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Abstract 

Composing sentence meaning is easier for predictable words than for unpredictable 

words. Are predictable words genuinely predicted, or simply more plausible and therefore 

easier to integrate with sentence context? We addressed this persistent and fundamental 

question using data from a recent, large-scale (N = 334) replication study, by investigating 

the effects of word predictability and sentence plausibility on the N400, the brain’s 

electrophysiological index of semantic processing. A spatiotemporally fine-grained mixed-

effects multiple regression analysis revealed overlapping effects of predictability and 

plausibility on the N400, albeit with distinct spatiotemporal profiles. Our results challenge the 

view that the predictability-dependent N400 reflects the effects of either prediction or 

integration, and suggest that semantic facilitation of predictable words arises from a cascade 

of processes that activate and integrate word meaning with context into a sentence-level 

meaning. 
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Introduction 

Composing sentence meaning is easier with predictable words than with unpredictable 

words: for example, ‘bicycle’ is easier to process than ‘elephant’ in “You never forget how to 

ride a bicycle/an elephant once you’ve learned.” This effect of predictability can be observed 

in behavioural measures of comprehension such as reading times [1] and on amplitude 

modulation of the N400 ERP component [2]. The N400 is a negative-going and centro-

parietally distributed component of the ERP, which occurs approximately 200-500 ms after 

word onset and that is strongly associated with lexico-semantic processing [2-3]. Predictable 

words elicit smaller N400 amplitude than unpredictable words, suggesting facilitation during 

semantic processing. However, to what extent is such an effect of predictability driven by 

other relationships between a word and its context, such as the plausibility of the described 

event? We addressed this issue by re-analysing data from a large-scale (N=334) replication 

study [4]. In a temporally fine-grained analysis, we explored whether predictability, 

plausibility, and semantic similarity have dissociable effects on word-elicited ERP activity 

and how these effects unfold over time. 

Word predictability is commonly operationalized as ‘cloze probability’, the 

probability of being used in a non-speeded, offline sentence completion test. The correlation 

between word predictability and N400 amplitude is well-established [5], with some studies 

reporting correlations as high as or even higher than r = .8 [2, 6-7]. Such results are often 

considered to demonstrate effects of prediction: people pre-activate a word fully before it 

appears (as when a specific lexical form can be strongly anticipated in a highly constraining 

context) or partially (as when some semantic features are activated due to passive spreading 

of information). Prediction facilitates the semantic activation processes that are initiated when 

the word appears and are reflected in N400 activity [5]. 



 

4 
 

It is beyond doubt that people can predict the meaning of highly predictable words, 

and that such predictions ultimately impact the semantic processing of that word. What 

remains unclear, however, is whether the strong correlations between predictability and N400 

amplitude [2,4,6-7] only reflect an effect of predictability, or whether they also reflect 

plausibility of the entire sentence. After all, not only is ‘bicycle’ more predictable than 

‘elephant’ given the context “You never forget how to ride a”, it also constitutes a potentially 

more plausible sentence continuation given one’s long-term knowledge about the world. 

Plausibility can be established in a norming test in which participants evaluate the plausibility 

of the described event. Compared to a less plausible word, a more plausible word might be 

easier to integrate with the context and general world knowledge into a sentence-level 

interpretation (e.g., [8-9]), regardless of whether word meaning had already been activated 

before it appeared. If such integration processes are reflected in EEG activity in the N400 

time window along with processes of semantic activation [10-11], then the canonical pattern 

observed for predictability might in part reflect contributions of sentence plausibility. 

At the same time, another contribution to the observed patterns might come from a 

low-level, basic semantic relationship based on simple co-occurrence of words in the context. 

For example, the word ‘ride’ may occur more often in the context around the word ‘bicycle’ 

than around ‘elephant’. This low-level semantic relationship called semantic similarity [12] 

may also contribute to activity in the N400 time window (e.g., [13-15]) and should therefore 

be acknowledged as a potential factor influencing processing of words in a sentence context 

(e.g., [15-17]). 

Correlations between predictability, plausibility and similarity can make it difficult to 

establish their effects on processing. Previous studies have tried to avoid this problem by 

investigating their effects separately. Some studies compare ERPs elicited by equally 

unpredictable plausible and implausible words [11, 18], whereas others compare ERPs 
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elicited by semantically similar and dissimilar words that are unpredictable and implausible 

[19-20]. Two recent studies [11,18] report a smaller N400 amplitude for plausible 

unpredictable words than for anomalous unpredictable words. However, it remains unclear 

whether these effects purely result from differences in incongruity/plausibility, or whether 

they (also) reflect differences in semantic similarity. Some studies reported a smaller N400 

amplitude for words that are semantically similar to the context, compared to dissimilar 

words, despite being equally unpredictable and implausible [19-20]. These results suggest 

that sentence plausibility may have little effect on ERP activity in the N400 time window 

beyond the combined effects of predictability and semantic similarity. However, Chwilla, 

Kolk and Vissers [21] demonstrated N400 effects of plausibility for words that were equally 

unpredictable and equally dissimilar to the context. 

These previous studies have only looked at effects of plausibility or similarity on 

unpredictable, ‘low-cloze’ words, and therefore do not directly address the question of 

whether or to what extent the well-established, graded relationship between predictability and 

N400 activity is confounded by other contextual semantic factors. In the current study, we 

examine the effects of plausibility and similarity across a full range of cloze values. 

Moreover, we simultaneously model variance associated with predictability, plausibility and 

semantic similarity as well as lexical variables. By explicitly modelling these sources of 

variance, we can investigate the effects of one variable while controlling for the others. This 

approach obviates the need to match conditions on a variable through null hypothesis 

significance testing, a procedure that is often used but is ineffective and unnecessary [22]. In 

addition, by modelling activity at individual time samples and EEG channels, we can 

examine the effects of predictability, plausibility and similarity in terms of both their time-

course and distribution across the scalp. This contrasts with the ‘traditional’ approach of 

averaging activity within a longer time window and/or from multiple electrodes (e.g., [2,4,6]. 
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Our use of a spatiotemporally fine-grained analysis is itself not new [15, 23-25], but our 

study is the first to apply this technique in an attempt to dissociate the effects of 

predictability, plausibility and semantic similarity. 

Our approach can yield new insights into the semantic processes taking place within 

the first few hundred milliseconds after written word onset. One persistent question in 

psycholinguistics is whether activity in the traditional N400 time window reflects only the 

context-dependent activation of semantic information from long-term memory (e.g., [2]), or 

whether it also reflects integrative processes that compose higher-level sentence meaning 

from individual word meanings (semantic integration/unification; [8-9]). In other words, it 

remains unclear whether N400 activity reflects a non-compositional process (activation of 

meaning) or a compositional process (combining word meanings into a higher-order 

representation), or perhaps both. Some researchers advocate the latter, ‘multiple-process’ 

position, and argue that N400 activity does not index a single process but a cascade of 

semantic activation and integration processes [5, 10, 26-29]. If these processes can be 

meaningfully studied through their association with predictability and plausibility1, 

 
1 We follow previous work in using these measures as a means to tap into activation and 

integration processes [e.g., 18-21], with the caveat that their effects may not directly reflect 

activation and integration processes--i.e., an association between N400 amplitude and cloze 

probability may not directly reflect active prediction of a stimulus, and an association 

between N400 and plausibility rating may not directly reflect later integration processes. That 

is to say, effects of cloze probability may also be driven partly by integration processes and 

effects of rated plausibility may also be driven partly by activation processes. But if these 

measures reflect precisely the same processes, then they should not elicit clearly 

distinguishable effects in neural activity. 
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respectively, then effects of predictability and plausibility might both be observed in the 

N400 time window, but effects of predictability would precede and may even be functionally 

distinct from those of plausibility. 

 Consistent with this account, a recent study found that effects of prediction appeared 

earlier than effects of contextual integration [30], and on distinct ERP components (N250 and 

N400). However, because their participants were instructed to actively predict sentence-final 

words, the observed ERP patterns may also have reflected task-relevant decision-processes 

[31], and may not generalize to situations where people do not strategically predict upcoming 

words (for in-depth discussion, see [32]). The results from studies without such a prediction-

task also suggest earlier effects of predictability than of plausibility [11,18], but in these 

studies the effect of plausibility involved a comparison between plausible and anomalous 

words, and the contributions of semantic similarity in these studies is unknown. 

The current study 

Here, we tested the multi-process hypothesis using data from a large-scale, direct 

replication attempt of a landmark study on prediction [6]. DeLong et al. capitalized on the 

phonotactic dependence of the English indefinite articles ‘a/an’ on whether the next word 

starts with a consonant or vowel. Participants read sentences containing an indefinite article 

(a/an) followed by a noun. The article-noun pairs were always grammatical but differed in 

their predictability from sentence context (e.g., “You never forget how to ride a bicycle/an 

elephant once you’ve learned”). As expected, amplitude of the noun-elicited N400s gradually 

decreased with increased predictability [2]. Critically, however, DeLong et al. also observed 

this pattern of results at the preceding articles, which cannot arise from differences in the 

meaning of ‘a/an’ and therefore does not index integration costs. The article-effect was taken 

as strong evidence that participants predicted the nouns, including their phonological form 

(i.e., whether they start with a consonant or vowel), and that the articles that disconfirmed 
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this prediction resulted in processing difficulty (higher N400 amplitude at the article). In a 

large-scale, direct replication attempt spanning 9 labs [4], our pre-registered analyses did not 

yield a statistically significant article-effect but successfully replicated the noun-effect.  

In the current study, we performed a further (non-pre-registered) analysis to dissociate 

the effects of prediction and integration. Like previous studies [18-20], we investigated their 

effects by examining noun-elicited ERP activity as a function of word predictability and 

plausibility, which we established in offline norms. Improving on previously used methods, 

we simultaneously modelled variance associated with predictability and plausibility, while 

also controlling for semantic similarity [12,33], a measure of low-level semantic relatedness 

between word and context derived from distributional semantics.  

If activity in the N400 time window reflects effects of activation and integration [10-

11], and if predictability and plausibility reliably correspond to the ease of activation and 

integration, respectively, then plausibility would have an effect on N400 activity alongside 

the effect of predictability, although any effects of plausibility would occur later than effects 

of predictability. 

 

Methods 

Our materials were the 80 sentences in two conditions (expected/unexpected article-

noun combination), used by [6]. Participants were native English speaking students from the 

University of Birmingham, Bristol, Edinburgh, Glasgow, Kent, Oxford, Stirling, York, or 

volunteers from the participant pool of University College London or Oxford University, who 

received cash or course credit for taking part in the ERP experiment. Each laboratory aimed 

to test 40 participants and tested at least 32 participants. For ethical approval and informed 

consent see [4]. Our data pre-processing was identical to [4], which used a pre-registered 

procedure (see https://osf.io/eyzaq) that led to the exclusion of 22 participants from the initial 

https://osf.io/eyzaq/
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group of 356 participants, leaving a sample size of 334 participants. Details about the 

stimulus materials, participants, EEG recording equipment and settings, experimental 

procedure and data processing for 22 EEG channels are described [4]. Here, we only describe 

changes and extensions to the methods from that study. A full list of the materials, including 

all norming results, is available as Supplementary materials (https://osf.io/47q3s), along with 

all data, analysis scripts and all supplementary figures. Prior to collecting EEG data, we 

conducted a predictability (cloze probability) pre-test and a plausibility pre-test. 

Predictability 

For the predictability pre-test, we truncated all sentences after the critical indefinite 

article and asked participants to complete each sentence with the first word or words that 

came to mind (for details, see [4]). All participants were volunteers from the University of 

Edinburgh, who did not participate in the ERP experiment or the plausibility tests. We 

presented two counterbalanced lists of 80 sentences to 30 participants each, such that no 

participant saw the same sentence context with the expected and the unexpected article. We 

computed the predictability of each critical noun (the ‘cloze value’) as the percentage of 

participants who used the word to complete the sentence. 

Plausibility 

For the plausibility pre-test, we truncated all sentences after the critical nouns. We 

presented two counterbalanced lists of 80 sentences to 31 participants each, such that no 

participant saw the same sentence context with the expected and the unexpected noun. All 

participants were volunteers from the University of Edinburgh, who did not participate in the 

predictability pre-tests or the ERP experiment. They were asked to judge “the plausibility of 

the events described in the sentences”, on a scale from 1 to 7 (from very implausible to very 

plausible, respectively; other values on the range were shown without a verbal label). We 

computed a plausibility score for each word as the average of the obtained plausibility ratings 
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over participants. On average, high predictability nouns were rated as plausible (M = 5.9, SD 

= 0.48) whereas low predictability nouns were rated as neither plausible nor implausible (M = 

3.8, SD = 1.31). 

Semantic similarity 

We measured semantic similarity values with two different techniques. There are 

emerging developments in the field of distributional semantics and there is ongoing 

discussion on the suitability of different statistical techniques for extracting and representing 

the similarity of word meaning text and their relevance for understanding human cognition 

[33-35]. Traditional ‘counting’ approaches (such as Latent Semantic Analysis, or LSA; [12]) 

use vectors that count co-occurrences of words in large bodies of text, whereas more recent 

‘prediction’ approaches use corpus-trained neural networks to predict words from a set of 

context words (e.g., word2vec; [35]). Both approaches can successfully model behavioral 

measures of semantic processing in humans (e.g., semantic priming reaction times), although 

there are situations where performance of prediction-approaches are superior [33-34]. 

In a previous version of this manuscript [36], we only used semantic similarity values 

obtained from word-to-context pairwise LSA [12], based on the General Reading – Up to 

First Year of College topic space (lsa.colorado.edu), using the maximum factors available. 

These values correspond to the term-to-term semantic similarity of each target word to its full 

sentence context. Here, we additionally establish that our key results do not depend on the 

use of LSA, by repeating our analysis with semantic similarity scores obtained from ‘snaut’ 

(http://meshugga.ugent.be/snaut), using a word2vec-compatible ‘continuous bag of words’ 

(CBOW) prediction-model (for details, see [33]). This model was trained on a concatenation 

of the UKWAC corpus (2 billion words) and a subtitle corpus (385 million words). Values 
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were computed using the English words (300 dimensions, window-size of 6). Where 

possible, words that did not appear in the corpus were replaced with lemmatized versions2. 

Mixed-effects multiple regression 

We performed a mixed-effects multiple regression on the single-trial data of [4], 

obtained with a pre-registered data pre-processing procedure. All segments were resampled to 

250 Hz (i.e., one sample every 4 ms). Then, for each sample between -100 to 1000 ms 

relative to noun onset, and for each channel, we performed a mixed-effects model analysis 

[37] using the ‘lme4’ package [38] as implemented in R [39]. All continuous predictors 

(predictability, plausibility, similarity) were z-scored, and we removed random correlations to 

facilitate model convergence. As expected, our measures of predictability and plausibility 

were clearly correlated (Spearman’s r=0.734, 95% percentile bootstrap confidence interval = 

[0.726, 0.74]), and more strongly so than predictability and semantic similarity (r=0.23 

[0.218, 0.241]), and plausibility and semantic similarity (r=0.215 [0.203, 0.228]). However, 

these correlation coefficients are not a principled obstacle to our approach. Variance Inflation 

Factors (VIF) for all our predictors were below 2.3 (for the additional analyses with 

interaction terms, VIFs were below 3), which is well below the values deemed problematic 

due to high multicollinearity [40]. More importantly, multicollinearity is not an issue because 

the relationship between predictability and plausibility in our items is highly non-linear, 

which facilitates the disentanglement of their contributions. 

In addition, the factor ‘laboratory’ was included as a deviation-coded, categorical 

fixed effect variable. Although this factor was not of theoretical interest, it was included 

because our previous pre-registered analysis showed that the overall N400 amplitude differed 

 
2 We thank Pawel Mandera for his generous help with obtaining semantic similarity scores 

from snaut. 
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between laboratories (i.e., a statistically significant main effect of ‘laboratory’; [4]). Because 

the laboratories did not show significantly different N400 effects of noun-predictability (i.e., 

no statistically significant interaction between ‘predictability’ and ‘laboratory’), we did not 

incorporate interaction terms with ‘laboratory’ in the current analyses. 

To control for potential N400 effects of lexical frequency and orthographic 

neighbourhood density [5], we included two additional fixed effects (‘frequency’, using the 

the logarithmic Zipf scale from the Subtlex-UK database, [41]; and ‘neighbourhood’, using 

the raw value of Coltheart’s N [42]). 

Below, we give the lme4 syntax for the analysis on each time sample and channel (full 

code for the entire analysis is available on our OSF page). For each analysis, we extracted a 

coefficient estimate with 95% confidence interval (CI), a t-value and p-value associated with 

‘predictability’, ‘plausibility’ and ‘similarity’. We computed confidence intervals with the 

‘Wald’ method, and p-values with the normal approximation. 

voltage ~ predictability + plausibility + similarity + 

   laboratory + frequency + neighbourhood + 

  (predictability + plausibility + similarity || subject) +  

 (predictability + plausibility + similarity || item) 

For the purpose of comparison, we also performed the above analysis without the 

predictors ‘plausibility’ and ‘similarity’, and we also computed ‘traditional’ grand-average 

ERPs by first averaging trials from either relatively expected and unexpected nouns for each 

subject and then averaging subject-averages from all subjects per condition. The 

corresponding Supplementary Figures 4 and 5, respectively, are available on our OSF page. 

Correction for multiple comparisons 

We corrected for multiple comparisons using the Benjamini and Hochberg [43] 

method to control the false discovery rate, the expected proportion of false discoveries 
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amongst the rejected hypotheses. For predictability, plausibility and semantic similarity 

separately, we applied this correction (implemented in R’s p.adjust) to p-values associated 

with samples from all electrodes in three time windows of interest (0-200, 200-500, 500-1000 

ms). Our main window of interest regarding N400 activity was the 200-500 ms time window, 

the pre-registered window of analysis in [4], which followed [6]. We applied the correction 

separately to each window of interest because the false discovery rate procedure, when 

applied to the entire window, can be too lenient outside the 200-500 ms time window 

containing large N400 effects [18,24]. 

Additional interaction analyses 

Our analyses initially did not involve interaction terms, because we did not have a 

strong a priori theoretical basis to expect the effect size of plausibility or semantic similarity 

to change with predictability (or vice versa), nor to expect the effect size of plausibility to 

depend on semantic similarity (or vice versa). However, we subsequently explored potential 

interactions between our three continuous predictors of interest. No study has yet looked at 

plausibility effects at medium to high levels of predictability, but effects of either plausibility 

or similarity have been observed before for unpredictable words [11, 18-21]. In this 

interaction analysis, we investigate whether the effects of predictability, plausibility and 

similarity depend on one another, and whether there are effects of plausibility and/or 

similarity even when accounting for their potential dependence on predictability. We 

therefore repeated our analysis with the inclusion of all two-way interaction terms between 

predictability, plausibility and semantic similarity (for both LSA and snaut). To reduce 

computing time we did not include random slopes for the interaction terms. We applied the 

same correction for multiple comparisons to the resulting p-values as described previously. 

 

Results 
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More predictable nouns elicited more positive amplitude (likely indicating a smaller 

N400 component) than unpredictable nouns within the N400 time window (200-500 ms) 

across all channels (see Figure 1a, for selected channels; for corresponding scalp distribution 

plots, see Figure 1d. For waveform plots at all EEG channels, see Supplementary Figure 1 on 

our OSF page). This effect was statistically significant as early as 200 ms after word onset at 

multiple channels, and peaked around 330 ms. Following the N400 component, the pattern of 

activation reversed, such that more predictable nouns elicited a more negative deflection than 

less predictable items. This post-N400 waveform was statistically significant at frontal and 

central channels already within the 200-500 ms time window (see also [18]), and appeared 

stronger and more extended at left- compared to right-hemisphere channels. 

More plausible nouns elicited more positive amplitude (perhaps indicating a smaller 

N400 component, but see below) than implausible nouns within the N400 time window (200-

500 ms) (see Figure 1b; Supplementary Figure 2). In contrast to the pattern observed for 

predictability, the effect of plausibility showed a less peaked, more extended time course that 

continued until about 650 ms after word onset. The effect of plausibility became statistically 

significant at multiple channels about 350 ms after word onset, thus around the peak effect of 

predictability, at most channels it peaked or was strongest within the 200-500 ms window, 

and it was most pronounced over right-hemisphere electrode sites. 

We did not observe statistically significant effects of semantic similarity in any of the 

time windows after multiple comparison correction (Figure 1c; Supplementary Figure 3), but 

in the 500-1000 ms time window more similar nouns were associated with more negative 

voltage (see also [36]). 

Compared to the effect of predictability in the current analysis, its effect on N400 

activity when disregarding plausibility and similarity (Supplementary Figure 5) was overall 

stronger (as is to be expected when removing a correlated regressor), did not reverse sign at 
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posterior channels like Pz until after 500 ms after word onset, and did not reverse sign at all 

at right-posterior channels. 

In the analysis that included interactions between predictability, plausibility and 

similarity, none of the interaction terms elicited significant effects after multiple comparison 

correction (see Figure 2, for selected channels; Supplementary Figures 9a-c), although weak 

effects  were visible. The effect of plausibility became smaller with increasing predictability, 

and this interaction pattern was strongest at about 500 ms after word onset. The effect of 

similarity also became smaller with increasing predictability, and this interaction pattern was 

strongest around the peak of the N400 waveform (~350-375 ms). The effect of similarity 

became greater with increasing plausibility, and this interaction pattern was strongest right 

around the peak of the N400 waveform. In this analysis, the main effect of predictability and 

of similarity remained largely similar to the effect observed in absence of interaction terms, 

although the effect of similarity now reached statistical significance at two channels around 

750 ms after word onset. Importantly, while the main effect of plausibility in this analysis 

was greatly reduced compared to the effect observed in absence of interaction terms, a clear 

effect of plausibility was visible and statistically significant just after the N400 peak effect of 

predictability, in particular at right-hemisphere electrodes.  

Finally, our analysis with snaut-based similarity values instead of LSA-values yielded 

similar results for predictability and plausibility and for their interaction (Supplementary 

Figures 10-16). Compared to the LSA-analysis, we observed qualitatively different patterns 

for similarity and associated interaction patterns, but none of these patterns yielded 

statistically significant effects. 

 
Discussion 

In a reanalysis of data from a large-scale ERP replication study [4], we investigated 

whether the predictability-dependent N400 [2,6] only reflects the effect of word predictability 
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or also that of sentence plausibility, while controlling for low-level semantic similarity (using 

different measures of similarity). Unlike previous studies  [18-21], we examined the effects 

of plausibility and similarity across a full range of cloze values, and we simultaneously 

modelled variance associated with predictability, plausibility and semantic similarity as well 

as lexical variables. Predictability strongly predicted widespread N400 activity starting as 

early as 200 ms after word onset, and showed an effect reversal (high predictability eliciting 

more negative voltage) that started before the end of the N400 window and lasted several 

hundreds of milliseconds. In contrast, plausibility was associated with a smaller, right-

lateralized effect that started only after the effect of predictability reached its peak (around 

350 ms after word onset) and that continued until well beyond the classical N400 window. 

Effects of predictability and plausibility both occurred in the N400 time window, but the 

former dominated the N400’s rise (i.e., upward flank), while the latter set in at its fall (i.e., 

downward flank). Semantic similarity did not have a strong effect on N400 activity over and 

above the effects of predictability and plausibility. Importantly, even when accounting for the 

possibility that plausibility and similarity have stronger effects for relatively unexpected 

words, plausibility modulated activity of the N400 after the peak effect of predictability. 

If we assume that the association between cloze probability and ERP amplitude reflects 

an effect of prediction, and that the association between plausibility ratings and ERP 

amplitude reflects later integration, then our results seem to challenge accounts in which the 

predictability-dependent N400 reflects the effects of only prediction [6] or only integration 

[8]. Instead, they are consistent with a ‘hybrid’, multiple-process view [5,10-11, 27-29], 

wherein N400 activity reflects a cascade of non-compositional and compositional processes 

that activate and integrate word meaning within a sentence context. In a recent 

neurobiological account, Baggio and Hagoort [10] propose that the onset and rising flank of 

the N400 reflect build-up of current in the temporal cortex when people access word meaning 
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from long-term memory, followed by forward currents to the inferior prefrontal gyrus, where 

a context representation is generated and maintained. The peak and downward flank of the 

N400 reflect the moment when re-injection of currents back to the temporal cortex dominates 

activity as people integrate word meaning with a context representation held active in 

prefrontal cortex. Our results are broadly compatible with this proposal in terms of the 

observed time course of prediction and integration effects, although our results are 

inconclusive with regard to the assumed neural generators. Interestingly, our results do 

suggest a stronger role for the right-hemisphere in integrative processing, as effects of 

plausibility were strongest at right-hemisphere electrodes, in accordance with previous 

literature [5]. 

Our results obtained in the post-N400 time window (500-1000 ms) inform another current 

debate, namely on the processing consequences of words that disconfirm a strong prediction. 

Van Petten and Luka [44] argued for a processing distinction between plausible unexpected 

words (prediction mismatch) and implausible unexpected words (plausibility violations). The 

former elicit a left-frontal positive ERP effect, whereas the latter elicit a parietal positive ERP 

effect [18, 45]. Our study also showed a left-frontal positive ERP effect of prediction 

mismatch, but the effect was more short-lived (500-750 ms) than is typically reported [44]. 

We also obtained evidence for a small, late positive ERP effect of semantic similarity, not of 

plausibility. Therefore, the post-N400 positive ERP effect of prediction mismatch does not 

reflect effects of prediction and plausibility only. With the caveat that our study did not 

contain highly implausible semantic anomalies, our results also raise the possibility that 

positive ERP effects of plausibility violations [44] are at least in part due to low semantic 

similarity. This further highlights the need to simultaneously model relevant contextual 

semantic factors to establish the effect of a measure like (im)plausibility. 
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Our results thus demonstrate a more general point, namely that perhaps any ERP 

component, and especially those extending over hundreds of milliseconds like the N400 or 

the post-N400 positivity, is likely to reflect the combined activity of multiple subcomponents 

that are associated with related yet distinct cognitive processes [29, 46]. Our results could 

also suggest a reason why N400 effects of contextual congruency sometimes last up to 800 

ms after word onset even in written studies [47-48]. Our results suggest that such ‘extended 

N400 effects’ can occur as the processing consequences of sentence plausibility and may 

reflect continued efforts to integrate a word with its context (see also [49]). Such effects may 

be difficult to observe when an opposite ERP effect is simultaneously elicited by another 

aspect of the stimuli, such as prediction mismatch, but not explicitly modelled in the analysis. 

Further research should establish the replicability and generalizability of our results. All 

our sentences elicited a strong expectation for a given noun [6] and contained indefinite 

articles that were consistent or inconsistent with that noun (although people may not always 

use inconsistent articles to revise their prediction, see [4]). In sentences that generate weak or 

no predictions, integration processes may contribute more strongly to N400. Furthermore, 

differences between the onset of prediction and integration effects may be exacerbated during 

spoken language comprehension, as listeners may only need an initial phoneme to disconfirm 

a prediction [50], well before a lexical meaning is available for contextual integration. 

Like previous research [18-20], we investigated semantic activation and integration 

processes during sentence comprehension by examining the online effects of word 

predictability and sentence plausibility, which are obtained from separate offline rating tests. 

However, we acknowledge that the precise relationship between these online processes and 

offline measures is unknown. It is possible that the observed effects of predictability and 

plausibility reflect integration processes alone, and that the used predictability and 

plausibility measures are both noisy estimators of a single underlying function. However, we 
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think this is implausible given the extant literature on the N400 ERP and semantic activation 

[5]. Similarly, it is possible that both observed effects reflect activation processes alone. 

However, we think this is implausible given the duration of the observed plausibility effects 

[5]. In addition, both these accounts are hard to reconcile with the observed changes in effect 

patterns over time. These issues highlight the need for a detailed and mechanistic account of 

the transition from activation to integration [27] and, if possible, more direct measures of 

these assumed processes. Our results suggest that computational models designed to capture 

context-effects on N400 activity (e.g., [51-52]) and theories of meaning composition more 

generally, must capture how contributions of context to word-elicited semantic processing 

can change over time. 

In sum, the results of our large-scale study challenge the view that the predictability-

dependent N400 reflects the effects of either prediction or integration. Our results suggest 

that semantic facilitation of predictable words, as reflected in N400 activity, arises from a 

cascade of processes that activate and integrate word meaning with context into a sentence-

level meaning. 
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Figure 1. Results from the main analysis. Top graphs: Effect of noun predictability, 

plausibility, and semantic similarity at 4 midline electrodes. Because we z-transformed these 

continuous measures, the voltage estimates (coloured lines) and corresponding 95% 

confidence intervals (grey area) represent the change in voltage, for each time sample and 

EEG channel, associated with a 1 standard deviation increase. Dots underneath the voltage 

estimates indicate statistically significant samples after multiple comparisons correction 

based on the false discovery rate. Lower graphs: Scalp distribution associated with the effects 

of predictability, plausibility and semantic similarity between the critical noun and the 

sentence context. The colour scale indexes the average t-value within a 50 ms time window 

relative to word onset. 

 

Figure 2. Results from the analysis with interaction terms. Top graphs: Effect of noun 

predictability, plausibility, and semantic similarity at two right-posterior electrodes. Lower 

graphs: the voltage estimates (dark grey lines) and corresponding 95% confidence intervals 

(grey area) corresponding to the 2-way interaction effects between predictability, plausibility 

and semantic similarity. Negative values indicate that the effect of one variable decreases as 

the other variable increases. 
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