
Publisher's PDF, also known as Version of record
License (if available): CC BY
Link to published version (if available): 10.1016/j.foodpol.2019.01.009

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at https://www.sciencedirect.com/science/article/pii/S030691921830318X . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-brisol-research/ebr-terms/
Review: Consumption-stage food waste reduction interventions – What works and how to design better interventions

Christian Reynoldsa,b,*, Liam Goucherc, Tom Questedb, Sarah Bromleyb, Sam Gillickb, Victoria K. Wellsd, David Evanse, Lenny Kohc, Annika Carlsson Kanyamaf, Cecilia Katzeffg, Åsa Svenfeltf, Peter Jacksona

a Department of Geography, University of Sheffield, UK
b Waste & Resources Action Programme (WRAP), UK
c Management School and Advanced Resource Efficiency Centre, Faculty of Social Sciences, University of Sheffield, UK
d The York Management School, York University, UK
e Faculty of Social Sciences, University of Sheffield, UK
f Strategic Sustainability Studies, SEED, KTH Royal Institute of Technology, Sweden
g Architecture and the Built Environment, KTH Royal Institute of Technology, Sweden

ARTICLE INFO

Keywords:
Food waste
Reduction
Household
Downstream
Consumption
Consumer

ABSTRACT

Food waste prevention has become an issue of international concern, with Sustainable Development Goal 12.3 aiming to halve per capita global food waste at the retail and consumer levels by 2030. However, there is no review that has considered the effectiveness of interventions aimed at preventing food waste in the consumption stages of the food system. This significant gap, if filled, could help support those working to reduce food waste in the developed world, providing knowledge of what interventions are specifically effective at preventing food waste.

This paper fills this gap, identifying and summarizing food-waste prevention interventions at the consumption/consumer stage of the supply chain via a rapid review of global academic literature from 2006 to 2017. We identify 17 applied interventions that claim to have achieved food waste reductions. Of these, 13 quantified food waste reductions. Interventions that changed the size or type of plates were shown to be effective (up to 57% food waste reduction) in hospitality environments. Changing nutritional guidelines in schools were reported to reduce vegetable waste by up to 28%, indicating that healthy diets can be part of food waste reduction strategies. Information campaigns were also shown to be effective with up to 28% food waste reduction in a small sample size intervention.

Cooking classes, fridge cameras, food sharing apps, advertising and information sharing were all reported as being effective but with little or no robust evidence provided. This is worrying as all these methods are now being proposed as approaches to reduce food waste and, except for a few studies, there is no reproducible quantified evidence to assure credibility or success. To strengthen current results, a greater number of longitudinal and larger sample size intervention studies are required. To inform future intervention studies, this paper proposes a standardised guideline, which consists of: (1) intervention design; (2) monitoring and measurement; (3) moderation and mediation; (4) reporting; (5) systemic effects.

Given the importance of food-waste reduction, the findings of this review highlight a significant evidence gap, meaning that it is difficult to make evidence-based decisions to prevent or reduce consumption-stage food waste in a cost-effective manner.

1. Introduction

Within the last decade, food waste has become an issue of international concern to policy makers, practitioners, and researchers across a range of academic disciplines. Recent estimates suggest that globally one third of food never reaches a human stomach (FAO, 2011), and global food waste is associated with large amounts of greenhouse gas emissions (FAO, 2013). Growing political and public consensus around the urgency of these challenges has provided the impetus for governments, regions, cities, businesses, organisations, and citizens to act.

* Corresponding author.
E-mail addresses: c.reynolds@sheffield.ac.uk, christian.reynolds@wrap.org.uk (C. Reynolds).

https://doi.org/10.1016/j.foodpol.2019.01.009
Received 13 April 2018; Received in revised form 30 December 2018; Accepted 23 January 2019
Available online 13 February 2019
0306-9192/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Measures have been taken to reduce the amount of food waste generated in agriculture, aquaculture, fisheries, food processing and manufacturing (upstream), and in supermarkets, restaurants, schools, hospitals, and homes (consumption).

Many food waste reduction targets have been set, including Sustainable Development Goal 12.3 which aims by 2030, to halve per capita global food waste at the retail and consumer levels and reduce food losses along production and supply chains, including post-harvest losses (Lipinski et al., 2017). One of the key challenges facing many actors working in this area is deciding where and how to focus their efforts most effectively to reduce food waste. For each area of the food system (Horton, 2017), there are a number of potential strategies (which are not mutually exclusive), with diverse examples including: improved communication of forecasting between retailers and agricultural producers; public information campaigns, programmes to increase skills in the home or workplace; and changes in how food is packaged and sold. Within each of these strategies, there are numerous decisions to be made by policy makers and practitioners that could influence the effectiveness of interventions in preventing food from being wasted.

The aforementioned where can also be geographic in focus: a local area, region, country or globally. Recent quantification of global food waste highlights a split between developed and developing countries. In developing countries, the vast majority of food waste occurs in primary production and within the supply chain – for example in sub-Saharan Africa where more than 90% of food waste occurs prior to the consumption phase (FAO, 2011). In contrast, in so called developed countries, the largest single contribution is reported to come from the consumption stage – with much of that at the household level, e.g. in Europe, around 50% of wasted food is estimated to come from households (Stenmarck et al., 2016). There is clearly a need for researchers, policy makers, and practitioners to understand how to prevent food from being wasted across the supply chain. For those working on the issue in developed countries, however, understanding how to influence food waste within the consumption phase – and, in particular, in households, where the majority of food is consumed and wasted – is important to make a meaningful impact (Porpino et al., 2016). Due to this, there is current policy focused on the household food waste reduction, yet – as shown below – the evidence base for is lacking.

In order to enhance the understanding of how to influence food waste within the consumption phase, this paper set out to identify and categorise food-waste prevention interventions at the consumption/consumer stage. Growing attention to food waste is reflected in an increase in the volume of academic and grey literature on the topic. As a result, several bibliometric studies and meta-analyses of prior literature and studies can be found. Our review of these studies (Table 1) reports how and what each study revealed (Aschermann-Witzel et al., 2016; Carlsson Kanyama et al., 2017; Chen et al., 2015; Hebrot and Boks, 2017; Porpino, 2016; Quested et al., 2013; Schanes et al., 2018; Thyberg et al., 2015; Xue et al., 2017). It can be noted that none of these studies reviewed the effectiveness of interventions aimed at preventing food waste in the consumption stages of the supply chain, although Schanes, Dobering, and Gözet (2018) do call for this to be carried out as an avenue of future research.

In the grey literature, there are many documents summarising a wide range of food-waste-related issues. However, to the best of our knowledge, there is no review of the effectiveness of downstream food-waste interventions. Four intervention studies were reviewed by WRAP (see Appendix F of WRAP, 2014a). These were all from the grey literature and UK-based. Since then a number of further studies have emerged, the most important of which are mentioned in the discussion section below.

In summary, there is no peer-reviewed study that has considered the effectiveness of interventions aimed at preventing food waste in the consumption stages of the food system. This represents a significant gap, which, if filled, could help support those working to reduce food waste in the developed world, providing knowledge of what interventions are specifically effective at preventing food waste. This paper fills this gap, reporting a rapid review of the food-waste literature from 2006 to 2017 focusing on downstream food-waste reduction interventions. Based on the findings, the paper then categorises the successful interventions and discusses the components of a successful food waste reduction intervention.

2. Methods

The methodology for rapid reviews has emerged as a streamlined approach to synthesizing evidence in a timely manner – rather than using a more in-depth and time-consuming systematic review (Khangura et al., 2012; Tricco et al., 2015). As discussed by Tricco et al., there is no set method for a rapid review; however, there are several common approaches. For this study, a rapid review was undertaken to provide fast and up-to-date information, responding to demand from the policy and academic community (c.f. Lazell and Soma, 2014; Porpino, 2016).

We used Google Scholar to identify relevant papers using combinations of the following terms: ‘Food waste’, ‘household’, ‘quantification’, ‘behaviour change’, ‘consumer’, and ‘downstream’. The time period was restricted to January 2006 until January 2017. This was a result of discussion with expert advisors and evidence from other bibliometric studies that food waste studies only began to be published from 2006/7 onwards (Chen et al. (2015), Hebrot and Boks (2017), Carlsson Kanyama, Katzeff, and Svenfelt (2017), and Schanes, Dobering, and Gözet (2018). This search enabled the inclusion of online first/only preprints of 2017 journal articles. The search was restricted to English-language publications. Each paper was then mined using the Google Scholar “citation” function to explore the network of papers that have cited each paper. Each of these papers was then captured and explored via the process described above. Fig. 1 outlines our rapid review method, with 454 items narrowed down to 17 peer reviewed journal articles focussing on downstream food-waste reduction interventions.

Though it is common in rapid reviews to use scoring criteria to sort and exclude papers on the basis of method or data quality, no such scoring method was used in this paper. This is due to the small number of studies found, and wishing to provide the food waste community

1 The Sustainable Development Goals are a collection of 17 global goals set by the United Nations General Assembly in 2015. The SDGs cover social and economic development issues including poverty, hunger, health, education, global warming, gender equality, water, sanitation, energy, urbanization, environment and social justice.

2 Grey literature refers to non-peer reviewed literature such as reports, conference proceedings, doctoral theses/dissertations, newsletters, technical notes, working papers, and white papers.

3 I.e. where food is consumed such as in the household, and in hospitality and food service sectors.

4 While this manuscript was in final stages of peer review, a review of downstream food waste interventions between 2012 and 2018 was published by Stöckli et al. (2018b). It identified the same papers as identified by this manuscript (with addition of 2017–2018 peer reviewed papers: (Qi and Roe, 2017; Romani et al., 2018; Stöckli et al., 2018)), and came to similar conclusions regarding the need for systematic evaluation of interventions between. The additional novelty of our paper is (1) situating a broader range of peer reviewed intervention papers (2006–2016) within the broader food waste literature (see Figs. 1–5), and (2) our in-depth discussion and proposal of standardised guidelines for intervention development.

5 “Downstream” being a wide definition, but meaning the consumer side of the food system. Downstream interventions could include interventions in supermarkets, hospitality and food service sectors (including food served in education and healthcare, government, etc.), and household consumption.
Table 1
A summary of the nine bibliometric studies and meta-analyses that review food waste literature.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sample</th>
<th>Analysis methods</th>
<th>Aim</th>
<th>Measurement time intervals</th>
<th>Setting, scope, search words</th>
<th>Geography</th>
<th>Year</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quested et al., (2013)</td>
<td>39 documents cited, 12 WRAP studies</td>
<td>research synthesis, and case study</td>
<td>Review of insights about food waste in the home, which has largely emanated from work funded by the Waste & Resources Action Programme (WRAP)</td>
<td>2006-2012</td>
<td>Household food waste behaviours</td>
<td>UK</td>
<td>2013</td>
<td>Reviews conceptualisations of food waste, and the multiple behaviours and practices of food waste. Discussion of how to integrate insights into behavioural models and the development of a successful public-engagement campaign. Highlighted discussion point that many behavioural models, are not designed for multiple, complex behaviours such as food waste. The proportion of MSW food waste increased with time. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137–0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The food waste literature around biotechnology and waste management was larger than that around waste reduction, with the themes of clean energy, treatment and valorisation, and management innovation attracting extensive attention during the past decade. FW research output is distributed unevenly over all countries. The majority of research is published by industrialized countries. Discussion dominated by methods for treating or valorising food waste, mainly in the upstream stages of the supply chain (reflecting the relative amounts of research in this area in the literature). The literature on food-waste prevention obscured.</td>
</tr>
<tr>
<td>Thyberg et al., (2015)</td>
<td>62 waste characterization studies</td>
<td>Meta-analysis and research synthesis, use of Google search engine</td>
<td>Quantification of the US MSW food waste Determine if specific factors drive increased disposal.</td>
<td>1989-2013</td>
<td>MSW, Food waste, NOT Food loss</td>
<td>USA</td>
<td>2015</td>
<td>The proportion of MSW food waste increased with time. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137–0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The food waste literature around biotechnology and waste management was larger than that around waste reduction, with the themes of clean energy, treatment and valorisation, and management innovation attracting extensive attention during the past decade. FW research output is distributed unevenly over all countries. The majority of research is published by industrialized countries. Discussion dominated by methods for treating or valorising food waste, mainly in the upstream stages of the supply chain (reflecting the relative amounts of research in this area in the literature). The literature on food-waste prevention obscured.</td>
</tr>
<tr>
<td>Chen et al. (2015)</td>
<td>2340 research articles</td>
<td>Review and bibliometric analysis, use of Web of Science database</td>
<td>Quantitative analysis of peer-reviewed articles to summarize food waste publication, identify the research focuses and hotspots, identify the trajectories of research (including development of theoretical and practical contributions and future challenges)</td>
<td>1997-2014</td>
<td>“Food waste”” or “kitchen waste”” or “food residue”” or “kitchen residue”</td>
<td>Global, English language</td>
<td>2015</td>
<td>The proportion of MSW food waste increased with time. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137–0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The food waste literature around biotechnology and waste management was larger than that around waste reduction, with the themes of clean energy, treatment and valorisation, and management innovation attracting extensive attention during the past decade. FW research output is distributed unevenly over all countries. The majority of research is published by industrialized countries. Discussion dominated by methods for treating or valorising food waste, mainly in the upstream stages of the supply chain (reflecting the relative amounts of research in this area in the literature). The literature on food-waste prevention obscured.</td>
</tr>
<tr>
<td>Aschemann-Witzel et al (2016)</td>
<td>26 existing initiatives</td>
<td>Case study approach</td>
<td>Review into case studies to understand how to successfully design future interventions to reduce consumer-related food waste.</td>
<td>1998-2015</td>
<td>Case studies, food waste</td>
<td>23 from Europe, one from the US, and two from Brazil.</td>
<td>2016</td>
<td>Multiple success factors were identified. There are three main types of consumer food waste initiatives: information and capacity building, redistribution, and supply chain initiatives. Collaboration and knowledge sharing (building upon prior initiatives) are important to the success of future campaigns. Supply chain change should ensure growth in business opportunities. Redistribution initiatives need to stress multiple aims to get maximum stakeholder engagement. Information (continued on next page)</td>
</tr>
</tbody>
</table>
Setting, scope, search words Geography Year Results

Porpino (2016) Journal of the Association for Consumer Research 24 papers Review. Provide a framework and solutions for conducting future research in the Food Waste research area 1975-2015 “Wasted food” consumer food waste Global 2016 Insights given for future impactful research (i.e. shopping habits, over consumption, income. Provides future research recommendations based on previous studies. (Lack of emotional study, income, cultural factors, marketing, survey analysis and experiments, quantification.) Need for more ethnographic observations, measurements and experiments.

Xue et al. (2017) Environmental Science & Technology 202 publications Review and bibliometric analysis, use of Web of Science and Google Scholar A critical overview of all the existing FLW data in the current literature. Sorting by Food Supply Chain, Food Commodity Groups, Geographical and Temporal Boundary. 1933-2014 Food Loss and Waste 84 countries (Global scope) 2017 Most existing publications are conducted for a few industrialized countries (e.g., UK, USA). Over half of publications are based only on secondary data (signalling high uncertainties in the existing global FLW database). With these uncertainties, existing data indicate that per-capita food waste in the household increases with an increase of per-capita GDP. Focused on quantification and measurement of levels and types of food waste – mainly at the national level, focusing on the sectors with the most food waste. Paper did not discuss food-waste reduction interventions, nor what has been shown to be successful in the literature.

Hebrok and Boks (2017) Journal of Cleaner Production 112 scientific sources Review, use of Oria and Google Scholar, with additional scoping of reports from ForMat, WRAP, and FUSIONS Review what the drivers of food waste are, and where can designers intervene in order to influence consumers to waste less food. 2000-2015 “Food waste” in combination with the words “household”, “packaging”, “consumer”, “behaviour” and “design”. Results must be written in English, the resultant were from Western Countries 2017 Reviews aspects of consumer food waste (consumer behaviour, attitudes, beliefs and values, quantifications and compositional analyses, waste prevention, and...
<table>
<thead>
<tr>
<th>Paper</th>
<th>Sample</th>
<th>Analysis methods</th>
<th>Aim</th>
<th>Measurement time intervals</th>
<th>Setting, scope, search words</th>
<th>Geography</th>
<th>Year</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlsson Kanyama, Katzeff, and Svenfelt (2017), TRITA-SEED-Rapport 2017:05</td>
<td>350 studies</td>
<td>Review/report, english language, use of Google Scholar and Scopus. Included peer reviewed publications, conference papers and reports</td>
<td>Review of interventions to decrease avoidable food waste with the focus on private consumers</td>
<td>1987-2017</td>
<td>“Food waste” AND “behavior change”, “food waste” AND “intervention”, “food waste” AND “sustainable consumption”, “food waste” AND “nudging”.</td>
<td>Global, English language</td>
<td>2017</td>
<td>Studies reviewed use various interventions e.g. education and information; apps, smaller plates. Mostly, the evaluations of the behaviour interventions have only been carried out using smaller groups of people. Longitudinal studies of their effects are mostly missing. Nevertheless, the studies of interventions where evaluations exist, indicate a significant effect regarding the decrease of food waste as well as raising households’ awareness and encouraging their reflection.</td>
</tr>
<tr>
<td>Schanes, Doberning, and Gözet (2018) Journal of Cleaner Production</td>
<td>60 articles</td>
<td>Systematic literature review, using Web of Science, Scopus, and Google Scholar</td>
<td>Review and analyse evidence on the factors impeding or promoting consumer food waste. Discuss the contributions of psychology-oriented approaches as well as social practice theory.</td>
<td>1980 to 2017</td>
<td>“Food waste” AND “consumer”, and “food waste” AND “household”</td>
<td>Global, English language</td>
<td>2018</td>
<td>Food waste is a complex and multi-faceted issue that cannot be attributed to single variables. Authors call for a stronger integration of different disciplinary perspectives. Current food waste prevention strategies can be designed around determinants of waste generation and household practices. Discussion of policy, business, and retailer options for food waste reduction, with limited review of effectiveness. Call for review of effectiveness to be carried out as an avenue of future research.</td>
</tr>
</tbody>
</table>
with as comprehensive as possible assessment of recent intervention studies.

It should also be noted that the waste reduction percentages reported here have been calculated from all studies that reported weights and changes to waste generation. The waste reduction percentages are not directly comparable with each other as they have differing functional units, i.e. per plate, per person (participating or general population), per organisation (kitchen and front of house), per total weight of waste, etc.), or differing time scales (for data collection or experiment duration).

3. Results

3.1. Broad rapid review

The rapid review identified 292 downstream food waste articles that were published in 39 journals between 2006 and 2017. From 2006, the number of downstream food waste articles published yearly increased rapidly as greater attention was given to the challenge of food waste, with the largest spike in articles that quantify food waste (Fig. 2) occurring in 2013 after the publication of reports highlighting the global issue (Institution of Mechanical Engineers, 2013; Lipinski et al., 2013). Out of the articles surveyed, only 17 (5%) feature applied downstream food waste reduction interventions. The most popular methodologies (Fig. 3) used in the rest of the downstream food waste studies include surveys (n = 80, 27%), reviews (n = 77, 26%) and Life Cycle Assessment (LCA) modelling (n = 50, 14%). Journal articles featuring qualitative, observational and ethnographic methods (following Evans (2014)) are consistently published throughout the time period (n = 18, 5%).

48 countries or geographic areas were identified within the broader downstream food waste literature (Fig. 4) with 8 articles not identifying their geographic location, and 53 global studies. The next most studied areas were the USA (n = 42), the UK (n = 34), Sweden (n = 21) and Italy (n = 20). China (n = 13) is the only developing country in the top 10 countries/regions studied. Our results show that global studies emerge after 2010 – as data quality and accessibility increases. Countries that had an early identification of food waste as a social problem (including USA, UK and, Sweden) continue to publish prolifically.

3.2. Intervention studies

The seventeen journal articles focussing on downstream food-waste reduction interventions were first categorised by the main intervention types that were applied: information based, technological solutions, and policy/system/practice change. Journal articles can be in more than one category if multiple interventions were used (either applied separately or together). Table 2 provides a detailed summary of each intervention and paper.

The seventeen articles with applied interventions were found in sixteen journals covering nutrition and health (5 journals), psychology and consumer behaviour (5), environmental (3), human computer interactions (2), food (1) and economics (1). The majority of these articles were published in relatively ‘low’ impact factor journals (under impact factor 3).6

Within the applied downstream food waste reduction interventions ten countries feature, with the USA being the site for 6 articles, 3 in the UK (one of which is a cross country comparison with Austria), and 2 in the Netherlands. The geographic spread of these 17 articles is focused on the global north, with Thailand the notable exception.

The areas of study for the seventeen applied downstream food waste reduction interventions are focused on households and the community (n = 6), hospitality and hotels (n = 5), and educational establishments (n = 6). This is a much narrower field of study than what is found across the rest of the downstream food waste literature with 8 categories of intervention area identified in Fig. 4.

Information-based interventions (Cohen et al., 2014; Devaney and Davies, 2017; Dyen and Sirieix, 2016; Jagau and Vyrastekova, 2017; Kallbekken and Saalen, 2013; Lim et al., 2017; Manomaivibool et al., 2016; Schmidt, 2016; Whitehair et al., 2013; Young et al., 2017) are where information was provided to change the behaviour of the target group – i.e. households (Devaney and Davies, 2017), hotel managers and diners, (Kallbekken and Saalen, 2013) and social media users (Young et al., 2017). Various ‘delivery’ methods were used including information campaigns (Manomaivibool et al., 2016; Schmidt, 2016) and cooking classes (Dyen and Sirieix, 2016).

The success of these interventions varied. A student-focused education campaign (Martins et al., 2016) resulted in a 33% waste reduction in main dishes, while the Home Labs intervention (a collaborative experiment with householders) led to an overall reduction in food waste generation of 28% (Devaney and Davies, 2017). New hotel signage reduced food waste by 20% (Kallbekken and Saalen, 2013). E-newsletter use resulted in 19% reduction in self-reported food waste in the home (Young et al., 2017). Schmidt’s information campaign resulted in a 12% perceived (self-reported) improvement in food waste reduction in the home (Schmidt, 2016). Whitehair et al.‘s information prompt resulted in a measured 15% food waste reduction in a university cafeteria, while portion advertising information also resulted in greater uptake of smaller portions (up to 6% from 3.5%) (Jagau and Vyrastekova, 2017).

Technological solutions (Devaney and Davies, 2017; Ganglbauer et al., 2013; Lazell, 2016; Lim et al., 2017; Wansink and van Ittersum, 2013; Williamson et al., 2016a; Young et al., 2017) involve the introduction or modification of technologies and/or objects that seek to alter the behaviours around food (waste). These included changes to plate or portion sizes (Williamson et al., 2016b) or the introduction of fridge cameras or food sharing apps (Ganglbauer et al., 2013). Only plate and portion size studies have quantified waste reduction. The largest reported waste reduction (57%) was due to shifting to smaller plate sizes, although in this study there was also a 31% decrease in the amount of food consumed via the plate size shift (Wansink and van Ittersum, 2013).7 Other studies have reported a 19% reduction in food waste due to reduction in plate size (Kallbekken and Saalen, 2013), and a 51% reduction in food waste was achieved by using permanent rather than disposable plates (Williamson et al., 2016a). A 31% reduction in french fries waste was enabled by moving to smaller portion sizes (Freedman and Brochado, 2010).

Policy/system/practice change (Cohen et al., 2014; Dyen and Sirieix, 2016; Freedman and Brochado, 2010; Kallbekken and Saalen, 2013; Martins et al., 2016; Schwartz et al., 2015) is where policies or systems are altered and the population changes food waste behaviours (or practices). Two articles involved changing school dietary guidelines, which resulted in a 28% (Schwartz et al., 2015) and 14.5% (Cohen et al., 2014) vegetable waste reduction, while changing how schools and students were taught about food waste resulted in a 33% waste reduction from main dishes (Martins et al., 2016). These results indicate that diet reformulation and healthy eating can be part of food-waste reduction strategies.

In the seventeen journal articles with interventions, five relied on self-reported (usually survey-based) measurements of food waste (a method that is relatively low-cost but suffers from substantial biases (World Resources Institute, 2016)). One paper did not disclose any

6 This is also a representation of the cross-disciplinary and evolving nature of food waste research. In the social sciences an Impact Factor of 3 would be quite high. However, in other fields, an Impact Factor of 3 could be considered “low”.

7 Note had observational measurement and weight base measurement of waste in different experiments.
waste weights, while another two estimated food waste via visual analysis or pictures. The remaining nine used weight-based waste measurement. It is a challenge to accurately quantify food waste prevented, largely due to the costs of waste measurement (especially in the home). The cost of waste measurement could explain why only 123 of the 292 journal articles (42%) identified by the broader rapid review include some quantification of food waste generation/diversion/reduction. Due to this reliance on self-reporting, only the accuracy of the three plate-change/size-reduction interventions can be assessed with any certainty (Kallbekken and Sælen, 2013; Wansink and van Ittersum, 2013; Whitehair et al., 2013) Two of these journal articles were published later in 2017 and so were outside the time period in the original search, but have been included due to the presence of an intervention. 47 journal articles progressed to Step 3.2.

4. Discussion of themes and policy implications

In light of the above results, in this section we provide an overview of the methodologies, theoretical lenses and types of interventions used. Around a third of these studies (5 articles) do not integrate any theoretical framework or disciplinary orientation into their experimental design. Those that do are typically single theory in nature, and do not interact with the broader food waste literature. Theoretical frameworks and disciplinary orientations in the downstream intervention articles include Social Practice Theory; Behavioural Economics (nudge-approaches such as visual prompts), Transformative Consumer Research, pro-environmental behaviour change, behaviour change determinants, and the integrative influence model of pro-environmental behaviour.

<table>
<thead>
<tr>
<th>Rapid review step</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 – Google Scholar search</td>
<td>454 items found – 340 items were journal articles, with 56 theses, 36 conference papers, 17 policy papers, reports, and magazine articles, 4 book chapters, and 1 poster.</td>
</tr>
<tr>
<td>Step 2 – Review of Abstracts for Scope</td>
<td>292 (of the 340) journal articles were found to be in scope, with 39 articles preliminarily identified as having an applied intervention from the abstract.</td>
</tr>
<tr>
<td>Step 3.1 – Expert review.</td>
<td>The panel suggested eight additional journal articles to include that were not identified by Step 1. (Cohen et al., 2014; Freedman and Brochado, 2010; Jagau and Vyrastekova, 2017; Lazell, 2016; Lim et al., 2017; Martins et al., 2016; Wansink and van Ittersum, 2013; Whitehair et al., 2013) Two of these journal articles were published later in 2017 and so were outside the time period in the original search, but have been included due to the presence of an intervention. 47 journal articles progressed to Step 3.2.</td>
</tr>
<tr>
<td>Step 3.2 - Close reading and analysis</td>
<td>17 journal articles contained applied interventions designed to reduce the amount of food being wasted (reduction interventions), the focus of this review. (This includes 2 journal articles which were interventions that reportedly achieved food waste reduction even though this was not the articles stated aim). Further information on these articles can be found in Table 1. 10 articles were interventions with an aim to divert food waste to recycling or higher up the waste hierarchy (diversion interventions). As these were not the focus of the paper these were not included in the further analysis. 20 articles were found to have no intervention.</td>
</tr>
</tbody>
</table>

Fig. 1. Outline of our rapid review methodology.
employed in both the academic and grey literatures, and then re-
commended a series of recommendations – or principles – for organi-
sations undertaking intervention studies relating to food waste pre-
vention related to the consumption stages of the supply chain.

4.1. Methodologies

Although there has been a rapid increase in articles that quantify or
investigate downstream food waste since 2006, there have been only 17
peer-reviewed journal articles that feature downstream interventions
that resulted in a food waste reduction. Of these, nearly 30% (5 articles)
used self-reported methods to measure food-waste reductions, while
another two estimated food waste via visual analysis or pictures. Due to
the methods used, the results from these studies should be interpreted
with caution (as indeed many of their authors note); in these cases, a
claimed reduction in food waste should not be read as an actual re-
duction. Furthermore, 16 of the 17 interventions occurred in developed
countries and most interventions have focused on small groups with
time-limited evaluations.

Part of this limited methodological development may be due to
previous food waste research having had limited cross-pollination be-
tween disciplines, both in terms of substantive questions as well as in
theoretical development. Many researchers tend to rely on the theories
they are comfortable with, resulting in a “silo”-ing not only of theories
that could be useful in explaining food waste, but regrettably also a
“silo”-ing of substantive findings related to actually reducing such
waste. Further research is required to map the literature (and food
waste’s theoretical developments further) to understand if this is the
case.

4.2. Theoretical lenses

The absence of explicit reference to theory means that readers are
left to infer connections between cause and effect in food waste

![Fig. 2. Downstream food waste studies with quantified results per year, 2006-2017, n = 130.](image)

![Fig. 3. Methods used and numbers of downstream food waste studies published per year 2006-2017, n = 368.](image)
behaviours or that connections are imputed without explicit justification. Nearly 30% (5 articles) of the downstream intervention studies did not mention a theoretical framework. Of those that did, this was often not a key part of the paper or research design. This is an interesting finding: on the one hand, it could imply that those working on food-waste interventions are not aware of theoretical frameworks developed for interventions in other domains; on the other hand, it could imply – as discussed by Quested et al. (2013) – that food-waste prevention in consumption settings is very different from other areas of behaviour change (see also Evans et al. (2017)) and that many of the theories developed elsewhere are of limited value without further development. The lack of theoretical integration into food waste intervention design may also imply that theoretically rich accounts of household food waste (for example Waitt and Phillips (2016)) have yet to fully consider the implications of their analysis for interventions. We suggest that there is a need for greater integration of theory and previous research findings into the design of interventions. We also suggest that there is need to discuss how different theoretical frameworks, disciplinary perspectives and methodological techniques could combine to contribute to the reduction of food waste. Would it, for instance, be possible to combine a qualitative account of the social practices that generate food waste with quantitative tools that model the effects of different interventions?

4.3. Intervention types

Reduction methods such as improved information (Manomaivibool et al., 2016) or changes to plate type and size (Lazell, 2016; Wansink and van Ittersum, 2013; Williamson et al., 2016a), portion size (Freedman and Brochado, 2010), or menu composition (Cohen et al., 2014; Martins et al., 2016; Schwartz et al., 2015), all accept that their effectiveness may be due to greater consumption of the food, or shifts in the types of foods consumed and wasted. That is, as has been observed in other interventions studies, there may be unintended consequences (Peattie et al., 2016) that need further investigation. If this unintended shift is towards the overconsumption of unhealthy foods or at the expense of healthy foods, this could lead to negative health outcomes. For

Fig. 4. Areas of study and numbers of downstream food waste studies published per year 2006–2017, n = 304, (generalist review studies excluded).

Fig. 5. Geographic distribution of downstream food waste studies, the ten most prolific geographic areas, and all other countries. Note multi-country studies classified as “global” for this graphic 2006–2017, n = 324.
Table 2
A summary of the 17 journal articles found with interventions that achieved a food waste reduction.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Sample</th>
<th>Setting</th>
<th>Waste measurement methods</th>
<th>Theory’s used</th>
<th>Aim</th>
<th>Results</th>
<th>% of food waste reduction/ summary of qualitative findings</th>
<th>Intervention category type (Information, Technology, Policy/system/practice change)</th>
<th>Measurement Time intervals</th>
<th>Year</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kallbekken and Sælen (2013, Economic Letters) (Kallbekken and Sælen, 2013)</td>
<td>52 hotels (38 control and 2 test groups of 7).</td>
<td>Hospitality</td>
<td>Hotels reported food waste weights (assumed to be gathered by waste audit)</td>
<td>No theories discussed.</td>
<td>Using two separate non-intrusive ‘nudges’ – reducing plate size and providing social cues based on perceived social norms – in Hotels.</td>
<td>Both reducing plate size and providing social cues was effective at reducing food waste in Hotels.</td>
<td>Plate size reduction: 19.5% (p < 0.001), Signage: 20.5% (p < 0.001)</td>
<td>Information, Technology, Policy/system/practice change</td>
<td>“Study duration: 2.5 months. The 52 hotel restaurants recorded and reported the amount of food waste daily over the whole period.”</td>
<td>2013</td>
<td>Norway</td>
</tr>
<tr>
<td>2. Young et al., (2017, Resources, Conservation and Recycling) (Young et al., 2017)</td>
<td>4398 responded to the second follow-up survey</td>
<td>Household</td>
<td>Self-reported via online survey of participants.</td>
<td>Drivers of food waste, social influence theory.</td>
<td>Using traditional and online (social media) methods to distribute information to customers of a large UK retailer to reduce household food waste and disposal frequency.</td>
<td>Online and social media information methods can be as effective as traditional methods of information dissemination. Note that only the e-newsletter outperformed exposure to magazine.</td>
<td>No exposure: 10% (p≤0.05), Exposure to electronic newsletter: 19% (p≤0.05), Exposure to Facebook intervention: 9% (p≤0.05), Exposure to magazine (found online and in-store) 10% (p≤0.05).</td>
<td>Information</td>
<td>Online self report, One month before intervention, two weeks after intervention, and five months after intervention.</td>
<td>2017</td>
<td>UK</td>
</tr>
<tr>
<td>3. Schwartz et al. (2015, Childhood Obesity) (Schwartz et al., 2015)</td>
<td>12 schools, 3 years (Annual measurement days) 400–500 students per day</td>
<td>Education</td>
<td>Measurement by mass flow of food from kitchen to plates to bin. Waste weighed.</td>
<td>No theories discussed.</td>
<td>Examining the selection and consumption of 4 food items (Fruit, Vegetable, Entrée, and Milk) before (2012) and after (2013 and 2014) USDA regulation updates were implemented to school lunches.</td>
<td>Menu updates led to increased selection of items (Fruit and Entrée) and reduced plate waste (Vegetables and Entrée’s having significant reduction in waste).</td>
<td>Fruit: 3% (Not significant), Vegetable: 28% (p ≤ 0.05), Entrée 15% (p ≤ 0.05), Milk 9% (Not significant).</td>
<td>Policy/system/practice change</td>
<td>Over 3 years, one measurement per year per school, collected each year in April, May or June. To calculate average weight of serving, three servings of all food available weighed prior to lunch period. Pictures of food on trays taken before and after consumption. Trays collected and remaining food left on trays weighed and recorded.</td>
<td>2015</td>
<td>USA</td>
</tr>
<tr>
<td>4. Williamson et al. (2016, Journal of the Association for Consumer Research) (Williamson et al., 2016a)</td>
<td>Multiple studies. S1 n = 68, S2 n = 100, S3A n = 40, S3B n = 40, S3C n = 240</td>
<td>Education</td>
<td>Waste weighed (plate and bin waste) post experiments.</td>
<td>Food choice (physiological and psychological explanations) including Sensory Transference Effects, Psycholinguistic Transference Effects and Automatic</td>
<td>Using multiple studies to investigate the hypothesis that plate disposability affects amount of food wasted in lab environment and at buffet lunches.</td>
<td>People waste more food when eating on disposable plates compared to permanent plates, if snack (S1) or a buffet meal (S3A, S3B and S3C). In S3A the plates were</td>
<td>S1: Permanent plates had a 51% reduction in FW compared to Disposable plates (p < 0.05). S3A: Disposable plate waste: 15.5%, Permanent plate waste 8.4% (p < 0.001). S3B: Permanent plates</td>
<td>Technology</td>
<td>S1: one of measurement event, food weighed prior, waste collected after and weighted. “S3A and B: Total weight of the buffet food was measured</td>
<td>2016</td>
<td>USA</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Paper</th>
<th>Sample</th>
<th>Setting</th>
<th>Waste measurement methods</th>
<th>Theory’s used</th>
<th>Aim</th>
<th>Results</th>
<th>Intervention category type (Information, Technology, Policy/system/practice change)</th>
<th>Measurement Time intervals</th>
<th>Year</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Schmidt (2016, Resources, Conservation and Recycling) (Schmidt, 2016)</td>
<td>Household</td>
<td>Self-reported level of perceived ability to prevent household food waste via survey of participants.</td>
<td>Environmental psychological theory</td>
<td>Use environmental psychological theory (pro-environmental behaviour) to tailor information to specific audiences (households). Measuring the impact of an awareness campaign to reduce food waste on campus.</td>
<td>Different on each consecutive day, Session B the plates were replaced half way through the meal (first 20 participants had permanent plates) and Session C, the sessions with and without disposable plates were 4 weeks apart.</td>
<td>Measured perceived ability to prevent household food, pre and 4 weeks after intervention.</td>
<td>12% increase in perceived ability to prevent household food in Experimental group 4 weeks post intervention (p < 0.01).</td>
<td>No statistics presented. Information, Policy/system/practice change</td>
<td>in the kitchen prior to being served” “Session C: All food weighed before service, any uneaten food was scraped into a waste bin, and weighed. 2 days of observations. Measure: average weights of waste per plate.”</td>
<td>2016</td>
</tr>
<tr>
<td>6. Manomaivibool et al. (2016, Applied Environmental Research) (Manomaivibool et al., 2016)</td>
<td>Education</td>
<td>Picture measurement of plate waste (fraction left on plate).</td>
<td>Theory of planned behaviour psychological factors that cause the generation of food waste.</td>
<td>Collect baseline data via visual analysis and photos. The awareness campaign included photo diaries, table information and a social media component. Pictures of plates and waste rather than weights collected at baseline and during intervention. This provided analysis of probability of types of waste occurring. Plate waste decreased due to intervention. Interviews and observations of cooking classes were conducted. Food Waste was discussed during the workshops.</td>
<td>Probability of types of food waste occurring, 2 categories significant. Rice and Noodles: before campaign probability = 0.521, after campaign probability = 0.331 (p < 0.000). Meat: before campaign probability = 0.186, after campaign probability = 0.088 (p < 0.007).</td>
<td>No statistics presented. Information, Policy/system/practice change</td>
<td>Visual pictures food waste collected, 314 valid pictures taken at baseline, 148 post intervention.</td>
<td>2016</td>
<td>Thailand</td>
<td></td>
</tr>
</tbody>
</table>
| 7. Dyen and Sirieix (2016, International Journal of Consumer Studies) (Dyen and Sirieix, 2016) | Education | Self-reported interview of participants. | Food as an educational tool. Food to create social ties. | Observe social cooking workshops to understand the impact they have on the adoption of sustainable food | No statistics presented. Information, Policy/system/practice change | Self reported waste reduction | 2016 | France | (continued on next page)
<table>
<thead>
<tr>
<th>Paper</th>
<th>Sample</th>
<th>Setting</th>
<th>Waste measurement methods</th>
<th>Theory’s used</th>
<th>Aim</th>
<th>Results</th>
<th>% of food waste reduction/ summary of qualitative findings</th>
<th>Intervention category type (Information, Technology, Policy/system/practice change)</th>
<th>Measurement Time intervals</th>
<th>Year</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Devaney and Davies (2016, Journal of Consumer Culture) (Devaney and Davies, 2016)</td>
<td>5 Households</td>
<td>Household</td>
<td>Food waste Audits</td>
<td>Social practice lens of food waste generation. Transition management theory, living laboratory methodologies.</td>
<td>Using home based laboratory interventions (“HomeLabs”) to promote resource efficient food consumption and eating practices. This included food waste reduction.</td>
<td>Selecting 5 households that represent common household types in Ireland. 5 weeks of phased intervention. Each week covered a different FW topic. Week 1 included FW audit. Semi-structured interviews conducted during intervention. Food waste decreased in all households, (including reductions of up to 5.25kg in Household M).</td>
<td>Overall food waste generation reduction of 28%</td>
<td>Information, Technology</td>
<td>Week 1 and Week 5 food waste audit. Food waste was collected by householders for 3 days in advance of their next researcher visit, with participants asked to make a record of the type of food wasted and the reason for wasting it. The gathered food waste was then weighed by the researcher.</td>
<td>2016</td>
<td>Ireland</td>
</tr>
<tr>
<td>9. Ganglbauer, E., Fitzpatrick, G. and Comber, R. (2013, ACM Transactions on Computer-Human Interaction) (Ganglbauer et al., 2013)</td>
<td>14 households, 5 had FridgeCams for one month</td>
<td>Household</td>
<td>Self-reported via interview of participants.</td>
<td>“theory of practice” lens</td>
<td>Using the FridgeCam technology probe to monitor and intervene in the food waste practices (shopping) and generation of 14 households in Austria and UK. Interviews and tours of all households to understand FW behaviours. FridgeCams deployed in 5 households for 1 months, with follow-up interviews indicating the usefulness of FridgeCams in reducing and preventing food waste.</td>
<td>No statistics presented.</td>
<td>Technology</td>
<td>Self reported waste reduction</td>
<td>2013</td>
<td>Multiple country (UK and Austria)</td>
<td></td>
</tr>
<tr>
<td>10. Whitehair, Shanklin and Brannon (2013, Journal of the Academy of Nutrition and (continued on page)</td>
<td>540 university students, 19,046 trays of food.</td>
<td>Education</td>
<td>Weighing of plate waste.</td>
<td>Elaboration Likelihood Model of Persuasion</td>
<td>Use Prompt (“Eat Over 6 weeks (2 weeks baseline, deploy Prompt message, 2 weeks deploy Feedback) 15% FW reduction from baseline to Prompt Intervention. (P < 0.05)</td>
<td>Information</td>
<td>6-week data collection period. Plate waste individually weighed.</td>
<td>2013</td>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Sample</td>
<td>Setting</td>
<td>Waste measurement methods</td>
<td>Theory’s used</td>
<td>Aim</td>
<td>Results</td>
<td>% of food waste reduction/ summary of qualitative findings</td>
<td>Intervention category type (Information, Technology, Policy/system/practice change)</td>
<td>Measurement Time intervals</td>
<td>Year</td>
<td>Geography</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>11. Lim, Funk, Marcenaro, Regazzoni, Rauterberg, (2017 International Journal of Human Computer Studies) (Lim et al., 2017)</td>
<td>S1 (n = 27), S2 (n = 6), S3 (n = 15)</td>
<td>Household</td>
<td>Weigh collected by smart bin. Self reported via interview, survey, and focus group of participants.</td>
<td>The Wizard of Oz approach, Contento's (2010), factors that influence food choices: biological predisposition, sensory-affective factors, person-related determinants, and social and environmental determinants.</td>
<td>Can the use of emerging technology (social recipe apps, food logging, and smart bins) reduce household FW.</td>
<td>Using interviews (S1), Focus groups (S2), and Home deployment (S3) to test the usefulness of social recipe apps, food logging, smart bins and food sharing as ways for reducing food waste. No FW baseline, so no measured FW reduction. App alone not enough to reduce FW. However App with smart bins “eco feedback” and other measures, FW reduction possible.</td>
<td>No statistics presented.</td>
<td>Technology, Information</td>
<td>Self reported waste reduction</td>
<td>2017</td>
<td>Netherlands</td>
</tr>
<tr>
<td>12. Jagau and Vyrastekova, (2017 British Food Journal) (Jagau and Vyrastekova, 2017)</td>
<td>2500 meals</td>
<td>Education</td>
<td>Visual coding of plate waste (fraction left on plate).</td>
<td>Behavioural insights and nudges, theory of psychic numbing</td>
<td>How effective is an in-restaurant information campaign advertising the availability of smaller portions sizes.</td>
<td>Post intervention the proportion of meals where consumers asked for smaller portions was higher (6%) than pre intervention 3.9% (p = 0.0129).</td>
<td>Information</td>
<td>One week baseline, two weeks intervention. Measured % of food waste left on plate (not waste)</td>
<td>2017</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Sample</td>
<td>Setting</td>
<td>Waste measurement methods</td>
<td>Theory's used</td>
<td>Aim</td>
<td>Results</td>
<td>% of food waste reduction/ summary of qualitative findings</td>
<td>Intervention category type (Information, Technology, Policy/system/practice change)</td>
<td>Measurement Time intervals</td>
<td>Year</td>
<td>Geography</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>-----</td>
<td>---------</td>
<td>--</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>13. Lazell (2016 Journal of Consumer Behaviour) (Lazell, 2016)</td>
<td></td>
<td></td>
<td>Human computer interaction</td>
<td>The intervention in this study consisted of a social media tool (Twitter). This tool allowed participants to inform others of food that would have otherwise been wasted within the university. Tool advertised via poster and social media.</td>
<td>Insufficient usage of tool to justify an in-depth reporting of measurement/ findings</td>
<td></td>
<td></td>
<td>Possible self reported waste reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Martins, Rodrigues, Cunha, and Rocha (2016, Public Health Nutrition) (Martins et al., 2016)</td>
<td>151 fourth-grade children from 3 Porto primary schools who ate lunch, 1742 lunches during 14 days over eight different menus</td>
<td>Education</td>
<td>Weighing of individual meals and leftovers for all meals</td>
<td>No theories discussed. How effective either intervention A, (designed for children and focusing on nutrition education and food waste) or intervention B, (designed for teachers and focused on the causes and consequences of food waste;) are at reducing plate waste when compared to a control group.</td>
<td>Physical weighing of individual meals and leftovers was performed on three non-consecutive weeks (baseline (T0), 1 week (T1) and 3 months (T2). The study results demonstrated that Intervention A (designed for children) was more effective at reducing plate waste than the intervention B (focusing on teachers). However, food waste reduction decreased between the short and the medium term only. Intervention A, a decrease in soup waste was observed. The effect was greater at T1 than at T2. The plate waste of identical main dishes decreased strongly at T1; this effect was not</td>
<td>Intervention A % waste</td>
<td></td>
<td>Policy/system/practice change</td>
<td>Five day baseline, with plates, food and plate waste weight collected for each child. Percentage of plate waste was calculated as the ratio of edible food discarded per edible food served to children. Weighed again in first week and then again after 3 months.</td>
<td>2016</td>
<td>Portugal</td>
</tr>
<tr>
<td>Paper</td>
<td>Sample</td>
<td>Setting</td>
<td>Waste measurement methods</td>
<td>Theory's used</td>
<td>Aim</td>
<td>Results</td>
<td>% of food waste reduction/ summary of qualitative findings</td>
<td>Intervention category type (Information, Technology, Policy/system/practice change)</td>
<td>Measurement Time intervals</td>
<td>Year</td>
<td>Geography</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>15. Cohen, Richardson, Parker, Catalano, and Rimm (American Journal of Preventive Medicine) (Cohen et al., 2014)</td>
<td>1030 Children, 5936 Meals.</td>
<td>Education</td>
<td>Weighing of average meals (10 weights) and individual weighing of all leftovers. 2 days of meal measurement pre (2011) and post (2012)</td>
<td>No theories discussed.</td>
<td>If the new school meal standards had an effect on the consumption, and waste of school meals.</td>
<td>Meals consumed per student (%)</td>
<td>Information, Policy/system/practice change</td>
<td>2 days of plate waste measurement per year, post meal trays collected and each meal components waste measured separately.</td>
<td>2014</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entrée Pre 72.3, Post 87.9 p-value < 0.0001; Milk Pre 64.0 Post 53.9 p-value < 0.0001; Vegetable Pre 24.9 Post 41.1 p-value < 0.0001; Fruit Pre 51.8 Post 55.2 p-value 0.10. Meals consumed per total # of meals (%)</td>
<td>Entrée Pre 63.4, Post 73.6 p-value < 0.0001; Milk Pre 62.4 Post 50.1 p-value < 0.0001; Vegetable Pre 25.8 Post 40.3 p-value < 0.0001; Fruit Pre 59.1 Post 56.9 p-value 0.05.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Freedman and Brochado Obesity 2010 (Freedman and Brochado, 2010)</td>
<td>1,475 students</td>
<td>Education</td>
<td>Weighing of plate waste.</td>
<td>No theories discussed.</td>
<td>If the reduction in portion size of French Fries would reduce plate waste. Portion sizes tested 88 g, 73 g, 58 g, 44 g</td>
<td>Total produced (g) 88 g (44.72 ± 6.328), 73 g (42.29 ± 3.299), 58 g (37.03 ± 3.767), 44 g (35.15 ± 3.350); Total consumed (g) 88 g (23.28 ± 4.227), 73 g (24.158 ± 2.698), 58 g (18.295 ± 4.794), 44 g</td>
<td>Policy/system/practice change</td>
<td>5 week study (1 week baseline), weight of food and waste measured for each bag.</td>
<td>2010</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Setting</th>
<th>Waste measurement methods</th>
<th>Theory’s used</th>
<th>Aim</th>
<th>Results</th>
<th>% of food waste reduction/ summary of qualitative findings</th>
<th>Intervention category type (Information, Technology, Policy/system/practice change)</th>
<th>Measurement Time intervals</th>
<th>Year</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Wansink, and van Ittersum, Journal of Experimental Psychology: Applied, 2013. (Wansink and van Ittersum, 2013)</td>
<td>Study 1: n = 219, Study 2: n = 43, Study 3: n = 237, Study 4: n = 135.</td>
<td>Hospitality</td>
<td>Weighing of plate waste. (S2)</td>
<td>Pool and Store Theory. The Delboeuf illusion.</td>
<td>A multi study paper examining how visual norms (plate size) effect the amount of self-service food taken. Only study 2 had waste measurement. Study 1: Assessed norms of portion size and bowl size. Study 2: Plate size (small vs large) and waste at an All-You-Can-Eat Chinese Buffet. Study 3: Plate size (small vs large) after lecture on plate size and waste. Study 4: solving the Delboeuf illusion (serving bias towards different bowls)</td>
<td>Study 1: For normal-sized dinnerware, portions are anchored to 70% fill level. The larger the bowl, the more people overfill. Study 2: Diners who selected the larger plate served themselves 52.0% more total food than those who selected the smaller plate. In addition to larger plates serving 52.0% more food, they also consumed 45.1% more, and wasted 135.2% more than those with smaller plates. Diners with larger plates wasted 14.4% of all the food they served themselves, compared with 7.9% (smaller plates). Study 3: overall larger plates served more food than with smaller plates. Smaller plates took more tacos.</td>
<td>Study 2: Large plate: cm² of food served 1216.9, consumed 1072.5, wasted 144.4. Small plate: cm² of food served 800.5, consumed 739.1, wasted 61.4 (p < 0.01). Study 3: lettuce salad (7.25 vs. 2.25 trays), vegetable salad (6.25 vs. 1.75 trays), beef (6.0 vs. 3.75 trays), enchiladas (6.5 vs. 3.5 trays), and fried fish (5.25 trays vs. 3.0 trays) soup (0.75 vs. 0.75 trays), tacos (1.25 vs. 2.25 trays).</td>
<td>Technology</td>
<td>Study 1 - self reported size of portion Study 2-4 restaurants, visual observation of 43 diners, with visual estimation of plate waste. Study 3-2 lines at one lunch event (209 individuals). Food weighed pre service and post service. No waste measurement.</td>
<td>2013 USA</td>
<td></td>
</tr>
</tbody>
</table>
this reason, attention must be given to communicating and encouraging people to monitor portion size rather than reducing food waste at the expense of public health. However some of the reviewed studies, indicate that some interventions result in a reduction in consumption alongside waste prevention (Kallbekken and Sælen, 2013; Wansink and van Ittersum, 2013; Williamson et al., 2016a). Further research is needed to understand which (healthy or unhealthy foods) are involved in this consumption shift and waste reduction. Moreover, it could be the case that many of the unintended consequences could be due to a lack of understanding around causal mechanisms and supporting theoretical frameworks. If this is the case, further engagement with theory-based evaluations would be an obvious solution.

Cooking classes (Dyen and Sirieix, 2016), additional technologies such as fridge cameras (Ganglbauer et al., 2013) or apps (Lazell et al., 2016; Lim et al., 2017), and advertising and information campaigns (Young et al., 2017) were all reported as being effective but with no accurate quantification provided. This is worrying as all these methods are now being proposed by peer reviewed studies as options to reduce food waste with no reproducible quantified evidence to assure credibility or long-term effectiveness. Future research and resources are needed to test these interventions with accurate measurement methods.9

For many organisations working on food-waste prevention, they would like to affect change across relatively large populations (e.g. a country, city or state/province/county). Therefore, to assess the appropriateness of interventions, these organisations require information on their cost effectiveness, how easy they are to scale up and whether they can be tailored to different ‘audiences’ within the population. However, this additional information is currently non-existent in the literature.

In addition, many of interventions that feature advertising or an information campaign did not provide enough detail to analyse and correlate the content type, and tone (positive, negative, shocking, etc.), with the effectiveness of the campaign. This is an avenue for future research.

4.4. Links to other literature

As noted above, academic literature is not the only source of research and evidence relating to downstream food waste. Although not a primary focus of this review, the authors are aware of a small number of intervention studies in the practitioner/policy-focused ‘grey’ literature. For example, during 2016, the UK supermarket chain Sainsbury’s undertook a year-long trial using a range of methods to prevent or reduce food waste in the home (Waste less, 2016). These interventions were a mix of information (via Food Saver Champions), technology (fridge thermometers, smart fridges and cameras, apps, etc.) and policy/system/practice change (introducing tenant welcome packs, new food waste events and school programmes). Some of these interventions included actual measurement of food waste (via audits or Winnow/Leanpath systems10) – resulted in between 18% and 24% food waste reductions. Other interventions relying on self-reported measures, resulted in between 43% and 98% food waste reductions for the homes that took part.

In the USA, a partnership called Food: Too Good To Waste reported the findings of seventeen community-based social marketing (CBSM) campaigns aimed at reducing wasted food from households (U.S. EPA Region 10, 2016). These interventions were mainly information interventions, which introduced new information and tools into households. Measurement of food waste was conducted before and after the campaigns using a mixture of self-reported audits (participants weighing their own waste) and photo diaries. The results showed measured decreases between 10% and 66% in average household food waste (7–48% per capita) for fifteen of the seventeen campaigns. The successful interventions were between 4 and 6 weeks long, with samples of between 12 and 53 households.

The EU project FUSIONS reported several waste prevention strategies focused on social innovation (Bromley et al., 2016). Though most interventions involved food redistribution, the Cr-EAT-ive intervention worked with school children (n = 480) and their parents (n = 207) to reduce food waste in the home and promote key food waste prevention behaviours. The results from 18 households (of 29 households) that completed the kitchen diary activity managed to reduce their food waste by nearly half – if scaled (with the intervention effects kept constant) to a yearly quantity, this would equal a reduction of 80 kg per household per year. However, it is not known how long the intervention effects would last for, the longer term engagement/attrition rates of children and households, and if some of this reduction was caused by the effect of measurement itself (rather than the intervention).

During 2012/13, WRAP ran a food-waste prevention campaign aimed at London households (WRAP, 2013a). These interventions were mainly information interventions. This was evaluated via waste compositional analysis and reported a 15% reduction in household food waste. However, as noted by the authors, some of this reduction could have been the result of the research itself (i.e. households being influenced by participating in a detailed survey).

Between 2007 and 2012, household food waste in the UK reduced by 15% (WRAP, 2013b). However, it is not possible to isolate the effect of different interventions that were running over this period. In addition, economic factors – increasing food prices and falling incomes in real terms – are likely to have contributed to this reduction (WRAP, 2014b).

These examples from the grey literature do not alter the main conclusions of this review: that there is a lack of research surrounding interventions designed to reduce the amount of food waste generated, and a lack of evidence of the ease with which it is possible to scale up previous smaller interventions.

It is important for researchers, policy makers and practitioners working to prevent food waste that this evidence gap is filled with research of suitable quality. Below, we offer guidance and general principles that, if followed, will improve the quality of this emerging field of study, and allow the effectiveness of interventions to be compared and fully understood. Building on the shortcomings of previous studies and improvement suggestions as outlined by Popino, (2016), we categorise these recommendations into 5 strands: intervention design; monitoring and measurement; moderation and mediation; reporting; and consideration of systemic effects. These recommendations are based on our review of the literature and the authors’ prior knowledge and experience regarding food waste intervention design and application.

4.5. Recommended principles for effective interventions

This section presents a series of recommendations – principles – for organisations undertaking intervention studies relating to food waste prevention related to the consumption stages of the supply chain. We then discuss interventions with potential with reference to our results.
4.5.1. Design of intervention

We recommend that an initial decision should be made about whether the study is focusing on an ‘applied’ intervention and/or one used to develop understanding of the intervention process. This should be explicitly stated in the methods and (experimental or intervention) design.

An applied intervention aims to reduce food waste across a given population or sub-population (i.e. it is scalable, with a clear target audience). For the interventions reviewed this was not always the case. For a communications-based intervention, this would need to be similar to the type and tone of material that could be used by a campaign group or similar organisation. If it were a change to food packaging, for example, it would need to be a change that could be adopted by a wide range of food retailers (e.g. it would have to ensure food safety and other packaging attributes whilst still being cost-competitive). To ensure that the ‘quality’ of such interventions is sufficient for the study, researchers should consider partnering with appropriate organisations with expertise in, for the above examples, developing communications materials or packaging technology. Partnerships also ensure that work is not being carried out in this area by organisations at cross purposes. In addition, applying techniques such as logic mapping (based on theory of change – see The Transtition Institute, 2010) can aid the design process to ensure that the intervention has the best possible chance of meeting its stated aims (i.e. preventing food waste in the home or other downstream settings). In addition, logic mapping and theory of change can enable the research to investigate how change occurs, as well as quantifying the degree of change. Much of this research and methods development has already been carried out on general behaviour intervention strategies within the field of environmental psychology, see Steg and Vlek (2009), or Abrahamse et al. (2005).

In contrast to ‘applied’ interventions, some research of interventions is designed to understand and evaluate how different elements of an applied intervention work. For these interventions the criteria discussed above are not strictly applicable. These types of studies may aim to understand which element of a larger intervention is responsible for the change – e.g. it may compare a range of campaign messages drawn from different disciplines and theories under controlled conditions. In such cases, it is not necessary that this module is scalable, although it would help future application of the research if the intervention studies needed only small modification to be deployed on a larger scale.

We also note that many studies use convenience sampling, which is likely to result in a group of study participants who are not representative of the wider population (or target populations within it). It will often include a sample with higher than average levels of education and income (Schmidt, 2016). Therefore, where possible, the design of the study should be considered to ensure that the sample is as representative of the population of interest as possible, ideally through random selection or, failing that, some form of quota sampling.

Previous discussion has indicated a lack of theory involved in the development of interventions; we feel that this stage is a key part of the intervention design process where theoretical understanding could be used to help develop more effective interventions.

4.5.2. Monitoring and measurement methods

Measurement of outcomes and impact of the interventions is challenging. Objective measures of food waste – such as through waste compositional analysis of household waste – are relatively expensive and are more easily deployed in geographically clustered samples (World Resources Institute, 2016). In addition, these methods only cover some of the routes by which wasted food can leave the study area, and so food and drink exiting the study area via the drain, or food that members of a household/school etc. waste in locations outside of the study area are not covered by such measurement methods (Reynolds et al., 2014). However, where there is an opportunity to deploy methods involving direct measurement, it is beneficial as these are generally more accurate and also minimise the amount of interaction with the household, reducing the impact of the measurement itself on behaviour.

Most of the other methods rely on some form of self-reporting – e.g. diaries, surveys, self-measurement of food-waste caddies, taking photographs. All of these methods generally give lower estimates of food waste in the home compared to methods involving direct measurement (e.g. weight compositional analysis) when comparison is made for a given waste stream. For diaries – one of the more accurate methods – around 40% less food waste is reported compared to waste compositional analysis (Hoj, 2012). More recent analysis has shown that measuring food waste via caddies or photos gives similar results to diaries (Van Herpen et al., 2016). This lower estimate is likely due to a range of factors: people changing their behaviour as a result of keeping the diary (or other method), some items not being reported, and people with – on average – lower levels of waste completing the diary exercise (or similar measurement method).

Few studies discussed the problems presented by self-reported data. However, issues relating to self-report are discussed more extensively in the environmental (in particular recycling) and social marketing literature where self-reported measures of perceptions and behaviours are often considered unreliable (Prothero et al., 2011) and a gap is expected between self-reported and actual behaviour (Barker et al., 1994; Chao and Lam, 2011; Huffman et al., 2014). This should be discussed with reference to each intervention to understand the scale of uncertainty present in the results.

This means that those monitoring interventions have some difficult decisions to make: methods that are accurate may be unaffordable while methods that are affordable may be subject to biases that can compromise the reliability of the results. For instance, a communication-based intervention monitored using diaries may increase the level of underreporting of waste in the diaries, which could be erroneously interpreted as decreasing levels of food waste. This could have substantial – and costly – implications for those deploying the (potentially ineffective) food waste intervention in the future.

To address these issues, studies should try to obtain the requisite funding to be able to measure food waste directly (e.g. by waste compositional analysis). This may mean fewer studies, or studies comprising a panel of households, in which food waste is regularly monitored (with the householders’ consent), creating the possibility of longitudinal studies. To make such an approach cost effective, this would likely require a consortium of partners, who could explore the emerging data to answer multiple research questions.

For studies using self-reported methods, these should carefully consider the design of the monitoring to ensure that reporting is as accurate as possible. The smaller the gap between actual and measured behaviour arising, the less measurement artefacts can influence the results and the ensuing conclusions. Recent work calibrating these self-reported methods has been undertaken (Van Herpen et al., 2016) and this type of information should be used in the measurement design. Further advances in calibration, especially in the context of intervention studies (i.e. is the level of underreporting stable during typical interventions?) would also help to improve monitoring and measurement.

In some circumstances, effects relating to self-reported measurement methods can be mitigated by the careful use of control groups. Where possible these should be used, as levels of food waste may change over time, influenced by food prices, income levels and other initiatives aimed at preventing food waste. However, adding a control to the research will increase costs and there can be practical difficulties in creating equivalent (e.g. matched) control groups, especially where samples are geographically clustered.

This discussion raises wider questions about the most appropriate evaluation approach and method, where different research designs may be fit for different intervention purposes. For example, where the priority is to measure an impact or effect, an experimental or quasi-experimental method should be considered, while assessing multiple outcomes and causal mechanisms may require a non-experimental research design (e.g. including qualitative methods). If the purpose is to decrease food waste by X percent, then the level of food waste should be measured over the course of the intervention (and beyond, to
understand the longevity of the effect). In some contexts however, the purpose is to achieve a precursor to food-waste prevention (e.g. increased reflection on food waste, or to improve cooking skills), which may eventually lead to decreased food waste. In the latter cases, evaluation may want to focus on measuring the level of reflection, cooking skills, etc. to assess the effectiveness of the intervention.

We acknowledge that research on food waste is an interdisciplinary field. This can be a virtue, with many perspectives tackling this 'wicked problem'. However, it also means that different disciplines have different conventions and priorities, e.g. over the experimental scale or duration, and measurement of uncertainty vis-à-vis determining how much food is actually wasted. These differences should be acknowledged in order that more accurate and consistent measurement takes place.

4.5.3. Moderation and mediation

In addition to changes in the level of food waste, intervention studies may benefit from measuring changes in other quantities. This may help understand whether the intervention is effective, especially in situations where measurement of food waste is imperfect. Additional dietary (purchase and consumption) data can be collected and would provide greater certainty regarding food waste generation statistics. Additional waste generation data (beyond just food waste) could also be useful to help understand wider waste generation issues and drivers.

Examples of other measurements may include ‘intermediate outcomes’ depending on the intervention and how it operates, there may be intermediate steps that would need to occur for the intervention to operate as envisioned (as articulated in the intervention’s logic map – see stage 1). This is an approach often used in social marketing where changes in behaviour that are difficult to measure might instead track changes in knowledge, beliefs and/or perceptions (Lee and Kotler, 2015). For instance, an educational campaign aimed at increasing the level of meal planning prior to people going shopping could monitor the change in people's awareness of educational material and their (self-reported) level of meal planning. These types of learning processes are slower, and are more difficult to assess in the short term, but they might still be successful and might achieve more long-term effects. Triangulation data is not sufficient in itself to state whether an intervention was successful, but can provide supporting evidence. Such analysis of moderating or mediating effects is useful and often uncovers interesting insights that would not be highlighted if this analysis were not conducted.

Observational analysis and measurement can provide insight into why the intervention works. By observing the intervention in action, this allows insight into the intervention itself, in addition to the effects of the intervention. This expands upon the intervention proposals of Porrino et al. (2016) by not only measuring the main objective, but also the intervention process, reflecting recent studies that highlight the importance of both process and outcome evaluation in interventions (Gregory-Smith et al., 2017).

4.5.4. Reporting

In order to make any study replicable and repeatable, there should be sufficient information provided about the intervention and the measurement methods to be able to replicate both elements.

The reporting of food waste has become standardised with the publication of the Food Loss and Waste Accounting and Reporting Standard (World Resources Institute, 2016). This standard was designed for countries, businesses and other organisations to quantify and report their food waste; it was not developed with intervention studies in mind. However, many of the principles it describes are useful in this context: studies should clearly describe the types of food waste measured (e.g. just the wasted food (i.e. edible parts) or including the inedible parts associated with food such as banana skins; the destinations included (e.g. only material bound for landfill, or also food waste collected for composting); the stages included (e.g. in a restaurant, only plate waste, or also kitchen waste).

A description of the details of how the quantification method (e.g. for waste compositional analysis) was undertaken is crucial, alongside what the study classified as food waste and which waste destinations were included. Details of the sample sizes and how they were drawn should also be covered. Data reporting should include the average weight, alongside appropriate measures of the spread of the data (e.g. standard deviation, standard error, interquartile ranges). Detailed waste composition data, where available, should also be provided. Changes of food waste between time periods should be reported as both weights and percentages, with significance and p values clearly stated. This minimum level of comparable data was lacking in many of the papers reviewed, with only 12 (70%) of the papers providing some statistics or statistical analysis, 2 (11%) providing waste composition analysis, and 5 (29%) providing results or analysis of food waste reduction from multiple time periods post intervention.

To allow for the actual measurement of food waste rather than participants’ perceptions, several methods of disruptive thinking and scaling innovations could be considered. One such innovation is smart bins (Lim et al., 2017). This allows automatic recognition of food waste type and their weighting which can help remove uncertainty in self-reporting of food waste. Such data from smart bins (and also smart fridges and online shopping devices) could be shared with local authorities, policy organisations, community groups and industry, enabling planning and optimisation of food waste management locally. Smart bins are already being used in the hospitality industry to track food waste (e.g. products such as Winnow or Leanpath).

4.5.5. Considering systemic effects

None of the intervention studies in the review considered systemic effects. Systemic effects, like the rebound effect (i.e. improved technology to reduced environmental impacts may, due to behavior and other system effects, result in no change, or increased environmental impacts. See Khazzoom (1987) or Sorrell and Dimitropoulou (2008) for further discussion), are relevant and vital to consider for measures that are saving money or time for the consumer. Several of the measures presented above are not only measures that can lead to reduced food waste, and thus reduced environmental impact, but also measures that could lead to reduced costs, both for consumers and for other actors in the food chain. Since less food needs to be wasted, less food needs to be bought. Reduced costs can be an advantage from a private economic point of view, but it can also in the worst case, lead to further negative environmental effects. The money saved can be used for other types of consumption and perhaps increased environmental impact. These type of system effects, are sometimes called second order effects or rebound effects (Arvesen et al., 2011; Börjesson Rivera et al., 2014). How consumers choose to spend the money saved determines what the overall environmental impact will be. If the money or time is used for something more environmentally friendly, then the effect will be positive, and the environmental potential will be realised. But if instead the money is used for activities with more environmental impact, such as a food with higher environmental impact or, taking a trip with a fossil fuel driven car or even a flight, then the environmental impact is negative. Sometimes the second order effect exceeds the environmental benefits of the intervention, and the situation becomes worse than it was from the outset (known as the Jevons paradox (Alcott, 2005)). This means that measures for reduced food waste do not always only produce the desired results with regard to environmental impact, but also more unintended side effects.

This does not mean that measures to reduce food waste are ineffective, but that second order effects need to be taken into account. Otherwise, there is a risk that interventions might not be efficient in a systems perspective. Due to the complexities involved in considering full systemic effects, the practicality of detailed analysis must be weighed up for each intervention. The use of theory-based interventions, with extended logic mapping (e.g. with systems mapping as discussed above) will be useful in enabling this detailed analysis, as the theoretical background and logic mapping may be able to acknowledge cross-boundary input and outcomes (but not necessarily assist with measuring them).
Ideally, intervention studies, where possible, should collect data to monitor these second-order effects, in addition to monitoring the direct impact on food waste. However, as this may involve recording household spending (on food as well as other expenditure) and food consumption, it will greatly inflate the cost of studies and may not be possible. Another option is to, at least, identify risks for second order effects, look for ways to minimize negative second-order effects and maximize any potential positive effects of this nature.

4.5.6. Policy implications

According to our review, in spite of the shortage of downstream intervention studies, there are still several evaluated interventions that have good potential for use in a wider context. These include so-called “low hanging fruits” which might not have a huge impact but also do not imply high cost, high maintenance or side effects, or interventions that have been assessed and have produced good results. One example of the former kind is to encourage guests at restaurants and in large-scale households to adjust the portions to how hungry they are (Jagau and Vyrastekova, 2017), or to take smaller portions at a buffet and come back if you want more (Kallbekken and Sælen, 2013). This kind of measure is relatively simple and inexpensive and could be combined with other measures, such as for example a lower price for a smaller portion. Examples of the latter kind, assessed with good results but with an economic cost, are the interventions with smaller plates (Kallbekken and Sælen, 2013; Wansink and van Ittersum, 2013).

A number of interventions use social media (e.g. Lim et al., 2017) and the evaluated studies indicate that there is potential for this in particular as a way of spreading knowledge and creating discussion and reflection. However, caution must be taken as using social media to message the correct audience with content that resonates has its own challenges due to audience segmentation. Another intervention that is quite simple and can be done without major investment in apps, is colour coding of shelves or sections in the refrigerator (Farr-Wharton et al 2012). Similar initiatives have been tested in “Food: Too good to waste” where the solution was even easier - with just a note in the fridge on food to be eaten soon (U.S. EPA Region 10, 2016). More extensive campaigns (e.g. U.S. EPA Region 10, 2016; WRAP, 2013b) have also had good effects, although it is difficult to estimate the impact of individual components of the overall campaign. With a mix of complementary interventions and actors at local level, this type of measure should have good potential given that the necessary resources and commitment, which seems to have been the case in both the UK and the United States.

5. Conclusion

This paper has summarised 17 applied food-waste prevention interventions at the consumption/consumer stage of the supply chain via a rapid review of academic literature from 2006 to 2017. This led to the identification of interventions that could be deployed effectively at scale in the home (e.g. fridge colour coding, product labelling, and information provision), and out of the home (e.g. plate and portion size adjustment, changes to menus and nutritional guidelines, and redesign of class room syllabus).

Our discussion has identified the weaknesses of the current literature; proposed guidelines for the development of further food waste interventions, and set out an agenda for further research:

- Well-designed interventions covering a range of types (including longer interventions and those exploring a raft of measurers),
- Tested using carefully selected methods to understand the outcome of the intervention and how it works (or not),
- Adoption of higher sample sizes and representative sampling for quantitative elements,
- Replication studies in different countries
- Consideration of systemic effects
- Improved, more consistent reporting.

This is a novel and important addition to the researchers’, policymakers’ and practitioners’ tool kit. Our review found that the majority of current interventions achieve only a 5–20% reduction in food waste. To achieve Sustainable Development Goal 12.3 by 2030, (halve per capita global food waste at the retail and consumer levels) these interventions (and others) need to be combined, refined, tested further at different scales and geographies, and adopted on a global scale.

Acknowledgements

Christian Reynolds and Liam Goucher are supported from the HEFCE Catalyst-funded N8 AgriFood Resilience Programme and matched funding from the N8 group of Universities. Christian Reynolds has additional funding from NERC to support an Innovation Placement at the Waste and Resources Action Programme (WRAP) (Grant Ref: NE/R007160/1). Annica Carlsson-Kanyama, Cecilia Katzeff and Åsa Svenfelt has funding from the Swedish National Food Agency and MISTRA. Thanks to Richard Swannell, Mark Boulet, and Amy Woodham, for discussions about the review process and the identification of additional papers. Thanks to the two anonymous reviewers for their helpful suggestions in refining the papers structure and argument.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foodpol.2019.01.009.

References
