
Peer reviewed version

Link to published version (if available):
10.1109/TED.2019.2951502

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at dx.doi.org/10.1109/TED.2019.2951502. Please refer to any applicable terms of use of the publisher.
Self-Heating Characterization of β-Ga$_2$O$_3$ Thin-Channel MOSFETs by Pulsed I-V and Raman Nanothermography

Nicholas A. Blumenschein, Neil A. Moser, Eric R. Heller, Nicholas Miller, Andrew J. Green, Andreas Popp, Antonio Crespo, Kevin Leedy, Miles Lindquist, Taylor Moule, Elisha Mercado, Manikant Singh, James W. Pomeroy, Martin Kuball, Gunter Wagner, Tania Paskova, John F. Muth, Kelson D. Chabak, and Gregg H. Jessen

Abstract—β-Ga$_2$O$_3$ thin-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) were evaluated using both DC and pulsed I-V measurements. The reported pulsed I-V technique was used to study self-heating effects in the MOSFET channel. The device was analyzed over a large temperature range of 23 to 200°C. A relationship between dissipated power and channel temperature was established, and it was found that the MOSFET channel was heating up to 208°C when dissipating 2.5 W/mm of power. The thermal resistance of the channel was found to be 73°C·mm/W. The results are supported with experimental Raman nano-thermography and thermal simulations and are in excellent agreement with pulsed I-V findings. The high thermal resistance underpins the importance of optimizing thermal management in future Ga$_2$O$_3$ devices.

Index Terms—Channel temperature, gallium oxide, MOSFET, pulsed I-V measurements

I. INTRODUCTION

Research efforts on the gallium oxide beta (β-Ga$_2$O$_3$) polymorph are continuously growing because of its thermal and chemical stability, optical transparency, and bulk production capabilities using melt growth methods [1]. β-Ga$_2$O$_3$ has a lot of promise for high-power device applications because of its wide bandgap (E_g) of \sim 4.9 eV and estimated critical electric field (E_c) of 8 MV/cm, resulting in a Baliga’s figure-of-merit (BFOM) of 3444 [2]. Following the first Ga$_2$O$_3$ transistor demonstrations [3], a report by Green et al. validated β-Ga$_2$O$_3$ as a high-power semiconductor material by fabricating a MOSFET with a breakdown electric field exceeding 3.8 MV/cm, which was the first demonstration of β-Ga$_2$O$_3$ having a higher breakdown field than both GaN (3 MV/cm) and SiC (3.18 MV/cm) [4]. These excellent material properties have allowed for the development of a wide variety of semiconductor devices such as high-voltage Schottky barrier diodes (SBDs) [5]–[7] and transistors with high current density [8]–[11], high breakdown voltage [3], [4], [12]–[15], radio frequency operation [11], [16], and vertical topology [17], [18]. Recently, work by Lv et al. demonstrated a source-field-plated Ga$_2$O$_3$ MOSFET with a record-setting power figure-of-merit ($V_{th^2}/R_{on,sp}$) of 50.4 MW/cm2 [19].

One concern with β-Ga$_2$O$_3$ is its low anisotropic thermal conductivity [20], [21], posing additional challenges in designing high-power Ga$_2$O$_3$ devices with capability to extract enough heat to prevent thermal-related failures such as oxide breakdown. It has been proposed that effective heat extraction in β-Ga$_2$O$_3$ will likely require a combination of top-side and back-side thermal solutions [2], [22], [23]. To evaluate these methods of heat removal, it is imperative to quantify the channel temperature of Ga$_2$O$_3$ devices during operation independent of the thermal solution. Previous reports have shown success measuring channel temperature using methods such as Raman thermography [22], thermo-reflectance imaging [24], and electrical measurements [25]. Pulsed I-V characterization of β-Ga$_2$O$_3$ FETs has been reported at higher power operation by suppressing trapping and thermal effects [9]. Joh et al. reported on a simple pulsed I-V method that showed the ability to accurately measure the channel temperature of GaN high-electron mobility transistors (HEMTs) [26]. This method is beneficial because it does not require any special device layout or geometry, it can be used to measure packaged devices, and provides the channel temperature rather than a spatially averaged temperature. In this work, we apply the pulsed I-V measurement technique to Ga$_2$O$_3$ MOSFETs and prove its capability as a universal method to estimate the channel temperature. Raman nanothermography was used to validate these results. This is the first report of Ga$_2$O$_3$ MOSFET channel temperature measurement that was verified using two separate
experimental methods.

II. EXPERIMENTAL DETAILS

A. Device Details

Metal-organic chemical vapor phase epitaxy (MOVPE) was used for homoepitaxial growth of a Si-doped β-Ga2O3 thin film channel on a (010) Fe-doped Ga2O3 substrate. The channel thickness and donor concentration was 65 nm and 2x10^{18} cm^{-2}, respectively. Ohmic contacts were formed by depositing a Ti/Al/Ni/Au (20/100/50/50 nm) metal stack, followed by rapid thermal annealing (RTA) for one minute at 470 °C in a N2 atmosphere. The ohmic contact resistance was estimated to be ~ 11 Ω·mm using TLM test structures. From Hall measurements, the sheet concentration and mobility of the film were found to be 1.3x10^{13} cm^{-2} and 90 cm²/V·s, respectively. A 20 nm Al2O3 gate dielectric was deposited by atomic layer deposition (ALD). A 90 nm SiO2 layer was deposited using plasma-enhanced chemical vapor deposition (PECVD) to serve as a field oxide layer in the un gated access regions. A 0.14 μm gate length (Lg) was formed in the SiO2 layer by etching a trench with CF4 reactive ion etching (RIE) with the ALD Al2O3 serving as an etch stop. A 0.7 μm wide Ni/Au metal stripe was evaporated over the trench to form a T-shaped gate electrode. The Au pad layer was electroplated to a thickness of ~5 μm to serve as a heat sink. Fig. 1 shows an illustration of the depletion-mode MOSFET structure with source-to-drain (LSD) and gate-source (LGS) length of 8 μm and ~0.5 μm, respectively.

![MOSFET device schematic](image)

Fig. 1. Thin-channel β-Ga2O3, MOSFET device schematic.

B. Pulsed I-V Measurement Technique

Pulsed I-V measurements were performed at temperatures ranging from 23°C to 200°C using a DiVA D265 dynamic IV analyzer equipped with a gold-plated thermal baseplate. Simultaneous control of gate/drain voltage switching times were possible for sub-µs pulsewidths. This capability allowed the use of previously reported pulsed IV method that showed the feasibility in gathering transistor channel temperature information through pulsed IV measurements [26]. The technique involves a calibration step and measurement step. The goal of the calibration step is to gather temperature-dependent IV data without self-heating effects. To ensure that this was the case, we pulsed from zero quiescent gate/drain voltage conditions (VGSQ, VDSQ = 0V) and minimized the time in which the non-quiescent voltages (VGS, VDS) were active using a 200 nanosecond pulse width and 0.02% duty cycle. Previous experiments on GaN HEMTs showed that these pulsewidth and duty cycle conditions resulted in channel temperature measurements where an error of approximately 6°C was observed [26]. This error was reduced to ~ 0.5°C when shortening the pulsewidth to 100 ns. Unfortunately, we were unable to use a shorter pulsewidth because of equipment limitations. However, we observed no self-heating effects when using a 200 ns pulsewidth, indicated by the complete linearity of the pulsed ID-VDS curves up to a 15 V bias. By complying with these measurement conditions, we could assume that power dissipation did not affect the device temperature; thus, the temperature of the transistor channel was the same as that of the baseplate (TCH = TBaseplate). The IV characteristic was measured by applying a VGS = 0 V and sweeping the drain voltage from 0 to 15 V. The on-resistance (RON) was determined at each temperature from the ID-VDS curve slope. Another key parameter used in this work was the maximum drain current (ID,max), which we have chosen to define as ID at VDS = 15 V. Once these calibration measurements were complete, a temperature-dependent relationship was identified for both RON and ID,max. The second part of the measurement technique required the use of non-zero quiescent drain bias conditions to induce self-heating in the channel while keeping TBaseplate at a constant 23°C. Here, VDSQ and VDS were both varied from 0 to 15 V. Since TCH was unknown, the dissipated power (PD = VDSQ x IDQ) was calculated for each VDSQ and used to create a relationship similar to that in the calibration step (PD vs. RON, ID,max). Thus, by using the TCH-dependent data of the calibration step, the channel temperature was estimated using the PD-dependent data of the measurement step.

C. Raman Thermography Measurement Technique

Peak temperature in the MOSFET channel was extracted using Raman nano-thermography. Titanium dioxide (TiO2) nanoparticles with a 30 nm diameter were used to measure the temperature at four distinct locations on the MOSFET surface above the channel. The nanoparticles were distributed onto the device using a suspension of 99.98% pure TiO2 particles mixed in methanol. Sonication of this suspension ensured a uniform density of particles throughout the methanol. The particle-ethanol suspend was drop cast onto the channel. The low density and small size of the TiO2 particles minimize their effect on channel temperature. During device operation, owing to their low heat capacity, TiO2 particles reach thermal equilibrium with the device channel almost instantaneously. The Raman peak shift of the particles is used to extract channel temperature. The temperature calibration method used has been previously described elsewhere [27]–[30]. During these measurements the wafer was mounted to an electrically grounded baseplate at a temperature of 25°C. Self-heating effects were evaluated in the device using DC bias conditions (VG = 0 V, VDS = 2–8 V in steps of 2V). Experiments were carried out using a 532 nm Ar+ laser and 0.5 NA objective lens with a 0.64 μm spot size on the sample surface.
III. RESULTS

A. Pulsed I-V Characterization

Fig. 2(a) shows the MOSFET DC I-V characteristic of a representative device when varying V_{DS} from 0 to 10 V and V_G from -16 to 0 V in 2 V increments. Fig. 2(b) shows the corresponding transfer characteristic while biasing the device at $V_{DS} = 10$ V. The inset shows the I_D transfer characteristic plotted on a log scale. A peak g_m of 12.8 mS/mm was observed at $V_{GS} = -13.2$ V. A threshold voltage of -15.1 V was found through linear extrapolation of the I_D–V_{GS} curve. Fig. 3(a) shows the I_D–V_{DS} characteristic when using a bias pulsewidth of 200 μs and varying $T_{Baseplate}$ from 23 to 100°C. Immediately observed was an expected temperature dependence where R_{ON} increased and $I_{D,max}$ decreased with T_{CH}. However, it can be seen that the slope of the curve does not remain linear up to $V_{DS} = 15$ V, and instead begins to saturate as it should if a DC bias were applied. This is due to the large 200 μs pulsewidth and 20% duty cycle, where unwanted power dissipation is causing heat to build up in the channel. Reducing the pulsewidth into the sub-μs range has the benefit of minimizing T_{CH} self-heating, as has been previously demonstrated for AlGaN/GaN devices [31]. For these reasons, as shown in Fig. 3(b), a 200 ns pulsewidth (0.02% duty cycle) was chosen for I_D–V_{DS} characteristic measurements. The desired linear IV relationship for the entire temperature range was observed. The R_{ON} had an RT value of 67.9 Ω-mm that increased to 84 Ω-mm at 200°C (24% increase) whereas $I_{D,max}$ had an RT value of 215.2 mA/mm that decreased to 176.4 mA/mm at 200°C (22% decrease). Figure 3(c) shows a plot of R_{ON} and $I_{D,max}$ versus T_{CH}.

In the measurement step we used the same pulse conditions of 200 ns and 0.02% duty cycle, but also set the baseplate temperature to 23°C and used a non-zero V_{DSQ} to dissipate increasing amounts of power in the device. Fig. 4(a) shows the...
I_D–V_{DS} characteristic under these conditions for a V_{DSQ} ranging from 2 to 15 V. The dissipated power was calculated for each V_{DSQ} condition using $P_D = V_{DSQ} \times I_{DSQ}$ then plotted versus R_{ON} and $I_{D,max}$ as shown in Fig. 4(b). Using the R_{ON}–T_{CH} and $I_{D,max}$–T_{CH} data from Fig. 3(c), along with the R_{ON}–P_D and $I_{D,max}$–P_D data from Fig. 4(b), we were able to extract a family of equations [(1) – (4)]. From (1) – (4) we then obtained (5) and (6), which relate P_D and T_{CH}. Interestingly, (5) and (6) were nearly identical even though they were obtained separately using R_{ON} and $I_{D,max}$. Fig. 5 shows the estimated T_{CH} as a function of P_D as obtained from (5) and (6). The thermal resistance (R_{TH}) was extracted from the slope of the two T_{CH}–P_D curves using a least squares fit over the whole dataset, and estimated as the average value of 73 °C-mm/W.

![Fig. 4. (a) Pulsed I_D–V_{DS} characteristic when $V_{DSQ} = 0$ – 15 V and (b) resulting R_{ON}, $I_{D,max}$ versus P_D data.](image)

By using (5) and (6), the R_{TH} was extracted.

\[
R_{TH} = 0.09 \cdot T_{CH} + 65.96
\]
\[
I_{D,max} = -0.22 \cdot T_{CH} + 218.86
\]
\[
R_{ON} = 6.64 \cdot P_D + 67.63
\]
\[
I_{D,max} = -16.87 \cdot P_D + 216.33
\]
\[
T_{CH} = 70.63 \cdot P_D + 17.73
\]
\[
T_{CH} = 76.78 \cdot P_D + 11.52
\]

B. Raman Thermography

Fig. 6(a) shows the four locations of TiO$_2$ nanoparticles on the device surface during Raman thermography measurements. The Raman spectra of the TiO$_2$ particles was measured at each distinct location as a function of P_D. Four varying amounts of P_D were used (0.228, 0.517, 0.698, and 0.904 W/mm). Fig. 6(b) shows the resulting T_{CH} data as a function of TiO$_2$ nanoparticle location. The source, gate, and drain locations have also been denoted here using black arrows. The maximum T_{CH} was observed on the drain-side of the gate at a distance of 2.46 µm from the edge of the source contact for every amount of P_D. This is consistent with previous thermal characterization reports on Ga$_2$O$_3$ MOSFETs [22]. The T_{CH} measured at distances of 0.20 and 3.47 µm were all relatively similar in comparison for every P_D.

The pulsed I-V technique described in this work results in an average T_{CH} (and R_{TH}), whereas the Raman thermography measurement technique provides spatial information laterally across the channel. To better understand these two separate T_{CH}–P_D datasets the spatial T_{CH} information in Fig. 6(b) was plotted as a function of P_D as shown in Fig. 6(c). The R_{TH} found at each TiO$_2$ nanoparticle location is shown on the figure, and varies from 47 – 66 °C-mm/W. Colored lines show the linear fits for each TiO$_2$ nanoparticle location and their slopes were used to estimate R_{TH}.

Fig. 7 shows comparative T_{CH}–P_D data measured using the two techniques. The pulsed I-V data shown is an average of the two datasets shown in Fig. 5, where an R_{TH} of 73 °C-mm/W is observed. An average T_{CH} was taken for each TiO$_2$ particle to study how the Raman nano-thermography technique might vary from the pulsed I-V method. Taking this average resulted in an R_{TH} of 59 °C-mm/W, which is 19.2% lower than the value found when using pulsed I-V. It is likely that these two R_{TH} values would converge if more TiO$_2$ nanoparticles were used in the Raman measurements in areas underneath the drain-edge of the gate where the majority of thermal effects are...
observed. This point is further proven when looking at the thermal simulations in Fig. 8. Fig. 8(a)-(c) shows thermal simulations at varying levels of resolution with $P_D = 1\,\text{W/mm}$. Fig. 8(d) shows the temperature profile along the gate width of the device centered at the drain-edge of the gate. This result

This set of measurements were performed on a β-Ga$_2$O$_3$ MOSFET with a specific device geometry. However, the nature of the measurement technique of providing a reference from the baseplate temperature for very short pulse durations allows channel temperature measurements to be applied to devices with similar geometries. Others have reported similar pulsed I-V methods that were used to identify the R_{TH} of Ga$_2$O$_3$ MOSFETs [25]. These findings along with data obtained through Raman thermography [22] and simulation [32] can be seen in Table I. Some additional device layout-specific parameters are shown for comparison purposes.

The R_{TH} data shown in Table I summarizes the available Ga$_2$O$_3$ MOSFET R_{TH} data that has been published to-date. The data shown here includes (A) this work, (B) pulsed I-V data from Wong et al. [25], (C) simulation data from Singh et al. [32], and (D) Raman thermography data from Pomeroy et al. [22]. An R_{TH} value was not reported for Device C, but rather a plot of channel temperature as a function of power dissipation at an ambient temperature of 25°C. To compare the results for these four devices, we used the method described in this work to find the R_{TH} of Device C. Interestingly, this resulted in an R_{TH} of 116°C-mm/W, which was significantly higher than that reported by the other three papers. There are many variables that can alter R_{TH} (e.g. channel dimensions, substrate, ambient temperature, etc.). However, it appears that Devices B and C had a near-identical device layout, a (010)-oriented Fe-doped Ga$_2$O$_3$ substrate, and only a minor 5°C ambient temperature
Device B used a similar approach to that first reported by Joh et al., but since a linear I_{DS}-T_{CH} relationship was not observed, they instead altered the technique by using a V_{DS}-dependent I_{DS}-T_{CH} calibration. From this calibration data, they were able to obtain a relationship between channel temperature and DC power density, resulting in an R_{TH} of 48 °C-mm/W at 20°C. The data for Device C was found using single pulse thermal simulations where the channel temperature transient was evaluated at various amounts of power dissipation. The R_{TH} of 88°C-mm/W reported for Device D is similar to what was found in this work, despite some major device fabrication differences.

As seen in Table I, the devices tested in this work are more tightly scaled than those previously examined elsewhere, with smaller L_{C} and higher channel doping leading to a smaller and more tightly confined depletion region. During Ga$_2$O$_3$ MOSFET operation the majority of heat will be generated below the gate on the drain-side of the channel, and we expect that the physically small region for this thermal load will contribute to a larger temperature gradient and larger differences overall. As shown in Fig. 6(b), this is where we observed the highest T_{CH}. We believe this is one reason for the significant R_{TH} difference observed between the pulsed I-V results of this work and those from Device B in Table I. Device B had channel dimensions that were quite large in comparison to the MOSFET analyzed here, and since the pulsed I-V method provides an average R_{TH} of the channel, the heat created at the drain-side below the gate region has a lessened impact on R_{TH}.

V. Conclusion

Pulsed I-V measurements were performed to evaluate self-heating effects in β-Ga$_2$O$_3$ thin-channel MOSFETs. Characterization was performed within a wide temperature range of 23 to 200°C using sub-μs pulsedwidths. The $I_{D,max}$ and R_{ON} were measured at each temperature, then used to identify a T_{CH}-P_{D} relationship. The T_{CH} was found to have a linear dependence on P_{D}, and a maximum T_{CH} of 208°C was observed for a P_{D} of 2.56 W/mm. The MOSFET channel was found to have a R_{TH} of 73°C-mm/W, which is in agreement with previous reports that analyzed channel temperature in β-Ga$_2$O$_3$ MOSFETs. Additional self-heating characterization was performed using Raman nano-thermography, which resulted in an average R_{TH} of 59°C-mm/W. Further reducing the R_{TH} in Ga$_2$O$_3$ devices by developing more efficient thermal management approaches will be important for improving performance. This work describes one possible thermal characterization method that can be used to evaluate new heat extraction concepts.

References

Table I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{TH} (°C-mm/W)</td>
<td>73 / 59</td>
<td>48 / 56</td>
<td>116*</td>
<td>88</td>
</tr>
<tr>
<td>$T_{Ambient}$ (°C)</td>
<td>23 / 25</td>
<td>20 / 125</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Meas. Tech.</td>
<td>PIV / Raman</td>
<td>PIV</td>
<td>Sim.</td>
<td>Raman</td>
</tr>
<tr>
<td>Substrate</td>
<td>(010) Fe-doped Ga2O$_3$ with 650 μm thickness</td>
<td>65</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>d_{CH} (nm)</td>
<td>2E18</td>
<td>3E17</td>
<td>3E17</td>
<td>3E17</td>
</tr>
<tr>
<td>N_{D} (cm$^{-3}$)</td>
<td>822</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>L_{GD} (μm)</td>
<td>0.14</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L_{GD} (μm)</td>
<td>7.36</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>L_{GS} (μm)</td>
<td>0.5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>W_{G} (μm)</td>
<td>50</td>
<td>-</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td># of Fingers</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>d_{GDS} (nm)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>H_{FP} (nm)</td>
<td>90</td>
<td>-</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Comparison of this work (Device A) with previously reported β-Ga$_2$O$_3$ MOSFET thermal resistance values and corresponding device fabrication properties. H_{FP} represents the field-plate height.

* R_{TH} not reported; estimated here by linear fitting of T_{CH}-P_{D} data.

CH