included: taxonomic group 343 

(fishes, benthic invertebrates, larval fishes, macroalgae, mammals/reptiles, phytoplankton, 344 

seabirds, seagrass, zooplankton) and study (as multiple observations were typically reported 345 

in individual studies). Generalised linear models (GLM-Model 2) were subsequently used to 346 

generate simpler models with sampling position in species range as the sole predictor variable.  347 

 348 

We modelled the association between reported r-values (including square-root transformed r2 349 

values) and the same set of predictor variables reported above using linear mixed-effects 350 

models (Model 3).  We then used linear models (Model 4) with sampling position in species 351 

range as the sole predictor variable. The lmerTest package was used to extract output from 352 

mixed models. Model outputs were plotted using the effects package [36] (Fig. 2). R2 values 353 

were obtained using the r2glmm package [35].  354 

 355 

Data and Code Availability 356 

All datasets and code are available at https://doi.org/10.6084/m9.figshare.11848152 357 

 358 
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Full dataset analysis           

  Estimate Std. Error z value P r2 

Model 1: glmer(AbundanceChange ~ Position + (1|taxa_gp) + Timespan + Sampling + Hemisphere +  (1 

|DOI_Record), family=binomial("logit")) 

(Intercept) -1.169 0.638 -1.833 0.067 
              

- 

Position (in species range) 2.665 0.406 6.57 <0.001 0.088 

Timespan (of study) 0.002 0.007 0.347 0.728 0.000 

Sampling (type timeseries) -0.261 0.416 -0.626 0.532 0.001 

Sampling (type twopoint) -1.717 1.121 -1.531 0.126 0.004 

Hemisphere 0.59 0.512 1.151 0.250 0.006 

      
Model 2: glm(AbundanceChange ~ Position,family=binomial("logit")) 

(Intercept) -0.6381 0.1865 -3.421 0.001             - 

Position (in species range) 1.8748 0.2858 6.561 <0.001 0.075 

 

Records with statistically significant abundance shifts only   

  Estimate Std. Error z value P r2 

Model 1: glmer(AbundanceChange ~ Position + (1|taxa_gp) + Timespan + Sampling + Hemisphere +  (1 

|DOI_Record), family=binomial("logit")) 

(Intercept) -1.99735 1.190 -1.678 0.093 

              

- 

Position (in species range) 3.70236 0.713 5.194 <0.001 0.153 

Timespan (of study) 0.01215 0.017 0.735 0.462 0.004 

Sampling (type timeseries) -0.30405 0.804 -0.378 0.705 0.002 

Sampling (type twopoint) -1.86467 1.424 -1.31 0.190 0.012 

Hemisphere 0.50667 0.998 0.508 0.612 0.003 

      
Model 2: glm(AbundanceChange ~ Position,family=binomial("logit"), data=dat) 

(Intercept) -1.1933 0.3193 -3.738 0.000 

            

- 

Position (in species range) 2.9493 0.5479 5.383 0.000 0.14 

 

Multispecies studies only     

  Estimate Std. Error z value P r2 

Model 1: glmer(AbundanceChange ~ Position + (1|taxa_gp) + Timespan + Sampling + Hemisphere +  (1 

|DOI_Record), family=binomial("logit")) 

(Intercept) -1.101763 0.751 -1.467 0.143 

              

- 

Position (in species range) 2.513356 0.420 5.988 <0.001 0.087 

Timespan (of study) 0.001139 0.008 0.142 0.887 0.000 

Sampling (type timeseries) -0.094943 0.471 -0.202 0.840 0.000 

Sampling (type twopoint) -1.863263 1.120 -1.663 0.096 0.006 

Hemisphere 0.759877 0.580 1.31 0.190 0.010 

      
Model 2: glm(AbundanceChange ~ Position,family=binomial("logit")) 

(Intercept) -0.4646 0.1965 -2.365 0.018 

              

- 

Position (in species range) 1.727 0.2985 5.785 0.000 0.650 
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Spatially-thinned records     

  Estimate Std. Error z value P r2 

Model 1: glmer(AbundanceChange ~ Position + (1|taxa_gp) + Timespan + Sampling + Hemisphere +  (1 

|DOI_Record), family=binomial("logit")) 

(Intercept) -1.173461 0.63802 -1.839 6.59E-02 

              

- 

Position (in species range) 2.661017 0.405128 6.568 5.09E-11 0.960 

Timespan (of study) 0.002592 0.007177 0.361 0.718 0.001 

Sampling (type timeseries) -0.252619 0.41595 -0.607 0.5436 0.001 

Sampling (type twopoint) -1.720151 1.120568 -1.535 0.1248 0.011 

Hemisphere 0.585845 0.511921 1.144 0.2525 0.007 

      
Model 2: glm(AbundanceChange ~ Position,family=binomial("logit")) 

(Intercept) -0.6824 0.2033 -3.357 0.001 

              

- 

Position (in species range) 1.8748 0.2858 6.561 <0.001 0.075 

 
Records with r values reported 

     
  Estimate Std. Error df t P r2 

Model 3: lmer(r ~ Position + (1|taxa_gp) + Timespan + Sampling + Hemisphere + (1|DOI_Record)) 

(Intercept) -0.111502 0.588 18.397889 -0.190 0.852 

              

- 

Position (in species range) 0.437045 0.156 61.224134 2.808 0.007 0.062 

Timespan (of study) -0.002105 0.006 21.001368 -0.336 0.740 0.002 

Sampling (type timeseries) -0.168088 0.414 18.68575 -0.406 0.689 0.003 

Sampling (type twopoint) -0.11274 0.650 13.713493 -0.174 0.865 0.001 

Position (in species range) -0.414449 0.607 17.763703 -0.682 0.504 0.008 

       
  Estimate Std. Error t P r2 

 
Model 4: lm(r ~ Position)         

 

(Intercept) -0.1526 0.1039 -1.468 0.146 

            

- 
 

Position (in species range) 0.3738 0.1795 2.083 0.041 0.055 
 

 

 

Table S1: Summary of model fixed effects, related to Figure 2. 

Generalized Linear Mixed-Effects Model (Model 1) for association between the response variable 

(direction of the abundance change) and predictor variables and generalised linear model results 

for the reduced model (Model 2). A linear mixed-effect model was used for r value analysis as the 

values were continuous (Model 3) and a linear model for the reduced model (Model 4).  
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Position*Group 

  Estimate Std. Error z value P r2 

AbundanceChangeN ~ Position* taxa_gp, family=binomial("logit") 

(Intercept) -0.73505 0.26062 -2.82 0.0048 - 

Position (in species range) 1.88364 0.36516 5.158 2.49E-07 0.013 

taxa_gp Invertebrates 0.07137 0.66351 0.108 0.9143 0.000 

taxa_gp Larval fish 0.0791 0.65053 0.122 0.9032 0.007 

taxa_gp Seabirds -0.96201 0.83925 -1.146 0.2517 0.000 

taxa_gp Zooplankton -2.52858 1.6025 -1.578 0.1146 0.010 

Position * taxa_gp Invertebrates 0.04586 1.11113 0.041 0.9671 0.000 

Position * taxa_gp Larval fish 11.13908 4.94277 2.254 0.0242 0.221 

Position * taxa_gp Seabirds 1.16963 1.48568 0.787 0.4311 0.000 

Position * taxa_gp Zooplankton 1.98631 2.19916 0.903 0.3664 0.005 

 

Group-specific models           

glm(Abundance Change~ Position, family = binomial("logit"))   

 Estimate Std. Error z value P r2 

Zooplankton           

(Intercept) -3.264 1.581 -2.064 0.039 - 

Position (in species range) 3.870 2.169 1.785 0.074 0.316 

Seabirds 
     

(Intercept) -1.697 0.798 -2.127 0.033 - 

Position (in species range) 3.053 1.440 2.120 0.034 0.118 

Benthic Invertebrates 
     

(Intercept) -0.664 0.610 -1.088 0.277 - 

Position (in species range) 1.930 1.049 1.839 0.066 0.052 

Fish 
     

(Intercept) -0.735 0.261 -2.820 0.005 - 

Position (in species range) 1.884 0.365 5.158 <0.001 0.079 

Larval bony fish 
     

(Intercept) -0.656 0.596 -1.100 0.271 - 

Position (in species range) 13.023 4.931 2.641 0.008 0.335 

 

Table S2. Summary of model fixed effects, related to Figure 3. 

Generalized linear models for testing for dependence of the response variable (direction of the 

abundance change) on both the position in range and taxonomic/functional group. The analysis 

included only the five most well represented groups within the main dataset. 


