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Abstract The aim of this paper is to study growth properties of group exten-
sions of hyperbolic dynamical systems, where we do not assume that the
extension satisfies the symmetry conditions seen, for example, in the work
of Stadlbauer on symmetric group extensions and of the authors on geodesic
flows. Our main application is to growth rates of periodic orbits for covers
of an Anosov flow: we reduce the problem of counting periodic orbits in an
amenable cover X to counting in a maximal abelian subcover X ab. In this way,
we obtain an equivalence for the Gurevič entropy: h(X) = h(X ab) if and only
if the covering group is amenable. In addition, when we project the periodic
orbits for amenable covers X to the compact factor M , they equidistribute with
respect to a natural equilibrium measure — in the case of the geodesic flow,
the measure of maximal entropy.
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1 Introduction

The aim of this paper is to study growth properties of group extensions of
hyperbolic dynamical systems, where we do not assume that the extension
satisfies the symmetry conditions imposed in [14] and [42], for example. Our
main application is to growth rates of periodic orbits for covers of Anosov
flows and we obtain generalisations of results previously known for geodesic
flows over compact (or even convex co-compact) negatively curved manifolds
[14,35,42]. We begin by describing these results.

Let M be a compact smooth Riemannian manifold and let φt : M → M
be a transitive Anosov flow. Then φt has a countable set of periodic orbits
P(φ) and, for γ ∈ P(φ), we write l(γ ) for its period. It is well-known that the
growth rate of periodic orbits is given by the topological entropy of φt ; more
precisely

lim
T→∞

1

T
log #{γ ∈ P(φ) : l(γ ) ≤ T } =: h = htop(φ).

Now suppose that X is a regular cover of M with covering group G, i.e. G
acts freely and isometrically on X such that M = X/G. Let φt

X : X → X be
the lifted flow, which we assume to be transitive. We will be interested in the
growth of periodic orbits for φt

X . If G is finite then φt
X is also an Anosov flow

and htop(φX ) = htop(φ). If G is infinite the situation is more interesting. First,
note that if φt

X has a periodic orbit γ then the translates of γ by the action of G
give infinitely many periodic orbits with the same period, so a naive definition
of periodic orbit growth does not make sense. Rather, we follow the approach
of [29] and, choosing an open, relatively compact set W ⊂ X , define

h(X) := lim sup
T→∞

1

T
log #{γ ∈ P(φX ) : l(γ ) ≤ T, γ ∩ W �= ∅}.

As the notation suggests, h(X) is independent of the choice ofW (see Lemma
2.3). The above definition is analogous to that made by Gurevič for countable
state Markov shifts [19] (see below) and it is natural to call h(X) the Gurevič
entropy of φt

X . It is easy to see that h(X) ≤ h.
Let us now restrict to the special case that M = SV is the unit-tangent

bundle over a compact manifold V with negative sectional curvatures and that
φt is the geodesic flow. (Notice that this flowadmits a time-reversing involution
ι : SV → SV defined by ι(x, v) = (x, −v), where x ∈ V and v ∈ SxV .)
Combining the results of [35] and [14], we have h(X) = h if and only if G is
amenable. (Recall that G is amenable if it has a Banach mean, that is, there
is a G-invariant bounded linear functional M : �∞(G, R) → R such that,
for x ∈ �∞(G, R), infg∈G x(g) ≤ M(x) ≤ supg∈G x(g).) This equivalence
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Anosov flows, growth rates on covers and group extensions

fails to hold for general Anosov flows — however, the results of this paper
will say that, for an amenable cover, the counting is reduced to the maximal
abelian subcover. This will be discussed in greater detail in Sect. 2 but we note
at this point that if Y is an abelian cover of M then h(Y ) = h if and only if
�Y

μ0
= 0, where �Y

μ0
is the (relative) winding cycle associated to the measure

of maximal entropy for φt . Our main result is that the correct comparison is
between h(X) and h(X ab), where X ab is the maximal abelian subcover of the
cover X → M (so that the covering group for X ab → M isGab = G/[G : G],
the abelianization of G). Clearly, h(X) ≤ h(X ab) and we have the following
theorem.

Theorem 1.1 We have h(X) = h(X ab) if and only if G is amenable.

An immediate consequence of this result and the characterisation of h(X ab)

in Proposition 2.4 is the following corollary, which expresses h(X) in terms
of measure-theoretic entropies of φ-invariant measures. LetM(φ) denote the
set of φ-invariant probability measures on M and, for μ ∈ M(φ), let hφ(μ)

denote the measure-theoretic entropy of φ with respect to μ.

Corollary 1.2 We have h(X) = sup
{
hφ(μ) : μ ∈ M(φ), �Xab

μ = 0
}
if and

only if G is amenable.

Readers more familiar with geodesic flows may wonder at this point, when
is π1(M) non-amenable? In general it is very difficult to say anything about
the topology of M as the flow lines may not be efficient for measuring the
fundamental group (for a discussion in dimension 3 see [4,16]). Nevertheless,
our method is able to relate orbits and topology for transitive covers.

The Proof of Theorem 1.1 will use symbolic dynamics and, in particular,
group extensions of subshifts of finite type. As part of the our approach we
will obtain results in this setting which are of independent interest. (Some
definitions are deferred until Sect. 3.) Let σ : 	 → 	 be a mixing subshift of
finite type. We will write h(σ ) for the topological entropy of σ and note that
this is equal to the exponential growth rate of periodic points,

h(σ ) = lim
n→∞

1

n
log #{x ∈ 	 : σ nx = x}.

For a countable group G and a function ψ : 	 → G, we consider the skew-
product dynamical system

Tψ : 	 × G → 	 × G : (x, g) 	→ (σ x, gψ(x)).

We say that Tψ : 	 × G → 	 × G is a G-extension of σ : 	 → 	. We
will always assume that Tψ : 	 × G → 	 × G is transitive. Let us consider
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the periodic points of Tψ . Clearly, T n
ψ(x, g) = (x, g) if and only if σ nx = x

and ψn(x) = e, the identity in G. If G is infinite then T n
ψ has infinitely many

periodic points of fixed period n; however, we can use the following definition,
due to Gurevič [19], to obtain a growth rate. We say that the Gurevič entropy
of Tψ is

hGur(Tψ) = lim sup
n→∞

1

n
log #{x ∈ 	 : σ nx = x, ψn(x) = e}.

Clearly, hGur(Tψ) ≤ h(σ ). However, it is easy to construct examples where G
is amenable but hGur(Tψ) < h(σ ). For example, let 	 = {0, 1, 2}Z, G = Z

and defineψ byψ(x) = ψ(x0)withψ(0) = ψ(1) = 1 andψ(2) = −1. Then
Tψ is transitive. By [32],

hGur(Tψ) = sup

{
hσ (m) : m ∈ M(σ ),

∫
ψ dm = 0

}
.

Now, the measure of maximal entropy m0 for σ : 	 → 	 is the
(1/3, 1/3, 1/3)-Bernoulli measure and, clearly,

∫
ψ dm0 = 1/3 �= 0. Thus,

by the Variational Principle, hGur(Tψ) < h(σ ).
We shall show that, in fact, the natural comparison is between hGur(Tψ)

and hGur(Tψab), where Tψab : 	 × Gab → 	 × Gab is the induced Gab-
extension, where Gab = G/[G,G] is the abelianization of G. More precisely,
if π : G → Gab is the natural projection then ψab = π ◦ ψ .

Theorem 1.3 If Tψ is transitive then hGur(Tψ) = hGur(Tψab) if and only if G
is amenable.

We now put these results into a broader context. This discussion will focus
on more recent viewpoints, and on the role of symmetry, and so neglects to
mention the spectral analogues of Brooks [7,8], whose work was a motivating
factor in the recent developments of this field (for instance [9,10,13,14,42]).

We have already given the definition of an amenable group in terms of the
existence of a Banach mean. We give an equivalent criterion of amenability
due to Kesten [23], which is often taken as the definition for amenability.
Throughout, let p be a probability measure on G, which we will assume to be
finitely supported and for the support to generateG.We say that p is symmetric
if p(g) = p(g−1) for all g ∈ G.

Kesten’s theorem says that, for a symmetric probability on G, the decay
of the probability to return to the identity is subexponential if and only if G
is amenable. More precisely, writing λ(p) = lim supn→∞(p∗n(e))1/n , where
p∗n denotes the nth convolution of p, we have λ(p) = 1 if and only if G is
amenable. This result has an application to counting for normal subgroups of
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non-elementary Gromov hyperbolic groups. Let � be a non-elementary Gro-
mov hyperbolic group and �′ a normal subgroup. The uniform measure on the
ball of radius n in� descends to a probability measure pn onG = �/�′. It can
be shown, for example in [9], that lim supn→∞ log λ(pn) ≤ δ�′ − δ� ≤ 0; and
so in the case that G is amenable we have equality between the critical expo-
nents δ�′ , δ� . (We also mention the more general approach of Roblin [35] who
uses the Banach mean property to prove the result only for normal subgroups
�′ of � a non-elementary discrete group of isometries of a simply connected
negatively curved manifold— notably there is no compactness assumption on
�.) Because of this avenue of approximating by a sequence of probabilitymea-
sures pn , the community has sometimes referred to statements “G amenable
implies · · · ” as “the easy direction”. However, it is clear that the aforemen-
tioned application crucially used the existence of a natural family of symmetric
probability measures. As we will see from the literature reviewed in Sect. 2.3,
extending such orbital counting results beyond the inherent symmetry of the
isometric actions to Anosov flows is highly non-trivial.

The case that G is non-amenable is more robust in the absence of sym-
metry. In the case of random walks, it can happen that G is amenable,
and λ(p) < 1. The Kesten criterion was generalised by Day [11] to a
criterion on the �2(G) spectral radius spr(Mp) of the random walk opera-
tor Mp f (x) = ∑

g p(g) f (xg). In this way, G is amenable if and only if
spr(Mp) = 1. Observe that λ(p) ≤ spr(Mp) and so one direction of the
Kesten result is contained in this. In the setting of subshifts of finite type, it is
natural to consider the transfer operator L0 (for a full exposition see Sect. 4).
Stadlbauer [42] showed that spr(L0) < exp(h(σ )) if G non-amenable; and
Jaerisch [20] showed the converse. Analogous to the case of random walks,
the growth quantity we wish to estimate for subshifts of finite type satisfies
exp(hGur(Tψ)) ≤ spr(L0).

We conclude the introduction by outlining the contents of the rest of the
paper. In Sect. 2 we introduce Anosov flows and their lift to covers. In partic-
ular, we give an account of results about growth of periodic orbits for abelian
covers. In Sect. 3, we discuss subshifts of finite type and introduce the notion of
Gurevič pressure. In Sect. 4, we discuss Gurevič entropy for group extensions
of subshifts of finite type and prove one direction in Theorem 1.3. The Proof
of Theorem 1.3 is completed in Sect. 5, which contains the key to obtaining
results in the absence of symmetry. In Sect. 6, we return to Anosov flows
and discuss how they may be coded in terms of subshifts of finite type and
Sect. 7 extends this to covers and group extensions. In Sect. 8, we complete
the Proof of Theorem 1.1. Finally, in Sect. 9, we state and proof a number of
equidistribution results.
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2 Anosov flows

2.1 Anosov flows, periodic orbits and pressure

Let φt : M → M be an Anosov flow, i.e. that the tangent bundle has a
continuous Dφ-invariant splitting T M = E0 ⊕ Es ⊕ Eu , where E0 is the
one-dimensional bundle tangent to the flow and where there exist constants
C, λ > 0 such that
(1) ‖Dφtv‖ ≤ Ce−λt‖v‖, for all v ∈ Es and t > 0;
(2) ‖Dφ−tv‖ ≤ Ce−λt‖v‖, for all v ∈ Eu and t > 0.
In addition, we assume that φt : M → M is transitive and weak mixing.

For some intuition behind Anosov flows, one should note the following
constructions (and we will make use of them soon). An ε-pseudo-orbit for φt

is a path τ : I → M (where I is an interval) so that for all t, t+δ ∈ I , |δ| < 1,

d(τ (t + δ), φδ(τ (t))) < ε.

We say that τ : R → M is a periodic ε-pseudo-orbit if it is a periodic map of
R, and satisfies d(τ (t + δ), φδ(τ (t))) < ε for all t, t + δ ∈ R, |δ| < 1.

Lemma 2.1 (Anosov Closing Lemma, [17], Theorem 5.3.10) Let � be a
hyperbolic set for a flow φt . Then there exists a neighbourhood U of � and
numbers ε0, L > 0 such that for ε ≤ ε0, any periodic ε-pseudo-orbit is Lε-
shadowed by a unique periodic orbit for φt .

Write P(φ) for the set of periodic orbits of φ and, for γ ∈ P(φ), write l(γ )

for its period. The limit

h = lim
T→∞

1

T
log # {γ ∈ P(φ) : l(γ ) ≤ T }

exists and is positive, and h is also equal to the topological entropy of φ. We
also have the variational principle

h = sup
{
hφ(μ) : μ ∈ M(φ)

}
,

where hφ(μ) denotes themeasure-theoretic entropy of φ with respect toμ, and
M(φ) is the collection of φ-invariant Borel probability measures on M . The
supremum is attained at a unique measure μ0, called the measure of maximal
entropy for φ. We also have a weighted version of this set-up. For a continuous
function F : M → R, we can define the pressure P(F, φ) by

P(F, φ) = lim
T→∞

1

T
log

∑
γ∈P(φ):
l(γ )≤T

exp
∫

γ

F dt,
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where

∫

γ

F :=
∫ l(γ )

0
F(φt xγ ) dt

with xγ ∈ γ . In this case, we also have a variational principle,

P(F, φ) = sup

{
hφ(μ) +

∫

M
F dμ : μ ∈ M(φ)

}
.

The supremum is attained by a uniquemeasureμF which is ergodic;we callμF
the equilibrium state for F . In Sect. 9, we will use the following lemma. (The
proofs are completely analogous to those Theorem 8.2 and Theorem 9.12 of
[44], which deal with a single transformation. In particular, the first statement
follows from the fact that the flow is expansive. Once we have established
upper semi-continuity, rearranging the variational principle above into this
form follows the same argument as the proof of Theorem 9.12 of [44].)

Lemma 2.2 The map M(φ) → R : μ 	→ hφ(μ) is upper semi-continuous
and

hφ(μ) = inf

{
P(F, φ) −

∫

M
F dμ : F ∈ C(M, R)

}
.

For Hölder continuous functions F,G : M → R, the function R → R :
t 	→ P(F + tG) is real-analytic and

dP(F + tG)

dt

∣∣∣∣
t=0

=
∫

M
G dμF . (2.1)

2.2 Covers

Suppose that X is a regular cover of M with covering group G. Let φt
X :

X → X be the lift of φ to X . In particular, the G action commutes with φt
X .

Write P(φX ) for the set of periodic orbits of φX and, as above, write l(γ ) for
the period of the periodic orbit γ . Fix an open set W in M whose closure is
compact. Write

πX (T,W ) = # {γ ∈ P(φX ) : l(γ ) ≤ T and γ ∩ W �= ∅} (2.2)

and

h(X) = lim sup
T→∞

1

T
logπX (T,W ) (2.3)
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for the exponential growth rate of πX (T,W ).
We also introduce another counting function associated to the cover X .

Write �X (T ) for the cardinality of the set of periodic orbits for φ in M of
period at most T , and which lift to a periodic orbit for φX .

We have the following lemma.

Lemma 2.3 The value of h(X) is independent of the choice of W .
In addition,

h(X) = lim sup
T→∞

1

T
log�X (T ).

Proof Let us write h(X,W ) = lim supT→∞ 1
T logπX (T,W ) to emphasise

the choice of W . We begin by showing that h(X,W ) is independent of the
choice of W .

First, we observe that it is sufficient to consider “small” W . To see this, lift
our preferred metric on M to X . Since the closure of W is compact, it has
bounded diameter R. For every ε > 0 we can find a finite family of open sets
of diameter less than ε that cover W . Then it is easy to see that there is Wε of
diameter less than ε with h(X,W ) ≤ h(X,Wε). On the other hand, sinceW is
open it must contain an open set Wδ of diameter less than δ for all sufficiently
small δ. In this way we have h(X,Wδ) ≤ h(X,W ) ≤ h(X,Wε).

LetW1,W2 be two sets of sufficiently small diameter diam(W1), diam(W2) <

ε0, where ε0 is given by the Anosov Closing Lemma (Lemma 2.1). We will
also assume that ε0 is sufficiently small that an open ball in M of this diameter
is simply connected.

We want to show that h(X,W1) ≤ h(X,W2).
AsW2 is open it contains a ball B2 of radius some δ and a λδ sub-ball, where

λ is chosen so that λδ + Lλδ < δ and L is also given by the Anosov Closing
Lemma. Write δ2 = λδ (and note that δ2 ≤ ε0). Cover W1 by finitely many δ2
balls Bi

1 (where i runs over some finite indexing set). For each i , fix an orbit
c1i from Bi

1 ∩ W1 to B2. Fix orbits c2i from W2 to Bi
1 ∩ W1. This is possible

by transitivity. Let τ1 be a periodic φX -orbit intersecting W1 and write T1 for
its period. There is some i so that τ1 is δ2 close to c1i and c

2
i . Then c

1
i τ1c

2
i is a

δ2-pseudo-orbit through B2.
Nowconsider the projection of c1i τ1c

2
i toM . By theAnosovClosingLemma,

this is Lδ2-shadowed by a unique periodic orbit γ0. Since Lδ2 < ε0, γ0 lifts
to a φX -periodic orbit γ on X which Lδ2 shadows c1i τ1c

2
i . Unpicking the

value of δ2, gives that γ passes within distance Lλδ of the λδ sub-ball. Since
λδ + Lλδ < δ, we conclude that γ passes through B2, and therefore W2. In
addition, it is clear (for T1 sufficiently large) that the period Tγ of γ is bounded
by |Tγ − T1| ≤ c1i + c2i + Lδ2.
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We have thus created a map from the set of φX -periodic orbits intersect-
ing W1 to the set of φX -periodic orbits intersecting W2-periodic orbits, that
distorts periods by an additive constant. Observe that when the period of τ1
is sufficiently large, the mapping is an injection (otherwise we would have
distinct periodic orbits shadowing each other).

We have concluded that h(X,W1) ≤ h(X,W2). Since W1,W2 were arbi-
trary, this gives h(X,W1) = h(X,W2) for all W1,W2, as required.

We finish be showing the final part of the lemma. In general, it is clear that

h(X) ≥ lim sup
T→∞

1

T
log�X (T )

(since we can choose W to be a fundamental domain for the covering and so
each γ counted by �X (T ) will have at least one left intersecting W ). To see
the reverse inequality, we simply choose W to be a small ball in X . Let

C = inf{t > 0 : ∃x ∈ W such that φt
X x ∈ GW \ W },

then C > 0.
Let γ be a φX -periodic orbit of period ≤ T intersecting W , and let

γ0 be its projection to M . Fixing γ0, there are at most T/C such γ . In
this way we deduce that �X (T ) ≥ (C/T )πX (T,W ), and so h(X) =
lim supT→∞ T−1 log�X (T ). ��

2.3 Abelian covers, relative winding cycles and counting

We will now specialise to abelian covers of M ; to emphasise this distinction,
we shall denote the covering space by Y . Let Y be a regular cover of M , with
abelian covering group G. (Since G is abelian, we will use 0 to denote its
identity element.) We begin by defining winding cycles relative to this cover.
First note that we may write G = A ⊕ F , where A is a free abelian group of
rank a ≥ 0 and F is the finite subgroup of torsion elements. If a = 0 then the
lifted flow φt

Y : Y → Y is also an Anosov flow and it has topological entropy
equal to h, so there is nothing interesting to say in this case. We therefore
suppose that a ≥ 1. It is best to view A as a free Z-module.

The cover Y is itself covered by the universal abelian cover Y of M and
there is a natural surjective homomorphism from H1(M, Z) to G which (by
factoring out F) induces a surjective module homomorphism α : H → A,
where H = H1(M, Z)/torsion is a free Z-module of rank b ≥ a. (Of course,
H is also identified as an integral lattice in H1(M, R).) We may then write
H = A ⊕ ker α.
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Let c1, . . . , ca be a basis for A (which we may identify with elements of
H1(M, R)) and (if b > a) let ca+1, . . . , cb ∈ ker α extend this to a basis for
H . Then {c1, . . . , ca} spans a vector subspace of H1(M, Z) which may be
identified with A ⊗Z R. We shall denote this vector space by �(M, Y ).

Now let ω1, . . . , ωb be closed 1-forms on M representing cohomology
classes [ω1], . . . , [ωb] in H1(M, R) which are dual to c1, . . . , cb, i.e.

〈[ωi ], c j 〉 :=
∫

c j
ωi = δi j .

(Here, δi j denotes the Kronecker symbol.) We can identify the span of
{[ω1], . . . , [ωa]} with the dual space of �(M, Y ), which we denote by
�(M, Y )∗. (If Y = Y then �(M, Y ) = H1(M, R) and �(M, Y )∗ =
H1(M, R).)
Now consider a measureμ ∈ M(φ). We define an element�Y

μ ∈ �(M, Y ),
called the winding cycle of μ relative to the cover Y , by its action on the dual
space �(M, Y )∗. For [ωi ], i = 1, . . . , a, we define

〈�Y
μ, [ωi ]〉 =

∫

M
ωi (Xφ) dμ

and extended by linearity, where Xφ is the vector field generating φ. (If d f is
an exact 1-form then d f (Xφ) is the derivative of f in the flow direction, i.e.
d f (Xφ)(x) = limt→0+ t−1( f (φt x) − f (x)). Hence, since μ is φ-invariant,∫
M d f (Xφ) dμ = 0, so �Y

μ is well-defined.)
Associated to each periodic orbit γ ∈ P(φ), there is an element [γ ] ∈ G,

defined as follows. Let γ = {φt x : 0 ≤ t ≤ l(γ )} and let x̃ be a lift of x to Y .
Then φ

l(γ )

Y x̃ = gx̃ , for some g ∈ G. SinceG is abelian, g is independent of the
choice of lift andwe define [γ ] = g. Notice that γ lifts to a periodic orbit if and
only if [γ ] = 0. We say that φt : M → M is Y -full if {[γ ] : γ ∈ P(φ)} = G.
(This generalises the notion of homologically full, introduced in [39], for the
case where Y is the universal abelian cover of M .) We will show in Sect. 6
that if φt

Y : Y → Y is transitive then φ is Y -full.
The counting function�Y (T ) introduced abovemay bewritten as�Y (T ) =

#{γ ∈ P(φ) : l(γ ) ≤ T, [γ ] = 0}. The following result was proved in [39]
in the case where Y is the universal abelian cover and G = H1(M, Z) but
the proof immediately extends to arbitrary abelian covers. The results in [39]
are also phrased in terms of prime periodic orbits but it is easy to see that the
number of non-prime periodic φ-orbits that left to a periodic orbit on Y is of
order O(T eh(Y )T/2) and so does not affect the asymptotic (see Lemma 2.8
below).

Proposition 2.4 (Sharp [39]) The following statements are equivalent:
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(i) the set {[γ ]TF : γ ∈ P(φ)} is not contained in a closed half-space of R
a,

where [γ ]TF ∈ R
a is the torsion-free part of [γ ];

(ii) φ : M → M is Y -full;
(iii) there exist a constant C > 0 such that

�Y (T ) ∼ C
eh(Y )T

T 1+a/2 , as T → ∞.

Furthermore,

h(Y ) = sup
{
h(μ) : μ ∈ M(φ), �Y

μ = 0
}

.

In view of the uniqueness of the measure of maximal entropy, we immedi-
ately have the following corollary.

Corollary 2.5 We have h(Y ) = h if and only if �Y
μ0

= 0, where μ0 is the
measure of maximal entropy for φ.

Remark 2.6 (i) A similar asymptotic holds for #{γ ∈ P(φ) : l(γ ) ≤
T, [γ ] = α} for any α ∈ G, the only modification being that the constant
C is changed to Ce〈ξ,α′〉, where α′ is the torsion-free part of α and ξ is
a certain cohomology class in H1(M, R). In fact, ξ = 0 if and only if
�Y

μ0
= 0.

(ii) Earlier results were obtained for geodesic flows over compact negatively
curved manifolds: Phillips and Sarnak [30] (constant curvature mani-
folds), Katsuda and Sunada [21] (constant curvature surfaces), Lalley [26]
and Pollicott [31] (variable curvature surfaces). All these results exploited
the time-reversal symmetry of the geodesic flow. The extension to Anosov
flows was made by Katsuda and Sunada [22] under the assumption that
the winding cycle for the measure of maximal entropy vanishes. Results
givingmore detailed information about the asymptotic behaviour are con-
tained in [1,25,33] and [40].

We can relate the growth rate h(Y ) to pressure in the following way [39].
For each i = 1, . . . , a, define a Hölder continuous function �i : M → R by
�i = ωi (Xφ), where ωi and Xφ are as above. Now write � = (�1, . . . , �a)

and define β : R
a → R by

β(w) = P(〈w, �〉, φ),

where w = (w1, . . . , wa) and 〈w, �〉 = ∑a
i=1 wi�i . If φ is Y -full then the

function β is strictly convex and there exists a unique ξ ∈ R
a for which

∇β(ξ) = 0. We then have

h(Y ) = β(ξ) = hφ(μ〈ξ,�〉).
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Let us summarise this in a lemma.

Lemma 2.7 (Sharp [39]) If φt : M → M is Y -full then there exists a unique
ξ ∈ R

a such that

h(Y ) = β(ξ) = hφ(μ〈ξ,�〉).

Another characterisation of h(Y ) is as the abscissa of convergence of the
series

∑
γ∈P(φ):
[γ ]=0

e−sl(γ ).

Later, it will be convenient to replace this series with a modified version. We
introduce some notation. Let P(φ)′ denote the set of prime periodic orbits.
For γ ∈ P(φ), we define �(γ ) as follows. Any we may write γ as γ = γm

0 ,
where γ0 is a prime periodic orbit and m ≥ 1. Then �(γ ) = l(γ0). We have
the following lemma.

Lemma 2.8 The series

∑

γ∈P(φ)′:
[γ ]=0

e−sl(γ ) and
∑

γ∈P(φ):
[γ ]=0

�(γ )

l(γ )
e−sl(γ )

each have abscissa of convergence equal to h(Y ).

Proof First we note that

∑
γ∈P(φ):
[γ ]=0

e−sl(γ ) −
∑

γ∈P(φ)′:
[γ ]=0

e−sl(γ ) =
∞∑

m=2

∑

γ∈P(φ)′:
[γm ]=0

e−sml(γ ).

The abscissa of convergence of the Right Hand Side can be bounded by

lim
T→∞

1

T
log

∞∑
m=2

∑

γ∈P(φ)′:
ml(γ )≤T, [γm ]=0

1 = lim
T→∞

1

T
log

∞∑
m=2

∑

γ∈P(φ)′:
ml(γ )≤T, [γm ]=0

e〈ξ,[γm ]TF〉

≤ lim
T→∞

1

T
log

∞∑
m=2

∑

γ∈P(φ)′:
ml(γ )≤T

e〈ξ,[γm ]TF〉
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≤ lim
T→∞

1

T
log

[T/ l0]∑
m=2

∑
γ∈P(φ):
l(γ )≤T/2

e〈ξ,[γm ]TF〉

= P(〈ξ,�〉)/2 = h(Y )/2,

where l0 denotes the period of the shortest orbit inP(φ). The second statement
follows from a similar argument. ��

As a part of our approach to Theorem 1.1 will capture information about
an Anosov flow φt : M → M and its lifts in terms of symbolic dynamical
systems: subshifts of finite type and their skew-product extensions. We will
introduce these systems in the next section and then go on to discuss their
relation to Anosov flows in Sect. 6.

3 Subshifts of finite type and group extensions

In this section we will define countable state Markov shifts and discuss some
of their properties. Basic definitions and results are taken from chapter 7 of
[24]. Let us emphasise that throughout we have the hypothesis that ourMarkov
shifts are locally compact (this excludes examples such as the infinite full shift
and the renewal shift). We shall be particularly concerned with finite state
shifts and skew product extensions of these by a countable group.

Let S be a countable set, called the alphabet, and let A be a matrix, called
the transition matrix, indexed by S×S with entries zero or one.We then define
the space

	+ = 	+
A =

{
x = (xn)

∞
n=0 ∈ SZ

+ : A(xn, xn+1) = 1 ∀n ∈ Z
+}

,

with the product topology induced by the discrete topology on S. This topology
is compatible with the metric d(x, y) = 2−n(x,y), where

n(x, y) = inf{n : xn �= yn},

with n(x, y) = ∞ if x = y. If S is finite then 	+ is compact. We say that A
is locally finite if all its row and column sums are finite. Then 	+ is locally
compact if and only if A is locally finite. (The skew product extensions we
consider have this latter property.)

We define the (one-sided) countable state topological Markov shift σ :
	+ → 	+ by (σ x)n = xn+1. This is a continuous map. We will say that
σ is topologically transitive if it has a dense orbit and topologically mixing
if, given non-empty open sets U, V ⊂ 	+, there exists N ≥ 0 such that
σ−n(U ) ∩ V �= ∅ for all n ≥ N . We say that the matrix A is irreducible if,
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for each (i, j) ∈ S × S, there exists n = n(i, j) ≥ 1 such that An(i, j) > 0.
For A irreducible, set p ≥ 1 to be the greatest common divisor of periods of
periodic orbits σ : 	+ → 	+; this p is called the period of A. We say that A
is aperiodic if p = 1 or, equivalently, if there exists n ≥ 1 such that An has
all entries positive. Suppose that A is locally finite. Then σ : 	+ → 	+ is
topologically transitive if and only if A is irreducible and σ : 	+ → 	+ is
topologically mixing if and only if A is aperiodic.

Suppose that A is irreducible but not aperiodic and fix i ∈ S. Then we may
partition S into sets Sl , l = 0, . . . , p − 1, defined by

Sl = { j : Anp+l(i, j) > 0 for some n ≥ 1}.
(This partition is independent of the choice of i .) For each l, let Al denote the
restriction of A to Sl ×Sl ; then σ : 	+

Al
→ 	+

Al+1
(mod p) and Ap

l is aperiodic.
We say that an n-tuple w = (w0, . . . , wn−1) ∈ Sn is an allowed word of

length n if A(w j , w j+1) = 1 for j = 0, . . . , n − 2. We will writeWn for the
set of allowed words of length n. If w ∈ Wn then we define the associated
length n cylinder set [w] by

[w] = {x ∈ 	+
A : x j = w j , j = 0, . . . , n − 1}.

For a function f : 	+ → R, set

Vn( f ) = sup{| f (x) − f (y)| : x j = y j , j = 0, . . . , n − 1}.
We say that f is locally Hölder continuous if there exist α > 0 and C ≥ 0
such that, for all n ≥ 1, Vn( f ) ≤ C2−nα . (There is no requirement on V0( f )
and a locally Hölder f may be unbounded.) The minimal possible C is called
the α-Hölder seminorm

Suppose that σ : 	+ → 	+ is topologically transitive and let f : 	+ → R

be a locally Hölder continuous function. Following Sarig [37], we define the
Gurevič pressure, PGur( f, σ ), of f to be

PGur( f, σ ) = lim sup
n→∞

1

n
log

∑
σ nx=x
x0=a

e f n(x),

where a ∈ S. (The definition is independent of the choice of a.)

Remark 3.1 In [37], Sarig gives this definition in the case where σ : 	+ →
	+ is topologically mixing. However, the above decomposition of 	+ =
	+

A0
∪· · ·∪	+

Ap−1
, with σ p topologically mixing on each component, together

with the regularity of the function f , shows that the same definition may be
made in the topologically transitive case.
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It is immediate from the definition that if f ≤ f ′ then PGur( f, σ ) ≤
PGur( f ′, σ ) and that for any constant c ∈ R we have PGur( f + c, σ ) ≤
PGur( f, σ ) + c. We say that f and f ′ are cohomologous if their difference
takes the form f − f ′ = u ◦ σ − u. It is also clear from the definition that
if f and f ′ are cohomologous then PGur( f, σ ) = PGur( f ′, σ ). We note the
following useful lemma.

Lemma 3.2 If r : 	+ → R and f : 	+ → R are locally Hölder and
r is cohomolgous to a function r ′ satisfying infx∈	+ r ′(x) > 0 then s 	→
PGur(−sr + f, σ ) is strictly decreasing.

Proof If r and r ′ are cohomologous then, for any s ∈ R, −sr and −sr ′ are
cohomologous. Let c = infx∈	+ r ′(x) > 0 and suppose t > s. Then

−tr ′ = −sr − (t − s)r ′ ≤ −sr − (t − s)c

and therefore

PGur(−tr + f, σ ) = PGur(−tr ′ + f, σ )

≤ PGur(−sr ′ − (t − s)c + f, σ )

= PGur(−sr ′ + f, σ ) − (t − s)c

< PGur(−sr ′ + f, σ ) = PGur(−sr + f, σ ).

We now specialise to the case where S is finite. In this situation, we call
σ : 	+ → 	+ a (one-sided) subshift of finite type. The above definitions and
results hold. If f : 	+ → R is Hölder continuous then f is locally Hölder.
Provided σ : 	+ → 	+ is topologically transitive, the Gurevič pressure
PGur( f, σ ) agrees with the standard pressure P( f, σ ), defined by

P( f, σ ) = lim sup
n→∞

1

n
log

∑
σ nx=x

e f n(x)

and if σ is topologically mixing then the lim sup may be replaced with a limit.
We now consider skew product extensions of a shift of finite type σ : 	+ →

	+, which we will assume to be topologically mixing. Let G be a countable
group (with identity element e) and let ψ : 	+ → G be a function depending
only on two co-ordinates, ψ(x) = ψ(x0, x1).

(One could consider more general ψ but this set-up suffices for our appli-
cation to Anosov flows.) This data defines a group extension or skew product
extension Tψ : 	+ × G → 	+ × G by Tψ(x, g) = (σ x, gψ(x)). For n ≥ 1
define ψn by

ψn(x) = ψ(x)ψ(σ x) · · ·ψ(σ n−1x);
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then T n
ψ(x, g) = (x, g) if and only if σ nx = x and ψn(x) = e.

The map Tψ : 	+ × G → 	+ × G is itself a countable state Markov shift
with alphabet S×G and transition matrix Ã defined by Ã((i, g), ( j, h)) = 1 if
A(i, j) = 1 andψ(i, j) = g−1h, and Ã((i, g), ( j, h)) = 0 otherwise. Clearly,
Ã is locally finite and so the topological transitivity and topological mixing of
σ̃ are equivalent to Ã being irreducible and aperiodic, respectively.

Let f : 	+ → R be Hölder continuous and define f̃ : 	+
A × G → R by

f̃ (x, g) = f (x); then f̃ is locally Hölder continuous and its Gurevič pressure
PGur( f̃ , Tψ) is defined. In fact, it is easy to see that, due to the mixing of σ ,

PGur( f̃ , Tψ) = lim sup
n→∞

1

n
log

∑
σ nx=x

ψn(x)=e

e f n(x).

We end this section by discussing two-sided subshifts of finite type and
suspended flows over them. Given a finite alphabet S and transition matrix A,
we define

	 = 	A =
{
x = (xn)

∞
n=0 ∈ SZ : A(xn, xn+1) = 1 ∀n ∈ Z

}

and the (two-sided) shift of finite type σ : 	 → 	 by (σ x)n = xn+1. As
before, we give 	 with the product topology induced by the discrete topology
on S and this is compatible with the metric d(x, y) = 2−n(x,y), where

n(x, y) = inf{|n| : xn �= yn},

with n(x, y) = ∞ if x = y. Then 	 is compact and σ is a homeomorphism.
There is an obvious one-to-one correspondence between the periodic points
of σ : 	 → 	 and σ : 	+ → 	+. Furthermore, we may pass from Hölder
continuous functions on	 toHölder continuous functions on	+ in such away
that sums around periodic orbits are preserved. More precisely, we have the
following lemma, due originally to Sinai [41], which appears as Proposition
1.2 of [28].

Lemma 3.3 Let f : 	 → R be Hölder continuous. Then there is a Hölder
continuous function f ′ : 	+ → R (with a smaller Hölder exponent) such that
f n(x) = ( f ′)n(x), whenever σ nx = x.

We may also define suspended flows over σ : 	A → 	A. Given a strictly
positive continuous function r : 	 → R

+, we define the r -suspension space

	r = {(x, s) : x ∈ 	, 0 ≤ s ≤ r(x)}/ ∼,
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where (x, r(x)) ∼ (σ x, 0). The suspended flow σ t
r : 	r → 	r is defined

by σ t
r (x, s) = (x, s + t) modulo the identifications. Clearly, there is a natural

one-to-one correspondence between periodic orbits for σ t
r : 	r → 	r and

periodic orbits for σ : 	 → 	.
Furthermore, if γ is a periodic σr -orbit corresponding to the periodic σ -orbit

{x, σ x, . . . , σ n−1x} then the period of γ is equal to rn(x).

4 Gurevič entropy for group extensions

In this section, we initiate the comparison between Gurevič entropy and
Gurevič pressure for group extensions of subshifts of finite type, and entropy
and pressure for the base transformation and the abelianized extention. Care-
fully combining the result of Stadlbauer [42] and the results of [32]will produce
one direction of a proof of Theorem 1.3. The other direction will lead us to
prove a new result on Gurevič pressure, which is appears in Sect. 5.

Let σ : 	+ → 	+ be a one-sided subshift of finite type. For a countable
group G and a function ψ : 	 → G, we consider the group extension

Tψ : 	 × G → 	 × G : (x, g) 	→ (σ x, gψ(x)),

which we assume to be transitive.
Let f : 	+ → R be a Hölder continuous function. We will also use f to

denote the function on 	+ ×G defined by f (x, g) = f (x). We wish to study
the asymptotics of periodic points for Tψ (and compare them with those for
σ ) when they are weighted by f . Of course (provided G is infinite), Tψ will
have infinitely many periodic points with the same period but we will restrict
to periodic points for which the second co-ordinate in the identity element.

In other words, we wish to compare the Gurevič pressure PGur( f, Tψ) with
the pressure P( f, σ ). It is clear that PGur( f, Tψ) ≤ P( f, σ ) and it is natural
to ask when equality holds.

This question has received considerable attentionwhen the system and func-
tion exhibit a natural “time-reversal” symmetry. Suppose there is a fixed point
free involution κ : S → S such that A(κ j, κi) = A(i, j), for all i, j ∈ S. We
say that the skew product Tψ : 	+ ×G → 	+ ×G is symmetric (with respect
to κ) if ψ(κ j, κi) = ψ(i, j)−1. A function f : 	+ → R is called weakly
symmetric if, for all n ≥ 1 and and all length n cylinders [z0, z1, . . . , zn−1],
there exists Dn > 0 such that limn→∞ D1/n

n = 1 and

sup
x∈[z0,...,zn−1]

y∈[κzn−1,...,κz0]
exp( f n(x) − f n(y)) ≤ Dn.
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The following is the main result of Stadlbauer [42], restricted to the case
where the base is a (finite state) subshift of finite type.Wewill use this in subse-
quent arguments. (Stadlbauer considers skew product expansions of countable
state Markov shifts satisfying the big images and pre-images property.) We
include his more general result on the spectral radius of the transfer opera-
tor (Theorem 5.4 [42], there it is stated for pressure), the definition of which
follows beneath the proposition.

Proposition 4.1 (Stadlbauer [42], Theorem 5.4, and Theorems 4.1 and 5.6)
Let Tψ : 	+ × G → 	+ × G be a transitive skew-product extension of a
mixing subshift of finite type σ : 	+ → 	+ by a countable group G.

If G is non-amenable, then log sprH(L f ) < P( f, σ ) for f : 	+
A → R

Hölder continuous.
If, in addition, Tψ : 	+ × G → 	+ × G is assumed to be symmetric and

f : 	+
A → R is a weakly symmetric Hölder continuous function, then we have

PGur( f, Tψ) = P( f, σ ) if and only if G is amenable.

Remark 4.2 (i) In [42], Stadlbauer considers skew products with ψ depend-
ing on only one co-ordinate. However, replacing S byW2, one can easily
recover the above formulation.

(ii) Setting f = 0 immediately gives Theorem 1.3 for a symmetric extension.

In the absence of this symmetry, the answer becomes less clear. In order
to elaborate on this problem, we introduce the transfer operator L f , defined
pointwise by

L f v(x, g) =
∑
y∈	:
σ y=x

e f (y)v(y, gψ(x)),

for v : 	 × G → C. In order to make use of the spectral properties of this
operator, we restrict it to the Banach space H of continuous functions v for
which g 	→ ‖v(·, g)‖∞ is in �2(G), with norm

‖v‖H =
⎛
⎝∑

g∈G
‖v(·, g)‖2∞

⎞
⎠

1/2

.

If ψ and f satisfy the above symmetry conditions then PGur( f, Tψ) is equal
to the logarithm of sprH(L f ), the spectral radius of L f : H → H [42].
However, this equality does not hold in general and without symmetry we
may have PGur( f, Tψ) < log sprH(L f ). On the other hand, there is a result of
Jaerisch [20] that log sprH(L f ) = P( f, σ ) if and only if G is amenable, and
so it is clear that, when considering PGur( f, Tψ), the pressure P( f, σ ) does not
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provide a useful comparison.We shall show that, in fact, the natural comparison
is between PGur( f, Tψ) and PGur( f, Tψab), where Tψab : 	 ×Gab → 	 ×Gab

is the induced Gab-extension, where Gab = G/[G,G] is the abelianization of
G. More precisely, if π : G → Gab is the natural projection thenψab = π ◦ψ .

We now address the Proof of Theorem 1.3. One implication in the theorem
is given by the next proposition. The other implication will follow from the
more general result proved in the next section (Theorem 5.1).

Proposition 4.3 If G is not amenable then hGur(Tψ) < hGur(Tψab).

Proof We have Gab = Z
a × G0, for some a ≥ 0, where G0 is a finite abelian

group. First suppose that a > 0. The system Tψab : 	+ × Gab → 	+ × Gab

induces a system on 	+ × Z
a , which we will still denote by Tψab and which

has the same Gurevič entropy. Following the analysis of [32], hGur(Tψab) =
P((〈ξ, ψab〉, σ ), for some ξ ∈ R

a . Since G is not amenable, the first part of
Proposition 4.1 tells us that

log sprH(L〈ξ,ψab〉) < P(〈ξ, ψab〉, σ ) = hGur(Tψab).

and that, for any Hölder continuous f : 	+ → R, PGur( f, Tψ)) ≤
log sprH(L f ). Combining these statements gives that

PGur(〈ξ, ψab〉, Tψ)) < hGur(Tψab).

However, since ψn(x) = e implies that (ψab)n = 0,

PGur(〈ξ, ψab〉, Tψ)) = lim sup
n→∞

1

n
log

∑
σ nx=x

ψn(x)=e

e〈ξ,(ψab)n(x)〉

= lim sup
n→∞

1

n
log #{x ∈ 	+ : σ nx = x, (ψab)n = 0}

= hGur(Tψ),

giving the required strict inequality.
Now suppose that a = 0, so that Gab is finite. Then hGur(Tψab) = h(σ ). As

above, we have

hGur(Tψ) ≤ log sprH(L0) < P(0, σ ) = h(σ ),

completing the proof. ��
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5 Gurevič pressure for amenable extensions

The purpose of this section is to prove the following result. Setting f = 0
will complete the Proof of Theorem 1.3. To simplify notation, for a function
f : 	+ → R, we will use f to denote the induced functions on the group
extensions	+ ×G and	+ ×Gab (i.e. f (x, g) = f (x) for all group elements
g).

Theorem 5.1 Assume that Tψ is transitive. Let f : 	+ → R be Hölder
continuous. If G is amenable then

PGur( f, Tψ) = PGur( f, Tψab).

The proof is inspired by Roblin’s proof in [35] that if � is a convex co-
compact group of isometries of a CAT(−1) space and �′ is a normal subgroup
such that �/�′ is amenable then the critical exponents of � and �′ are equal.
We will make use of a family of σ -finite measures νη,g, indexed by 	+ × G,
introduced by Stadlbauer [43]. For t > 0, write

P(t) =
∑
n∈N

t−nbn
∑
y∈	:

σ n y=o

e f n(y)1	+×{e}(T n
ψ((y, e))

for a chosen distinguished o ∈ 	+, and where bn is a slowly diverging
sequence chosen so that P(t) diverges at its radius of convergence. More
precisely, if the terms bn are omitted then it is clear that the resulting series
converges for t > ePGur( f,Tψ) anddiverges for t < ePGur( f,Tψ). It is thenpossible
to choose a non-decreasing sequence bn ≥ 1 such that limn→∞ bn/bn+1 = 1,
P(t) has radius of convergence ePGur( f,Tψ) and diverges at t = ePGur( f,Tψ)

(Lemma 3.1 of [12]). For the rest of the section, we shall write ρ := ePGur( f,Tψ).
For t > ρ, η ∈ 	 and g ∈ G, define a measure νtξ,g on 	+ × G by the

formula

νtη,g(v) :=
∫

	+×G
v dνtη,g = 1

P(t)

∑
n∈N

t−nbn
∑

z∈	+×G:T n
ψ(z)=(η,g)

e f n(z)v(z),

for each continuous function v : 	+ ×G → R. Now let t → ρ+, and choose
a weak limit νη,g. We can do this because each 	+ ×{g} is compact, and G is
countable. We can also ensure that there is a countable dense subset of η for
which the limit is attained along the same subsequence. In Theorem5.1 of [43],
it is shown how to extend this to all η ∈ 	+ using Hölder continuity. For the
Proof of our Theorem 5.1, we will only use the countable collection of points
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η = wo, for w ∈ ⋃
n∈N

Wn
o , where o is the chosen distinguished element of

	+ and Wn
o denotes the set of elements w ofWn for which wo ∈ 	+.

The following constants will frequently appear:

B f = inf
z∈	+ e f (z) and C f = exp

( | f |α
1 − 2−α

)
,

where α > 0 is the Hölder exponent of f and | f |α is the α-Hölder seminorm
of f .

Lemma 5.2 (i) There exists C > 0 such that, for any non-negative continu-
ous function v : 	+×G → R and any (η, g), (ξ, h) ∈ 	+×G satisfying
T k

ψ(η, g) = (ξ, h), we have

νη,g(v) ≥ Ckνξ,h(v).

(ii) For any non-negative continuous function v : 	+ × G → R and any
η, ξ ∈ 	+ belonging to the same cylinder of length 1, we have

νη,g(v) ≥ C−1
f νξ,g(v).

Proof Let v : 	+ ×G → R be an indicator function on some cylinder. It will
be sufficient to prove the lemma for functions of this form, the general non-
negative, continuous case follows by approximating by linear combinations of
indicator functions.

We proceed with part (i). Let (η, g), (ξ, h) ∈ 	+ × G with T k
ψ(η, g) =

(ξ, h). For t > ρ we have,

νtη,g(v) = 1

P(t)

∞∑
n=1

t−nbn
∑

w∈Wn
η

e f n (wη)v(wη, gψn(w))

≥ 1

P(t)

∞∑
n=k+1

t−k t−(n−k) bn
bn−k

bn−k

∑

u∈Wn−k
ξ

e f k (ξ)e f n−k (uξ)v(uξ, hψn−k(u))

≥
(
sup
n∈N

bn
bn−1

)k

Bk
f t

−k 1

P(t)

∞∑
m=1

t−mbm
∑

u∈Wm
ξ

e f m (uξ)v(uξ, hψm(u)).

Taking weak limits as t → ρ+ gives the conclusion (with C = B f (supn∈N

bn/bn−1)).
Now, for part (ii) we assume that η, ξ belong to the same cylinder. Recall

that v is assumed to be an indicator function, we write v=1[u] for some u, and
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let k be the length of u. For t > ρ we have,

νtη,g(v) = 1

P(t)

∞∑
n=1

t−nbn
∑

w∈Wn
η

e f n(wη)v(wη, gψn(w))

= 1

P(t)

∞∑
n=1

t−nbn
∑

w∈Wn
ξ

e f n(wη)− f n(wξ)e f n(wξ)v(wη, gψn(w))

≥ 1

P(t)

∞∑
n=k

t−nbn
∑

w∈Wn
ξ

C−1
f e f n(wξ)v(wξ, gψn(w))

= C−1
f

1

P(t)

∞∑
m=1

t−mbm
∑

w∈Wm
ξ

e f m(wξ)v(wξ, gψm(w))

− 1

P(t)

k∑
i=1

t−i bi
∑

w∈W i
ξ

C−1
f e f i (wξ)v(wξ, gψ i (w))

Since P(t) → ∞, as t → ρ+, it follows that,

νtη,g(v) ≥ C−1
f νtξ,g(v)

as required. ��
Lemma 5.3 Let v be a non-negative continuous function which is strictly
positive on 	+ × {e}. If Tψ is transitive then νz,g(v) > 0. Furthermore, for
each a ∈ G, we have

sup
g∈G

νz,ga(v)

νz,g(v)
< ∞.

Proof Let g, a ∈ G be arbitrary. We write z0 for the first letter of z ∈ 	+.
If Tψ is transitive then there are η ∈ [z0], ξ ∈ [o] and k1, k2 ≥ 0 such that

T k1
ψ (η, g) = (z, ga) and T k2

ψ (z, ga) = (ξ, e). Then, by Lemma 5.2, we have
that

νη,g(v) ≥ Ck1νz,ga(v) ≥ Ck1Ck2νξ,e(v).

Since v is bounded frombelow away from zero on	+×{e}, there is c > 0with
νξ,e(v) ≥ cνξ,e(	

+ × {e}). Then, νξ,e(	
+ × {e}) ≥ C−1

f νo,e(	
+ × {e}), and
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by construction νo,e(	
+×{e}) = 1. This gives the conclusion that νz,g(v) > 0

for all g ∈ G.
To obtain the final statement, we note that

νz,ga(v)

νη,g(v)
≤ C−k1

Moreover, since η, z are in the same cylinder, the second part of Lemma 5.2
gives that

νz,ga(v)

νz,g(v)
≤ C−k1C f .

��
Lemma 5.4 For any continuous function v : 	+×G → R and any g, a ∈ G,
we have that

ρνη,g(v) =
∑

u∈W1
η

e f (uη)νuη,gψ(u)(v).

Proof For t > ρ, we have

νtη,g(v) = 1

P(t)

∞∑
n=1

t−nbn
∑

w∈Wn
η

e f n(z)v(wη, gψn(w))

= 1

P(t)

∑

u∈W1
η

∞∑
n=1

t−nbn
∑

w∈Wn−1
uη

e f n(wuη)v(wuη, gψ(u)ψn−1(w))

= 1

P(t)

∑

u∈W1
η

t−1e f (uη)

∞∑
n=1

bn
bn−1

t−(n−1)bn−1

×
∑

w∈Wn−1
uη

e f n−1(wuη)v(wuη, gψ(u)ψn−1(w)).

Letting t → ρ+, we obtain

νη,g(v) = ρ−1
∑

u∈W1
η

e f (uξ)νuη,gψ(u)(v),

where we have used the divergence of P(t) as t → ρ+ and that
limn→∞ bn/bn−1 = 1. ��
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To complete the Proof of Theorem 5.1, we introduce the trick of Roblin —
when G is amenable we can almost project ν to an eigenfunction for 	.

Proof of Theorem 5.1 Let M be the Banach mean for G. We fix a basepoint
o ∈ 	. Let v : 	+ × G be a non-negative continuous function. Since Tψ is
transitive, iterating Lemma 5.4 gives that, for some C independent of n,

ρnνo,g(v) =
∑
u∈Wn

o

e f n(uo)νuo,gψn(u)(v) ≥ C
∑
u∈Wn

o

e f n(uo)νo,gψn(u)(v)

(where we use the Lemma 5.2 to compare νuo,gψn(u)(v) with νo,gψn(u)(v)).
We cannot apply the mean directly in the above inequality as νo,gψn(u)(v)

may not be bounded in g. Instead, Lemma 5.3 tells us that we may normalise
by νo,g(v) to obtain a bounded function on G. Recall Jensen’s inequality: let
(X, μ) be a measure space and h ∈ L1(μ). If φ : R → R is convex, then

φ

(∫
h dμ

)
≤

∫
φ ◦ h dμ

The inequality is also true for the Banach mean M in place of the countably
additive

∫ · dμ, since the proof only uses monotonicity of the integral and
linearity. The reverse inequality is given when φ is concave. We apply this
with concave function φ = log to obtain

C−1ρnM

[
g 	→ νo,g(v)

νo,g(v)

]
≥ M

⎡
⎣g 	→

∑
u∈Wn

o

e f n(uo) νo,gψn(u)(v)

νo,g(v)

⎤
⎦

=
∑
u∈Wn

o

e f n(uo)M

[
g 	→ νo,gψn(u)(v)

νo,g(v)

]

≥
∑
u∈Wn

o

e f n(uo) expM

[
g 	→ log

νo,gψn(u)(v)

νo,g(v)

]
.

The last function is important to us andwegive it a name:wedefineχ : G → R

by

χ(a) = M

[
g 	→ log

νo,ga(v)

νo,g(v)

]
.
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We claim that χ is a homomorphism. To see this, we first check that χ(ab) =
χ(a) + χ(b). Firstly,

νo,gba(v)

νo,g(v)
= νo,gba(v)

νo,gb(v)

νo,gb(v)

νo,g(v)
,

and when we take the mean, by right invariance, we have

M

[
g 	→ log

νo,gba(v)

νo,gb(v)

]
= M

[
g 	→ log

νo,ga(v)

νo,g(v)

]
.

We also have to check that χ(e) = 0, but this is immediate.
We can now bound the Gurevič pressure. Since any homomorphism factors

through the abelianisation of G, if (x, 0) ∈ 	+ × Gab satisfies T n
ψab(x, 0) =

(x, 0) then χ(ψn(x)) = 0. For u ∈ Wn , we write u∞ for the infinite concate-
nation of copies of u. Since the transition matrix A is aperiodic, there exists
an N ≥ 1 such that, for every n ≥ 1 and every u ∈ Wn such that u∞ ∈ 	+,
there exists an admissible word u# of length N + 1 such that (u#)0 = u0 and
uu# ∈ Wn+N+1

o . Since u∞ and uu#o agree in the first n + 1 places, we have
ψn(u∞) = ψn(uu#o) and

e f n(u∞) ≤ C f e
f n(uu#o).

Thus we have

∑

x∈	+: σ n x=x
T n
ψab (x,0)=(x,0)

e f
n(x) =

∑

x∈	+: σ n x=x
T n
ψab (x,0)=(x,0)

eχ(ψn(x))e f
n(x)

=
∑

u∈Wn : u∞∈	+
(ψab)n(u∞)=0

eχ(ψn(u∞))e f
n(u∞)

≤ C f
∑

u∈Wn : u∞∈	+
(ψab)n(u∞)=0

eχ(ψn(uu#o)))e f
n(uu#o)

≤ C f C
−(N+1)
0 D−(N+1)

∑

w∈Wn+N+1
o

eχ(ψn+N+1(wo))e f
n+N+1(wo)

≤ C−1C f C
−(N+1)
0 D−(N+1)ρn+N+1,

where D = infx∈	+ eχ(ψ(x)). We conclude that ePGur( f,Tψab ) ≤ ρ =
ePGur( f,Tψ). The other inequality is trivially true, therefore PGur( f, Tψab) =
PGur( f, Tψ). ��
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6 Symbolic dynamics for Anosov flows

We begin by discussing the symbolic coding of Anosov flows (and, more
generally, hyperbolic flows) introduced by Ratner [34] and Bowen [5]. Let M
be a smooth compact Riemannian manifold and let φt : M → M be a C1

flow. A closed, φt -invariant set � ⊂ M is said to be hyperbolic if there is a
continuous, Dφt -invariant splitting of the tangent bundle

T�(M) = E0 ⊕ Es ⊕ Eu

and constants C, λ > 0 such that E0 the line bundle tangent to the flow
direction and

(1) ‖Dφtv‖ ≤ Ce−λt‖v‖ for all v ∈ Es ;
(2) ‖Dφ−tv‖ ≤ Ce−λt‖v‖ for all v ∈ Eu .

(We remark that this definition is independent of the choice of metric when �

is compact.) If M is a hyperbolic set then we call φt : M → M an Anosov
flow. There exist examples of Anosov flows which are not transitive [3,18] but
we shall always assume that transitivity holds, so we have that M = �(φ),
the non-wandering set for φ. By a fundamental result of Anosov [2], the set
of periodic orbits of φ is dense in �(φ) and hence, in our setting, in M .

We now describe some of the constructions which play an important role in
the symbolic coding of transitive Anosov flows. For x ∈ M define the (strong)
local stable manifold Ws

ε (x) and (strong) local unstable manifold Wu
ε (x) by

Ws
ε (x) =

{
y ∈ M : d(φt (x), φt (y)) ≤ ε for all t, lim

t→∞ d(φt (x), φt (y)) = 0

}
,

Wu
ε (x) =

{
y ∈ M : d(φ−t (x), φ−t (y)) ≤ ε for all t, lim

t→∞ d(φ−t (x), φ−t (y)) = 0

}
.

For small enough ε > 0, these sets are diffeomorphic to embedded disks of
dimension ds and du , respectively, where ds + du = dim M − 1. These sets
give us a local product structure [·, ·]. For sufficiently close x, y, we have that
Ws

ε (x) ∩ Wu
ε (φt (y)) �= ∅ for a unique t ∈ [−ε, ε], and we define [x, y] to be

this intersection point.
Suppose that D1, . . . , Dk are codimension 1 disks that form a local cross-

section to the flow. We say that Ri ⊂ int(Di ) is a rectangle if x, y ∈ Ri
implies that [x, y] = φt z, for some z ∈ Di , t ∈ [−ε, ε], where the interior is
taken relative to Di . We say that Ri is proper if int(Ri ) = Ri , where again the
interior is taken relative to Di .

Write P for the Poincaré map P : ⋃k
i=1 Ri → ⋃k

i=1 Ri . Write Ws
ε (x, Ri )

and Wu
ε (x, Ri ) for the projection of Ws

ε (x) and Wu
ε (x) onto Ri respectively.

We say thatR = {R1, . . . , Rk} is a Markov section if
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(1) x ∈ int(Ri ) and Px ∈ int(R j ) implies that P(Ws
ε (x, Ri )) ⊂

Ws
ε (Px, R j )); and

(2) x ∈ int(Ri ) and P−1x ∈ int(R j ) implies that P−1(Wu
ε (x, Ri )) ⊂

Ws
ε (P−1x, R j )).

Proposition 6.1 (Bowen [5], Ratner [34]) For all sufficiently small ε > 0, φt

has a Markov section R = {R1, . . . , Rk} such that diam(Ri ) ≤ ε for each i ,
and

⋃
t∈[−ε,ε] φt (∪k

i=1Ri ) = M.

TheseMarkov sections provide uswith a “symbolic coding” for the geodesic
flow. In the following, the Markov section R = {R1, . . . , Rk} plays the role
of an alphabet for a subshift of finite type 	 with transition matrix A, defined
by A(i, j) = 1 if there is x ∈ int(Ri ) with Px ∈ int(R j ).

Proposition 6.2 (Bowen [5], Bowen andRuelle [6]) There is amixing subshift
of finite type σ : 	 → 	 and a strictly positive Hölder continuous potential
r : 	 → R

+ such that the suspended flow σ t
r : 	r → 	r is semi-conjugate to

φt : M → M.More precisely, there exists a bounded-to-one surjective Hölder
continuous function θ : 	r → M such that θ ◦ σ t

r = φt ◦ θ . Furthermore, if
f : M → R is Hölder continuous then f ◦ θ : 	r → R is Hölder continuous
and θ is a measure theoretic isomorphism between the equilibrium states of
f ◦ θ and f . In particular, P( f ◦ θ) = P( f ).

The semi-conjugacy θ : 	r → M is not in general a bijection, so results on
counting orbits do not immediately translate between settings. In particular,
there is overcounting of the periodic orbits that pass through the boundaries of
the sections. However, this discrepancymay be accounted for by the following
result of Bowen (extendingwork ofManning [27] in the diffeomorphism case).

Lemma 6.3 (Bowen [5]) There are finitely many additional subshifts of finite
type σi : 	i → 	i , i = 1, . . . , q, with corresponding strictly positive Hölder
continuous functions ri : 	i → R and Hölder continuous maps θi : 	

ri
i →

M, which are bounded-to-one but not surjective, such that θi ◦ σ t
r = φt ◦ θi ,

i = 1, . . . , q, and such that, if ν(φ, T ) (respectively, ν(σr , T ), ν(σri , T ))
denotes the number of periodic φ-orbits (respectively, σr -orbits, σri -orbits)
with period equal to T then

ν(φ, T ) = ν(σr , T ) +
q∑

i=1

εiν(σri , T ),

with εi ∈ {−1, 1}.
Since the θi are not surjective, for aHölder continuous function F : M → R

we have P(F ◦ θi , σri ) < P(F, φ). (To see this we follow the argument in
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section 7.23 of [36]. First note that θi (	
ri
i ) is a closedφ-invariant proper subset

of M . Since θi is bounded-to-one, P(F ◦ θi , σri ) ≤ P(F |
θi (	

ri
i )

, φ). But since

the equilibrium state of F is fully supported, it is easy to see by the variational
principle that P(F |

θi (	
ri
i )

, φ) < P(F, φ).) In particular, the suspended flows

σ t
ri have topological entropy strictly less than h.
For F : M → R, write

Nφ(T, F) =
∑

γ∈P(φ):
l(γ )≤T

exp

(∫

γ

F

)

(with similar definitions for the other flows). Then we have the following
corollary.

Corollary 6.4 For every Hölder continuous function F : M → R, we have

Nφ(T, F) = Nσr (T, F ◦ θ) + O(eh
′
FT ),

for some h′
F < P(F, φ). In particular,

Nφ(T, 〈ξ, �〉) = Nσr (T, 〈ξ, � ◦ θ〉) + O(eh
′T ),

for some h′ < P(〈ξ, �〉, φ).

7 Covers and group extensions

The aim of this section is to interpret the quantities h, h(X) and h(X ab) in
terms of a subshift of finite type and its group extensions.

Consider a regular cover pX : X → M of M , with covering group G
(acting as isometries on X ), and the lifted flow φt

X : X → X . We will now
describe the procedure to “lift” the symbolic dynamics for φt : M → M to
φt
X : X → X . We use the decoration RM = {

RM
1 , . . . , RM

k

}
for the Markov

section for φt : M → M . For every pair (i, j) such that A(i, j) = 1, there is a
minimum ti j > 0 with φti j (RM

i )∩ RM
j �= ∅. These ti j are clearly independent

of the covering X andRM may be chosen so that ti j is arbitrarily small.
We assume that the rectangles in RM have sufficiently small diameter so

that they are each contained in an open ball that is simply connected. For each
RM ∈ RM , fix a lift RX ⊆ X . (Ormore precisely, fix a connected open setUM

containing RM , and a connected liftUX . Then RX is chosen to lie insideUX .)
Having chosen the flow time between rectangles, and diameter of rectangles
to be sufficiently small, we deduce that there is a unique g = g(i, j) ∈ G
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with φti j (RX
i ) ∩ gRX

j �= ∅. We now define a function ψ : 	 → G by
ψ(x) = g(x0, x1).

We will use the function ψ to identify periodic orbits in M that lift to
periodic orbits in X . We precede this discussion by elaborating on the G-
class of a closed curve. Let x ∈ M be fixed. Given that the covering map
p : X → M is fixed, we have an isomorphism G = π1(M, x)/N , where N is
a normal subgroup of π1(M, x) (isomorphic to π1(X)).

For an arbitrary closed curve γ : [0, R] → M , we can choose paths con-
necting x to γ (0) to produce a closed curve based at x and hence a homotopy
class in π1(M, x). A different choice of path from x to γ (0) gives a conjugate
element of π1(M, x). Thus we obtain a well-defined conjugacy class in G,
which we will denote by 〈γ 〉X and call the G-class of γ . We say that the G-
class is trivial if 〈γ 〉X consists only of the identity, in which case we slightly
abuse notation by writing 〈γ 〉X = e, and this is equivalent to γ lifting to a
closed curve in X Clearly, a closed curve γ has trivial G-class if any choice
of path x to γ (0) gives a closed curve with homotopy class in N .

We claim that ψ codes orbits with trivial G-class, but we can only make
statements about points for which the semi-conjugacy θ is actually a bijection.
WriteP(φ)∗ for the set of periodic orbits in M for which θ induces a bijection.

Proposition 7.1 Suppose that {x, σ x, . . . , σ n−1x} is a periodic σ -orbit (with
σ nx = x) corresponding to γ ∈ P(φ)∗. Then γ has trivial G-class if and only
if ψn(x) = e.

Proof We can regard θ(x, 0) as the initial point on γ . Let γ̃ be a lift of γ ,
we may assume starts in RX

x0 . By construction, γ̃ ends in ψn(x) and is thus
periodic if and only if ψn(x) = e. ��

Now suppose that Y = X ab is the maximal abelian subcover of X , with
abelian covering group Gab = G/[G,G]. Then 〈γ 〉Y = [γ ]. We define ψY :
	 → Gab in an analogous way to ψ : 	 → G, i.e. ψY (x) is given by
φtx0x1 (RY

x0)∩ψY (x)RY
x1 �= ∅, where RY

i is the projection of RX
i to Y . Clearly,

ψY is the composition ofψ and the projection homomorphism from G to Gab.
We immediately have the following.

Proposition 7.2 Suppose that {x, σ x, . . . , σ n−1x} is a periodic σ -orbit (with
σ nx = x) corresponding to γ ∈ P(φ)∗. Then [γ ] = ψn

Y (x) (and, in particular,
[γ ] = 0 if and only if ψn

Y (x) = 0).

Proof This follows from Proposition 7.1 and the fact that Gab is abelian. ��
We now wish to make two reductions. First of all, if Gab ∼= Z

a × G0 with
G0 a non-trivial finite abelian group then Y is a finite cover of a manifold Y ′,
which is aZ

a-cover ofM . By Lemma 2.7, h(Y ) = h(Y ′) and so there is no loss

123



R. Dougall, R. Sharp

of generality in replacing Y with Y ′ is our analysis. Slightly abusing notation,
we shall still use Y to denote this Z

a-cover of M . Then 〈γ 〉Y = [γ ] = ∫
γ

�

is an element of Z
a .

Secondly, wish to switch from the two-sided subshift of finite type σ : 	 →
	 to the corresponding one-sided subshift of finite type σ : 	+ → 	+. There
is an obvious identification between the periodic orbits of the two systems.
Since the functionsψ andψY depend on only two co-ordinates, we can equally
well regard them as functions defined on the one-sided shift space 	+. Also,
by Lemma 3.3, we may change r by the addition of a coboundary to obtain a
function defined on 	+. We will continue to denote this modified function by
r and note that its sums around periodic orbits are unchanged.

After these two reductions, we have extended systems Tψ : 	+ × G →
	+ × G and TψY : 	 × Z

a → 	+ × Z
a .

We end the section with two results on transitivity.

Lemma 7.3 If φt
X : X → X is transitive, then Tψ is transitive.

Proof Let x ∈ X be a point with dense φX -orbit. Without loss of generality
x ∈ ⋃k

i=1
⋃

g∈G g · RX
i and then {Pn

X x}∞n=−∞ is dense in
⋃k

i=1
⋃

g∈G g ·
RX
i , where PX is the Poincaré map between the sections in X . Suppose that

Ã((i j , g j ), (i j+1, g j+1)) = 1, where Ã is the transition matrix for 	+ × G,
for j = 0, . . . , n. Then

U =
n⋂
j=0

P− j
X (int(g j · RX

i j ))

is non-empty and open in
⋃k

i=1
⋃

g∈G g · RX
i . (Here int(g j · RX

i j
) is taken

with respect to the co-dimension one disk containing g j · RX
i j
.) Since x has

dense PX -orbit, Pm
X x ∈ U for somem ∈ Z. Then Pm+ j

X (x) ∈ int(g j · RX
i j

) for
j = 0, . . . , n. By definition, this implies that the Tψ -orbit of (θ(pX (x)), g0) ∈
	+×G (where θ(pX (x)) is identifiedwith a point in the one-sided shift) passes
through the (arbitrary) cylinder [(i0, g0), . . . , (in, gn)] and is thus dense in
	+ × G. Therefore, σ̃ : 	+ × G → 	+ × G is transitive. ��
Lemma 7.4 If φt

Y : Y → Y is transitive then the Anosov flow φt : M → M
is Y -full.

Proof Suppose that φY is transitive. Then, by Lemma 7.3, TψY : 	+ × Z
a →

	+ × Z
a , is transitive. In addition,

∞⋃
n=1

{ψn
Y (x) : σ nx = x} = {[γ ] : γ ∈ P(φ)},
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Suppose φ is not Y -full. Then, by Proposition 2.4,
⋃∞

n=1{ψn
Y (x) : σ nx = x}

is contained in a closed half-space in R
a and hence there exists t ∈ R

a \ {0}
such that 〈t, ψn

Y (x)〉 ≥ 0, whenever σ nx = x . Since measures supported on
periodoc orbits are dense in the space of σ -invariant probability measaures,
this gives that

∫ 〈t, ψY 〉 dm ≥ 0 for every σ -invariant probability measure
m. By a result of Savchenko [38], this implies that there exists a continuous
function u : 	 → R such that 〈t, ψY 〉 + u ◦ σ − u ≥ 0. Hence, for all n ≥ 1,
〈t, ψn

Y 〉 + u ◦ σ n − u ≥ 0, giving 〈t, ψn
Y 〉 ≥ −2‖u‖∞. Since T n

ψY
(x, k) =

(σ nx, k + ψn
Y (x)), if we choose α ∈ Za with 〈t, α〉 < −2‖u‖∞, then no

TψY -orbit starting in 	 × {0} can reach 	 × {α}, and so TψY is not transitive.
��

8 Proof of Theorem 1.1

We begin with a lemma relating the quantities h(X) and h(Y ) to Gurevič
pressures for Tψ and TψY . Let σ : 	+ → 	+ be the one-sided subshift of
finite type and let r : 	+ → R (cohomologous to a strictly positive function),
ψ = ψX : 	+ → G and ψY : 	+ → Z

a be the functions constructed in the
previous section.

We have the following key lemma.

Lemma 8.1 The following three statements hold:

(1) h = P(0, φ) is the unique zero of s 	→ P(−sr, σ );
(2) h(Y ) = P(〈ξ, �〉, φ), and h(Y ) is the unique zero of s 	→ PGur(−sr +

〈ξ, �〉, TψY );
(3) h(X) = h(Y ) if and only if PGur(−h(Y )r + 〈ξ, ψY 〉, Tψ) = 0.

Proof Part (1) is a standard result, see [28].
Let us now prove (2). By Lemma 2.7, we know that h(Y ) = P(〈ξ, �〉, φ).

Also, by Lemma 2.8, h(Y ) is the abscissa of convergence of

∑
γ∈P(φ):
[γ ]=0

�(γ )

l(γ )
e−sl(γ ) =

∑
γ∈P(φ):
[γ ]=0

�(γ )

l(γ )
e−sl(γ )+〈ξ,[γ ]〉

By Corollary 6.4,

∑
γ∈P(φ):
[γ ]=0

�(γ )

l(γ )
e−sl(γ )+〈ξ,[γ ]〉
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differs from

∞∑
n=1

1

n

∑
σ nx=x :
ψn
Y (x)=0

e−srn(x)

by a serieswith abscissa of convergence h′ < P(〈ξ, �〉, φ) = h(Y ). Therefore
PGur(−h(Y )r+〈ξ, �〉, TψY ) = 0. Since r is strictly positive, Lemma 3.2 gives
that s 	→ PGur(−sr, TψY ) is strictly decreasing and therefore h(Y ) is the unique
zero.

Finally, we prove (3). Write

S1(s) :=
∑

γ∈P(φ):
〈γ 〉=0

e−sl(γ ) and S2(s) :=
∞∑
n=1

1

n

∑
σ nx=x :
ψn(x)=e

e−srn(x).

We have h(Y ) = h(X) if and only if h(Y ) is the abscissa of convergence of
S1(s). Since 〈γ 〉 = e implies that [γ ] = 0, we can use argument in the proof
of Lemma 2.8 and Corollary 6.4 to show that the abscissa of convergence of
S1(s) − S2(s) is bounded above by max{h(Y )/2, h′} < h(Y ). Hence, S1(s)
has abscissa of convergence h(Y ) if and only if S2(s) has abscissa of conver-
gence h(Y ), which in turn is equivalent to PGur(−h(Y )r, Tψ) = 0. But, since
ψn(x) = e implies that ψn

Y (x) = 0, we can employ the argument used to
prove (2) to show that, for any s ∈ R,

PGur(−sr + 〈ξ, ψY 〉, Tψ) = PGur(−sr, Tψ),

completing the proof. ��
We now complete the Proof of Theorem 1.1.

Proof of Theorem 1.1 We first deal with the case a > 0. Suppose that G is
non-amenable. By Theorem 1.1 of [20], since G is non-amenable, we have
that

log sprH(L−h(Y )r+〈ξ,ψY 〉) < P(−h(Y )r + 〈ξ, ψY 〉, σ ).

Moreover, by the same theorem, for any Hölder continuous f : 	+ → R, we
always have PGur( f, Tψ) ≤ log sprH(L f ). Putting these together gives

PGur(−h(Y )r + 〈ξ, ψY 〉, Tψ) < P(−h(Y )r + 〈ξ, ψY 〉, σ )

= P(−h(Y )r + 〈ξ, ψY 〉, TψY ),
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where the last identity follows fromLemma8.1.Now, by the proof of part (3) of
Lemma 8.1, this becomes PGur(−h(Y )r, Tψ) < 0 and therefore h(X) < h(Y ).

Nowsuppose thatG is amenable.ByTheorem5.1, PGur(−sr+〈ξ, ψab〉, Tψ)

= PGur(−sr + 〈ξ, ψab〉, Tψab) for any s. By, Lemma 8.1, this implies that
h(X) = h(Y ).

Finally, we deal with the case where a = 0, which requires a simple modi-
fication of the above arguments. In this case, Gab is finite and so h(Y ) = h. If
G is non-amenable then

PGur(−hr, Tψ) ≤ log sprH(L−hr ) < P(−hr, σ ) = 0

so h(X) < h. If G is amenable then Theorem 5.1 gives

PGur(−sr, Tψ) = PGur(−sr, Tψab) = P(−sr, σ ),

so h(X) = h. ��

9 Equidistribution

In this final section, we consider the spatial distribution of φ-periodic orbits
with trivialG-class, in the casewhereG is amenable. This generalisesTheorem
2 of [39] which deals with G abelian. Write

�(T, ε) = #{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e}.

Our results will be based on the following definition.

Definition 9.1 We say the φ-periodic orbits with trivial G-class are equidis-
tributedwith respect to ameasureμ if, for every ε > 0 and continuous function
F : M → R, we have

lim
T→∞

1

�(T, ε)

∑
γ∈P(φ):

T<l(γ )≤T+ε, 〈γ 〉=e

1

l(γ )

∫

γ

F =
∫

F dμ.

We have the following equidistribution result for Anosov flows.

Theorem 9.2 Let φt : M → M be an Anosov flow and let X be a regular
cover of M with amenable covering group G. Suppose that the lifted flow
φt
X : X → X is transitive. Then the φ-periodic orbits with trivial G-class are

equidistributed with respect to μ〈ξ,�〉, the equilibrium state for 〈ξ, �〉.
Specialising to geodesic flows gives the following corollaries.
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Corollary 9.3 Let φt : SV → SV be the geodesic flow on the unit-tangent
bundle over a compact negatively curved manifold V and let X be a regular
cover of M with amenable covering group G. Then the φ-periodic orbits with
trivial G-class are equidistributed with respect to the measure of maximal
entropy for φ.

Proof Since φ is a geodesic flow, ξ = 0. Also, since G is amenable, G is
not equal to π1(M) and hence, by a result of Eberlein [15], the lifted flow
φt
X : X → X is transitive. Thus the corollary follows from Theorem 9.2. ��

Corollary 9.4 Let V bea compactmanifoldwith negative sectional curvatures
and let V̂ be a regular cover with amenable covering group G. Then the closed
geodesics on V with trivial G-class are are equidistributed with respect to the
projection to V of the measure of maximal entropy for the geodesic flow on
the unit-tangent bundle SV .

If V has constant negative curvature then the measure of maximal entropy
is equal to the volume measure and so we have the following.

Corollary 9.5 Let V be a compact hyperbolic manifold and let V̂ be a regular
cover with amenable covering group G. Then the closed geodesics on V with
trivial G-class are are equidistributed with respect to the volume measure on
V .

Theorem 9.2 is a consequence of the following large deviations result. For
γ ∈ P(φ), let μγ denote the φ-invariant probability measure defined by

∫
F dμγ = 1

l(γ )

∫

γ

F.

Theorem 9.6 Let φt : M → M be an Anosov flow and let X be a regular
cover of M with amenable covering group G. Suppose that the lifted flow
φt
X : X → X is transitive. Then, for any weak∗-compact set K ⊂ M(φ) such

that μ〈ξ,�〉 /∈ K, we have

lim sup
T→∞

1

T
log

(
#{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e, μγ ∈ K}

#{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e}
)

< 0.

Proof To shorten some formulae, we will write

Q(F) := P(〈ξ, �〉 + F, φ).

We begin by noting the following. By Theorem 1.1,

lim
T→∞

1

T
log #{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e} = Q(0) (9.1)
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and, for any continuous function F : M → R,

∑
γ∈P(φ)

T<l(γ )≤T+ε, 〈γ 〉=e

exp

(∫

γ

F

)
=

∑
γ∈P(φ)

T<l(γ )≤T+ε, 〈γ 〉=e

exp

(∫

γ

〈ξ, �〉 + F

)

≤
∑

γ∈P(φ)
T<l(γ )≤T+ε

exp

(∫

γ

〈ξ, �〉 + F

)
,

giving

lim
T→∞

1

T
log

∑
γ∈P(φ)

T<l(γ )≤T+ε, 〈γ 〉=e

exp

(∫

γ

F

)
≤ Q(F). (9.2)

Now define

ρ = ρK := inf
ν∈K sup

F∈C(M,R)

(∫
F dν − Q(F)

)
.

Fix δ > 0. For every ν ∈ K, there exists F ∈ C(M, R) such that
∫

F dν − Q(F) > ρ − δ.

Thus we have

K ⊂
⋃

F∈C(M,R)

{
ν ∈ M(φ) :

∫
F dν − Q(F) > ρ − δ

}
.

Since K is weak∗-compact, we can find a finite subcover

K ⊂
k⋃

i=1

{
ν ∈ M(φ) :

∫
Fi dν − Q(F) > ρ − δ

}
.

This gives us the inequality

#{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e, μγ ∈ K}

≤
k∑

i=1

#

{
γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e,

∫
Fi dμγ − Q(F) > ρ − δ

}

≤
k∑

i=1

∑

γ∈P(φ)
T<l(γ )≤T+ε, 〈γ 〉=e

exp

(
−l(γ )(Q(Fi ) + (ρ − δ)) +

∫

γ
Fi

)
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≤
k∑

i=1

max{e−T (Q(Fi )+(ρ−δ)), e−(T+ε)(Q(Fi )+(ρ−δ))}
∑

γ∈P(φ)
T<l(γ )≤T+ε, 〈γ 〉=e

exp

(∫

γ
Fi

)

and hence, using (9.2) we obtain the growth rate estimate

lim sup
T→∞

1

T
log #{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e, μγ ∈ K} ≤ −ρ + δ.

Since δ > 0 is arbitrary, we combine this with (9.1) to deduce that

lim sup
T→∞

1

T
log

(
#{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e, μγ ∈ K}

#{γ ∈ P(φ) : T < l(γ ) ≤ T + ε, 〈γ 〉 = e}
)

≤ −ρ − Q(0).

To complete the proof, we will show that ρ + Q(0) > 0. First note that if
ν �= μ〈ξ.�〉 then

sup
F∈C(M,R)

(∫
F dν − Q(F) + Q(0)

)

= sup
F∈C(M,R)

(∫
F dν − P(〈ξ, �〉 + F, φ) + P(〈ξ, �〉, φ)

)

= sup
F∈C(M,R)

(∫
(F − 〈ξ, �〉) dν − P(F, φ) + P(〈ξ, �〉, φ)

)

= sup
F∈C(M,R)

(∫
F dν − P(F, φ)

)
+ P(〈ξ, �〉, φ) −

∫
〈ξ, �〉 dν

= − inf
F∈C(M,R)

(
P(F, φ) −

∫
F dν

)
+ P(〈ξ, �〉, φ) −

∫
〈ξ, �〉 dν.

By Lemma 2.2, this is equal to

−hφ(ν) + P(〈ξ, �〉, φ) −
∫

〈ξ, �〉 dν > 0,

where the last inequality comes from the uniqueness of the equilibrium state
μ〈ξ,�〉. Also by Lemma 2.2, the map on M(φ) given by

ν 	→ −hφ(ν) + P(〈ξ, �〉, φ) −
∫

〈ξ, �〉 dν

is lower semi-continuous and so we can conclude that ρ + Q(0) > 0, as
required. ��
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Proof of Theorem 9.2 Given a function F ∈ C(M, R), choose δ > 0 and set
K to be the compact set

K =
{
ν ∈ M(φ) :

∣∣∣∣
∫

F dν −
∫

F dμ〈ξ,�〉
∣∣∣∣ ≥ δ

}
.

Applying Theorem 9.6, we have

1

�(T, ε)

∑
γ∈P(φ):

T<l(γ )≤T+ε
〈γ 〉=e

∫
F dμγ = 1

�(T, ε)

∑
γ∈P(φ):

T<l(γ )≤T+ε
〈γ 〉=e, μγ /∈K

∫
F dμγ + O(e−ηT ),

for any 0 < η < ρK + P(〈ξ, �〉, φ), so we only need to consider the limit of
the first term on the Right Hand Side. We have

1

�(T, ε)

∑

γ∈P(φ):
T<l(γ )≤T+ε
〈γ 〉=e, μγ /∈K

∫
F dμγ = (1 − O(e−ηT ))

∫
F dμ〈ξ,�〉

+ 1

�(T, ε)

∑

γ∈P(φ):
T<l(γ )≤T+ε
〈γ 〉=e, μγ /∈K

(∫
F dμγ −

∫
F dμ〈ξ,�〉

)

and therefore

lim sup
T→∞

1

�(T, ε)

∑
γ∈P(φ):

T<l(γ )≤T+ε
〈γ 〉=e, μγ /∈K

∫
F dμγ ≤

∫
F dμ〈ξ,�〉 + δ

and

lim inf
T→∞

1

�(T, ε)

∑
γ∈P(φ):

T<l(γ )≤T+ε
〈γ 〉=e, μγ /∈K

∫
F dμγ ≥

∫
F dμ〈ξ,�〉 − δ.

Since δ > 0 is arbitrary, this completes the proof. ��
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