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Higher congruences between newforms and
Eisenstein series of squarefree level

par Catherine M. HSU

Résumé. Soit p ≥ 5 un nombre premier. Pour les formes modulaires ellip-
tiques de poids 2 et de niveau Γ0(N), où N > 6 est sans facteurs carrés, nous
donnons une minoration de la profondeur des congruences d’Eisenstein mo-
dulo p en fonction d’un nombre de Bernoulli généralisé et de certains facteurs
de correction, et montrons que cette profondeur détecte la non principalité lo-
cale de l’idéal d’Eisenstein. Nous utilisons ensuite les résultats d’admissibilité
de Ribet et Yoo pour donner une infinité d’exemples où l’idéal d’Eisenstein
n’est pas localement principal. Finalement, nous illustrons ces résultats par
des calculs explicites et en donnons une application intéressante aux multipli-
cités de Hilbert–Samuel.

Abstract. Let p ≥ 5 be prime. For elliptic modular forms of weight 2 and
level Γ0(N) where N > 6 is squarefree, we bound the depth of Eisenstein
congruences modulo p (from below) by a generalized Bernoulli number with
correction factors and show how this depth detects the local non-principality
of the Eisenstein ideal. We then use admissibility results of Ribet and Yoo
to give an infinite class of examples where the Eisenstein ideal is not locally
principal. Lastly, we illustrate these results with explicit computations and
give an interesting commutative algebra application related to Hilbert–Samuel
multiplicities.

1. Introduction

Let f1, . . . , fr be all weight 2 normalized cuspidal simultaneous eigen-
forms of level Γ0(N) with N prime. A celebrated result of Mazur [11,
Proposition II.5.12, Proposition II.9.6] states that if a prime p divides the
numerator N of N−1

12 , then at least one of these forms is congruent modulo
p to the weight 2 normalized Eisenstein series

E2,N = N − 1
24 +

∞∑
n=1

σ∗(n)qn,
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where σ∗(n) is the sum of all non-zero divisors d of n such that (d,N) = 1.
Berger, Klosin, and Kramer [3, Proposition 3.1] refine this result to give a
precise relation between valp(N ) and the depth of congruence between the
newforms f1, . . . , fr and E2,N . Using a commutative algebra result (restated
as Theorem 2.1 of this paper), they show that if $N is a uniformizer in the
valuation ring of a finite extension of Qp (of ramification index eN ) that
contains all Hecke eigenvalues of the fi’s, and mi is the largest integer such
that the Hecke eigenvalues of fi and E2,N satisfy

λ`(fi) ≡ λ`(E2,N ) (mod $mi
N ),

for all Hecke operators T` with ` - N prime, then

(1.1) 1
eN

r∑
i=1

mi ≥ valp(N ).

Moreover, Theorem 2.1 implies that this expression is an equality if and
only if the Eisenstein ideal is locally principal. Since the Eisenstein ideal
is locally principal when N is prime [11, Theorem II.18.10], (1.1) is always
an equality in this case. However, the approach of comparing the depth of
Eisenstein congruences modulo p, i.e., the left side of (1.1), to a certain
p-adic value suggests a way to determine if the Eisenstein ideal is locally
principal for a fixed squarefree level N .

Let N =
∏t
j=1 qj > 6 be a squarefree positive integer. The weight 2

Eisenstein subspace of level Γ0(N), denoted E2(Γ0(N)), is spanned by 2t−1
Eisenstein series, each of which is a simultaneous eigenform for all Hecke
operators. Since a basis of such eigenforms can be obtained using level rais-
ing techniques [19, §2.2], each eigenform in E2(Γ0(N)) has Hecke eigenvalue
λ` = 1 + ` for Hecke operators T` with ` - N prime. Since we are interested
in congruences away from N, i.e., congruences between the `th Hecke eigen-
values for primes ` - N, any normalized Eisenstein series E ∈ E2(Γ0(N))
will work for our generalization to squarefree level. So, let f1, . . . , fr be all
weight 2 newforms of level Γ0(Nfi) where Nfi divides N . We consider con-
gruences between the set of newforms f1, . . . , fr and the weight 2 Eisenstein
series of level N,

E2,N (z) =
∑
d|N

µ(d)dE2(dz),

where µ is the Möbius function and E2 is the weight 2 Eisenstein series for
SL(2,Z), normalized so that the Fourier coefficient of q is 1. Note that this
Eisenstein series coincides with the original E2,N defined for prime levels
and has q-expansion

E2,N = (−1)t+1ϕ(N)
24 +

∞∑
n=1

σ∗(n)qn.
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Now, in contrast Mazur’s result for the prime level case, Ribet–Yoo [20]
establish that Eisenstein congruences can occur for primes p such that some
prime divisor qj of N satisfies qj ≡ ±1 (mod p). We therefore consider a
function η(N) given by

η(N) =
t∏

j=1
(q2
j − 1) = ϕ(N) ·

t∏
j=1

(qj + 1).

The first main result of this paper (Proposition 3.3) extends the higher
congruences framework of Berger, Klosin, and Kramer to squarefree level
N > 6 so that after replacing valp(N ) with valp(η(N)), the inequality
in (1.1) still holds. Under some mild assumptions on N and p, the second
main result (Theorem 3.5) then gives a numerical criterion, in terms of the
depth of Eisenstein congruences, for the Eisenstein ideal to not be locally
principal. The last main result, stated below, uses this numerical criterion
and the existence of sufficiently many Eisenstein congruences to give a
condition, in terms of only valp(η(N)), for the Eisenstein ideal to not be
locally principal:

Theorem 1.1. Let N =
∏t
i=1 qi be a squarefree integer and p ≥ 5 be a

prime such that p - N . Assume valp(qi−1) = 0 for all i, and valp(qi+1) > 0
for i = 1, . . . , s, where 1 ≤ s ≤ t. If s · 2t−2 > valp(η(N)), then JZ is not
locally principal.

As an application of these results, we express the depth of congruence

1
eN

r∑
i=1

mi

(from Proposition 3.3) as the Hilbert–Samuel multiplicity of the Eisenstein
ideal in the Hecke algebra. While the depth of Eisenstein congruences mod-
ulo p detects whether the associated (local) Eisenstein ideal is principal, this
connection to multiplicities might allow us to give a more precise statement
regarding the minimal number of generators.

Using an algorithm adapted from Naskręcki [14, §4.2], we provide com-
putational examples to illustrate our main results. While Naskręcki has
computed a large number of Eisenstein congruences, his work concerns
congruences of q-expansions rather than congruences away from N . As a
result, his data does not necessarily agree with ours. For example, if N = 97
and p = 2, then val2(96

12) = 3. Since the constant term of E2,N has a 2-adic
valuation of 2, Naskręcki’s algorithm returns 2 as the depth of congruence.
On the other hand, our algorithm returns 3, which agrees with the equality
in (1.1). Moreover, Naskręcki’s algorithm determines the exact Eisenstein
series in E2(Γ0(N)) for which a congruence holds; we do not require this in-
formation since the Hecke eigenvalues of all Eisenstein series in E2(Γ0(N))
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coincide away from N . Because of these differences, we use our modified
algorithm for congruence computations.

Lastly, we note that work of Wake and Wang-Erickson [17, 18], Ribet–
Yoo [19], and Ohta [15] independently study similar questions about various
Eisenstein ideals.

This paper is organized as follows. In Section 2, we recall important com-
mutative algebra results as well as background information on the Hilbert–
Samuel function. In Section 3, we prove the main results and briefly address
the cases p = 2, 3. In Section 4, we discuss applications and give computa-
tional examples. Appendix A contains the algorithm used to compute all
congruences.

Acknowledments. This paper grew out of a PhD thesis completed at the
University of Oregon under the supervision of Ellen Eischen, whom I wish
to thank for her constructive feedback and guidance throughout. I am also
grateful to Krzysztof Klosin for generously taking time to provide helpful
insights and detailed comments on this project during the past year. I thank
Tobias Berger, Kimball Martin, Preston Wake, and Carl Wang-Erickson for
several useful conversations. Lastly, I thank the referee for a careful review
of the manuscript.

2. Commutative algebra preliminaries

Throughout this section, we use the following notation. Let p be a prime,
and let O be the valuation ring of a finite extension E of Qp. Also, let $
be a uniformizer of O and write F$ = O/$O for the residue field.

For s ∈ Z+, let {n1, n2, . . . , ns} be a set of s positive integers and set n =∑s
i=1 ni. For each i ∈ {1, 2, . . . , s}, let Ai = Oni and set A =

∏s
i=1Ai = On.

Also, let T ⊂ A be a local complete O-subalgebra which is of full rank as
an O-submodule, and let J ⊂ T be an ideal of finite index. For each i, we
define ϕi : A � Ai to be the canonical projection and set Ti = ϕi(T ) and
Ji = ϕi(J). Note that since each Ti is also a (local complete) O-subalgebra
and the projections ϕi|T are local homomorphisms, Ji is also an ideal of
finite index in Ti.

We first recall a result of Berger, Klosin, and Kramer [3, Theorem 2.1]
which is key to proving Proposition 3.3. We then define the Hilbert–Samuel
function of the module T as well as the associated multiplicity e(J, T ) of
the ideal J ⊂ T . In particular, we prove that

e(J, T ) =
s∑
i=1

length(Ti/Ji).

2.1. Result of Berger, Klosin, and Kramer. Using the Fitting ideal
FitO(M) associated to a finitely presented O-module M (cf. [12, Appen-
dix]), Berger, Klosin, and Kramer prove the following commutative algebra
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result, which is widely applicable in the context of congruences between
automorphic forms:
Theorem 2.1 (Berger–Klosin–Kramer, 2013). If #F×$ ≥ s − 1 and each
Ji is principal, then

#
s∏
i=1

Ti/Ji ≥ #T/J.

Moreover, the ideal J is principal if and only if equality holds.
Remark 2.2. Note that this inequality is often strict, as illustrated in the
application of Theorem 2.1 to Eisenstein congruences of elliptic modular
forms of squarefree level.
2.2. The Hilbert–Samuel function and multiplicities. Let R be a
local ring with maximal ideal m. For a finitely generated R-module M and
an ideal q ⊂ R of finite colength on M, define the Hilbert–Samuel function
of M with respect to q to be (cf. [9, §12.1])

Hq,M (n) := length(qnM/qn+1M).
By [9, Theorem 12.4], we have

dimM = 1 + degPq,M ,

where Pq,M (n) is a polynomial that agrees with Hq,M (n) for large enough n.
Moreover, by [9, Exercise 12.6], we may write

Pq,M (n) =
d∑
i=0

aiFi(n),

where Fi(n) = (ni) is the binomial coefficient regarded as a polynomial in n
of degree i, and the ai are integers with ad 6= 0. Given these functions, we
have the following definition:
Definition 2.3. The coefficient ad is called the multiplicity of q on M and
is denoted e(q,M).

Note that the leading coefficient of Pq,M equals e(q,M)/d!. In particular,
when M is a finitely generated free R-module and dimR = 1, we have
dimM := dimR/AnnRM = 1, and hence, Pq,M will be a constant function
for large enough n. Thus, in this case,

Pq,M = e(q,M).
To relate the multiplicity e(J, T ) to

∑
i length(Ti/Ji), we use the following

proposition:
Proposition 2.4. If each Ji is principal, then we have

(2.1) e(J, T ) =
s∑
i=1

e(Ji, Ti).
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Remark 2.5. When J = (α) is principal, this equality follows immediately
from [3, Proposition 2.3]. Indeed, since multiplication by α gives T -module
isomorphisms

T/J ' J/J2 ' J2/J3 ' · · · ,
HJ,T (n) is a constant fuction and e(J, T ) = length(T/J). Similarly, we have
e(Ji, Ti) = length(Ti/Ji). Additionally, note that for any J,

n∑
i=1

length
(
Jri /J

r+1
i

)
= length

(
n∏
i=1

Jri /J
r+1
i

)
= length

( ∏n
i=1 J

r
i∏n

i=1 J
r+1
i

)
,

and hence,

(2.2)
n∑
i=1

e(Ji, Ti) = e

(
n∏
i=1

Ji,
n∏
i=1

Ti

)
.

We now prove Proposition 2.4 using the following two lemmas:
Lemma 2.6 (Properties of Multiplicities [5, Exercise 12.11.a.ii]). Let

0→ M ′ → M → M ′′ → 0
be an exact sequence of modules over the local ring (R,m), and suppose that
q ⊂ R is an ideal of finite colength on M,M ′,M ′′. If dimM = dimM ′ >
dimM ′′, then e(q,M) = e(q,M ′).
Lemma 2.7. We have

J
s∏
i=1

Ti ⊆
s∏
i=1

Ji,

with equality whenever the Ji are principal.
Proof. The left-hand side consists of elements of the form

α · (ϕ1(t1), . . . , ϕs(ts)) = (ϕ1(α)ϕ1(t1), . . . , ϕs(α)ϕs(ts))
with α ∈ J and tj ∈ T, and hence, the containment is clear since ϕi(J) = Ji
is an ideal of Ti. When the Ji are principal, [3, Proposition 2.6] guarantees
the existence of some α ∈ J such that ϕi(α) generates Ji for all i. Thus, we
may write an element of the right-hand side as

(ϕ1(α)ϕ1(t1), . . . , ϕs(α)ϕs(ts)) = α · (ϕ1(t1), . . . , ϕs(ts))
for some t1, . . . , ts ∈ T . �

Proof of Proposition 2.4. Consider the exact sequence

0→ T →
s∏
i=1

Ti → K → 0,

where K denotes the cokernel. Since T has full rank in A, Lemma 2.6 gives

e(J, T ) = e

(
J,

s∏
i=1

Ti

)
,
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and hence, since the Ji are principal, we can apply Lemma 2.7 to obtain

e (J, T ) = e

(
J,

s∏
i=1

Ti

)
= e

(
J

s∏
i=1

Ti,
s∏
i=1

Ti

)
= e

(
s∏
i=1

Ji,
s∏
i=1

Ti

)
.

Thus, by (2.2),

e(J, T ) =
s∑
i=1

e(Ji, Ti). �

Corollary 2.8. If each Ji is principal, then

e(J, T ) =
s∑
i=1

length(Ti/Ji).

Proof. As established in Remark 2.5, if each Ji is principal, e(Ji, Ti) =
length(Ti/Ji). Hence,

e(J, T ) =
s∑
i=1

e(Ji, Ti) =
s∑
i=1

length(Ti/Ji). �

3. Higher congruences: Proof of main results

Recall that N =
∏t
j=1 qj > 6 is a squarefree positive integer, f1, . . . , fr

are all weight 2 newforms of level Nfi dividing N, and

E2,N = (−1)t+1ϕ(N)
24 +

∞∑
n=1

σ∗(n)qn.

In this section, we first extend the higher congruences framework in [3, §3]
to elliptic modular forms of squarefree level. Under certain conditions, we
then give two numerical criteria, one in terms of the depth of Eisenstein
congruences modulo p and one in terms of the p-valuation of η(N), for
the Eisenstein ideal to not be locally principal. In particular, these criteria
allow us to establish an infinite class of examples where the Eisenstein ideal
is not locally principal.

3.1. Higher congruences framework for squarefree level. For each
prime p ≥ 5, we would like to bound the depth of Eisenstein congruences
modulo p by the p-adic valuation of the index of an Eisenstein ideal in the
associated Hecke algebra. Indeed, there are many choices for which Hecke
algebra to study. In our context, we are only interested in congruences
away from N , and so we consider Hecke algebras generated by the Hecke
operators T` for primes ` - N . We refer to such Hecke algebras as anemic
in order to emphasize the exclusion of the Hecke operators Tq for primes
q |N . (When the level N is prime, it makes no difference whether we in-
clude TN since this Hecke operator acts as the identity in the associated
Hecke algebra [5, Proposition 3.19].) Additionally, because we want to use
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arithmetic data from certain Galois representations, it can be convenient to
exclude the Hecke operator Tp. To distinguish between whether we exclude
or include Tp, we write T to denote the Hecke algebra generated by T` for
primes ` - Np and T̃ to denote the Hecke algebra generated by T` for primes
` - N . Note that while we can formulate most of the results in this section
for either T or T̃, for simplicity’s sake, we mainly use the Hecke algebra T.

Let S2(N) denote the C-space of modular forms of weight 2 and level
Γ0(N). For any subring R ⊂ C, we write TR for the R-subalgebra of
EndC(S2(N)) generated by the Hecke operators T` for primes ` - Np. Let
JR be the Eisenstein ideal, i.e., the ideal of TR generated by T`− (1 + `) for
primes ` - Np. For a prime ideal a of TR, write TR,a = lim←−m TR/am for the
completion of TR at a, and set JR,a := JRTR,a. We will call JR,a the local
Eisenstein ideal.

It is well-known that S2(N) is isomorphic to HomC(TC(N),C), where
TC(N) is the full Hecke algebra in EndC(S2(N)) [8, Proposition 12.4.13]. We
now establish an analogous duality between the anemic Hecke algebra TC
and the C-subspace L of S2(N) spanned by newforms f1, . . . , fr. Consider
the bilinear pairing

TC × L→ C
(T, f) 7→ a1(Tf),(3.1)

where an(Tf) denotes the nth Fourier coefficient of Tf . This pairing induces
maps

L→ HomC(TC,C) = T∨C
TC → HomC(L,C) = L∨.

(3.2)

Proposition 3.1. The above maps are isomorphisms.

Proof. Since a finite dimensional vector space and its dual have the same
dimension, it suffices to show that each map is injective. To show these maps
are injective, we require the following lemma, which uses Atkin–Lehner
theory:

Lemma 3.2. Any f ∈ L with an(f) = 0 for all (n,Np) = 1 is 0.

Proof. Consider f ∈ L such that an(f) = 0 for all (n,Np) = 1. By [8,
Proposition 6.2.1] or [13, Theorem 4.6.8], there exist cusp forms gq(z) ∈
S2(N/q) for all prime factors q of N such that

(3.3) f(z) =
∑
q|N

gq(qz).

In particular, by Atkin–Lehner theory, cf. [8, §6], the right-hand side of this
equation can be expressed as a linear combination (over C) of cusp forms
{fi(djiz)}, where each fi(z) is a newform of level Mi dividing N, and for
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each i, dji runs over all integers that are strictly greater than 1 and satisfy
djiMi |N .

On the other hand, since f ∈ L, we can write

(3.4) f(z) =
r∑
i=1

bifi(z), bi ∈ C,

and so comparing (3.3) and (3.4) gives a linear dependence between the
newforms f1(z), . . . , fr(z) and the cusp forms {fi(djiz)}. However, any such
dependence must be trivial since the collection

{f1(z), . . . , fr(z), f1(d1
1z), . . . , f1(dj11 z), . . . , fr(d1

rz), . . . , fr(djrr z)}
forms a basis for S2(N), and so we conclude that b1 = · · · = br = 0, i.e.,
f = 0. �

Given this lemma, we prove the injectivity of the maps in (3.2) as follows.
First, suppose that f 7→ 0 ∈ HomC(TC,C). Then a1(Tf) = 0 for all T ∈ TC,
so an = a1(Tnf) = 0 for all (n,Np) = 1. By Lemma 3.2, f = 0.

Next, suppose T 7→ 0 ∈ HomC(L,C) so that a1(Tf) = 0 for all f ∈ L.
Substituting Tnf for f and using the commutativity of TO, we obtain

a1(T (Tnf)) = a1(Tn(Tf)) = an(Tf) = 0,
for all (n,Np) = 1. Hence, Lemma 3.2 implies that Tf = 0. Since any
g ∈ S2(N) can be written as a linear combination of TC-eigenforms [7,
Proposition 1.20], and since each of these eigenforms shares its eigenchar-
acter with some f ∈ L [7, Theorem 1.22], we conclude that Tg = 0 for all
g ∈ S2(N), i.e., T = 0. �

We now apply Theorem 2.1 to Eisenstein congruences of elliptic modular
forms of squarefree level. Fix an embedding Qp ↪→ C and let E be a finite
extension of Qp that contains all Hecke eigenvalues of the fi’s and whose
residue field has order at least s. Write ON for the ring of integers in E,
$N for a choice of uniformizer, eN for the ramification index of ON over
Zp, and dN for the degree of its residue field over Fp. We are interested
in the local structure of the Eisenstein ideal when we complete TZp at the
unique maximal ideal mZp ⊆ TZp containing JZp . Indeed, the following
result relates the depth of Eisenstein congruences modulo p to the p-adic
valuation of #TZp/JZp and shows that this depth detects whether the local
Eisenstein ideal JZp,mZp is principal:

Proposition 3.3. For i = 1, . . . , r, let $mi
N be the highest power of $N such

that the Hecke eigenvalues of fi are congruent to those of E2,N modulo $mi
N

for Hecke operators T` for all primes ` - Np. Then, we have

(3.5) 1
eN

(m1 + · · ·+mr) ≥ valp(#TZp/JZp).
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This inequality is an equality if and only if the Eisenstein ideal JZp,mZp is
principal.

Proof. To simplify notation, write O for ON and $ for $N , and let m =
JO + $TO be the unique maximal ideal of TO containing JO. By Atkin–
Lehner theory, each newform f1, . . . , fr (of level Nfi) is a simultaneous
eigenform under the action of the anemic Hecke algebra TO, and so we can
consider the map

(3.6) TO →
s∏
i=1
O, T` 7→

s∏
i=1

(λ`(fi)).

In particular, the perfect pairing established by Proposition 3.1 implies that
this map is an injection. Indeed, if T ∈ TO maps to 0, then by viewing T as
a C-linear form on L via an extension of scalars, we see that T 7→ 0 ∈ L∨
in (3.2), i.e., T = 0.

Now, renumber f1, . . . , fr so that f1, . . . , fs satisfy an Eisenstein congru-
ence away from N while fs+1, . . . , fr do not. (3.6) then induces an injection

TO,m ↪→
s∏
i=1
O, T` 7→

s∏
i=1

(λ`(fi)).

Since TO,m ⊂
∏s
i=1O is a local complete O-subalgebra of full rank, we apply

Theorem 2.1 with T = TO,m, J = JO,m, Ti = O, and ϕi : T → Ti as the
canonical projection. (Note that by construction, E satisfies the hypothesis
in Theorem 2.1 on the order of its residue field.) For each projection Ti/Ji,
we have

(3.7) valp(#Ti/Ji) = valp (#O/$miO) = midN = mi
[O : Zp]
eN

.

On the other hand, we have TO,m = TZp,mZp ⊗Zp O [7, Lemma 3.27 and
Proposition 4.7] and JO,m = JZp,mZp ⊗Zp O, and hence,

(3.8) valp(#T/J) = valp

(
#
TZp,mZp

JZp,mZp

⊗Zp O
)

= [O : Zp] ·valp

(
#
TZp,mZp

JZp,mZp

)
.

Combining these equalities yields

1
eN

(m1 + · · ·+mr) ≥ valp

(
#
TZp,mZp

JZp,mZp

)
,

and hence, the result follows from the fact that TZp,mZp/JZp,mZp '
TZp/JZp . �
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3.2. Local principality of the Eisenstein ideal for squarefree level.
To use Proposition 3.3 to generate examples of squarefree levels for which
the Eisenstein ideal is not locally principal, we need to (i) determine the
p-adic valuation of #TZp/JZp , ideally in terms of a related L-value, and (ii)
show that the depth of Eisenstein congruence modulo p is strictly greater
than this p-adic valuation.

3.2.1. The index of the Eisenstein ideal inside the associated
Hecke algebra. Many of the current methods used to compute the size of
a congruence module attached to an Eisenstein series center on deformation
theory and an R = T argument, c.f. [1, 2, 16]. Specifically, one can study
deformations of mod p Galois representations of dimension 2 whose semi-
simplification is the direct sum of two characters.

Since we are concerned with congruences between Eisenstein series and
cusp forms of weight 2 and trivial Nebentypus, we consider mod p Galois
representations whose semi-simplification is the direct sum of the trivial
character and the mod p reduction of the p-adic cyclotomic character. In-
deed, Berger–Klosin [1] prove that the order of a certain Selmer group
bounds the size of the congruence module. They then use the Main Con-
jecture of Iwasawa theory [12] to bound the order of the relevant Selmer
group by a generalized Bernoulli number with correction factors, which in
our setting is equal to

η(N) =
t∏

j=1
(q2
j − 1) = ϕ(N) ·

t∏
j=1

(qj + 1).

Due to technical obstacles arising in their method, Berger–Klosin assume
p - N and that each prime divisor qj of N satisfies qj 6≡ 1 (mod p), and
so, for the remainder of this section, we assume that the squarefree level N
satisfies these conditions.

We now state the result of Berger–Klosin that bounds #TZp/JZp :
Proposition 3.4 (Berger–Klosin, 2018). One has

valp(η(N)) ≥ valp(#TZp/JZp).
Proof. This bound follows from Propositions 3.10 and 5.7 in [1]. Note that
while the results in [1] concern the index #TO,m/JO,m, we can use (3.8) to
give equivalent statements for #TZp,mZp/JZp,mZp . �

Thus, Propositions 3.3 and 3.4 yield the following theorem:
Theorem 3.5. Let N be a squarefree integer such that none of its prime
divisors are congruent to 1 (mod p) for a prime p - N . If the depth of
Eisenstein congruences mod p is strictly greater than valp(η(N)), i.e.,

1
eN

(m1 + · · ·+mr) > valp(η(N)),
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then the local Eisenstein ideal JZp,mZp is non-principal.

Now, while the reverse bound in Proposition 3.4 is not required to show
that the local Eisenstein ideal JZp,mZp is non-principal, it is still of inter-
est, particularly within the context of the modularity of residual Galois
representations. Indeed, because we are considering Hecke algebras and
Eisenstein ideals associated to weight 2 cusp forms with trivial Nebenty-
pus, the methods of Berger–Klosin referenced in Proposition 3.4 cannot be
used to establish the reverse bound (see [1, §5]). Nonetheless, under the
additional assumption that at least one prime divisor of N is not congru-
ent to −1 mod p, we can use work of Ohta [15] on congruence modules
attached to Eisenstein series to obtain the desired lower bound. Note that
Ohta includes the Hecke operator Tp in his congruences modules, and so in
what follows, we initially work with the Hecke algebra T̃Zp (which includes
the Hecke operator Tp) and then pass back to our usual Hecke algebra TZp
(which does not).

Following [15, §2-3], we consider the action on S2(N) of the Atkin–
Lehner involutions wd for all positive divisors d of N . More specifically,
for N =

∏t
j=1 qj , set E = {±1}t. Then for each ε = (ε1, . . . , εt) ∈ E, define

S2(N)ε to be the maximum direct summand of S2(N) on which wqj acts
as multiplication by εj (1 ≤ j ≤ t). Since the Atkin–Lehner operators wd
commute with the Hecke operators T` for ` - N, the subspace S2(N)ε is
invariant under the action of T̃Zp . So, let T̃ε

Zp (resp. J̃
ε
Zp) denote the restric-

tion of T̃Zp (resp. J̃Zp) to S2(N)ε. Here J̃Zp ⊂ T̃Zp denotes the Eisenstein
ideal which includes the additional generator Tp − (1 + p).

We would like to use a result of Ohta that computes the p-adic valuation
of the index of the Eisenstein ideal inside of a certain Hecke algebra. Since
Ohta’s notation differs significantly from ours, we briefly explain his nota-
tion and how it relates to our conventions. Indeed, in his work on Eisen-
stein ideals and rational torsion subgroups, Ohta studies three different
spaces of modular forms which he denotesMA

k (Γ0(N);Zp), MB
k (Γ0(N);Zp),

and M reg
k (Γ0(N);Zp). The first (resp. the second) space consists of mod-

ular forms in the sense of Deligne–Rapoport and Katz (resp. Serre and
Swinnerton–Dyer), and the third space consists of regular differentials on
the modular curve. Since Zp is flat over Z[1/N ], these three spaces of modu-
lar forms coincide [15, (1.3.4) and Corollary 1.4.10], and so, although Ohta
defines his Hecke algebra T(N ;Zp) as a subring of EndZp(S

reg
2 (Γ0(N);Zp),

we can view it as subring of EndZp(S2(Γ0(N))). Moreover, while T(N ;Zp)
includes the Atkin–Lehner involutions and so differs in general from the
anemic Hecke algebra T̃Zp , its restriction T(N ;Zp)ε to S2(Γ0(N))ε is gen-
erated by the Hecke operators T` for primes ` - N and therefore coincides
with T̃ε

Zp . Thus, when ε 6= ε+, where ε+ = (1, 1, 1, . . . , 1), we may apply [15,
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Theorem 3.1.3] to obtain the equality

(3.9) valp(#T̃ε
Zp/J̃

ε
Zp) = valp

 t∏
j=1

(qj + εj)

 .
In particular, since p 6= 2, we can choose some ε′ = (ε′1, . . . , ε′t) ∈ E such
that

valp(qj + ε′j) = valp(q2
j − 1)

for each j = 1, . . . , t. Then, under the additional assumption that qj 6≡ −1
(mod p) for at least one j, which guarantees that ε′ 6= ε+, we have

(3.10) valp(#T̃ε′
Zp/J̃

ε′
Zp) = valp

( t∏
j=1

(qj + ε′j)
)

= valp(η(N)).

Hence, since T̃Zp/J̃Zp � T̃ε
Zp/J̃

ε
Zp for each ε ∈ E, we conclude

(3.11) valp(#T̃Zp/J̃Zp) ≥ valp(η(N)).
To obtain the desired lower bound
(3.12) valp(#TZp/JZp) ≥ valp(η(N)),

we observe that the natural map TZp/JZp → T̃Zp/J̃Zp is in fact a surjection
since the coset of TZp/JZp containing 1 + p maps onto the coset of T̃Zp/J̃Zp
containing Tp. We summarize these results in the following proposition:
Proposition 3.6. Let N be a squarefree integer and p ≥ 5 a prime that
does not divide N . If none of the prime divisors of N are congruent to
1 (mod p) and at least one prime divisor of N is not congruent to −1
(mod p), then there is an equality

valp(η(N)) = valp(#TZp/JZp).
Remark 3.7. This equality is important in the study of the modularity
of residual Galois representations. Specifically, the lower bound in (3.12)
can be combined with the non-principality result in Theorem 3.5 to give a
statement analogous to [1, Theorem 5.12], regarding the existence of many
modular Galois representations, in the case of weight 2 cusp forms of trivial
Nebentypus. Note that this context specifically requires the exclusion of the
Hecke operator Tp from the Hecke algebra.
Remark 3.8. The results of Ohta used here do not require that each qj
satisfies qj 6≡ 1 (mod p). Rather, as long as N has a prime divisor that is
not congruent to −1 (mod p), (3.11) holds so that by Proposition 3.3, the
depth of Eisenstein congrunces mod p is bounded from below by the p-adic
valuation of η(N), i.e.,

1
eN

(m1 + · · ·+mr) ≥ valp(η(N)).
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3.2.2. Counting Eisenstein congruences. Theorem 3.5 gives a numer-
ical criterion for JZp,mZp to be non-principal. While this allows us to use
direct computations to find examples where the Eisenstein ideal is not lo-
cally principal, which we do in Section 4, it would also be useful to find
conditions on the level N which suffice to show the associated Eisenstein
ideal is not locally principal. By combining a counting argument with a
result of Ribet–Yoo, we give one such condition below.

We first prove a lower bound on the number of newforms satisfying an
Eisenstein congruence (away fromNp) modulo p. Note that through the end
of this section, we use the term Eisenstein congruence to mean a congruence
away from Np.

Theorem 3.9. Let N =
∏t
i=1 qi be a squarefree integer and p ≥ 5 be prime.

Assume valp(qi+1) > 0 for i = 1, . . . , s, where 1 ≤ s ≤ t. There are at least
s · 2t−2 newforms of level dividing N that satisfy an Eisenstein congruence
modulo p.

Proof. We require a result of Ribet–Yoo [20, Theorems 1.3(3) and 2.2(2)],
which gives necessary and suffiencient conditions for the existence of Eisen-
tein congruences. Indeed, the result of Ribet–Yoo is phrased in terms of
Galois representations and admissible tuples of primes; we now restate it
in terms of congruences:

Proposition 3.10 (Ribet–Yoo, 2018). Let M =
∏v
j=1 rj be a squarefree

integer and p ≥ 5 be prime. If v is even and rv ≡ −1 (mod p), then there
exists a newform f of level M such that f satifies an Eisenstein congruence
modulo p and such that

(3.13) Trjf =
{
f if j = 1, . . . v − 1,
−f if j = v,

where Trj denotes the usual Hecke operator.

To obtain the lower bound in Theorem 3.9, we find, for each qi with
1 ≤ i ≤ s, a set of 2t−2 newforms, each of which has level dividing N and
satisfies an Eisenstein congruences modulo p. We then show that these sets
are disjoint.

Without loss of generality, consider q1 ≡ −1 (mod p). We apply Propo-
sition 3.10 with each divisor M of N such that M is divisible by q1 and M
is the product of an even number of prime divisors. Specifically, for each
odd integer n ≤ t − 1, there are

(t−1
n

)
choices for a divisor M of N that

satisfies the required conditions, and so summing over choices of n gives a
total of ∑

n≤ t−1
nodd

(
t− 1
n

)
= 2t−2
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choices for M . For each choice of M , we apply Proposition 3.10 with rv =
q1 ≡ −1 (mod p) to obtain a newform of levelM that satisfies an Eisenstein
congruence modulo p. In particular, since each choice of M is distinct, the
multiplicity one theorem guarantees that these 2t−2 newforms will also be
distinct.

It remains to show that the sets of newforms associated to the qi (with
1 ≤ i ≤ s) are disjoint. Again, without loss of generality, suppose that
f1 (resp. f2) is a newform associated to q1 (resp. q2). If the levels of the
newforms f1 and f2 are not equal, then f1 6= f2 by multiplity one, as above.
If the levels are equal, then f1 6= f2 since Tq1f1 = −f1 but Tq1f2 = f2
(by (3.13) and our choices of rv). �

Now, the conditions on the Hecke eigenvalues in (3.13) actually do more
than distinguish the newforms obtained from Theorem 3.9; they show that
none of these s · 2t−2 newforms are Galois conjugates. In particular, as
explained in Remark A.2, this means that the s · 2t−2 newforms obtained
from Theorem 3.9, along with their Galois conjugates under the action of
the appropriate decomposition group, contribute at least s · 2t−2 to the
depth of Eisenstein congruences modulo p, i.e.,

1
eN

(m1 + · · ·+mr) ≥ s · 2t−2.

Thus, combining this inequality with Theorem 3.5 establishes Theorem 1.1,
which states that under the assumptions of Theorem 3.9, if s · 2t−2 >
valp(η(N)), then JZ is not locally principal.

Remark 3.11. Other results of Ribet–Yoo [20] and independent work of
Martin [10] give more conditions (in the style of Proposition 3.10) for the
existence of Eisenstein congruences mod p. One could use these conditions,
within the higher congruences framework, to give additional statements
similar to Theorem 1.1.

Remark 3.12. Since we have assumed p ≥ 5 throughout this paper, we
now briefly address the cases p = 2, 3. Indeed, when p = 2, 3, the higher con-
gruences framekwork established in Section 3.1, including Proposition 3.3,
still holds. However, problems arise when we try to use this framework
to determine whether the Eisenstein ideal is locally principal. Specifically,
when p = 2, Proposition 3.4 is not applicable since every prime is congruent
to ±1 (mod 2). When p = 3, the admissibility result of Ribet–Yoo recalled
in Proposition 3.10 is not applicable, and so Theorems 1.1 and 3.9 do not
hold. Nonetheless, the criterion given in Theorem 3.5 is still valid, and so
when p = 3, we use direct computations (in Section 4) to give examples
where the associated Eisenstein ideal is not locally principal.
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4. Applications and examples

For squarefree level N, Proposition 3.3 bounds the depth of Eisenstein
congruences modulo p by the p-adic valuation of #TZp/JZp . In this section,
we first express this depth of congruence as the multiplicity

1
eN

r∑
i=1

mi = e(JZp,mZp ,TZp,mZp ).

We then use Magma [4] to give computational examples of our main results.

4.1. Hilbert–Samuel multiplicities and elliptic modular forms. We
apply the commutative algebra result stated in Corollary 2.8 in the context
of elliptic modular forms to obtain the following proposition:

Proposition 4.1. For i = 1, . . . , r, let $mi
N be the highest power of $N such

that the Hecke eigenvalues of fi are congruent to those of E2,N modulo $mi
N

for Hecke operators T` for all primes ` - Np. Then

1
eN

r∑
i=1

mi = e(JZp,mZp ,TZp,mZp ).

Proof. As in the proof of Proposition 3.3, take T = TO,m and J = JO,m,
where m is the unique maximal ideal of TO containing JO. Let Ti = O
and ϕi : T → Ti be the map sending a Hecke operator to its eigenvalue
corresponding to fi. Also, let ϕi(TZp,mZp ) = TZp,i, ϕi(JZp,mZp ) = JZp,i. We
then have

lengthO(Ti/Ji) = val$(#Ti/Ji)

= 1
dN
· valp(#Ti/Ji)

= [O : Zp]
dN

· valp(#TZp,i/JZp,i)

= eN · lengthZp(TZp,i/JZp,i).

Since Ji, and JZpi are principal for each i, we may apply Corollary 2.8 to
obtain

e(JO,m,TO,m) = eN · e(JZp,mZp ,TZp,mZp ).

Thus,
s∑
i=1

valp (#Ti/Ji) = dN · e(JO,m,TO,m) = [O : Zp] · e(JZp,mZp ,TZp,mZp ),

and combining this with (3.7) yields the desired result. �
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4.2. Computational examples. We compute Eisenstein congruences for
a selection of squarefree levels. To keep these computations to a manageable
size, we actually compute congruences away from N rather than Np. How-
ever, since a congruence away from N is necessarily a congruence away from
Np, these computations suffice to show that the Eisenstein ideal JZp is not
locally principal. In fact, since Theorem 3.5 is applicable in the case of the
Eisenstein ideal J̃Zp , which includes the generator Tp − (1 + p), these com-
putations also establish examples where the local Eisenstein ideal J̃Zp,mZp
is non-principal.

Recall from Section 1 that we want to compute congruences between the
Hecke eigenvalues of weight 2 newforms f1, . . . , fr of level Nfi dividing N
and the weight 2 Eisenstein series E2,N . Since these forms are normalized
eigenforms for all Hecke operators T` with ` - N prime, this is equivalent
to computing congruences between Fourier coefficients, i.e., congruences of
the type

(4.1) a`(fi) ≡ a`(E2,N ) (mod λi
r),

for all primes ` - N . While the algorithm we use is discussed in more detail
in Appendix A, we give a sample data entry and a brief explanation below.

N = 78 = 2× 3× 13, p = 7, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
26 1 1 7 2
39 1 1 7 2

Each line of this table corresponds to a newform fi that represents its Galois
orbit under Gal(Q/Q). Column 1 gives the level Nfi of fi, and Column 5
gives the number of the Galois orbit of fi with respect to the internal
Magma numbering. For each congruence, λi is a prime ideal, above the
prime p ∈ Z, in the ring of integers of the coefficient field Kfi . Column 2
gives the exponent of each congruence, i.e., the value of r in (4.1), and
Columns 3 and 4 give the ramification index and the order of the residue
field, respectively, of the ideal λi at p. Note that to simplify calculations, we
compute each congruence in the ring of integers of the individual coefficient
field Kfi . In particular, because ramification indices are multiplicative, we
can easily translate this data into congruences modulo a uniformizer of
the ring of integers in the composite coefficient field E/Qp, as required by
Proposition 3.3.

Remark 4.2. As discussed in Section 3, Theorems 1.1 and 3.5 give numer-
ical criteria that can be used to show that the Eisenstein ideal JZ is not
locally principal. By combining explicit computations with the multiplicity
result in Proposition 4.1, we might be able to give a more precise bound on
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the minimal number of generators that each (local) Eisenstein ideal JZp,mZp
requires.

4.2.1. Examples where the Eisenstein ideal is not locally prin-
cipal. We use direct computations and the numerical criterion in Theo-
rem 3.5 to give examples where the Eisenstein ideal is not locally princi-
pal. Note that in each of these examples, the integers p and N satisfy the
assumptions of Proposition 3.4, i.e., p - N and N has no prime factors con-
gruent to 1 (mod p). Because the depth of Eisenstein congruences modulo
p is strictly greater than valp(η(N)), we conclude that the (local) Eisenstein
ideal JZp,mZp is not principal.

N = 195 = 3× 5× 13, p = 7, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
39 1 1 7 2
65 1 1 7 3

N = 354 = 2× 3× 59, p = 5, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
118 1 1 5 3
177 1 2 5 2

N = 618 = 2× 3× 103, p = 13, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
206 1 1 13 4
309 1 1 13 4

N = 786 = 2× 3× 131, p = 11, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
262 1 1 11 5
393 1 2 11 5

Now, from Theorem 3.9, we expect at least 23−2 = 2 congruences in
each of the above examples, and our computations verify this expectation.
The following examples illustrate Theorems 1.1 and 3.9 in more complex
situations, such as when N has more than 3 prime divisors or more than
1 prime divisor that is congruent to −1 (mod p). In each case, s · 2t−2 >
valp(η(N)), and so JZp,mZp is non-principal.

N = 798 = 2× 3× 7× 19, p = 5, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
38 1 1 5 2
57 1 1 5 3
133 1 2 5 2
798 1 2 5 13
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N = 1066 = 2× 13× 41, p = 7, valp(η(N)) = 2 :
level depth ramindex resfield conjclass
26 1 1 7 2
82 1 1 7 2
533 1 2 7 3
533 1 2 7 5
1066 1 1 7 10

N = 1102 = 2× 19× 29, p = 5, valp(η(N)) = 2 :
level depth ramindex resfield conjclass
38 1 1 5 2
58 1 1 5 2
551 1 1 5 7
551 1 1 5 8
1102 1 1 5 14

4.2.2. Examples where the Eisenstein ideal J̃Zp,mZp
is principal.

Using direct computations and (3.11), we can give examples of squarefree
levels N where the (local) Eisenstein ideal J̃Zp,mZp is principal. Our choices
for p and N satisfy the conditions in Remark 3.8, i.e., p ≥ 5 and N has at
least one prime divisor that is not congruent to −1 (mod p). In particular,
we allow N to have divisors which are congruent to 1 (mod p). In each
example, the depth of Eisenstein congruences is equal to valp(η(N)) so
that by Proposition 3.3 and (3.11), J̃Zp,mZp is principal.

N = 145 = 5× 29, p = 7, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
29 1 1 7 1
N = 413 = 7× 59, p = 5, valp(η(N)) = 1 :

level depth ramindex resfield conjclass
413 1 1 5 6
N = 515 = 5× 103, p = 13, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
515 1 1 13 4
N = 655 = 5× 131, p = 11, valp(η(N)) = 1 :
level depth ramindex resfield conjclass
655 1 1 11 5

4.2.3. Examples with p = 3. As discussed in Remark 3.12, Theo-
rems 1.1 and 3.9 do not hold for p = 3 because the admissibility result
of Ribet–Yoo is invalid. However, we can still use the numerical criterion in
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Theorem 3.5 and direct computations to give examples where the Eisenstein
ideal is not locally principal. Note that when p = 3, we actually compare
the depth of Eisenstein congruences to

valp(B2 · η(N)) = valp(η(N))− 1,
where B2 = 1

6 denotes the second Bernoulli number. This correction factor
appears in the general verion of the Berger–Klosin result [1, §5.1, Proposi-
tion 5.6].

N = 110 = 2× 5× 11, p = 3, valp(η(N)) = 3 :
level depth ramindex resfield conjclass
110 1 1 3 1
110 1 1 3 2
110 1 2 3 4

N = 374 = 2× 11× 17, p = 3, valp(η(N)) = 4 :
level depth ramindex resfield conjclass
34 1 1 3 1
187 1 1 3 2
374 1 1 3 2
374 1 1 3 3
374 1 1 3 4

N = 935 = 5× 11× 17, p = 3, valp(η(N)) = 4 :
level depth ramindex resfield conjclass
85 1 2 3 3
187 1 1 3 2
935 1 1 3 2
935 1 1 3 8
935 1 1 3 9

Appendix A. Algorithm for computations

We give the algorithm implemented in Magma [4] to compute the depth
of Eisenstein congruences in Section 4. This algorithm1 has been adapted
from [14, §4.2]. Indeed, our main modification is to the Sturm bound in [14,
Theorem 2]:
Lemma A.1. Let N be a positive integer, and let f ∈ M2(Γ0(N)) be a
modular form with coefficients in OK for some number field K. Let p be
a fixed prime lying over some rational prime p, and suppose the Fourier
coefficients of f satisfy

a`(f) ≡ 0 mod pm

1The code used can be found at https://people.maths.bris.ac.uk/~zx18363/research.
html.

https://people.maths.bris.ac.uk/~zx18363/research.html
https://people.maths.bris.ac.uk/~zx18363/research.html
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for all primes ` ≤ µ′/6 with ` - N, where

µ′ = [SL2(Z) : Γ0(N ′)] for N ′ = N ·
∏
p|N

p.

Then a`(f) ≡ 0 mod pm for all primes ` - N .

Proof. Apply [13, Lemma 4.6.5] to obtain a modular form f ′ ∈M2(Γ0(N ′))
defined by

f ′ :=
∑

gcd (n,N)=1
an(f) · qn.

Note that N ′ = N ·
∏
p|N p as above. Since the Fourier coefficients of f ′ are

multiplicative for all n such that gcd(n,N) = 1 and vanish at any n such
that gcd(n,N) 6= 1, the hypotheses of this lemma imply that

an(f ′) ≡ 0 mod pm

for all n ≤ µ′/6. Hence, by the straightforward generalization of Sturm’s
theorem stated in [6, Proposition 1], we have f ′ ≡ 0 mod pm, and hence,

a`(f) ≡ 0 mod pm

for all primes ` - N . �

By Lemma A.1, it is sufficient for our algorithm to check only for congru-
ences between the Hecke eigenvalues of newforms f1, . . . , fr and Eisenstein
series E2,N for Hecke operators T` for primes ` ≤ µ′/6 with ` - N . We
therefore replace the Sturm bound in Naskręcki’s algorithm with

B = 1
6 · [SL2(Z) : Γ0(N ′)] = 1

6 ·N ·
∏
p|N

(p+ 1),

and check for congruences only at primes less than B. Since the utilization
of orders in number fields in Naskręcki’s computations of congruences is
unrelated to whether or not the level N is prime, this adjusted Sturm
bound allows us to generalize Naskręcki’s algorithm:

Input: A positive squarefree integerN . For each non-prime divisorM ofN :
1. Compute Galois conjugacy classes of newforms in S2(Γ0(M)). Call the

set New.
2. Compute the Sturm bound

B = 1
6 · [SL2(Z) : Γ0(N ′)] = 1

6 ·N ·
∏
p|N

(p+ 1).

3. Compute the coefficients a`(E2,N ) for primes ` ≤ B with ` - N .
4. Calculate the set of primes P = {p prime : p |Numerator (η(N))}.
5. For each pair (p, f) ∈ P ×New, compute Kf , the coefficient field of f .
6. Find an algebraic integer θ such that Kf = Q(θ).
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7. Compute a p-maximal order O above Z[θ].
8. Compute the set S = {λ ∈ SpecO : λ ∩ Z = pZ}.
9. For each λ ∈ S, compute

rλ = min
` prime
`≤B, `-N

(ordλ(a`(f)− a`(E2,N ))) .

Output: If rλ > 0, then we have a congruence
a`(f) ≡ a`(E2,N ) mod (λOf )rλ

for all primes ` - N .

Remark A.2. Since this algorithm computes congruences modulo prime
ideals in the ring of integers of a global field, we must reinterpret its out-
put within the local framework used in Proposition 3.3. More specifically,
let f1, . . . , fr be all newforms of level M, and let L/Q contain all Fourier
coefficients of the fi’s. If p ⊆ OL corresponds to our choice of embedding
Qp ↪→ C, then Proposition 3.3 requires us to check for congruences mod-
ulo p for every Gal(Lp/Qp)-orbit in the set of newforms {f1, . . . , fr}. Our
algorithm accomplishes this by fixing one representative of each Gal(L/Q)-
orbit in {f1, . . . , fr} and checking for congruences modulo all prime ideals
in OL lying over p. Because the depth of Eisenstein congruences is scaled
by the ramification index e(p/p), each Gal(Lp/Qp)-orbit of newforms will
contribute to the depth of congruence at least a total equal to the residue
degree [OL/p : Zp/(p)].
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