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ABSTRACT

T
he development of sensing technologies has enabled digitisation to penetrate sectors that were
traditionally non-digital such as healthcare. Internet of things sensor design, designated for
health monitoring, has been accelerated from this development. The following work focuses

on the identification of key challenges, enabling factors and potential improvements in sensor design,
implementation and operation in an interconnected network. The focus is specifically on challenging
applications such as a home healthcare monitoring system.
Identifying the key challenges in these scenarios requires interaction with those environments, the
sensor systems and the use case. By designing wearable and environmental sensors, integrated into a
digital healthcare platform, those challenges were identified. Most prominent challenges observed
were the minimisation of maintenance and high reliability. The most notable maintenance concern
lies in the storage and performance limitations of the sensors’ energy source. In this study, notable
improvements in the design were identified and implemented in certain cases, reducing the power
consumption by 3 orders of magnitude and improving the reliability and predictability.
Novel concepts in environmental and wearable sensing, together with bespoke solutions, were put
to test in simulations and real-world deployments. Along with the sensor design, user interactive
interfaces were created, providing means for verifying data generated from those sensors. As such,
improvements and results could be justified based on data gathered from simulations and real-world
deployments. Findings from deployments are well-considered throughout this thesis. Examining the
findings helped in optimising and future-proofing the sensor technologies developed throughout
this document. Further development potentials on individual sub-systems were integrated into a
complete data-collection pipeline, leading to an end-to-end optimisation. The system proposed
serves digital health monitoring systems while allowing for interoperability, expansion and customi-
sation. The maximisation of the suitability of such a system was achieved by minimising the power
consumption and expanding the sensing capabilities of individual sensors.
The engineering work delivered provides new and improved sensor modalities, which other digital
healthcare technologies can be compared with. The data generated from the real-world deployments
can be used as a baseline dataset. Data gathered through any new proposed systems can be evaluated
against such baseline data.
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1
INTRODUCTION

T
he main topic associated with this work is the observation and improvement of IoT sensors

designed to serve monitoring platforms in a home environment. The term ’home’ can be

defined as a residential area of different types, varying in layout and a plethora of other

characteristics that give people a sense of being at home.

The main aim of this work is to infer health status of residents from how they utilise and interact

with their home. Understanding people and homes while having a highly adaptable system which

is capable of being implemented in the vast majority of residential environment, is an immense

challenge. Various sensor designs are being proposed to assist in gathering information related to

health in those environments.

The need for such a system could be justified on the increased burden on healthcare services. With

the increasing population [2] and average life expectancy, it could be said that the population in the

UK is ageing [3, 4]. The population ageing is not a single case but a global trend, a notable example is

an increase in the life expectancy in China by 42 years over the last seven decades. This demographic

factor creates the need for further development, reform and modernisation of healthcare to meet

the expectations of the digital era generations. Keeping track of population and their healthcare

demands is a challenging task. Traditional GP appointment practices are experiencing soaring ratio

of patients per doctor, leading to worse quality of care. This situation pushes the limits of national

health systems [5].

Users that frequently require healthcare services over the years would have experienced the

deterioration in service quality the most, especially those who suffer from chronic diseases and other

long term conditions.

A way forward on easing the healthcare system is a diversification of the healthcare services

from traditional in-person appointments. A monitoring system provides information that could
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allow doctors to examine the condition of a patient in an effective way remotely. Another significant

advantage to such a system is the ability to summarise long term monitoring, quantifying the progress

of the condition. Behaviour monitoring and evaluation of the quality of life can also be included in

the measure. Ideally, such a monitoring system should be automated and do not require any carers.

This automation could be developed by using sensing technology and data analysis.

Advancements in technology enabled the use of computing devices for consumer, industrial

infrastructure and commercial applications. Innovations applied to any of these fields can be trans-

ferred to another using a certain set of rules and standards. The generic umbrella that defines

those technologies is called IoT. This chapter will focus on advancements proposed in consumer

applications of IoT, substantially the monitoring systems used in residential environments.

IoT systems are specified to meet the requirements of various applications. For example, in a con-

sumer application, the IoT systems are aiming at providing automation for smart home appliances.

In other words, processes, where human input was traditionally required, are being automated to

serve a particular purpose. This automation is achieved by the exchange of information between

machines that are designed to follow well-defined tasks.

Residential environments, such as homes present a variety of challenges for monitoring systems.

Acceptability of the system from the residents and the requirements for aesthetics hinder the adoption

of those technologies. Compared to industrial and commercial applications, homes do not require a

mission-critical system. Thus, lower priority has been given to home monitoring systems in general.

1.1 Emerging Market of Consumer Interconnected Devices

As mentioned above, consumer applications of technology tend to be non-mission-critical. They

usually provide information or assistance for day-to-day tasks, which downgrades specifications

the devices are meant to meet. As such, the failure rates of these applications are more probable

and generally more acceptable. Loss of information on the state of the system and communication

among different devices is also accounted for.

Compared to their industrial counterparts, consumer systems sometimes do not strictly adhere

to their standards and specifications. As a result, there is a difference between the perceived benefits

associated with the technology and the actual purpose it currently serves. This loss of information

could trigger processes that could restore the state of those devices. The following paragraphs

will demystify the capabilities of IoT technology, review the current literature and look into future

directions.

Generally, IoT sensors are power-constrained and resource-constrained. These restrictions are

derived by their limited access to power sources, such as mains power and wired networking. Con-

sequently, IoT devices are usually battery powered and wireless interconnected. Since they have a

finite energy capacity, the power usage of these devices is limited by expected battery life. In some

cases where the devices can be charged, the power requirements are defined based on the recharging
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patterns. For example, a smartphone user is expected to charge his phone daily. On the other hand, a

technician of a largescale IoT deployment will have planned visits to sites to replace batteries based

on the expected battery life that could last up to a year.

Nowadays, access to the radio waves is heavily contested, making it a commodity that is being

strictly regulated. The available unlicensed bandwidth as part of Industrial, Scientific and Medical

(ISM) radio bands [6] is increasingly congested, and many communication standards are concurrently

utilising it. These standards utilise the available bandwidth based on range, interference and data

rate considerations.

With regards to communication range, homes fall within the boundaries of personal area net-

works. In terms of interference, different standards specify out-of-band restrictions to limit signal

power between adjacent channels. The data rate requirements for healthcare monitoring systems

are relatively low. Experiments undertaken as part of this work examine the range and performance

of different communication standards. Also, examples of realistic data rate requirements for those

systems are specified.

Wireless standards specify the behaviour of transmission mediums allowing information to be

exchanged at a higher level of abstraction between devices. These levels of abstractions are called

layers, and a combination of those layers create network stacks.

The architecture of IoT has protocol stacks in the centre stage. Protocols define the interactions

between devices at different levels from the application layer down to the physical layer where the

actual communication happens. WS02, an open-source web services implementation, distinguishes

IoT sensors in two categories [7]. One category is the devices that require a gateway to connect to

the internet, and the other is the ones that do not. Sensors developed in chapters 2 and 3 require

gateways; however, the Voice-user Interface presented in chapter 4 does not require a gateway. That

distinction has been significantly justified based on computational and power resource available

to those devices. Architecture for a healthcare-related system has been proposed by Tsiftes [8]

relying heavily on IPv6 for ensuring interoperability between devices and future-proofing. Since

most of the devices examined in this work are low-powered, two competing standards are studied.

Firstly, the 802.15.4 standard [9] as part of “IPv6 over Low-power Wireless Personal Area Networks”

(6loWPAN) and BLE. Wireless sensors operating in IoT are generally power-constrained and resource-

constrained. The low-power requirements impose restrictions on the computational power of those

devices. These network protocols have minimal computational and power requirements matching

the characteristics of those devices.

1.2 Literature Review

The following subsections will provide a comprehensive summary of previous research on the topic

of sensing in residential environments for healthcare. This section aims to establish a base at which

the following technical chapters will contribute on.
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The interdisciplinary nature of this work builds on research spanning across multiple fields.

Advancements in low-power microelectronics design and sensing techniques created the need for

low-power sensor networks; Data generated from those networks established the need for automated

processing pipelines utilising machine learning algorithms. Moreover, human interaction with such

systems enabled the study of health-related studies on data generated from those sensor platforms.

These historical highlights signified the creation and evolution of the field. The following subsec-

tions present steering forces and overall direction of the research area in terms of key challenges and

enabling factors.

1.2.1 Digital Health

The ageing population and subsequently, the rise of people living with chronic illness imposes

significant challenges for the future of health systems. In this landscape, the IoT technology, together

with advances in sensing technology and microelectronics, constitute a promising means for enabling

residential healthcare and easing the medical sector.

Sensing technology is an enabler of behavioural monitoring systems, which can collect detailed

information about the long-term behaviour of their users [10]. There is increasing evidence that be-

haviour plays a critical role in the development of chronic health conditions [11]. Notably, behaviour

correlates with the development of depression [12] and dementia [13]. Therefore, IoT behavioural

monitoring systems can offer healthcare professionals with an unbiased and quantitative mechanism

to assess the long-term behaviour of their patients.

As sensing technology is evolving, sensing capabilities are improving, while sensor module costs

are reducing. Consequently, there is an increased demand to create systems that are designed to

gather healthcare information. Those inexpensive sensors are the outcome of previous developments

in industrial [14] IoT and other sectors that underwent an ongoing digital transformation. The need

for healthcare-related systems is based on the growing interest in residents to get control over their

healthcare.

This interest is mainly driven by health concerns that may arise over the lifespans of individuals.

Besides, the amount of information related to healthcare available freely on digital platforms lifts

the level of awareness over medical conditions. For instance, individuals are concerned about the

impacts of ageing, including the progression of medical conditions, on their quality of life.

The low-cost, low-maintenance and minimal human resources characteristics of digital health-

care monitoring systems creates the incentive for health service providers to adopt them into a

larger scale. However, the reduction in human resources is usually not well-received into the current

medical profession practitioners.

Moreover, data and its interpretation derived from such systems are not directly related to

the biomarkers required from doctors to make informed decisions further reduces the interest in

the development of them. On the other hand, the number of consumers and residents who are

continually trying to improve their health and life quality using technology is rising. Recent studies
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using the technology being developed as part of the SPHERE platform were used to show significant

evidence between biomarkers and sensor information will be presented in the state-of-art section.

A biomarker is defined as “A substance used as an indicator of the presence of material of

biological origin, of a specific organism, or a physiological condition or process; specification: a

diagnostic indicator of (predisposition to) a medical condition.” Therefore a new market potential

has emerged where consumers are using technology to infer information about their health and

intervene positively towards improving their health outlook. In the smartphone ecosystem, various

applications have been developed to help users getting information about their health and meet

their well-being goals. Other applications help with cognition, using activities and games that keep

the brain busy.

The effect of these applications in health or quality of life improvement is beyond the scope of this

work. Instead, the uptake of the health-related technology from the users is considered. Current trend

and demand are leading towards specialised systems that provide more personalised healthcare

experience. Therefore, the acceptability of the end-users to such systems is vital.

In order to provide affordable digital health monitoring systems to the public, generic sensors are

favourable to be used to reduce expenses of the systems. Generic sensors are inexpensive sensing

elements comprising of electronic components that can detect environmental conditions by convert-

ing these conditions into electrical signals, which can be transformed into digital binary data. Such

sensors are usually incorporated into small devices called “things” and are connected in networks

that form the IoT.

Advancements in technology and the growth of IoT has led to the greater adoption of inexpensive

sensors technology into multiple applications. Al-Fuqaha et al. et al. [15], provide a survey of recent

IoT applications that include transportation systems, industry, education, smart homes, agriculture,

and health care.

When multiple sensors with different sensing capabilities are scattered in an environment, other

sensor modalities are available, allowing the creating of a digital version of the environmental condi-

tions. In the context of digital healthcare, the primary outcome is associating data generated from

sensors with biomarkers. Data can be categorised based on their sources on-body and environmental

sensors collecting data in the vicinity of the user are considered from the broader field.

On the other hand, the costs in the traditional top-down approach of health and care services are

rising. Thus efforts are made into shifting the intervention from human-to-human interactions, in

other words, from doctor-to-patient, towards HCIs. One of the challenges faced in this transformation

is creating the demand or the interest towards such initiatives.

Apart from accelerating the adaptation of digital intervention platforms, another vital aspect is

the positive attitude towards the intervention recommendations delivered from these paths. An inter-

vention will be much more effective if received positively. If justified outcomes based on personalised

information is presented to the users, it is more likely they will follow the intervention guidelines

suggested by healthcare providers.
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These digital health systems are able to provide summarised data on key indicators on peoples

quality of life and daily living that doctors and clinicians can derive diagnosis from. The indicators

are accessible from smart home technology and opportunistic sensing and provide the basis of future

directions for such systems [16, 17].

The ability of digital healthcare systems in visualising, interpreting data is examined in detail in

the following subsections. From the broader spectrum, indicators relating to the motion and location

of the user in their home environment are considered. Indicators relating to the quality of movement

are extensively studied in the literature [18]. Activity levels derived from data can be detected through

the use of sensing technology and algorithms development, which enabled the detection of different

activities involving motion. More specifically, automated tools can provide a health-related metric of

those activities, for instance, calorific expenditure [19].

A unique challenge digital healthcare monitoring systems are facing is the relation of their metrics

to standardised clinical scales and the identification of individuals in a multi-occupancy environ-

ment. All these systems focus on successfully estimate the expenditure and quality of movement.

Approaches towards diversification of the data and availability of data are the main drivers identified

in mitigating this challenge. These approaches could be enhanced with localisation and human

motion information from per-user unique wearable sensors [20]. Challenges and solutions proposed

by a reference monitoring system are described in detail in subsequent sections. The development

of sensing technologies in the broader field but also as part of this work for longitudinal studies is

an opportunistic approach in providing an interface between sensor systems and clinical outcomes.

In particular, environmental and on-body sensor design sensor are the two main drivers that were

considered in enabling healthcare monitoring.

An extensive review of the literature for residential environmental and on-body monitoring was

undertaken by Woznowski [10] on which the following subsections are based. The design choices

based on a systematic review of the available technologies will be presented in the state of the art

section below.

1.2.1.1 On-body Sensing

Development of health monitoring systems, utilising wearable technology, brought to light challenges,

which have been identified by Chan [21]. Together with challenges, prospects of such technology

for symptom detection and intervention around physiological sensing were justified. Steps towards

that direction are the fitness trackers and other glsiot devices that are being used daily. Those devices

provide information based on data collected over time that summarise user well-being and activities.

A notable example is the count of steps over a day reported by fitness trackers. Such daily summaries

could be extended to show monthly patterns or seasonal patterns, providing a stored record that

could be analysed in the future.

Recent developments in wearable devices (e.g., Nike+ Fuelband SE, Jawbone UP, etc.) have aided

the growth of ubiquitous and smart wearable gadgets in the form of fitness trackers and smartwatches.
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In [22, 23], a literature survey on the legitimacy, suitability and adequacy of wearable technology in the

fields of personal health informatics, behaviour change, and medical support is demonstrated. The

wearable devices are equipped with advanced sensors (e.g., accelerometers, GPS, heart rate monitors,

etc.) for personal health monitoring or fitness support. An AAL platform called Verity is presented in

[24] based on psychological signal monitoring that helps to provide original health evidence from

the human body using an accelerometer and a piezo-resistive sensor. A mobile healthcare (mHealth)

system depending on biomedical signal monitoring was introduced in [25] for telemedicine using

smartphones and wearable devices. The proposed Data Acquisition Module (DAQ) collects and

forwards biomedical signals over the internet for monitoring.

Another AAL platform based on a wrist-worn accelerometer by applying Relief-F filter-based

approach to select accelerometer features for activity recognition is showcased in [26]. The wear-

able accelerometer can identify necessary activities, such as sitting, walking, running and jumping

but did not report how to recognise standing and sleeping. A combination of accelerometer and

electromyography was considered in [27]to perform identification of falls compared to other daily

activities claiming 98% recognition accuracy.

Most of the studies in the digital healthcare systems involved concepts around human mobility.

Mobility in this context can be interpreted as activity levels when movement between locations and

activities is measured as patterns. In the use case of home monitoring, mobility could be explained

as activities of daily living and training between and within rooms.

Since the primary environment of choice is a residential setting, the mobility measurement

tools are usually wrist-worn devices worn by human users. Datasets such as [28, 29] follow the same

strategy. This kind of dataset provides empirical RSS data for wrist-worn sensors and their realistic

mobility patterns within a home environment.

Fafoutis’ [30] study on the relationship between received signal strength and packet error rates

for BLE in residential settings shows that RSSI Packet delivery rate can complement RSSI as a

piece of meaningful information on the mobility of the device in the network. Triangulation can

be used to link RSSI to the user’s location. A plethora of applications utilising received signal

strength information of broadcasted packets are employed to generate localisation information

citebyrne2018residential,d2008wireless. for a thorough survey on low power MAC (Medium Access

Control) protocols for energy-constrained wireless networks, notably [31] and [32]. Ultra-wideband

two-range localisation based on time of flight estimations were explored by [33–35] versus angle of

arrival on receiver antenna estimations on UWB multi-antenna and BLE [36].

Datasets were also created using Bluetooth low Energy packets RSSI and raw acceleration data

[29]together with location information derived from them [29]. Technologies apply traditional 802.11

standard for location estimations are also present[37, 38]. Also, infrared-based PIR sensors are able

to provide localisation modalities[39].

Patterns in data from users’ well-being and activities help the creation of interventions that could

alter their behaviours towards a healthier lifestyle. Health intervention is usually done as part of
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healthcare services, where a doctor provides some guidelines to improve or maintain health. Turcu

pointed out that IoT could be used for healthcare [40] in such a way. A plethora of other researchers

reinforces that potential [41, 42].

1.2.1.2 Environmental Sensing

Environment sensors can be categorised based on the sensing element they are capable of recording.

Especially for a residential monitoring system, room conditions are heavily considered. These sensors

are required to infer information using methods that do not affect the system or environment while

undertaking the measurement. Usually, the data collected is not the direct measurement of the

quantity but is instead an indication or proxy of that quantity. The values are meaningless without

proper conversion. Therefore, extensive calibration must be done to translate the raw data to a

physical amount. The calibration also provides the noise, non-linearity characteristics, and the

accuracy at which the information is interpreted.

If no calibration is undertaken, differential analysis of the data can give signatures, patterns and

indications in the data that could be of interest. The differential between readings over longer intervals

can make the patterns more prominent and frequent. Thus, there is still value and significance in

undertaking long term measurements, even when the calibration is not available.

Environmental sensing becomes relevant for longitudinal studies where seasonal conditions and

patterns can be recorded and observed. Studies in broader settings in wireless sensor networks for

earth sciences set the baseline [43]. The added sensor modalities allow the analysis of many fine-

grained activities [44] and their labels can be enhanced by using automated annotation techniques.

1.2.1.3 Machine Learning in Digital Healthcare

One of the requirements for home monitoring systems is the ability to gather raw data. Raw data

enable the transparency and future-proofing of the dataset. Raw data can be processed in many

different methods, and the results can be compared against any other comparable dataset. Though

compression and feature extraction techniques could significantly reduce the size of the dataset, they

could also result in loss of information from the raw data.

Thus having an unprocessed dataset increased the possibilities of compatibility with future

research in the area of machine learning. Furthermore, unprocessed data gives the ability to form

comparative studies made from future projects using similar technologies. As a result, the compati-

bility and greater application of raw data are dominant in the data format decision for healthcare

monitoring systems.

Machine learning, in this case, is aiming at converting the raw data from the sensors into features

which are then being classified into different categories. For example, the wrist movement of an

individual can be categorised into activities of daily living, including walking, cooking, sitting and

standing.
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Model-based machine learning approach [45, 46] provides a baseline at which parameters can

be fixed and potentially allows the transferring of algorithms using the same parameters between

different datasets.

Understanding the requirements of a healthcare monitoring system helps optimise the sensor

design, implementation and operation. Generally, a monitoring system has a higher flow of data

from the edge sensors to a central server rather than the other way around. A sensor, for example,can

be programmed only to transmit data to a data collection server. This directional communication

simplifies networking requirements and enables application-specific optimisations.

Mobile phones have been extensively used to provide labels to semi-supervised algorithms for

improving classification [47]. Non-supervised algorithms are also in use, but classification [48] on a

fine-grained level of activity recognition is not presented. High accuracy of classification in the range

of 80% requires complex statical tools such as hidden Markov models and conditional random fields

and precise time labels to achieve timeslice accuracy in the 95% range [49].

Understanding the different signs from patients movement and behaviour could help clinicians

diagnose the health condition of the patient, as the clinicians are a pivoting point on the translation

between the physical actions of the user and healthcare-related metrics. They are the reference

point when it comes to understanding health. Nevertheless, with the increasing number of people

require medical assistance and the rising cost of healthcare, new inventive ways are required to meet

healthcare demand.

People are spending more time at home, especially when they are ill. With the increasingly ageing

population, the demand for healthcare or home monitoring is increasing over time [4]. Healthcare has

traditionally been a human-centric practice. As with many other areas of research, a trend towards

automated connectivity has been established [50]. Automations are beneficial since they reduce the

workload for simple tasks by offloading them to computational systems, removing repetitiveness in

some areas of the profession.

Offloading of tasks reduces the workload on the health practitioners. Less workload allows re-

source diversion leading to greater specialisation and widens the research into unexplored territories.

These new processes then reach industrial or clinical applications leading to new job opportunities.

Therefore, having a machine operated monitoring system for long term patients is more financially

beneficial than traditional monitoring methods.

Digital healthcare is the broader term for research and clinical directions towards healthcare

digitisation and automation. For example, a machine can be used to examine the health condition

of an individual and provide feedback to them and their carers to further improve their health or to

minimise adverse of their condition. The individual steps involved in achieving such a quest have

currently been the focus of research in the field.

Key enabling factors contributing to the proposition of such systems originate from the advance-

ments in artificial intelligence and digital technologies. In particular, the focus is given on artificial

intelligence applied to opportunistic sensing from consumer-grade digital technology. Artificial
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intelligence in this context is the derivation of machine learning algorithm models that predict the

quality of living and wellbeing. The approach taken deviates from the traditional human-centric

data collection. Instead, the focus is placed on the user’s interaction with the environment. Digital

data traces this interaction generates from sensors in the vicinity of the user are considered the input

data from artificial intelligence algorithms. The number of activities, actions that could be associated

with a home, are boundless. However, by reducing it to a set of activities, those machine learning

algorithms can provide a more accurate prediction on what actions the user is performing, which

can reach high accuracy in predicting the activities of daily living [28].

For those algorithms to predict a particular set of actions accurately, a calibration or training

process is required. The machine learning algorithms are generally separated into supervised and

unsupervised. The supervised algorithms require data to be annotated. As such, any action that is de-

tected will be registered with annotation during a training process. On the other hand, unsupervised

machine learning usually classifies the data into clusters with distinct signatures and do not require

any annotation.

Once an algorithm has been trained, a predictor can use incoming data to do classification and

therefor further assessments. In this case, data is originated from IoT monitoring systems and fed

into machine learning predictors. This automated assessment methodology associated with IoT

systems can be transferred to healthcare assessment. Support for this statement can be found in

research in the field of human motion assessment [51].

Bergmann [52] has studied patients and clinicians preferences. The outcomes of this study have

been in-line with the co-design workshop outcomes from SPHERE [53]. These elements have been

introduced in the design of each sensor and user interface illustrated in the following chapters.

Patterns in the data can be recognised and associated with the individual activities of the user.

Pattern recognition can be generalised for human activity presence detection [54]. In addition

to sensors described previously, other attempts in characterising and annotating human motion

using dual accelerometers [55], rgb+d cameras [56] and [57] for analysing human activity have been

proposed. Location-based annotation [58] complemented by single accelerometer-based activity

monitoring [59, 60] has been evaluated. Twomey and Tao [61, 62] have studied energy expenditure

based on accelerometer data as well.

1.2.2 Voice-User Interfaces and Co-Design

Apart from the research that has already progressed in creating an automated assessment of health-

care indicators [63], on another direction, the feedback has been collected on the quality of in-

teraction between VUI and users with disabilities [64]. Differences in social behaviour between

human-to-human versus conversational agents have been studied [65].

Hints of artificial intelligence were identified in the semantic representation of language in

conversations between the user and the voice agent. Amazon’s Alexa utilises the Alexa Meaning

Representation Language [66]. This language semantics can be combined with research on healthcare
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language [67] to create a more tailored healthcare experience. The requirement for generating a

shared language between smart health technology researchers and users was identified in workshops

done as part of the SPHERE technology co-design workshops and focus groups.

Research also has been undertaken in multimodal conversational interfaces using smartwatch

technology [68]. User interface modalities introduced in the wrist-worn wearable sensor technology

designed for the SPHERE platform could be a suitable candidate for such implementation. The user

interface options provided on that particular sensor, together with the event-driven low-latency

two-way communication mechanism implementation using BLE could create responsive real-time

interactions. Such interaction could be possible without compromising the maintenance-free nature

of the wearable device.

Long-term studies were also carried out in using VUIs in home environments [69]. The interac-

tions between Artificial Intelligence and a number of users introduce new concepts in accounting for

conduct in voice interaction. On the same lines, research with audio-only interfaces in large groups

as an alternative to graphical displays has been studied [70]. These studies approach the language

and voice interaction from an ethnomethodology and conversation analysis.

Examining voice assistants interactions from a more personal standpoint, they can provide a

companion to the users in addition to their assistant functionality [71]. Further signs of companion-

ship have been identified for elderly users [71, 72]. Forums have identified the potential of VUIs in

a broader range of domains [73]. Ambient Intelligence (AmI) [42] has been envisioned as a techno-

logical solution for supporting people affected by various physical or mental disabilities or chronic

disease.

Rather than holding a regular focus group discussion, organising a bodystorming session with a

whole class at the school mentioned previously has been opted for. Bodystorming [74] is a method

that allows for the generation of ideas in context and permits immediate feedback for generated

ideas and insights. Thus it can provide a more accurate understanding of contextual factors [75].

Bodystorming has also been previously shown to be an effective method to engage sighted and

visually impaired children in inclusive ideation and co-design, enabling the sharing of perspectives

and exposing the diversity of abilities [76].

1.2.3 Low Power Wireless Sensor Networks

Generally, the two critical elements in the choice of wireless networking platform are the data

bandwidth and signal coverage requirements. For residential networks, 2.4Ghz has been the de factor

standard frequency of choice for wireless networking. Since the number of devices has increased from

the growth of IoT, wireless networks have evolved to accommodate the increased number of those

devices. There are other ISM frequency bands exist, and studies have been made on sub-gigahertz

networks.

In the following chapters, the focus will be on the wireless networks operating in the 2.4GHz. Other

systems using licensed bands, including cellular networks, will not be covered. IoT devices, depending
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on the application, impose some requirements on the bitrate for an uplink and downlink connections.

Moreover, if the device is mobile, the network is expected to provide reliable communication coverage

in the areas the device will operate. The increased number of tools required some collision avoidance

techniques to utilise and reduce packet losses due to collisions. Studies on the collision avoidance

systems can be dated back in the 1970s with the ALOHA System [77].

Generally, the two metrics in focus on the choice of wireless networking platform is based on

the data bandwidth and signal coverage requirements. Since then, frequency and time allocation

scheduling have been proposed in cellular and personal area networks over the years for higher

utilisation of the radio spectrum. In general, 2.4Ghz networks were dominated with devices using

802.11 standards, also known as WiFi.

Typically, devices operate at a single frequency band with access allocated dynamically in time

windows. Communication and access to the radio medium are managed centrally from an access

point. In some cases where networks operate in topologies that are not comprised of just direct

communication channels, other issues arise. A notable example is the hidden terminal problem [78]

where devices cannot sense each other while sending data to the same receiver. Similarly, the issue of

exposed terminals arises in the case where senders can detect each other but can transmit safely to

different receivers. Due to various layouts and path loss characteristics of each house, sensor network

systems must be able to adapt to these situations. Systems deployed in the wild are facing challenges

with packet loss [79].

Multi-dwelling properties specifically pose several challenges to IoT sensor networks [80]. Community-

based housing and caring are fairly common. Atallah [81] proposes a framework operating in these

environments providing a classification of activity based on Bayesian models. The main network

protocols in focus are 802.15.4e [9] and BLE low energy (BLE) [82]. The 802.15.4e is a media access

control (MAC) and physical layer (PHY) layer standard, while BLE spans across multiple layers. To

further proceed in this section, some understanding of low power mesh networking is required; the

BLE standard is a closed source industry-driven protocol. The standard specifies all the requirements

for a device to be BLE compatible, which leads to little freedom in optimising the standard and

modifying the protocol stack. Therefore BLE can be used as a comparison to the IEEE 802.15.4e.

Both of these two networks operate in the same frequency band. The frequency band is divided

further into channels. BLE has 42 channels, while Time-Slotted Channel Hopping(TSCH) has 16

channels. The ability to transmit and receive data over multiple channels at the same time reduces

packet collisions. Potentially BLE can support 84 devices talking in pairs to each other at the same

time. Thus to allow the network utilisation to increases those devices should communicate with each

other rather than all of them communicate with a central access point which is the basis of WiFi

networks.

BLE standard updated the PHY layer in the transition from version 4.2 to 5. As of BLE 5, the

symbol rate for low energy (LE) PHY supports both 1Mb/s and 2 Ms/s. Also, BLE 5 supports coding

for forward error correction for increased range with 125 kb/s using eight symbol coding and 500kb/s
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when using two symbol coding [? ]. Coding enables configuration of the physical layer to adapt to the

radio channel characteristics to increase PDR.

The other applicable standard, IEEE 802.15.4, is an open-source standard which provides inter-

operability and services to multiple protocols and layers above the link layer. 802.15.4 standard falls

in the LLN network category. Thus devices with power and processing constraints can seamlessly

integrate into those networks. 802.15.4 supports multiple topologies, including mesh networking.

There are several advantages that 802.15.4 has compared to other candidates, including BLE and

ultra-wideband UWB, originating from its open-source nature. Those communication problems

described above can be exhibited in networks with star or peer-to-peer topologies. Star topology,

as the name implies form a star originating from the coordinator to other nodes. For a general

IEEE 802.15.4 network topology, it has one central node called the PAN coordinator with which

all other nodes communicate. In peer-to-peer network topology, communications may also take

place between different nodes and not necessarily via the coordinator. 6TiSCH standard provides

an architecture for IPv6 standard over TSCH mode of IEEE 802.15.4. TSCH uses DODAG algorithm

to form networks links which are directional. A property of directional links is the uplink routing

could be a different path to the downlink routing path. RPL is a routing protocol that uses DODAG to

form the network. Currently, TSCH does not specify any upper link scheduling mechanisms. Link

scheduling is a critical area of research. Suggestions for distributed or centralised link schedulers are

promising research topics.

An implementation of a centralised link scheduler is proposed by [83]. As mentioned above, TSCH

has 16 channels in total. For each channel, radio channel access time is divided in 10ms timeslots

that are grouped in slot frames. In the context of the hidden and exposed terminal, devices can be

allocated timeslots and frequency channels that eliminate those problems. For example, assuming

four different devices (A, B, C, and D) all synchronised with a known transmission and reception

schedule, device A can communicate with device C simultaneously when device B communicates

with device D on the same timeslot. In this situation, a general limitation is that in the schedule

two-directional links must not converge to the same frequency on the same timeslot.

TSCH allows for improvements in reliability in dense networks when the packet rate is higher.

TSCH can also improve energy consumption by limiting retransmission from packet collisions.

A comparative study on the BLE incorporating a similar optimisation cannot be evaluated since

synchronising extensive piconet connections was not possible on BLE since its standardisation in

2010. BLE, in comparison with IEEE 802.15.4e TSCH, can be used in simple network topologies,

notably, single ad-hoc links connecting two devices. A device can be connected to multiple ad-hoc

connections but the scalability of such a system has not been proven experimentally. A complete

protocol stack for sensor networks and IoT sensors based on 802.15.4 is available in open-source

operating systems. A notable example that initially supported network protocol stacks is Contiki

[84, 85]. The ability to support 6LoWPAN at the adaptation layer and routing protocols, including

RPL, is an essential enabler for IoT for constrained devices. 6LoWPAN also enables traditional
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Internet protocols to be used at the transport and application layer. User Datagram Protocol (UDP)

is considered as one of the most widely used transport layers for networks. On top of UDP, the

Constrained Application Protocol (CoAP) is a light and efficient protocol to provide application

services to the host.

The following chapters demonstrate utilisation of these network technologies, topologies and

standard implemented in hardware that allows IoT monitoring systems to be implemented. In terms

of actual hardware CC2650 [86] with its support for both BLE and TSCH operation was chosen. The

support for this embedded microcontroller and the network standards is available in Contiki-Ng [87].

The ability to integrate different network protocol stacks with all the merit of embedded micro-

controllers gives design freedom to meet the demanding requirements of residential monitoring. The

recent development of inexpensive sensors compatible with such microcontrollers allowed reliable

and internet-enabled data collection. These sensors generate data of generic measurement units with

minimal power requirement. When generic sensor data is combined with data analysis, information

can be inferred from signatures and patterns in those measured values collected over time from

the sensors. The purpose of this work is not to interpret those patterns and signatures but instead

provide the data required for robust and accurate analysis. Studies on the msp430 [88]microcontroller,

presented the potential of constrained microcontrollers for IoT applications which the following

chapter’s hardware implementations build upon.

Some features from the MSP430 has been migrated to other platforms including the CC2650 and

2640 BLE and 802.15.4 microcontroller Unit. The software running on those embedded devices can

also affect energy consumption [89, 90]. Minimising resource conflicts and task simplification in

such systems can improve the stability and minimise the energy consumption of the devices. These

approaches are further examined in the following technical chapters.

1.3 State of the Art

SPHERE (a Sensor Platform for Healthcare in a Residential Environment) is a multi-purpose, mul-

timodal platform of non-medical home sensors that envisions to be an enabling technology for

behavioural analytics and healthcare provision in a residential environment [10]. Different to many

other smart home health systems evaluated in controlled environments [91][92], the SPHERE plat-

form is deployed in a large number of properties in the Bristol area for a period of up to 12 months

(see SPHERE’s 100 homes study).

The SPHERE platform is a Digital healthcare monitoring system that was developed with close

communication between members of public advisory groups and clinicians alike. It’s a pioneering

project that uses IoT for health-related research. The main aim of the platform was the identifica-

tion of a monitoring system required by the clinicians to form an accurate picture of individuals

healthcare in their environment. In Figure 1.1 an illustration of the final sensor setup of the “100

homes study” is shown. The two categories of sensors used in the setup are environmental sensors
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Figure 1.1: A portrayal of Sensor Modalities in SPHERE Digital Healthcare Monitoring platform. (A)
Environmental Sensors,(B) Forwarding Gateways,(C) RGB+D Cameras,(D) Power Meter,(E) Water
Flow Sensor,(F) Wearable Sensor Copyright 2019 Wangqing Xie, Reproduced with Permission

and mobile wearable sensors. Environmental sensors are employed to collect information about the

room conditions while a wrist-worn sensor provides information identifying individual users. En-

vironmental sensors are labelled as (A.1),(A.2),(B.1) ,(B.2) ,(C.1),(C.2),(D.1),(D.2),(E); the wearable

sensing labelled with (F) and the localisation is covered in detail in the next chapter.

A pattern is going to form in the following paragraphs. An introduction to the capabilities and

sensing potential of each sensor will be made. Then, the factors affecting their performance and the

data quality will be discussed. By the end of the description of the SPHERE system, the challenges

presented to a healthcare monitoring system would be justified. Sensors (A.1) and (A.2) are using

the second version of sphere environmental sensor SPES-2. These sensors monitor temperature,

light, humidity and presence in the room. A notable feature of those sensors is presence monitoring.

Detection is achieved using passive infrared technology. Due to limitations in the passive PIR sensors,

presence is detected only when movement exists. Movement of large objects, including humans, can

trigger the sensor.

Sensors (B.1) and (B.2) collect the same environmental information as SPES-2 sensors. In terms

of network connectivity, these sensors act as mesh networking forwarding gateways providing con-

nectivity to leaf nodes such as SPES-2 over an 802.15.4e TSCH network. In addition to the above,

these gateways act as listeners to the wearable devices (F), collecting RSSI and motion data over a

BLE 4.1 Advertising mode connection.

Sensors (C.1) and (C.2) are off the shelf RGB+D cameras generate data processed using a Mi-

crosoft Kinect skeleton detection Application Programming Interface (API) together with an unsuper-

vised k-means clustering algorithm.
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Device (D.1) and (D.2) are appliances power monitors. An effort is placed on monitoring most of

the kitchen appliances such as kettles and microwaves in order to better understand kitchen activities.

Device (E) is a water flow detector that is an extension of the SPES-2 sensor. This sensor provides

information on hot and cold water usage on different taps around the house. When complemented

with appliances monitors a better understanding of the kitchen activities.

Due to the unsupervised nature of the machine learning algorithm on the camera system, the ac-

curacy depends on the colour and depth information. Changes in light condition or clothing can alter

the performance of those algorithms in successfully detecting the users. Another critical challenge

is the lack of identification of users. Having data identifying the users’ movement and location can

significantly enhance the re-identification potential of RGB+D systems. Fusing data generated from a

wrist-worn wristband together with RGB+D sensor the accuracy could be substantially improved

[93].

1.4 Overview of Challenges in Digital Healthcare Systems

Evaluating experimental platforms like SPHERE in the wild is essential in establishing the field and its

direction. Firstly, real-world IoT deployments allow us to identify and overcome the limitations of cur-

rent networking and sensing technologies. Furthermore, data collected from real-world deployments

are required for the development of robust machine learning models that can operate effectively in

real-world situations where missing data is a common issue [94]. The monitoring system has to be

appealing enough to be accepted by users and then be approved for installation in their own homes.

By adopting the platform to users’ requirements, the project managed to deploy the platform in more

than 50 households in Bristol [95].

Home environment is an environment where sensors could provide meaningful data related

to healthcare. Sensors with different sensing capabilities installed in key locations can give rich

and multimodal data that could be further processed and associated with the health conditions

of the habitats living in that home. A project looking into the ambient assisted living and ambient

intelligence is the SPHERE project [10]. Being part of the SPHERE group and working closely with

environmental sensing and on-body sensing work packages leads to a better understanding of

healthcare monitoring systems. The findings are presented in the following chapters.

Digital healthcare systems need to adhere to some particular requirements with a set of spec-

ifications and restrictions that are inherent to the sensitivity of health-related matters. Firstly the

limiting factors about healthcare systems collecting data from users must be ethical user-friendly and

user acceptance. These factors are then causing limitations on the underlining technology. Medical

conditions and individual healthcare is a sensitive matter. Designing healthcare systems that are user

acceptable and ethically approved impose significant constraints on the underlining technology and

the type of data being generated.

The selection of sensors used in the SPHERE project was an active collaboration between advisory
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groups members of the public and potential participants of the study. The project had a pioneering

approach to agile development of sensing platforms tailored to user-centric design. SPHERE project

has been an essential enabler of digital healthcare, and research output from the project has migrated

into the further spin-off research including Cuboid [96], Hemisphere [97] and PD-Sensors [98].

One of the essential aspects of the sensor development for the project was the definition of a set

of requirements for a dedicated fit for purpose sensors. Preliminary work carried out to establish

the technological backbone for a digital healthcare monitoring system are demonstrated in [60].

The work presented the current state of the art system for the best results in terms of monitoring.

However, use case requirements are needed to shape the underpinning technology. Furthermore, the

technology requirements must be acceptable to the users of such technology systems. Acceptability

of technology, in some cases, affects the ability to meet the design requirements. Limitations on the

technology have caused significant setbacks in the usability and usefulness of the data available to

researchers for further processing. A few shortcomings can be identified in the ability of the sensor to

depict information of the environment accurately. A fundamental limitation of this sensor is the lack

of information when a user is inactive in the room. Also, the detection sensitivity across the field of

view is not linear due to the polygon design of the sensors.

Moreover, changes in weather condition can have an impact on the readings. These changes

could be shown on the light and temperature readings; thus, extra care needs to be taken when

different measurements are used to identify patterns in those readings. The forwarding gateways

are dual-purpose devices. In a generic IoT, environment sensors can be categorised, based on the

purpose they fill, into a vast number of categories. Narrowing down to a digital healthcare monitoring

system, the architecture proposed by SPHERE for sensor classification could be used. Sensors can

then be classified into environmental sensors, on-body or wearable sensors and imaging sensors. The

two categories interested are on-body and environmental sensors since they share a lot of similarities.

Concerning the power supply, access to mains supply might be scarce. Therefore, the devices

used are preferred to be powered by a battery or harvesting energy from the environment. Use of

wireless protocols has low power and resource requirements than the base rate protocol. This mode

is ideal for IoT devices with power and computation constraints.

One sensing element that is currently lacking from the SPHERE system which could provide

valuable information on localisation and social interaction patterns is an ambient sound sensor.

The application of MEMS technology for audio transducers reduce the power, footprint and bill

of materials requirements for ambient sound sensors. The sensors involved in this work are the

environmental and on-body wearable sensors; both are resource-constrained and power-constrained

microcontrollers. The vast majority of such sensors fall into the IoT category, and the sensors are

part of small wireless self-organising networks as well. Beyond these sensors, a conversational agent

is presented, filling the need for annotated data and expansion of user interfaces. The need for

user interfaces was created as a validation method of machine learning models and the increasing

demand for user interaction.
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1.5 Contributions to State of the Art

This PhD, funded by SPHERE IRC, was started in 2015 to undertake interdisciplinary research on

emerging technologies implementable in healthcare monitoring systems. This thesis delivers on IoT

sensor design for such systems, especially the use of analogue and embedded microelectronics to

develop interconnected sensors that generate data to meet the requirements of the systems. Insights

on the novel approach towards data collection through analogue signals digitisation, together with a

sophisticated evaluation of those implemented concepts are established in the following chapters.

The peer-reviewed output of this work in publications is listed in section Published Work.

1.5.1 Summary of Contributions

Together with the published research, invaluable data was generated by deploying sensors in about

100 participating homes within Bristol, UK area. Lessons learned from deploying the sensors, and

the added value on the dataset created new research potential in a previously unexploited field.

Contributions identified as outputs of this interdisciplinary work are spread across the chapters as

follows.

Contributions in Chapter 2

Results from this chapter were presented in IEEE SMARTCOMP 2018 on novel sensor design and

implementation of an environmental sensor. The sensor is an outcome of the research on moving

towards lower power usage on IoT sensors. It is based on previously published work on environmental

sensing.

• Introduced an accurate depiction of the challenges presented to residential environment

monitoring systems.

• Contributed towards the development of an environmental sensor with expansion capabilities

of additional sensing elements.

• Verified the expandability of the environmental sensor design by adding external sensing

modules to the design.

• Presented a low maintenance non-invasive sensor design, which is currently being deployed in

the wild, collecting data on peoples’ water usage patterns in residential homes.

• Generated simulation models and compared them against real data generated from the pro-

posed sensor.

• A mixed-signal embedded filter generating features for machine learning algorithms.

• Evaluated the sensor described above using state of the art machine learning algorithms.
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Contributions in Chapter 3

Contributions to research associated with this chapter were published in EAI Endorsed Transactions

on Pervasive Health and Technology on wrist-worn wearable interconnected sensors. Work on the

further development of that technology has been submitted to EWSN 2019. The focus was put on

replicating current generation wearable sensors capabilities while introducing improvements.

• Identified challenges for on-body sensing derived from users and the current state-of-the-art

technology.

• Introduced a wearable sensor that meets the demands of user-accessible low maintenance

healthcare monitoring system.

• Recommended optimal specifications for data collection quality for a wrist-worn sensor.

• Benchmarked wearable sensors in real-world deployments.

• Evaluated current power analysing test-beds and proposed improvements to the methodology.

• Evaluated the predictability of energy consumption patterns of that wearable sensor.

Contributions in Chapter 4

Work presented in this chapter contributed towards published work that has received a "Best Paper"

award in CHI 2019. Using embedded IoT technology, web services and a voice artificial intelligent

agent an interaction platform implementable on many applications is presented.

• Designed and implemented a human interaction voice user interface.

• Interconnected a voice artificial intelligent agent with other tangible elements.

• Proposed a non-intuitive user interface with expandability options.

• Designed and implemented user interfaces for the wrist-worn and environmental sensor

presented in chapter 2 and 3 respectively.

Contributions in Chapter 5

Contributions presented in this Chapter has helped in delivery research output for a paper presented

in 2018 IEEE WCNC. Also, the methodology presented in this chapter helped to derive and verifying

results for the water sensor described in chapter 2 and the on-body sensors in chapter 3.

• Characterised the energy consumption behaviour of IoT sensors and the cost of data genera-

tion.

• Signified the importance of dynamic sampling and its power-saving potential.
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• Described sources of noise and errors in electronic circuits responsible for generating data.

• Specified and verified, ways on how dynamic sampling could be implemented in environmental

and on-body sensors.

• Generated offline accelerometer data models for compression algorithms.

1.5.2 Research Questions and Objectives

This thesis tries to provide answers to the following research questions on how digital technology can

be introduced into residential healthcare monitoring.

• [Q1]: What criteria IoT sensors should meet to be suitable for residential, environmental or

on-body, monitoring?

• [Q2]: How can the quality of the data generated from IoT sensors can be considered fit for

purpose?

• [Q3]: How maintenance of healthcare monitoring systems can be minimised?

• [Q4]: In what ways a user can interact with a IoT system and what is added value of such

interaction?

• [Q5]: How can the energy consumption of IoT sensors be minimised while meeting the data

quality requirements?

Considering the questions above, this thesis sets aim the following objectives regarding digital

healthcare monitoring platforms.

• Propose and optimise an end to end system architecture.

• Create an understanding of the challenges faced in a home environment.

• Identify opportunities for optimisation in the aforementioned platforms and subsequently IoT

networks.

• Design, implement and integrate novel sensing technologies into those systems.

• Design and implement novel interfaces interacting with such systems.

• Understand the energy cost associated with data generation and collection.

• Present lessons learned from the design and implementation of user acceptable digital health-

care sensors.

• Undertake optimisations of IoT sensors operation based on real-world data.
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• Examine the effectiveness of interaction between IoT platforms and users through interfaces.

• Propose a system that serves digital health monitoring systems while allowing for interoper-

ability, expansion and customisation.

• Maximise the suitability of such a system by minimising the power consumption and expanding

the sensing capabilities of individual sensors.

1.6 Structure of Thesis

Structure of the thesis is shown in Table 1.1. Technical chapters are concluded with a discussion

chapter. The purpose of the table is to illustrate the design of sensors and subsequently, sensor net-

works for IoT as the chapters progress. The chapters have their literature and related work embedded,

assisting in providing a better understanding of each chapter’s scope and contributions.

Chapter 2 introduces the reader into the concept of low-power sensing for IoT, which is explicitly

designed to meet the requirements of low-maintenance environmental monitoring, by providing an

overview of such a system and the relevant literature. Additionally, a novel sensor designed for such

systems and later extension of the sensor is showcased.

Chapter 3 supports the justification for limiting the power of IoT sensors to provide adequate and

predictable battery life. To that matter, wearable technology designed over multiple iterations and its

performance in real-life deployments are illustrated.

Chapter 4 puts IoT in the bigger picture through contributions made in interacting intelligent

computing agents with humans. A proposed system and its implementation exploit the interaction

potential. The significance of systems of this kind has been proved by a “Best Paper” award at the

most distinguished HCI conference.

Chapter 5 establishes the metrics of quality and shows the tradeoff between energy and the quality

of generated data from digital sensors. Novel optimisation techniques have been implemented in

hardware and software level, addressing the tradeoff while generating data that fulfils the needs of

machine learning classification algorithms.

Finally, discussions and conclusions are stated in Chapter 6, providing a view on how contri-

butions made in this thesis overcome challenges in the development and the direction of digital

monitoring systems for healthcare. Recommendations and best practices derived from this work are

provided for further research into the field.
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1.6.1 Published Work

The following work has been published as an outcome of this PhD.

[C1]: X. FAFOUTIS, A. ELSTS, A. VAFEAS, G. OIKONOMOU, AND R. PIECHOCKI,Spes-2 – a sensing

platform for maintenance-free residential monitoring, in Proceedings of the 2017 International

Conference on Embedded Wireless Systems and Networks, 2017, pp. 240–241.

[C2]: X. FAFOUTIS, A. VAFEAS, B. JANKO, S. SHERRATT, J. POPE, A. ELSTS, E. MELLIOS, G. HILTON,

G. OIKONOMOU, R. PIECHOCKI, AND I. CRADDOCK, Designing wearable sensing platforms for

healthcare in a residential environment, EAI Endorsed Transactions on Pervasive Health and

Technology (2017).

[C3]: J. POPE, A. VAFEAS, A. ELSTS, G. OIKONOMOU, R. PIECHOCKI, AND I. CRADDOCK, An accelerom-

eter lossless compression algorithm and energy analysis for IoT devices, in 2018 IEEE Wireless

Communications and Networking Conference Workshops (WCNCW), IEEE, 2018, pp. 396–401.

[C4]: A. VAFEAS, A. ELSTS, J. POPE, X. FAFOUTIS, G. OIKONOMOU, R. PIECHOCKI, AND I. CRAD-

DOCK, Energy-efficient, noninvasive water flow sensor, in Proceedings - 2018 IEEE International

Conference on Smart Computing, SMARTCOMP 2018, IEEE,2018, pp. 139–146.

[C5]: O. METATLA, A. OLDFIELD, T. AHMED, A. VAFEAS, AND S. MIGLANI, Voice user interfaces in

schools - co-designing for inclusion with visually-impaired and sighted pupils, in CHI 2019 -

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ACM, 2019,

p. 378.1

[C6]: X. FAFOUTIS, A. ELSTS, A. VAFEAS, G. OIKONOMOU, AND R. PIECHOCKI, On predicting the

battery lifetime of IoT devices- experiences from the sphere deployments, in Proceedings of the

7th International Workshop on Real-World Embedded Wireless Systems and Networks, ACM,

pp. 7–12.

[C7]: A. VAFEAS, MI. BISWAS, X. FAFOUTIS, A. ELSTS, I. CRADDOCK AND G. OIKONOMOU,Wearable

Devices for Digital Health: The SPHERE Wearable 3,2019, International Conference on Embed-

ded Wireless Systems and Networks, 2019

In addition to the publications above the contributions were made related to the SPHERE project

research output. SPHERE developed a platform that had been deployed to more than 50 homes over

roughly a year in each home and healthcare data together with usage guides are available.

• [BC1]: P. WOZNOWSKI, A. BURROWS, T. DIETHE, X. FAFOUTIS, J. HALL, S. HANNUNA, M. CAM-

PLANI, N. TWOMEY, M. KOZLOWSKI, B. TAN, N. ZHU, A. ELSTS, A. VAFEAS, A. PAIEMENT,

L. TAO, M. MIRMEHDI, T. BURGHARDT, D. DAMEN, P. FLACH, R. PIECHOCKI, I. CRADDOCK,

1Best paper CHI 2019
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Table 1.1: Mapping of publications to relevant chapters. Also research questions are address to the
corresponding chapters.

Research Output Research Questions Chapter Status

[C1]: Spes-2 – a sensing platform for maintenance
free residential monitoring [Q1],[Q3] 2 Published
[C2]: Designing wearable sensing platforms for
healthcare in a residential environment [Q1] ,[Q2],[Q3] 3 Published
[C3]: An accelerometer lossless compression algorithm
and energy analysis for IoT devices [Q5] 5 Published
[C4]: Energy-efficient, noninvasive water flow sensor [Q2],[Q3],[Q4],[Q5] 2,4,5 Published
[C5]: Voice user interfaces in schools - co-designing
for inclusion with visually-impaired and sighted pupils [Q4] 4 Published
[C6]: On predicting the battery lifetime of IoT
devices- experiences from the sphere deployments [Q3] 3 Published
[C7]: Wearable devices for Digital Health, the Third
Generation of the SPHERE Wristband [Q4],[Q5] 3 Published
[BC1]: SPHERE: A sensor platform for healthcare in a
residential environment [Q1] 2 Published
[WP1]: A guide to the sphere 100 homes study dataset [Q2] 2 Online

AND G. OIKONOMOU, SPHERE: A sensor platform for healthcare in a residential environment

,Designing, Developing, and Facilitating Smart Cities, Springer, 2017, pp. 315–333.

• [WP1]: A. ELSTS, T. BURGHARDT, D. BYRNE, M. CAMPLANI, D. DAMEN, X. FAFOUTIS, S. HAN-

NUNA, W. HARWIN, M. HOLMES, B. JANKO, V. PONCE LOPEZ, A. MASULLO, M. MIRMEHDI,

G. OIKONOMOU, R. PIECHOCKI, S. SHERRATT, E. TONKIN, N. TWOMEY, A. VAFEAS, P. WOZNOWSKI,

AND I. CRADDOCK, A guide to the sphere 100 homes study dataset,Arxiv, 2018.

24



C
H

A
P

T
E

R

2
SENSING IN RESIDENTIAL ENVIRONMENTS

T
he advancements in sensing technology introduced the new potential for environmental

sensing modalities. Embedded microelectronics manufacturers have been optimising their

microcontrollers for low quiescent current and maximum efficiency computing. In this chap-

ter, the low-power and low-maintenance prospect of IoT are examined.

2.1 Introduction

This chapter presents a water flow sensing device that is detecting pipe vibrations when water is

going through water pipes. The proposed solution is non-invasive and energy-efficient, as it does

not require cutting the water pipes or altering the plumbing system, and it consumes less than 2 „A

current in continuous operation. This water flow sensor has been integrated to SPHERE, a sensing

platform of non-medical sensors for healthcare monitoring and behavioural analytics in a home

environment, that has deployed to more than 100 residential properties.

The main focus of the sensor is on hot and cold water flow detection in domestic kitchen and

bathroom taps for smart home environments. Water flow monitoring is typically valuable for long-

term behavioural monitoring systems for health-related applications. The tracking on household

water usage enables the collection of long-term data on the hydration levels of the house residents,

and water usage is also associated with several daily activities such as cooking and cleaning.

2.1.1 Motivation of Sensor Modality

Low power characteristic is critical for conducting long-term studies [44, 99, 100]. Sensors that

are self-powered or battery-powered, which meet the low power requirements, can provide added

flexibility and dependability that leads to lower maintenance.
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The increase of sensor modalities in a kitchen environment utilises the kitchen facilities for

better evaluation of activities. Some key indicators, for instance, the usage time and usage amount of

different types of kitchen equipment and appliances, can be derived from a variety of such sensors in

a kitchen environment.

Meal complexity is an essential health-related behaviour indicator that is highly related to cutlery,

appliances and cookware usage. As the complexity of the meal increases, the water usage, associated

with washing things before and after the meals, increases as well. Despite their apparent value,

water flow sensors are rarely deployed in residential sensor deployments; water flow monitors are

occasionally installed in the mains waters pipe, instead of each hot and cold water pipe within the

house [101]. The monitoring of household water flow is particularly challenging from a deployment

perspective.

Traditionally, measuring water flow requires placing of a flow sensor in the plumbing installation.

These sensors use the flow of water to rotate a propeller inside the pipe. The rotation of the propeller is

detected using hall-effect sensing or another electromagnetic related sensing outside of the pipeline.

Previous implementations that continuous monitoring water flow are generally mains-powered. In

most cases, IoT sensors are categorised into battery-powered and mains-powered. Mains-powered

sensors have an unlimited power budget; thus, they tend to have more processing power and higher

active times, allowing for accurate continuous monitoring. On the other hand, battery-powered

devices usually perform simpler and less complicated actions since they are more computationally

constrained.

The first generation of the SPHERE system incorporated water flow monitoring for each hot and

cold water pipe using off-the-shelf hall-effect water flow sensors [23]. After the first pilot deploy-

ments, these sensors were abandoned due to low user acceptance as well as high installation and

maintenance overheads. Altering the plumbing system for the installation of water flow sensors was a

deal-breaker for many participants and thus, compromised recruiting. Moreover, the installation was

significantly time-consuming. Indeed, one of the requirements for the deployment process was that

the installation visit should take less than three hours, and meeting this deadline was very challenging

owing to the installation of the water flow sensors. Also, these off-the-shelf water flow sensors had to

be mains-powered as they were not sufficiently power-efficient to run on battery. The power supply

was particularly challenging due to the unavailability of power sockets close to water pipes. Lastly,

there was a high risk for leakages, which translates into increased deployment costs for insurance

and potential compensations.

Kuznetsov and Paulos [102] designed a low-cost acoustic water meter as part of persuasive

technology for water conservation. To reduce false positives (e.g., incorrectly detecting the human

voice as water flow), the design matched the signal to the known, unique water flow signal. Different

to the solution proposed in this chapter, this approach requires sampling the audio signal; therefore,

it is not suitable for battery-powered sensing platforms. Mudumbe and Abu-Mahfouz [103] propose

a real-time smart water meter system for residential use. The system uses a gateway with an IEEE
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802.15.4 compatible radio for extracting the sensor readings. The gateway is intended to be connected

to an existing digital water sensor. The real-time performance of the system is showcased in their

study, but details on the water sensor installation and the system’s low power performance are not

briefed.

More studies are using hall-effect sensor designs (i.e., a propeller and magnetic sensor) for water

flow monitoring, though the propeller design would necessarily require cutting/fitting of existing

pipes. Sithole et al. [104] propose a low-cost smart water leakage detection and metering device

for homes using a hall-effect sensor; Kalo et al. [105] illustrate a prototype to monitor, control and

manage residential water infrastructures. Waghmare and Naik [106] present contact and non-contact

based water flow sensors. The contact sensor uses a propeller approach, and the non-contact uses a

camera and video processing. Gosa et al. [107] outline the design of smart water flow monitoring and

forecasting system. The system uses a YF-S201 hall-effect water flow meter along with data analytics

for water usage forecasting. Different from these works, our proposed solution does not require

cutting pipes or altering the plumbing system.

2.2 Aims

To tackle the difficulties mentioned above, in this chapter, non-invasive energy-efficient solution for

residential water flow detection is presented. This solution is achieved by sensing the vibrations of

the pipes, near the hot and cold water taps. The research focuses on the correlation of water flow at

the faucet and the intensity of vibrations on water pipes.

The proposed sensor does not require any modifications in the plumbing; at the same time, it

requires minimal power for operation. One critical challenge of detecting water flow using vibrations

is crosstalk between the hot and cold water pipes – water flow in one pipe can create subtle vibrations

to the other line. The proposed system employs SVM to generate a model that identifies the following

classes with high accuracy:no flow, hot flow, cold flow, and mixed flow.

The sensor has configurable sensitivity and can be adapted to any setup. An optional calibration

process is required for the sensor to increase data quality and classification accuracy. The proposed

water flow sensor has been integrated with the SPHERE system, as shown in Fig. 2.1, and successfully

deployed to more than 50 residential properties. The sensor, presented below was designed to

increase the dimensionality of the data that will enable observations in changes in environmental

conditions in rooms introduced by the user.

Increase in dimensionality generate more diverse data that can be fused together with other

sensor nodes data to enhance machine learning algorithm predictions for specific changes in en-

vironmental conditions. The need to increase the node sensing modalities was created from the

transition from controlled environments [91] to residential properties studied in this chapter.

This sensor modality provides an accurate time source for actions related to cooking, drinking

washing dishes and hands among other activities using a water tap. Water flow monitoring and
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detection in a domestic kitchen and bathroom taps is a particularly valuable source of information

for behavioural monitoring systems, such as SPHERE.

Indeed, behaviour related to water consumption is not only linked to health conditions, such

as hydration levels and obesity [108][109], but it is also associated with various Activities of Daily

Living (ADL), such as cooking, cleaning, and personal hygiene [110]. Generic challenges presented

to environmental sensors [111] are also applicable to home settings. Challenges, especially the

difficulties in device maintenance and data transmission, that are identified during implementation

have to be overcome. The main channel is ensuring a realistic expectation of battery life by optimising

the data sampling rate while operating in an LLN network. The sensor design must tackle this

fundamental issue while requiring minimal servicing.

In a home environment, challenges related to data processing arise – information inferred by

a property that could be measure. As such, data might not be an accurate depiction of reality if

mistranslated. An effort has been made to minimise the misunderstanding of data by reducing the

granularity of it to a more precise level. Due to the diversity among different types of home, it can be

said that the ability of sensors to provide accurate reading is more challenging in residential settings

compared to general environmental conditions. A certain level of granularity of data information

must be reached to allow the sensor operating in that level of diversity.

Sensor data collection is the starting point to the solution of healthcare digitisation. The aim is to

have a complete monitoring system understating the activities of the user and making an informed

decision based on that data. Initially, sensors are capture devices and cannot make decisions on

their own – they are meant to periodically capture information about the environmental condition

they were set to monitor. For example, a sensor can constantly track the room temperature every 10

minutes for years. The raw data from the sensors can be collected in a large dataset by communicating

the data across networks. Furthermore, these data are converted into features and are then fed into

the machine learning algorithms. Eventually, the features of the information can be a mathematical

or statistical representation of the initial data that could be used by algorithms to categorise or

classify.

Consequently, in a monitoring environment, the generation and transmission of data are the

most significant if not the only processes the sensors are performing. Optimising these processes

can result in a substantial saving in energy consumption and processing time. Therefore, energy

expenditure during data generation, storage and transmission can also be reduced. The focus of this

chapter is the optimisation of data generation by optimising the resemblance of the data of activities

that are useful in a digital healthcare context.

Data generation of the water flow sensor in this work is only triggered when vibrations above a

threshold level are detected at the tap. The features are converted into a bit-stream transmitted over

a wireless medium to a mains powered central gateway. Machine learning algorithms are used in the

central gateway to convert those features into usable data.

In terms of false signalling, false negatives are mitigated on the device by calibrating the device
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to match the vibration characteristics of individual taps by changing the gain of the amplification

stage settings. The frequency selectivity of the amplifier stage ensures background noises are heavily

suppressed. On the other hand, false positives are detected externally using a machine learning

algorithm on a gateway server.

In the chapter introduction, issues of water flow sensor implementation in real-world have been

discussed, especially the difficulties in installations and long-term maintenance. In order to solve

these problems, the water flow sensor in this work meets the following two requirements. One is that

the sensor should operate with minimal maintenance. And the other is the installation should be

straightforward in an intuitive way that does not require alterations to the user’s home.

In terms of the minimal maintenance requirement, the energy consumption of transmitting the

features over a low rate network such as Time-Slotted Channel Hopping(TSCH) is significantly lower

than the added cost of sampling at the Nyquist rate of … 10kS/s and executing algorithms for water

flow calculations on the device itself.

All the functional requirements above were met with considerations in the microelectronics

design. A low quiescent power requirement was set, which restricts the choice of available hardware.

The final implementation was aimed to be compatible with embedded microcontrollers such us

[88, 112]. The interfacing is made possible with digital signal exchange through General Purpose

Input Output (GPIO) connections and ACD sampling.

This set of conditions lead to the persuasion of crucial strategies to minimise energy consumption

and maximise compatibility of the devices. The hardware should be explicitly designed to minimise

the on-time of the microcontroller attached to the sensor. Minimising on-time can be achieved

by minimising the time required from the microcontroller to collect a reading and the frequency

at which ADC samples are collected. To further limit the energy consumption, energy harvesting

techniques were used in signal conditioning where the energy of the source signal reduces the

sensitivity requirements of the system. Sensitivity in terms of power electronics is usually mitigated

with precision and power-consuming amplifiers. Thus, energy harvesting simplifies the amplification

requirements, and therefore reduces energy consumption.

2.3 Methods

The sensor developed was designed as an extension to the SPES-2 environmental sensing board part of the SPHERE system. The interface with the system and the components involved in the design and implementation are shown in Figure 2.1.

2.3.1 Water Flow Sensor Design

Vibrations from water taps have frequencies within the audible range. Jacobs et al. [113] evaluate

measuring water flow from a tap using a microphone over a 22 kHz range. Gonzalez et al. [114] uses

an acoustic sensor to measure flow rate for agricultural sprayers. The authors determined that a

frequency range of 1500-2000 Hz was sufficient for their application. Our work concentrates within a

29



CHAPTER 2. SENSING IN RESIDENTIAL ENVIRONMENTS

Figure 2.1: Overview of the water flow sensing subsystem in a SPHERE deployment. Two piezoelec-
tric sensors are clamped in the hot and cold water pipes, near the water tap (f). Custom Printed
Circuit Board (PCB) transforms the raw analogue signal into a digital output that corresponds to
the intensity of the vibrations over a time window (e). The digital output of the water flow sensor is
collected by SPHERE Environmental Sensor (SPES-2) which forwards the data to the SPHERE IoT
Gateway (c) over an IEEE 802.15.4 TSCH network. The data is then stored to the SPHERE Home
Gateway (a). Lastly, a user interface allows the deployment technicians to calibrate the water flow
sensor to the specific pipes of each property (b).

similar bandwidth. Smith [115] provides a comprehensive introduction to digital filters using signal

processing techniques. Specifically, exponentially weighted moving average filters, a type of recursive,

infinite impulse response filter, are presented. Our work uses a variant of this recursive filter.

Piezoelectric elements are clamped to pipes close to the taps. Vibrations generated from water

flow at the faucet are transferred to the piezoelectric elements. Vibrations in this context are the

contact forces exerted on the piezoelectric element attached to the pipe. These vibrations are con-

verted to electrical voltages signals and then filtered through multiple stages. Those filtered signals

are monitored by comparators and notify SPES-2 when motions are detected. The signals are then

being sampled using an on-board ACD. The different stages of the system are presented in Figure 2.2

and Figure 2.3.

This work is only interested in the time the water tap is on; otherwise, it is assumed to be off. This

assumption limits the data generated to the instances where the user uses the tap. Thus the system

incorporates dynamic sampling. Dynamic sampling results in a reduction on the data generated and

subsequently the energy consumption of the sensor and the network it operates in, compared to a

fixed interval monitoring system. Since water usage is a few minutes per day, there is a significant

reduction in energy compared to a system reporting periodically. Also, it is highly desirable that data

is being interpreted or filtered into features before transmission to minimise energy consumption.

Also, in a multimodal sensor design, information from some sensors might not be of great importance
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Figure 2.2: Overview of the signal processing stages in the flow sensor. The flow chart shows how
the charge generated from the piezo is being processed. First, the charge is amplified in a charge
amplifier and converted into a voltage. This amplifier output voltage is then filtered and the voltage
at the output capacitor is fed to the ADC and comparator inputs.
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Figure 2.3: The schematic of the analogue processing module in the flow sensor. Three distinct stages
in the processing (boxes in Fig. 2.2) are separated with vertical bars.

at particular instances. Therefore making sure data is generated when needed is a useful feature that

can be incorporated into sensor design.

The spectral content of the vibrations varies from tap to tap. Overall, the spectral content is

limited to 10 kHz shown in Figure 2.4. The sensor is designed to process the overall spectral frequency

content and report when it detects that the tap is on at a maximum frequency of 1 Hz.. The process

used to reduce the frequency content information to a single indication of the state of the tap is

explained further in this section. The design includes analogue processing, digital logic, and machine

learning algorithms to classify the different states of the sensor. This approach is chosen because the

distribution of the spectral content is not deterministic, and thus any frequency-domain processing

would lead to high computation requirements and high energy consumption. Analysing the frequency

content would require energy-consuming methods, such as high-frequency ADC sampling and time

corrected instantaneous frequency spectrograms [116]. Interested in energy-efficiency, the chosen

approach instead focuses on the overall spectral energy generated over time.

Energy saved due to the reduction in sampling rate can be calculated by quantifying the energy

required to sample at Nyquist rate, and adding the energy cost of microcontroller wakeup and
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Figure 2.4: Power spectrum of water pipe vibrations under water flow. Periodogram [117] from
experimental data from a standard 12 mm copper pipe. There is no single dominant frequency.

shutdown shown in Figure 2.5. Filtering of signals can be accomplished by digital or analogue

processing. Analogue processing is usually achieved at the transducer where signals are purely

analogue.

The raw data is sampled at the time interval rate. The moving average filter is applied to every

sample; thus, the interval rate of the filter is the same as the raw data

2.3.2 Amplification Stage

The purpose of the amplification stage is to convert vibrations into electrical voltage signals centred

around a reference voltage. The amplifier stage frequency selectivity changes the signal spectral

content. The amplifier stage has switchable settings that affect both the gain and the frequency

response of the amplification stage. These settings for a more diverse application of the sensor. The

choice of the amplifier was a trade-off between power consumption and bandwidth with low power

consumption having higher significance on the design.

The gain of a charge amplifier layout is given by Equation (2.1). The gain is controlled by the
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Figure 2.5: Wake Up Events a wake up event with no operations, B: Reading from the ADC and writing
to registers

feedback capacitor C f since the signal, in this case, is the charge generated from vibrations at the

piezoelectric transducer qp [118].

(2.1) Gai n ˘
qp

C f
˘

1

C f
(mV /C )

The amplifier is biased with a reference voltage Vr e f using a resistor potential divider and an ultra-

low-power operational amplifier used as buffer [119]. The amplifier buffer is used to ensure a zero

impedance path for the reference voltage. Thus the output voltage is given by:

(2.2) vo ˘
1

C
¯Vr e f

With the proposed layout the amplifier operates as a band-pass filter. The lower and highest cut-off

frequency, or in other words the frequency range ( fL ¡ fH ) at which the amplifier provides a constant

gain is given by:

fL ˘
1

2…R f C

fH ˘
1

2…R f (Cp ¯Cc )

The value of the high-frequency cut-off point is not considered in this design since the values of the

internal capacitance Cp and cable interference Cc are below 1 pF and the frequency range of the

signal is up to 3 kHz based on the choice of amplifier and its parameters. Thus both the gain and

the low-frequency cut-off is controlled by the feedback capacitor. In the design, a DIP switch that is

shown in Figure 2.1 (e) was used to switch between capacitance settings, listed in Table 2.1.

A major parameter affecting the amplifier frequency response is the slew rate. The slew rate require-

ments are given by:

(2.3) Sl ewRate ˘ 2… ¢ F r equenc y ¢V ol t ag e (V /s)
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Table 2.1: Configurable settings of the Amplifier Stage

Capacitor Value Gain Low Cut-off Frequency

4.7 pF 12 mV/nC 10 Hz
33 pF 30 mV/nC 1.5 Hz
37.7 pF 26 mV/nC 1.3 Hz

Figure 2.6: An traditional active low-pass filter (left) and a passive filter with diode (right)

The amplifier of choice, MCP6142 [120], has a slew rate of 24 V/ms, which is able to drive signals

of up to 3 KHz to levels that can be detected. This trade-off was considered acceptable since the

amplifier only draws 600 nA per channel.

2.3.3 Filter Stage

The next stage is to process the frequency content of the signal, which gives a single indication to

show whether the tap is on or off. Such a process is achieved using a diode rectifier in series with

a low pass filter. The motivation behind using this filter is to decrease the ACD sampling rate from

1to 10000 Hz. For the sampling rate reduction some considerations on the filtering approach are

presented in Figure 2.6. Filtering is usually studied and conceptualised under linearity and time

invariance constraints. In a discrete Linear time-invariant system a filter can be characterised by:

(2.4) y[n] ˘ h{x[n]}

which is said to be linear if it obeys the principals of superposition.

(2.5) h{fi1x1[n] ¯fi2x2[n]} ˘ fi1h{x1[n]} ¯fi2h{x2[n]}
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and it is time invariant if:

(2.6) h{x[n ¡ k]} ˘ y[n ¡ k]

Linear time-invariant systems enables signal processing that is characteristed by shifted impulse

functions in discrete time.The shifted impulse functions allow the impulse response of the an Linear

time-invariant system to be defined as the output given an impulse on the input.

(2.7) h[n] ˘ h{–[n]}

(2.8) –[n] ˘

8
<

:
1 n ˘ 0

0 n 6˘ 0

Discrete-time Linear time-invariant systems or filters are often defined in terms of difference equa-

tions. The general form for a causal filter or system is:

(2.9) y[n] ˘
NX

k˘0
bk x[n ¡ k] ¡

NX

k¡1
ak y[n ¡ k]

N is referred to as the filter order. The polynomials ak and bk both have N+1 terms, thus the filter

length is usually considered to be 1 more than the filter order. Since the output considers the previous

outputs and input signal, the response to a single impulse is infinite. This form of the impulse

response is referred to as IIR. For the active first order low pass filter the transfer function can be

defined as:

(2.10) H( j !) ˘
¡K

(1 ¯ j !
!c

)
,!c ˘

1

R f C f
,K ˘

R f

Ri

Where K is the gain and !c is the cut-off frequency. In isolation the passive first order low pass filter

in the frequency domain has a time constant governing the cut of frequency given by the equation:

(2.11) fc ˘
1

2…¿
,¿ ˘ RC

The transfer function is:

(2.12)
Vout

Vi n
˘

1

j !RC
H( j !) ˘

1

j !RC

Notice from the Figure 2.8 the a third-order Butterworth filter has a steeper slope compared to the

first order low pass filter filters. The first order filters slope is 20dB per decade compared to 20dB

times (n) per decade from the Butterworth filter. The slope increases linearly with (n), the order of the

filter. The gain for an n-order Butterworth low pass filter derived from is transfer function is given by:

(2.13) G2(!) ˘ jH( j !)j2 ˘
G2

0

1 ¯ ( j !
j !c

)2n
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Figure 2.7: Extracting the filtered signal from the raw data. Time-domain experimental data and
simulations. Top: amplified vibrations from an installation; experimental data. Middle: voltage
after the diode; simulation results on the experimental data. Bottom: voltage after the filter stage;
experimental data vs simulation.

Where n is the order of the filter, !c is the cutoff frequency at -3dB and G0 is the gain at zero frequency.

In the time domain, the impulse response behaviour of this particular filter becomes exponential

weighted monotonically increasing moving average filter [115]. In other words, the voltage observed at

the output of the filter vout increases from a previous value vout with the presence of high amplitude

signals at the input vi n . The diode rectification allows only positive currents to flow to the capacitor.

Thus the diode voltage shown from a simulation in Figure 2.7 is given by:

(2.14)

vdi ode (i ) ˘ vi n(i ), for vi n(i ) ¨ vout (i ¡ 1)

vout (i ¡ 1), for vi n ˙ vout

The voltage difference between the current input and the previous output value can be repre-

sented by dV being positive when the input signal is higher than the output. The mathematical
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Figure 2.8: A comparison of the frequency response between the passive active and a more complex
Butterworth filter

model of the filter is then given by:

(2.15) vout (i ) ˘

8
<

:
fi ¢ vi n(i ) ¯ (1 ¡fi) ¢ vout (i ¡ 1) if dV ‚ 0

vout (i ¡ 1) if dV • 0

The exponential effect is the fact that the voltage increase gradient decreases exponentially over time.

The output starts at the initial voltage Vr e f which is identical to the amplifier’s reference voltage. The

voltage of the filter output holds information for all previous values of the signal that are above the

output value. Thus a single reading can be obtained after some time, and the value will be affected by

all the discrete points matching the previous condition. After that reading is gathered, the output

voltage is reset to the Vr e f voltage. This procedure is repeated at a maximum rate of every second.

Such a discrete impulse response with time interval ¢T is governed by the smoothing factor fi and

the sampling interval ¢T given by:

(2.16) fi ,
¢T

RC ¯¢T

The choice of the capacitor (C ) and resistor (R) was made based on the following criteria:

1. The capacitor C was chosen first with a value high enough to eliminate the effect of leakage

currents of the diode and the MOSFET. The leakage current also works in favour of the system

since it negates the effect of background vibrations as seen in the fifth second of Figure 2.7

(top).
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2. The resistor R was chosen based on simulation results shown in Figure 2.7 (bottom). The main

aim was that the filter output after a second could reach a value as high as the supply voltage

when the amplifier generates a rail-to-rail peak-to-peak signal.

In comparison with a more traditional active filtering approach, the proposed filtering has a time

discontinuity. A filter without the diode and discharge circuity that could allow samples to be filtered

down to 1Hz would require an integrator component. The integrator, in this case, needs to use the

instantaneous magnitudes of the initial signal to calculate the spectral energy of the signal. Spectral

energy can be calculated with signal processing utilising frequency domain estimators that could

resemble similar behaviour of the analogue implementation. Signal processing requires sampling

the signal at the baseband Nyquist frequency.

Based on the frequency components of the signal presented in Figure 2.9 the signal spectral

energy is well above the 1Hz range. Therefore, any filtering would require down-conversion of the

signal rather than traditional frequency filtering. A filter that simply blocks the frequencies beyond

1 Hz will block most of the signal energy. Thus a digital down-conversion filter will be required to

achieve this. The input signal will then have to be sampled at the 10-20 KHz range. The energy for a

microcontroller wake up is presented in Figure 2.5. Thus any alternative implementation will require

more active time on the microcontroller and the digital processing duration should be added to that.

As seen on the figure at the left the microcontroller takes about 1 ms to wake up and then sleep. Thus

any scheduled wake up calls for the microcontroller that fall short of an interval do not allow for sleep

state to be reached. A sampling rate that is higher than i.e. 500Hz will require the microcontroller to

be constantly on.

2.3.4 Event Triggering

The output voltage is monitored by a threshold comparator. If the output goes above the threshold, a

timer is set for a second and the change of the value at the output over that second is recorded. After

that second the output is reset to the initial voltage reference. The bottom graph of Figure 2.7 shows

the output of the implemented hardware filter and the results from a simulation. To detect those

changes, a low input current leakage op-amp must be chosen. The choice of the amplifier is based

on input current leakage specifications. Low current leakage is limiting the piezo discharge, and the

lack of discharge minimises the output gain requirements. The rectification is used to allow current

into a single direction, thus constantly charging the capacitor over time.

Figure 2.10 shows the output behaviour on the capacitor voltage for a particular signal. The

signal is the output of the amplifier of a a specific gain factor. The orange waveform shows the voltage

after the diode and the cherry colour is the current flowing towards the capacitor. From the graph, it

can be seen that after the voltage reaches the threshold a timer of one second is triggered to reset

the output voltage Vr e f . The timer start and ending time are presented by the shaded area under the

graph.
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Figure 2.9: A comparison of the frequency response among the proposed filter, a third-order Butter-
worth filter and the initial signal

To summarise, the system processes the high-frequency raw analogue signal and exports the

spectral intensity of the vibrations once every second. This reduction in sampling rate and the

application of filter lead to a loss of signal information. Nevertheless, the output signal is sufficient for

detecting water flow in each pipe with high accuracy, even though water flow from the hot water pipe

is causing vibrations to the cold water pipe as well, and vice versa. In post-processing, features from

the two outputs of water flow sensor are extracted, and machine learning algorithms are employed to

classify among four cases: no flow, hot flow, cold flow, and mixed flow.

The features of the sensor do not necessarily relate to water flow itself. These features can be used

in a higher-dimensional algorithm using multiple sensors that will detect activities that relate to the

water usage (i.e. washing plates, drinking water). These activities are relying on pattern recognition

and multimodal sensing, which take into account the time-line and multiple dimensions of the

features. Scripted experiments like filing a glass of water (fixed amount) can use smart algorithms

using the raw time-series data from the sensor to design a system using multiple filter banks for

frequency features by examining the amplitude at the output of those filters.
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Figure 2.10: Low Pass Envelope Detector Simulation

2.3.5 Integration in the SPHERE system

SPES-2 is a battery-powered, with Texas Instruments [112] System-on-Chip based sensor node that

runs the Contiki IoT operating system. To sample the water sensor readings, it uses the CC2650’s built-

in 12-bit ADC. The physical interface between SPES-2 and the water sensor PCB (Figure 2.1) consists

of seven wires, namely: ground, power, ADC connections for the hot and cold flow readings, interrupt

pins for hot and cold flow sensors, and a single wire to trigger capacitor discharge on the sensor’s

PCB to reset its output voltage. In terms of software, SPES-2 is based on the IEEE802.15.4-2015

TSCH standard. The TSCH standard uses channel hopping against interference and frequency-

selective fading. As a result, it is characterised by high reliability in terms of packet delivery rates and

increased predictability in terms of energy consumption. TSCH has an accurate time synchronisation

mechanism. A centralised device with a real-time clock can translate individual timeslots into

timestamps. When packets arrive from other devices to the central device, a timestamp is generated

for those packets. This timestamp is based on the timeslot at which the data was sent. Appending

time using the transmission scheduler removes the need for individual devices to keep track of time.

Microsecond accuracy of timestamping has been tested on versions of the SPHERE platform [121].
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Table 2.2: Packet format of the flow sensor data.

Field group Field name Field size

Metadata Timestamp 32 bits

Cold flow

Padding field 7 bits
Initial value 12 bits
Final value 12 bits
Interrupt state 1 bit

Hot flow

Padding field 7 bits
Initial value 12 bits
Final value 12 bits
Interrupt state 1 bit

The water sensor ADC outputs are read by a custom C driver that implements the Contiki

asynchronous sensor API [122]. The outputs are read whenever any of the two interrupt pins (i.e., the

hot and cold flow interrupts) signal high state. The outputs are also read periodically, once per minute,

even when no water flow activity is detected. This periodic reading ensures that the sensor always

produces some data when in an operational state. In this way of extracting data, it helps to implement

runtime assurance in the system through the generation of periodic heartbeat messages.

The C driver code running on the SPES-2 reads the initial ( ‘’start”) ADC value, corresponding to

the moment when the interrupt is triggered, and the final ADC value is read after one second. After

reading the voltage at the capacitor, the capacitor is then discharged by briefly setting a dedicated

‘’reset” pin to a high level. The discharge reset the capacitor voltage to the biasing level. The process

is the same when reading the sensor on periodic heartbeats, except that the interrupt pins are never

high in this case. Both hot and cold output values are read, and both are simultaneous reset at the

end of this process. During the reading sequence, the sensor’s interrupts.

The process is the same when reading the sensor on periodic heartbeats, except that the interrupt

pins are never high in this case. Both hot and cold output values are always read, and both are

simultaneous reset at the end of this process. During the reading sequence, the sensor’s interrupts

are disabled to avoid preemption of the reading sequence by receiving an interrupt of a different type

(i.e., hot interrupt after cold and vice versa). The duration of the reading sequence is at least a second;

i.e., the flow sensor never produces data with more than 1 Hz frequency. Preemption in this context

is the temporary suspension of interrupt functionality until the reading sequence is completed. The

interrupt functionality is then resumed and the task can be scheduled upon interrupt events.

The sensor data is efficiently packed in a binary format (Table 2.2). A single water sensor packet

is 96 bits long, including the four 12-bit ADC readings, the hot and cold interrupt status bits, and a

32-bit timestamp.

The data from the driver is picked up by a CoAP resource implemented by the SPES-2 sensor

node. A CoAP client running on the SPHERE Home Gateway device (a Linux computer) observes this
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CHAPTER 2. SENSING IN RESIDENTIAL ENVIRONMENTS

Figure 2.11: The user interface for calibrating the water flow sensor. The deployment technician
calibrates the sensor by turning on the tap and selecting the respective label. The collected data are
used to train an individual classifier for each deployment.

CoAP resource. The CoAP emphobserve functionality ensures that whenever the device is producing

new sensor readings, the readings are immediately published, as a packet with them is sent to the

gateway device. The communication between the client and the server takes place on top of the

Contiki 6LoWPAN network stack, using the highly-reliable TSCH MAC protocol [122]. Upon reception

of new sensor readings, the CoAP client process passes these readings to a machine learning module.

This module runs an SVM classifier with a linear kernel. Based on the combined hot and cold

sensor readings, it decides the current state of the water flow as one of four predefined classes: no

flow, cold flow, hot flow, mixed flow.Graphical representation of the data could probably be used

for the model generation[123]. Having an early validation of inference between sensor data and

classified label information could enhance the efficiency of inference algorithms [124].

2.3.6 Machine Learning

Based on the combined hot and cold flow sensor readings, the water flow sensing subsystem needs

to classify the current state of the water flow in one of the four predefined classes mentioned above.

However, the numerical outputs from the water flow sensors ADC reading are not straightforward to
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interpret, because a number of house-specific factors affect the scale and offset of these readings,

including the fitting quality of the clamps to the pipes, the material of the waterpipes (plastic or

metal; covered with colour or bare), the water pressure, and the amount of crosstalk between the

hot and cold water pipes. Hence, it would be challenging to develop a one-fits-all solution. The

solution used by the SPHERE project instead is to use a machine learning approach where a water

flow classifier is trained (i.e., calibrated) individually for each house.

Five features are used to classify the sensor outputs in one of the four classes, namely: the initial

and final values of both cold and hot flows respectively, and an integer describing the interrupt state

(0 or 1 – the former signalling that is likely to be a heartbeat reading). These features are extracted on

the SPES-2 node and transmitted over the air ( Table 2.2) via the CoAP protocol. The simple nature

of the features suggests a simple classifier – SVM from Scikit-learn[125] with linear kernel and the

default parameters, expecting the four classes to be linearly separable with hyperplanes. Multi-class

support is handled according to a one-vs-one scheme.

2.3.7 Calibration

As described in the previous section, per-house calibration helps to deal with house-specific factors

that affect the output of the flow sensor’s ADC readings. A Python script does this calibration with a

graphical user interface (Figure 2.11). Relying on the Message Queuing Telemetry Transport (MQTT)

publish/subscribe protocol, this calibration process is implemented: the SPHERE Home Gateway

(SHG) publishes the ADC readings from the flow sensor (i.e., the features) over MQTT, the calibration

script picks them up, trains the classifier, and sends the calibration result back to the SHG over MQTT.

At the time of writing this chapter, the calibration has performed in more than 15 deployments by

technicians who do not possess in-depth knowledge of the technical details of the system. This

deployment is evidence that the installations can be successfully carried out non-expert users.

The installation process is as follows:

1. The technician places a SPES-2 device equipped with the flow sensor PCB and two piezo-

electric sensor clamps under a kitchen sink, close to the water pipes, and attaches the clamps

to the hot and cold water pipes.

2. The technician turns on the SPES-2 device and waits until (1) the device joins the low-power

wireless home network and (2) the CoAP client running the SHG connects to the SPES-2 device.

3. The technician starts the calibration script by double-clicking on an icon on his laptop.

4. The calibration script connects to the SHG over MQTT and starts receiving live data from the

water flow sensor.

5. The technician cycles through the four different water flow modes by turning on and off the

cold & hot water taps, and simultaneously cycles through the four calibration classes by using

the calibration script’s user interface. The technician ensures that for each of the four modes (
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Table 2.3: Current Consumption

Stage Component Current consumption

Amplification MCP6142/1 600 nA
MCP6142/2 600 nA

Voltage References 20 M› Potential Divider 160 nA
LPV811 Buffer 450 nA

Comparators 2x TLV3691 75 nA

Total 1950 nA

‘’Cold”, ‘’Hot”, ‘’Mixed” and ‘’No flow”) a sufficient number of sensor samples (on the order of

ten) appear in the user interface’s window (Fig. 2.11).

6. The technician instructs the script to finish the calibration. This is done with a simple button

press. Subsequently, the script uploads the calibration data on the SHG. The Home Gateway in

turn (1) trains the classifier, and (2) stores the calibration data locally (to be used if e.g., training

needs to be repeated after a reboot).

7. If the calibration is not good enough (we require at least 90 % accuracy on the training data),

an error message is issued, and the technician may choose to either repeat the processor to

give up.

2.4 Results

2.4.1 Energy consumption

Table 2.3 shows the operating current consumption of the sensor. The provided values are the

maximum values specified in the datasheets of the different components. Those values correspond

to the idle consumption for the sensor. Also, there is a minimal increase in energy consumption

when signals are presented at the input. That increase is mainly from the filter stage and the amplifier

dynamic current draw. The filtering stage consumption is the capacitor charging which is less than

50 pA when the input is swinging from rail to rail on the output of the amplifier. The dynamic current

consumption of the amplifier at full swing for a sinusoidal signal is analogous to the product of

frequency and output capacitance. The capacitance presented at the output of the amplifier is the

diode capacitance. The capacitance of the diode capacitance that is 1.5 pF in this case. Thus the

current for a signal at 3 kHz is approximately 4.5 nA and is considered insignificant when compared

to the idle current.

The proposed water flow sensor can be compared to traditional hall effect sensors. For example,

YF-S201 – the hall effect sensors used previously in the first generation of SPHERE [23] – consumes

1900 „A on idle and 2400 „A during operation. The proposed sensor is an improvement of three
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Figure 2.12: Confusion matrix of the SVM classifier from different installations. Results on calibration
data. The results show good linear separability of the training data.

orders of magnitude that allows the sensor to be battery-powered and installed in locations without

access to the mains, such as areas under the kitchen sink.

2.4.2 Accuracy

The proposed water flow sensor has already been deployed to over 15 residential taps. Figure 2.12

shows the accuracy of the calibration process based on data collected from multiple deployments. The

results suggest good linear separability of the calibration data. The overall accuracy of the classifier is

96.07 %, and the confusion matrix demonstrates that most false classifications are between mixed

flow and cold flow, as well as mixed flow and hot flow. It can be stated that one of the advantages of

calibrating the water flow sensor for each deployment is that the classification is not susceptible to

over-fitting to the particular deployment setting (e.g. material of the pipe, water pressure, etc.).

Figure 2.13 shows results from a long-term SPHERE residential deployment that demonstrate

the proposed water flow sensor does not require periodic recalibration. Indeed, the figure plots

the output of the water flow sensor installed on the cold (top) and hot (bottom) water pipes over

3 months. The points are colour-coded according to the output of the classifier, trained on the

calibration data collected during the installation. The results demonstrate stable performance over

time, which suggest that recalibration is not required. Figure 2.14 plots all the data samples collected
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Figure 2.13: Output of cold and hot flow sensors over time. Results from a long-term SPHERE de-
ployment. Results show stable performance over time, indicating that periodic recalibration is not
needed. During the New Year holidays there is a gap: the water tap is not used, only heartbeat data is
present.

Figure 2.14: Two-dimensional distribution of cold and hot flow sensor outputs. Results from a public,
long-term SPHERE deployment, same as in Fig. 2.13. The results show separation in four clusters, as
expected.
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over the 3 months. It is shown that the collected data points are well separated into four clusters.

2.5 Discussion

Long-term behavioural monitoring systems are considered a promising solution to the societal chal-

lenges introduced by the rise of the elderly population and subsequently, the number of people living

with chronic conditions. In this chapter, interests in residential deployments of sensing technology

for healthcare applications have been shown, and the chapter is focused on hot and cold water flow

detection in domestic kitchen and bathroom taps. The proposed water flow sensing solution is based

on detecting the vibrations on the water pipe that are generated by water flow.

Piezoelectric elements that clamp on the water pipes and capture the vibrations are chosen for

this work. As a result, the raw analogue signal is then amplified, rectified and transformed to a single

value for every 1-second time window that acts as a proxy of the flow intensity in the cold and hot

water pipes. The proposed water flow sensing solution is integrated into the SPHERE platform, which

in turn captures the values, extracts features, and transfers them to a central server over a low power

wireless network. The server then employs machine learning algorithms to classify among four cases:

no flow, hot flow, cold flow, and mixed flow.

The proposed water flow sensor is very energy-efficient, i.e. consumes less than 2 „A in continu-

ous operation. Therefore, it can be battery-powered and installed in locations that have no access

to the mains, such as under the kitchen sink. Moreover, it is a noninvasive solution that requires no

modifications in the plumbing system. Therefore, it is deployment-friendly and introduces no risks

for leakage accidents. The presented water flow sensor has been deployed in more than 15 residential

properties and initial results demonstrate good separation between the four classes. While users are

mainly concerned with the idea of having data which could identify them, in reality, most of the data

collected could potentially be completely anonymous. As presented in the chapter, environmental

sensing can increase the sensing modalities without interfering with the user or their environment

without compromising their privacy. Having this enormous dataset available in the hands of re-

searchers and clinicians, this could lead to future discoveries that will have significant value in

shaping the future of healthcare. Furthermore, having access to raw data from a well-documented

system published in [WP1] such as SPHERE can benefit future studies in the field of home healthcare

monitoring by providing a baseline. Last but not least, having access to a generic dataset about a

generic population can help detect deviants from normal behaviours in future behavioural studies.

At the moment, the sensor presented in this chapter has already been deployed as part of the Cuboid

and PD-Sensors studies [98, 126].

2.6 Summary

In this chapter, a novel water flow sensing device has been demonstrated. According to the field

experiments, it can be said that the device is energy efficient. The device has also been compared
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against another similar device. It is then shown that using machine learning regression techniques

the device was accurate in predicting water tap usage in 95% of cases. To contextualise the usage of

the tap, information from other sensors can enhance on detecting the activity the user was carrying

out at the point where the faucet was on. Fusion data with a wrist-worn wearable device which will

be presented in the next chapter can also assist in the activity detection.
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ON-BODY SENSING

D
esign of IoT devices takes the battery life of the device into considerable account. The

expected battery life of a monitoring device is vital in deployment scenarios where battery

replacements must be scheduled. Predicting the battery life of devices requires knowledge of

the battery characteristics and the device’s energy consumption behaviour. The parameters affecting

the device battery life are time-dependent; moreover, getting an accurate estimate of the battery life

requires full discharge cycles that could last for years. The energy consumption behaviour of the

device can be approximated as periodical deterministic patterns. Simulations of these patterns can

be used to estimate the battery life by modelling the relationship between the battery voltage and the

device energy consumption

3.1 Introduction

Commercial wearable devices usually provide processed data, such as step count over a day or heart-

rate in a minute, to their users. For those devices to meet the demands of a healthcare application, a

new framework that enables access to the raw data is required.

The new framework will overcome the existing limitation of monitoring devices for research

or medical applications. The lack of interoperability and ability to connect with other healthcare

systems and the limited expandability to new sensor technologies for such devices can be resolved

by methods described in this chapter.

The different sensor modalities and the frequency at which data is generated require the energy

to be sourced from the on-device power source. Limiting the energy usage for other sub-systems of

the device can allow such an energy budget for data generation.

The batteries self-discharge rate is not dependent on their total energy capacity. Increasing the

capacity does not necessarily lead to greater uptime – self-leakage tends to be more severe when the
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battery capacity is larger. Therefore trade-off of capacity and the self-discharge rate must be taken

into account for the choice of battery chemistry capacity while meeting the requirements for size

and weight.

Furthermore, the reduction in energy usage can ease design limitations and provide enabling

factors that increase the adoption of technologies. Subsequently, lower power requirements can lead

to improvements in reliability and dependability, prolonging the up-time of such battery-powered

sensors, especially when the setting chosen for the sensors is a residential environment.

Recent advancement in HCI technologies increased the uptake of IoT sensors in people’s homes.

The unpredictability of human behaviour and environmental factors in those homes impose a very

challenging real-world test-bed.

The unpredictability of the user activities creates unpredictability in the operation of the devices

simultaneously. Wearable sensing technology using inertial measurement units can infer information

about the activity of the user. These sensors usually are attached to the user in enclosed cases. In an

environment where users are highly mobile, such a sensing element can provide unique data for a

particular user who has the device attached.

The inertia measurement units report acceleration or rotation of the device of the user. Ac-

celeration can produce information about the action that the user undertakes, and Integration of

acceleration over time can provide speed in the first stage and displacement in a second stage. The

displacement is relative to an arbitrary point and is error-prone over time. Thus purely acceleration

cannot provide accurate information about the location of the user. If the sensors are using radio

transceivers, information about their mobility within a wireless network can be extracted.

To evaluate the mobility in the network, the signal strength of the packets received from individual

nodes can be employed. The signal strength in a line of sight scenario is proportional to the inverse

square of the distance between the two transceivers. In a real-world situation, fading and multi-path

add substantial complexity to the signal strength characteristics. As such, signal strength behaviour

overtime become unpredictable when the devices are mobile in a real-world environment.

To evaluate the mobility in the network, the signal strength of the packets received from individual

nodes can be used. The signal strength in a line of sight scenario is proportional to the inverse

square of the distance between the 2 transceivers. In a real-world situation fading and multi-path

add significant complexity to the signal strength characteristics. This leads to unpredictable signal

strength behaviour overtime when the devices are mobile in a real-world environment. Mobility

based on TSCH has been studied in a specific house setup by Elsts [127]. The same microcontroller

the study was used in TSCH rather than BLE mode as well. The TSCH mobility implementation has

greater throughput than BLE connected mode. However, in that particular test, the mobility patterns

of the mobile nodes are not representative of real-world examples. Association times were in the

region of hundreds of seconds while single gateway packet error rates were around 30%, which are

significantly higher than results from Fafoutis[30] at 1%.

A distinction between the two studies is the methodology of assessing the packet error rate. On
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the BLE experiments, sequence numbers included in the packets are used to examine packet loss.

The sequence number discontinuity indicates a packet loss. Nevertheless, on the TSCH test-bed

acknowledgements are used to exhibit packet loss.

Since BLE advertisement mode shows better packet delivery rate performance compared to

TSCH, in situations where application bandwidth requirements are minimal, BLE can be deemed

more suitable. An enhancement to the current state-of-the-art is the additional acknowledgement

of functionality in BLE mode to improve robustness and two-way communication, which assists in

designing a WSN network and provisioning for network coverage.

3.1.1 SPHERE Wearable First Generation

SPW-1 includes a nRF51822 system-on-chip (SoC) that employs an ARM Cortex M0 processor with

32KB of RAM, 256KB of non-volatile flash memory, a 512-sample FIFO buffer (First In First Out) and

a BLE radio [82]. Two micro-power three-axis digital accelerometers are interfaced over SPI (Serial

Peripheral Interface) to the nRF51822. It has 12- bit resolution (8-bit formatted data is also available

for more efficient single-byte transfers), a maximum sampling frequency of 400 Hz, and supports

measurement ranges of §2g ,§4g ,§8g . Instead of a gyroscope, two accelerometers are employed at a

distance of 30 mm to provide low power through its GPIO (General Purpose Input Output) pins.

SPW-1 uses the LTC3388 DCDC (Direct Current to Direct Current) converter that efficiently

converts any voltage source from 2.7V to 6V, to the required 1.8V. Thus, the converter supports

multiple options, including 3V coin cell batteries (e.g. CR2032), 3.7V rechargeable Lithium-Polymer

(LiPo) batteries, and super-capacitors. Morovers, SPW-1 also makes use of an MCP73831, a 500 mA

linear charge management controller with 4.2V output that is compatible with single-cell 3.7V Li-Po

batteries.

Concerning input and output interfaces, one button and two LEDs (Light Emitting Diodes) are

chosen for SPW-1. The external sensors can be connected to SPW-1, using 7 available GPIOs (all

support digital inputs; 2 of them also support analogue inputs). SPW-1 utilises a meandered loop

antenna printed on the FR4 substrate that matched to the differential RF output of the nRF51822

to have an efficiency of about 60% and a maximum directivity of 7 dBi. The radio of the nRF51822

supports 7 transmission power levels ranging from -20 dBm to 4 dBm. Although SPW-1 has been

extensively used for research studies, it includes some weaknesses too. For example, i) smaller and

thinner wearable would be more comfortable ii)low internal flash memory, ii)more stable voltage

regulation is required for noiseless acceleration sampling, and iv) efficient voltage regulator is needed

for a high minimum input voltage of 2.7V.

3.2 Aims

The main goal of the work demonstrated in this chapter is to design a maintenance-free wearable

monitoring device with adequate safety margins for expected battery life while meeting it’s data
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collection targets. The safety margins ensure the suitability of the sensor for long-term monitoring

of patients. Observations of battery-powered IoT devices deployed in the wild and the effect of

environmental conditions are essential in understanding the viability of such sensors.

Identifying parameter that affects the reliability, dependability and the effect of environmental

conditions on the sensor, valuable lessons can be learnt from the real-world sensor deployment.

Changes such as temperature fluctuation, choices of power management circuity and battery levels

affect the power delivery characteristics of the device. The selection on the sensing modalities and

the electronic integrated circuits that collect related data should be optimised. Besides, the trade-off

between meeting the machine learning algorithms accuracy within the battery life expectation is an

important metric to be evaluated.

The ability to iterate over multiple designs of an on-body sensor while evaluating the key im-

provements is critical in understanding the essential requirements of the devices. Exploration of

potential user interaction approaches that empower the users to data labelling with deternimistic

timestamping is a vital step. Such features allow on-body sensors to be used as a labelling source that

would help, train and evaluate machine learning algorithms.

3.3 Methods

From a hardware perspective the wearable sensor developed to meet the requirements of the SPHERE

project called SPW-2 incorporates an ARM Cortex M3 processor, 30KB RAM, 128KB non-volatile

flash memory and a 2.4 GHz radio in CC260 System on Chip (SoC). It provides more energy-efficient

wireless connectivity by supporting off-the-shelf radio that both BLE and IEEE 802.15.4 and link-layer

of 6LoWPAN, ZIGBEE and Thread.

SPW-2 employs two accelerometers like it predecessor SPW-1. However, SPW-2 incorporates two

voltage regulators to improve the noise performance. A low-noise linear voltage regulator (TPS78318)

provides the required 1.8V to the accelerometers, whilst a high-efficiency DCDC converter (TPS62746)

powers the remaining board to improve the noise characteristics.

SPW-2 also uses an inductive short-range wireless charging solution for 3.7V Li-Po batteries

BQ51050B, a Qi-compliant wireless power receiver and battery charger. It is equipped with Qi-

compliant wireless power receiver coil matching a low-profile. For this, it is a user-friendly means of

replenishing the battery, and it enables the manufacturing of low-cost waterproof enclosures for the

wearable sensor. SPW-2 includes a gyroscope LSM6DS0 powered from a GPIO as it requires more

power than accelerometers. Moreover, SPW-2 includes MX25R6435F peripheral flash memory that

consumes a very low current of 200nA in shut-down mode.

In terms of input-output interfaces, compared to SPW-1, SPW-2 has one button and one general-

purpose LED instead of the old two-LED design. The external sensors can be connected using 5

exposed digital supported GPIOs and 3 of them are shared with the SPI bus.

Regarding impedance matching of radio, a meandered inverted-F antenna printed on the FR4
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substrate that matches the differential RF output of the CC2650 has been employed for SPW-2. The

antenna has a maximum directivity of 5.3 dBi and allows a higher transmission power of +5 dBm.

Table 3.1: Summary of Features

Features SPW-1 SPW-2

SoC nRF51822 CC2650
BLE Yes Yes
IEEE 802.15.4 No Yes
Processor Cortex M0 Cortex M3
RAM 32KB 30KB
Internal Flash 256KB 128KB
Coin Cell Support Yes Yes
Li-Po Support Yes Yes
Battery Voltage 2.7 ¡ 6 V 2.15 ¡ 5.5 V
Battery Charger Yes Yes
Wireless Power (Qi) No Yes
Energy Awareness Yes Yes
Charging Awareness No Yes
Accelerometer 2 2
Gyroscope No Yes
External Flash No 8MB
PCB Antenna Yes Yes
Max. Directivity 7 dBi 5.3 dBi
Max. Tx Power +4 dBm +5 dBm
External Antenna Yes No
LED 2 1
Button 1 1
GPIOs 7 5 (SPI)
Analogue GPIOs 2 3 (SPI)

In comparison to the first generation of the SPHERE wearable, SPW-2 has a smaller form fac-

tor, offering several additional features, including wireless charging, a gyroscope, additional flash

memory, support for IEEE 802.15.4,as summarised in Table 3.1 In this section, the performance

of SPW-2 has been evaluated, in terms of energy consumption (providing realistic battery lifetime

estimations), wireless coverage (using measurements in both an anechoic chamber and a residential

environment), and its noise levels. Its performance is benchmarked against its predecessor, SPW-1,

which was benchmarked against an off-the-shelf board in our previous work [128]. In addition, the

performance of the wireless charger has also been evaluated.

3.3.1 Optimisation approach

A choice had to be made on using native compiling tools and libraries provided by manufacturers

compared to open-source implementation. Open-source implementations enable the customisation,
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and their internal mechanisms are accessible and well documented. From SPW-1, and a slightly

revised version SPW-90s, migrating to SPW-2, the development was maintained under the IDEand

API provided from the microcontroller unit manufacturer. In this case, limited choices are available

on hardware-specific features and also the implementation of networking elements accessible to

open-source operating systems, such as IP networking and higher network layers.

Current Contiki implementation gives access to the monitoring devices to apply different opera-

tional modes on limiting energy consumption. Some important figures in this context are the energy

consumption on each state of the device and the energy per clock when the device is active. There is

a linear association between processing power and energy consumption. Increasing the processing

power requires an increase in the clock rate, thus increasing energy usage subsequently.

Sensors can generate data at various sampling rates and resolution. These parameters affect the

bandwidth requirements on the network and the overall power consumption of the sensor. The data

generated may include some noise apart from the useful information. To determine the optimal

sampling rate and resolution, machine learning can be used to assess the quality of data requirements.

There is an effort to embed filtering and machine learning algorithms on the sensors themselves to

reduce the generated data significantly while making the filtered data more useful and meaningful.

Also, another consideration for those sensors is the minimisation of maintenance.

The most common maintenance issues are charging the devices or replacing the batteries. There-

fore, one crucial aspect of maintenance is the up-time of a sensor. Care must be taken in monitoring

the operation of the sensors to ensure the battery life is within the specifications. Irregular behaviour

may lead to a premature shutdown due to increased overall power consumption. Thus, the system

must be able to assess whether the sensor is operating normally.

3.3.2 Realistic Energy Consumption Estimation

To evaluate electrical energy consumption, two quantities are needed to be measured. One is the

voltage, and the other is the current. These two values must be measured between the power source

and the device. Measuring voltages is relatively easy. To achieve that the potential difference between

the ground and the power source output voltage is measured. On the other hand, measuring current

consumption requires measuring the electron flow from the power source to the device. For weak cur-

rents shunt, resistors are used for the measurement. Shunt resistors generate a voltage proportional

to the current that flows through them, which is generally known as Ohms law.

3.3.2.1 Measurement Effect

Most of the measurements are achieved with operational amplifiers (op-amps). A generic operational

amplifier swings an output between the power source positive and negative voltage based on its

input voltage difference and the amplifier specific gain factor. The op-amp serves two purposes.

Firstly, it is driving the input of the ADC input with a particular set gain. Secondly, it separates the

input signal from the ADC by increasing the input impedance. When an amplifier is driving a signal,
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Figure 3.1: Comparison between the 2 different ranged ACD units

it means it provides a path for current to flow to and from the positive and negative power supply.

ADC inputs have a finite capacitance; therefore, those currents paths can charge and discharge the

ADC input, thus changing the voltage.

Furthermore, ADC input impedance is not high enough to eliminate input bias current leakages.

The two main issues concerning power measurements are the accuracy of the measurements and the

effect of the measuring equipment on the device being measured. Physical properties of electrical

signals and electronics should be considered when interfacing with analogue signals.

Non-ideal op-amps suffer from current biases, non-linearity and voltage offsets. Using a zero

voltage offset op-amp the voltage can be accurately converted into digital signals. An investigation

was made using ADS1262 and OPA189 to examine the performance of such systems. The bias current

of the inputs and the leakage current are two fundamentals explored, for sensing minimal current

consumption.

3.3.2.2 Radio profiling

Wireless sensors are usually built around an MCU. The main parameter affecting their energy con-

sumption is micro-controller behaviour. In most IoT data collection deployments, micro-controllers

are programmed to make periodical transmissions of sensor events[129]. Thus, most of the energy

profiling is focusing on MCUs behaviour.

The MCU consumption changes significantly based on the operation state of the MCU. In the

context of sensor networks, these states are usually sleeping, active, radio transmitting and receiving.

For all the different states, the MCU manufacturer provides indicative values of consumption at each

state for the device. The time of every state is essential to calculate the total energy used by the device

over time. Information of the current state of the MCU is accessible during code execution in run

time. ENERGEST is a software tool which executes code during run time to calculate the time the

MCU spends in every state over time. With the above information, the average current consumption
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of the device can be calculated to estimate the expected battery life of the device – the total capacity

of the battery in Ampere hours is usually divided by the average consumption.

This approximation makes a lot of assumptions. Some of the assumptions are being parametrised

below. Other presumptions that are not easily addressable are being maintained. Temperature and

recovery effects are not considered in the model to avoid trivial calculations, since these parameters

are averaged out over the whole discharge cycle [130]. The determination of the periodicity and

the energy consumption pattern is application-specific. However, in most WSN cases, devices are

sleeping for 99% of the time and transmit sensor at that 1%. The energy consumption pattern during

that interval is the dominant factor of the energy consumption estimation.

3.3.2.3 Energy States

The consumption of the MCU at different states are given as an average figure in datasheets. In some

situations, these values have 5 orders of magnitude difference. The current used in a deep sleep

state is 0.1 „ A compared to 10 mA during transmission for TI CC2650. This difference in magnitude

leads to voltage drops in the battery, which are restored over time. Also, the efficiency of the battery

dramatically decreases during those current surges since the battery internal resistance is no longer

negligible. These effects can be modelled using battery recovery effect models and battery equivalent

models. Taking these effects into account, a regulator is put in place between the battery and the

device to isolate the voltage drops and provide a fixed voltage.

Considering the accuracy of the state modelling of consumption, using a 16-bit current measure-

ment ADC, it was found that the energy consumption is not fixed for a particular state. Also, there

in some transition time between one state to another, the current consumption does not change

simultaneously. It can be seen together with the effect of the regulator power conversion efficiency in

Figure 3.2.

3.3.3 Model Blocks

Dividing the system into three blocks simplifies the calculations as the parameters for each block can

be determined shown in Figure 0.3. The first block is a deterministic load that will be powered (i.e. an

IoT sensor); the second block is the regulator providing fixed regulated voltage from the battery to

the load. Lastly, the battery specifications are used to create a model predicting battery behaviour.

3.3.4 SPHERE Wearable Device Development

In this chapter, a new version of the SPHERE Wearable ‘SPW-3’ is presented. It extends our previ-

ous work by capitalising on the experience gained by using SPW-1 and SPW-2 in the digital home

environment. The unique contributions to this work are as follows:

• Provided better energy consumption compared to previous versions regarding various sensor

configurations;

56



3.4. RESULTS

Figure 3.2: Regulator Effect

Figure 3.3: Battery modelling flowchart

• Demonstrated better channel utilization for various sensor configurations to affect the lifetime

of wearable devices;

• Quantified the performance of the new wearable( trade-off between energy usage versus

channel utilization and Packet Error Rate (PER)or Packet Delivery Rate (PDR))

Table 3.4 shows a comparison between features for all three devices.

3.4 Results

3.4.0.1 Power Profile and Battery Lifetime Estimations

In this section, we compare the energy consumption of SPW-1 and SPW-2, providing realistic estima-

tions on their battery life. For both devices, we calculate the power profile by measuring the current

through a 10 › series resistor on the positive side of the power source, as in [99]. Idle currents are
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measured with a digital multimeter. The supply voltage is 3.7V, that is the nominal voltage of Li-Po

batteries.

Each accelerometer adds an extra constant power consumption of approximately 3 „W when

active. SPW-2 employs several more components that are directly powered by the battery, including

the external flash memory, the Qi wireless charger and the linear regulator. Because of the idle

consumption of these components, SPW-2 yields a slightly higher overall idle consumption of 8.6 „W.

Besides, SPW-2 powers the accelerometers through a linear regulator that generates less noise at the

cost of less efficient voltage regulation. As a result, each accelerometer adds an extra constant power

consumption of approximately 3.3 „W when active. The noise levels of this design choice is evaluated.

Overall, the additional features of SPW-2 contribute to a slightly higher idle power consumption.

Then, the energy required by the radio for transmitting data is measured. In particular, a compar-

ison of SPW-1 and SPW-2 in BLE mode which is the communication protocol supported by both is

made. The measurement on energy consumption of the transmission of a triple BLE advertisement

(i.e. 3 packets of 39 bytes) at all different transmission power levels has also been done.

An example of the power profile of SPW-2 when transmitting a triple BLE advertisement at 5

dBm is shown in Figure3.4. The energy is then derived by calculating the integral of the power profile.

Figure3.5 shows the total energy consumed for the transmission of a triple BLE advertisement at

all supported transmission power levels for SPW-1 and SPW-2. SPW-2 performs significantly better,

consuming nearly 40% less energy than SPW-1 at 4 dBm, and approximately 30% less energy at 0

dBm. In SPW-1, it can be observed that reducing the transmission power from the maximum level to

-4 dBm is very beneficial for the battery lifetime, as it cuts the energy consumption for transmission

by approximately 33%. In SPW-2 though, the transmission events are very energy-efficient. As such, a

similar reduction is less beneficial, as it reduces energy consumption by only approximately 17%.

Evaluation of the power required for using the processor is the next step. To measure the process-

ing power, both platforms were programmed to perform some dummy processing cycles (integer

multiplication and addition). The processing power of SPW-1 is 9.5 mW, whilst the processing power

of SPW-2 is 8 mW. Transferring the data from the FIFO buffer of to the memory of the SoC takes

approximately 0.2 ms (SPI clock at 4 MHz). Hence, transmitting a single acceleration sample from

the accelerometer to the SoC consumes about 1.9 „J for SPW-1 and approximately 1.6 „J for SPW-2.

Combining the consumption measurements in an attempt, it is viable to provide realistic battery

lifetime estimations, based on an indicative scenario. Such estimations demonstrate how the lifetime

of the battery scales with the configuration of different parameters such as the number of sensors,

the resolution, and the sampling frequency. In particular, a scenario, where the wearable device

streams raw acceleration data using the undirected connectionless BLE advertisements (similarly to

infrastructure presented in [99]), is considered.

Although data reliability can be addressed at the receiver [131], this communication approach

does not provide delivery guarantees and, thus, can be only applied to applications that can tolerate

data loss or make use of specific missing data techniques [94].It is assumed in this work that repetition
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Figure 3.4: Early methods of power profiling of SPW-2 when transmitting a triple BLE advertisement
at 5 dBm.

Figure 3.5: Energy consumption for the transmission of a triple BLE advertisement.

coding on the three advertisements [99] is used to provide resilience to interference. Furthermore,

the maximum BLE packet size of 39 bytes, which allows for 24 bytes of payload: 18 bytes used for

acceleration data and 6 bytes are used for meta-data. This packet structure provides necessary

space for either 4 times three axis samples of 12-bit resolution or 6 times three axis samples of 8-bit

resolution. It is also presumed that the SPI bus between the sensors and the SoC is clocked at 4 MHz,

the transmission power is set to its maximum level, and that the system is powered by a 100 mAh

Li-Po battery (3.7V).

The battery lifetime estimations are based on the following equation:

(3.1) T ˘
EB AT

PI ¯ PX L £ N ¯ (ESPI ¯ EBLE ) £ fs £ N
,

where EB AT is the total energy of the battery; PI is the idle power consumption; PX L is the power con-
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sumption of a single accelerometer; ESPI is the energy consumed for transferring a single acceleration

sample over SPI from the accelerometer to the SoC; EBLE is the energy consumed for the transmission

of a single sample over BLE given by the Total Energy in Fig. 3.5 and divided by the number of samples

inside a packet; fs is the sampling frequency; and N is the number of accelerometers.

Table 3.2 shows the battery lifetime estimations, in days, assuming different configuration

scenarios. The frequency column represents the sampling frequency of the accelerometer(s) in Hz.

Notably, the battery life ranges from a few days to years, depending on the configuration.It is observed

at high sampling frequencies that the energy consumption is dominated by frequent duty cycles. At

low sampling frequencies, instead, the idle consumption becomes increasingly more considerable.

In [132], the authors use accelerometers with the 8-bit resolution to perform activity classification.

Experimenting with different sampling frequencies, the authors show that the performance of the

classifier reaches a high level at approximately 10 Hz with only marginal improvement at higher

frequencies. In this configuration, the battery lifetime of SPW-2 is approximated at 137 days.In

comparison, SPW-1 yields a battery lifetime of approximately 93 days in the same configuration

(an improvement of 47%). Indeed, SPW-2 yields higher battery lifetime than SPW-1 in most of the

considered configuration scenarios. Due to its higher idle power though, this improvement decreases

as the sampling frequency decreases. Eventually, at very low frequencies (see f ˘ 0.1 Hz), SPW-1

performs better than SPW-2.

Table 3.2: Battery Lifetime Approximations in Days

Platform Freq.
1 Accel. 2 Accel.

8-bit 12-bit 8-bit 12-bit

SPW-1

0.1 990 951 742 699
1 530 435 322 254

10 93 67 48 34
20 49 34 24 17
50 20 14 10 7

100 10 7 5 3

SPW-2

0.1 962 940 718 693
1 623 539 396 330

10 137 102 72 53
20 73 53 37 27
50 30 22 15 11

100 15 11 7 5

It is investigation-worthy that how the use of gyroscope affects the battery lifetime of SPW-2.

With the gyroscope and one accelerometer activated, the battery lifetime estimations are based on

the following equation:

(3.2) T ˘
EB AT

PI ¯ PX L ¯ PGY ¯ (ESPI ¯ EBLE ) £ fs £ 2
,
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Table 3.3: SPW-2: Battery Lifetime Approximations in Days

Frequency Accelerometer. Only Accelerometer & Gyroscope

10 102 3.2
20 53 2.4
50 22 2.1

100 11 1.8

Table 3.3 shows the battery lifetime estimations, in days, assuming different sampling frequencies

for two scenarios: only the accelerometer is activated, and one accelerometer and the gyroscope are

activated. It can be observed that the use of the gyroscope is responsible for a reduction of the battery

lifetime of SPW-2 by one order of magnitude.

3.4.0.2 Charging Performance

From preferences collected from clinicians [52] and patients alike, the need for wireless charging

on devices emerge as an alternative to wired charging. Wireless charging simplifies the process

and hence increases the chances that a device is likely to be recharged. Early work on wireless

charging through means of energy harvesting of Wi-Fi signals was experimented by Fafoutis [133].

Planar wireless charging[134]lacks standardisation, as such, Qi standard has been chosen as the most

suitable solution for low maintenance sensor recharging.

SPW-2 employs a Qi-compatible wireless battery charger. To comply with the specifications of

our target Li-Po battery (100 mAh), we have limited the charging current is limited to 91 mA. Fig. 3.6

plots the charging power of a full charging cycle when SPW-2 is in contact with a Qi-compatible

off-the-shelf charging station. . It can be identified that a full charging cycle takes approximately 80

minutes, whilst the charging rate decreases as the battery is reaching its full capacity. Fig. 3.7 shows

the battery’s state of charge as a function of time, which requires 63 minutes of charging to reach 90%

of its full capacity.

3.4.0.3 Noise Levels

The acceleration measurements noise depend on its supply voltage stability. Therefore, the more

stable the voltage regulator is, the less noisy the data produced are. SPW-1 powers the accelerometers

through a DCDC high-efficiency voltage regulator, which is responsible for a 50mV fluctuation on the

power supply of the accelerometers while SPW-2 powers the accelerometers through a less efficient,

yet less noisy linear regulator. In Section 3.4.0.1, how this approach affects the idle power of SPW-2

has been illustrated. In this section, the benefits of this approach on the noise levels are quantified.

To this end, SPW-1 and SPW-2 are set to immobile for 10 minutes, whilst collecting the accelera-

tion measurements that they produce. Figure 3.9 plots the histograms of differences among each

measurement by the mean value for each axis (SPW-1 is shown on top and SPW-2 is shown below).
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Figure 3.6: Charging power of a full charging cycle.

Figure 3.7: State of charge as a percentage of the battery capacity over the charging time.

The standard deviation of the samples for SPW-1 are 6 mg for the x-axis, 7.2 mg for the y-axis,

and 6.9 mg for the z-axis. In contrast, the standard deviation of the samples for SPW-2 are 4.6 mg

for the x-axis, 5.1 mg for the y-axis, and 5.7 mg for the z-axis. The results demonstrate a substantial

improvement in the noise levels.

3.4.1 Sensing Capabilities Comparison

The previous work, namely SPW-1 and SPW-2, the first and second wearable platform of SPHERE,

has been demonstrated in the last section. In Section 3.2, the third wearable platform of SPHERE,

named SPW-3, will be introduced.

SPW-3 employs one MC3635 accelerometer. SPW-1 showcased the practical improvements in

energy consumption of using a DCDC converter, instead of a linear voltage regulator. However, the
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Figure 3.8: Charging power for various separation between the SPW-2 and the charging coil. The
horizontal line indicates the maximum charging power supported by the employed battery.

Figure 3.9: Noise levels of SPW-1 and SPW-2.
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output voltage of the switching regulator has a 50 mV periodic fluctuation that causes noise in the

measurements of the MC3635 accelerometers.

SPW-3 mitigates this issue by incorporating two voltage regulators. The combination of the low-

noise linear voltage regulator (TPS78318) and high-efficiency DCDC converter (TPS62746) improves

the noise levels of the experiments at the cost of only a minor increase of the power consumption of

the accelerometers.

SPW-3 also includes a gyroscope (ICM-20948) that powered from a GPIO as it requires more

power than the accelerometer does. SPW-3 has 8 MB peripheral flash memory (MX25R6435F) with

only 200 nA in shut-down mode. Like SPW-1 and SPW-2, SPW-3 incorporates one button (capacitive)

and one general-purpose LED, and 5 exposed GPIOs can be connected external sensors to support

digital inputs; 3 of them are shared with the SPI bus but support analogue input as well.

The structure of the BLE advertisement packets is presented in Figure3.10. From the receiver’s

standpoint, the design of the packet serves different purposes as follows: The structure of the BLE

advertisement packets is presented in 3.10. From the receiver’s standpoint the structure of the packet

serves different purposes.

• Preamble allows for synchronisation of the demodulators phase-locked loop (PLL) with the

carrier phase.

• The Access Address is fixed for advertisement packets having a value of 0x8E89BED6.

• The payload contains a header indicating the type of advertisement. There are four types

of advertisement which can alter the behaviour of the transmitter and receiver to enable

broadcasting or two-way communication.

• The BLE transmitting device address, or advertiser’s address (AdvA), is the public or private

address of the transmitter that can be used to filter out packets from unwanted advertisers.

• Advertisement data (AdvData) can be formed according to the Bluetooth Specification [82].

3.4.2 Performance Evaluation

Fig. 3.13 shows the setup for experiments. A USBee SX 24Msps logic analyser was used to measure

GPIO pin changes triggered in software. Using a RocketLogger [135], voltage and current readings

together with GPIO changes were recorded. All the devices are powered by isolated power supplies,

and the data was collected over isolated Ethernet switches. The logic analyser provided accurate tim-

ings for the different states of the radio at different packet lengths during reception and transmission.

The accuracy was verified to 1% error when the byte transmission duration was calculated nearly the

theoretical 1Msps or 125 Kbps or 8„s.

For the RocketLogger, the voltage channels can provide relatively precise readings. However,

current readings exhibit some variability and inaccuracy during transients. Taking these considera-

tions into account, oversampling and statistical confidence intervals were used to characterise the
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Figure 3.10: BLE Packet Structure for broadcasting

Figure 3.11: Internal Hardware Sub-systems of SPW-3
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Figure 3.12: Left:Device On Charger, Announcing its Charging Status to the User and the System.
Middle: Device Internal Parts Excluding Battery Right: PCB render

[t]

Table 3.4: Summary of Features of SPW-1, SPW-2 and SPW3

Features SPW-1 SPW-2 SPW-3

SoC nRF51822 CC2650
BLE Yes
IEEE 802.15.4 No Yes
Processor Cortex M0 Cortex M3
RAM 32KB 30KB
Internal Flash 256KB 128KB
Coin Cell Support Yes
Li-Po Support Yes
Battery Voltage 2.7 ¡ 6 V 2.15 ¡ 5.5 V
Battery Charger Yes
Wireless Power (Qi) No Yes
Energy Awareness Yes
Charging Awareness No Yes
Accelerometer 2 1
Gyroscope No Yes
External Flash No 8MB
PCB Antenna Yes
Max. Directivity 7 dBi 5.3dBi
Max. Tx Power +4 dBm + 5 dB
External Antenna Yes No
LED 2 1
Button 1
GPIOs 7 5 (SPI)
Analogue GPIOs 2 3 (SPI)
Screen No Yes
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Table 3.5: Summary of Upgraded Features in SPW-3

Specifications SPW-2 SPW-3

External Dimensions(mm) 38.5x38.5x12.5
Battery Dimensions(mm) 26x15x3.5 23.5x17.5x3
Battery Capacity 100mAh 100mAh
Wireless Power (Qi) bq51050 bq51013B
Accelerometer 2x ADXL362 1 x MC3635
Gyroscope LSM6DS0 ICM-20948
Power TPS62746 + TPS78318
Coil 22x15 mm 19mm round
Organic Light-Emitting Diode (OLED) No SSD1306
Button GPIO Touch Button

variability of the results. The switching mechanism that controls the current range introduces the

variability. The connection between the power reading and the actual microcontroller behaviour is

achieved using GPIO pin signalling. The onboard FPC connector provides access to GPIO signals and

voltage rails which enabled the data collections and debugging. The logic analyser was connected

using extension boards to that connector and set at 24Msps. Using sigrok and averaging over multi-

ple frames, the timings between GPIO transitions were measured. Sigrok is a command line logic

analyzer.

The analysing and averaging of the data was undertaken on the exported Value Change Dump

(VCD) files. The RocketLogger data was set to generate over 10 million samples at 64Ksps, having

more than 500 thousand traces of transmission or reception. The large quantities of traces were

collected to mitigate two limitations. The first one is that the RocketLogger was not synchronised with

the debug signals on the GPIOs, and the second one is that the sampling rate of the RocketLogger is

much lower than the logic analyser. Those traces will have different time drift with the debug signals.

Thus for every trace, the samples trail were taken with a specific time offset from the debug signals.

By averaging out over those complete traces, both limitations can be tackled.

BLE radio has 4 times higher symbol rate than 802.15.4, 1 Mbit versus 250 Kbps. However, BLE has

a 3dB lower sensitivity on the receiver. From measurements showcased below assuming that the BLE

requires 3 dB higher power to transmit at the maximum power level of +5 dB compared to +2dB, the

radio consumes 730„A or 7.5% more for the duration of the transmission. The measurements were

derived using variable transmit power for a fixed maximum size of BLE advertisements. The duration

of the transmission has an inherent offset due to radio setup. By varying the packet length and looking

into the time that the radio is active, the startup time and the time per byte can be derived. Using a

linear regression model with variable-length packets, the radio startup time is 547.2„s and 5.38„s

per byte of data.
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Figure 3.13: Logic Analyser and Rocketlogger Connection Reduced Schematic

tt x ˘ tsetup ¯ tr ampup ¯ tper by te £ by tes ¯ tr ampdown

˘ (239 ¯ 141 ¯ 8 £ by tes ¯ 78)10¡6(s)
(3.3)

The outcomes shown in Fig. 0.15 were taken using +5dB transmit power. The changes in transmit

power affect only the transmission part. For reception and radio setup, the energy expenditure of

ramp up and ramp down remains the same. In regards to the differences between BLE and 802.15.4,

assuming the same size radio packet of 37 bytes for two devices A and B, using BLE and 802.15.4

standards, respectively, the following can be stated. B will require 80 % more time to transmit the

packet, which equates to 80% more power at the same power level. If operated at the limit of the link

budget where A has to transmit with 3 dB higher power than B, then B consumes 67.5% more power

per byte.

Figure 3.15 0.16 shows the BLE energy consumption with variable length. At the same level,

802.15.4 will require four times more power to transmit the data, which leads to the 80 % higher

energy consumption at 37 bytes of transmission. Apart from transmissions, reception power must

be considered too. During reception, the microcontroller consumes a constant amount of power.

Thus the only variable affecting the power consumption is the time radio stays active to receive the
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Figure 3.14: Transmission Current Consumption at different states

information. Using the BLE active scanning mode, we can deduce a metric for the receive power

mode to assess the reception energy. Based on this comparison the power consumption reduction

due to:

tr x ˘ tsetup ¯ 3 £ tr ampup

¯ tper by te £ (by tesad v ¯ by tesr eq ¯ by tesr esp )

¯ 3 £ tr ampdown

(3.4)

er x ˘ esetup ¯ 3 £ er ampup

¯ pt x £ tper by te £ (by tesad v ¯ by tesr eq ¯ by tesr esp )

¯ 3 £ er ampdown

(3.5)

BLE supports active scanning which allows the scanner device to request from the device further data.

In the scan request, data can be stored in advanced to be forwarded to the device. The device can then

respond with additional data. This exchange process can be a basic form of 2-way communication

initiated by the advertising device. This implementation does not require the advertising device to

listen to a device it wishes to transmit the data to. Also, this provides an acknowledgement to the

transmitting device that a packet has been received. Acknowledgements allow for packet integrity

and successful reception to be checked. Packets that are not received or were interpreted with errors

will not return an acknowledgement.
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Figure 3.15: Comparison Between energy spend per state

If the scanner is operating at 100% duty cycle, the transmitter can send a packet and verify each

packet assuming an ideal radio medium. This operation mode leads to minimal energy consumption

at the transmitter. The balance between the energy consumption on the scanning and advertising

device can be adjusted according to their energy budgets. For example, the advertisement device can

change the transmission frequency while the scanner can adjust the scanning period and scanning

interval. These adjustments should consider the level of network utilisation and the possibility of

collisions. Since the advertisement mode does not provide and retransmission capabilities, the

packets colliding are lost. Thus significantly reducing the PDR. Collision lead to retransmissions

which further increase the energy usage and radio utilisation.

Considering the radio utilisation on the CC2650, the radio operation is controlled by a secondary

Cortex-M0 core. Thus while the radio is utilised, the main Cortex-M3 core is idle. Therefore this idle

time can be used for data processing. This time can be quite significant i.e. 1.3ms while receiving

as shown in Figure 3.16. During that idle time, if the MCU is used for other processing this will not

lead to an increase in power consumption. For that duration features can be extracted from the

data collection stream. Based on results for SPW-2 from [136] which uses the same MCU spectral
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Figure 3.16: Comparison Between energy spend per state during reception

Figure 3.17: Power consumption differences in idle. State A: device sleeping, State B: Accelerometer
Enabled, State C: Accelerometer and Touch Button Enabled

processing for up to 15 samples can be done during a 37byte reception using the scan request

response method. Furthermore, decisions can be made on the device based on the incoming data and

the processed features. These decisions could trigger user interaction or changes in data collection

processes. For example, changes in data collection could be alterations in accelerator sampling

frequency and range or activity detection thresholds. Also, interactive elements can be used, such as

presenting messages on the screen, generating vibration notifications.
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Having discussed the active time of the device optimisation compared to previous versions when

the device is at the sleep state. Figure3.17 shows sleep current distribution for wearable-3 that shows

efficiency in new power delivery regulators and the utilisation of them in wearable 3 (maximum of

600„A current consumption compared to 2mA current consumption in SPW-2). Note that the figure

shows very low quiescent current during at the sleep state (i.e., the value is around 400nA and with

all peripherals in shutdown mode only 200nA of excess power as found from the datasheets). Those

200nA can be attributed to finite impedances on the PCB. Space restrictions when it comes to PCB

traces clearances between power and ground planes.

The dual ADC input of the Rocketlogger for current measurements uses a shunt resistor and a

switchable trans-impedance amplifier. During transients to high currents above a threshold i.e. 4mA,

the trans-impedance amplifier layout is bypassed using MOSFET. The low current ADC is used to

examine sleep current and the high range ADC input to assess power consumption while the MCU is

active. During the switching points, noise and false readings are introduced. These are accounted for

by statistically detecting outliers and specifying confidence levels using statistics.

To have a better representation of power consumption data and the generation of confidence

intervals, the data had to be fitted to distributions. The statistical approximation for most of the

measurements was the normal or Gaussian distribution as hypothesised by central limit theorem

(CLT). To improve the statistical approximation accuracy, a large number of samples were collected.

Due to the discrete nature of the data samples, a kernel was used to approximate the cumulative

distribution function (CDF) of the data points. The kernel used was Epanechnikov. From the kernel

derived CDF approximation the mean and standard deviation values were derived by converging the

inverse CDF at different probabilities. The mean can be found at halfway of the values. The standard

deviation is the difference of the inverse CDF between two values at each side of the Probability

Density function (PDF) with probability difference between them of 0.68.

(3.6) „ ˘ F ¡1(0.5)

(3.7) ¾ ˘ F ¡1(.6707) ¡ F ¡1(.3293)

The choice of normal distributions is to allow combinations, additions and subtractions of different

power consumption states. The combination of the three could provide a figure of the expected

battery life with the corresponding confidence intervals. Millions of samples of the sleep current

for different states were collected to generate confidence intervals. The sleep current was measured

while having occasional wakeup calls.

To account for current transients and isolate the regions of interest, the data was represented

using normal distributions. The lowest power state is where the MCU input outputs are set to the

lowest leakage setting. The MCU can only wake up from timers set before sleeping. This state is

represented in Figure 3.17 as (state A). The next stage is when the accelerometer is on and sampling

data at 28 Hz (state B)while the last state is when both the accelerometer and the touch sensor IC are

both on (state C).
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Figure 3.18: The longest recorded battery lifetime with a single charge for 65 wearable sensors,
summarised in box plots.

It can be observed that the variance of state C is larger than A and B since the touch sensor its

an independent current sink. Thus, the outcome is the sum of two normally distributed random

variables. Also, the result indicates that the low noise circuity implemented for the accelerometer

does not have any current noise; therefore, no voltage noise.

Another important information from Figure 3.17 is the cost of adding user interaction on the de-

vice. An accelerometer and the touch button can provide interrupts to the MCU. Using the interrupts,

the MCU will be able to wake up and present screen messages to the user. The capacitive button

allows screen awakening and navigation across the menus, while an accelerometer can provide

gesture detection. This dual interaction potential can be enabled with as low as 3.4„A. The cost of

adding interaction with the wearable sensor is also shown in Figure 3.17.

3.4.3 Observed Battery Lifetimes

Fig. 3.18 plots the longest recorded battery life with a single battery charge for 65 wearable sensors in

box plots. It is noted that this figure does not necessarily reflect the maximum achievable battery

lifetime since some devices may be recharged by their user more frequently than needed. The median

longest recorded battery lifetime is approximately 50 days and 30 days for an acceleration sampling

frequency of 12.5 Hz and 25 Hz respectively.

A closer look into the discharge profiles of the wearable sensors further illustrates this high
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Figure 3.19: Two distinct discharge patterns: 9590-c0 discharges very rapidly, yet continues with
normal discharge rate after a power-cycle (top); 3063-c0 alternates between rapid and normal
discharge rates (bottom).
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Figure 3.20: Temperature recorded for 4 distinct discharge curves (top left); voltage for the the same
curves (top right); Normalised voltage and temperature difference between discharge curve 2 and 4
over time (bottom left). Regression of voltage difference versus temperature difference (bottom right)

variance in the observed battery lifetimes. Fig. 3.19 shows the battery discharge profile of two

characteristic cases for a period of 12 months. As shown in the Fig. 3.19 (top), certain devices have

a very rapid discharge rate at installation; yet this is fixed after a power-cycle. (It is noted that the

wearable sensors do not have a power switch; as a result, a flat battery is the only cause of a power-

cycle.) Indeed, 9590-c0 discharges after only 3 days initially, but after a power-cycle the discharge

rate drops to normal levels, yielding approximately 2 months of battery life. Other devices, such as the

3063-c0, alternate between rapid and normal discharge rates. As revealed in Fig. 3.19 (middle), the

device is characterised by a rapid discharge rate for the first months of the deployment (i.e., battery

lifetime at approximately 15 days), yet later it recovers yielding 55 days battery lifetime between

November and December 2017. Throughout 2018, the device continues to alternate between rapid

and normal discharge rates throughout 2018. Data collected for the same SPW-2 device discharged on

over multiple cycles were compared against each other to identify differences in discharge behaviour.

The discharge cycles were aligned and potential impact of environmental or other conditions in the

discharge behaviour were examined.The sampling interval for battery readings was calculated at

about 10 seconds. To reduce the effect of noise a moving median filter of 120 seconds was used to

smooth out the noise. The choice of time filtering versus sample filtering was chosen to remove the

filtering error when data was missing for long durations.
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Temperature readings were also collected for the SPW-2 sensor and then smoothed out with a

moving mean filter of 2 samples to create a continuous temperature curve from the initially discrete

samples.The alignment required a mutual time-series for both discharge curves samples. To achieve

this alignment samples from the first discharge curve were used as the basis. Samples from the

second curve were linearly interpolated to create the mutual time-series.

In Figure 3.20 the relation between the temperature and discharge voltage is presented. Four

discharge curves for the same devices were extracted from a timeseries of data generated for device

h2709-c0 between November and December of 2017. The discharge curves where aligned in time

based on linear interpolation by shifting and aligning all curves. The alignment allows all the curves to

start from time zero at about the same voltage. The curves where sampled at fixed intervals allowing

comparison between different curves. Two curves that were examined specifically is the second and

third curve, 2 and 3. The voltage difference and temperature difference between the two curves were

calculated and normalised. Temperature and voltage difference denoted as –Temper atur e and

–V ol t ag e are presented in Figure 3.20 bottom left.

Based on the difference in time between the voltage and temperature a voltage difference at-

tributed to the temperature difference can be observed. The relationship between all the temperature

and voltage samples are presented in Figure 3.20 bottom right. It can be seen that a linear regression

can be found between those two factors. Higher temperature results to a higher voltage difference.

The increase in the voltage difference can be explained as a faster discharge rate of the battery

when the temperature is higher. Since the device operation is based on the onboard accelerometer

sampling rate the power consumption is directly related to the sampling rate. It was observed that

by increasing the temperature of the accelerometer the sampling rate increases. Therefore, higher

temperature increases the transmission rate of packets resulting to higher energy consumption.

Therefore the device is sensitive to the temperature conditions of the environment adding a further

uncertainty into battery life estimation.

3.5 Discussion

This section evaluates the specification fittingness of a low energy wrist-worn wearable sensor

into healthcare monitoring. The sensor is being deployed as part of the SPHERE IoT Healthcare

Platform, building upon previous generations of wearable sensing while adding novel onboard

features including user-interactive elements. It mainly serves as an inertia measurements data source.

Furthermore, a novel two-way communication based on a customised implementation of the BLE

protocol is presented. The optimisation of energy consumption using interactive elements and

custom communication is also examined.

Moreover, The energy performance of the sensor and the user interaction elements provide a

benchmark for devices that are tailored for low-maintenance health monitoring platforms.Finally,

the empirical data from the deployments are characterised by a very high variance, which cannot
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be attributed to the battery model. This variance is also much higher than what [137] attributes to

battery capacity variations. The lessons learned during the first generation of SPHERE wearable

technology can be added as another factor affecting the non-model real-world power failures of low

power IoT sensors.

3.6 Summary

This chapter identifies and evaluates the cost of having user interaction on the developed wearable

device ( inputs) gestures from an accelerometer and touch bouton. The SPW-3 evaluates the perfor-

mance during two-way communication with bidirectional RSSI information exchange for accessing

network utilisation. Our experiment shows that the SPW-3 can potentially reduce the channels used

in advertising from 3 to 1, i.e. 66% energy savings in transmission compared to previous versions.

The updated wearable also defines the minimum energy for receiving data using the scan request

response from the BLE protocol. Besides, the SPW-3 identifies a region where processing can be

done, i.e. while waiting for the RF queues to be completed. Additional sensor functionality can be

incorporated in the design by utilising the flex connector onboard. A mixed-signal interface with

flexible PCB’s or board-to-board connections allows the device to connect with ECG, pulse oximetry

and other sensors.
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HUMAN AND THINGS INTERACTION

V
oice is a natural interaction modality. Personal assistance devices take advantage of this nat-

ural interaction process to enhance Human-Computer Interaction (HCI). Recently, there has

been an increase in the availability of voice assistant technology implemented in dedicated

devices or as a web service available to a plethora of appliances and computers.

VUIs are gathering popularity due to their ability to assist users in daily life at home. However,

their research potential in healthcare applications is at its infancy. The applications of VUI beyond

home environments, especially schools, also have been hardly investigated.

4.1 Introduction

The personal assistant is adapted to operate in a home environment, providing a VUI allowing users

to interact with an artificial intelligence agent. Two most remarkable personal assistance devices

are Google’s Nest and Amazon’s Echo. The Google devices allow interaction with "Google Assistant"

while the Amazon ones communicate with "Amazon Alexa" virtual assistant. These assistants are

connected to web services over the Internet, and they both have the ability to communicate with the

user.

The conversations between users and the virtual assistants are usually user-initiated and could be

a simple request of information or triggering an automated action. For instance, users can ask about

the weather, control their smart home devices or manage services provided by the assistant such as

shopping and music playback. Researchers are at the early stages of understanding the interaction

between those interfaces and the general population [69, 138].

The “Voxtopus” interface designed as part of the study presented in CHI 2019 addressed some of

the challenges of inclusive education for students with mixed visual abilities. The solution proposed

was a product of co-designing between participating users of the system and those assessing the
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performance of the solution. For this particular solution, the users were students, and the assessors

were their educators.

The co-design approach can be generalised to a multitude of fields, and VUIs can be customised

to serve different solutions. A notable example of dedicated design for such interfaces is healthcare

monitoring. Clinicians can co-design with their patient’s interfaces using VUIs. These interfaces can

be customised for inclusive design with specific disabilities and conditions in mind.

The environment at which this interface will operate has to be considered. Currently, those

devices are designed to work in home environments where privacy of the conversation of the user

and the AI is ensured. During the design of the Voxtopus, the VUI interaction was separated into

private and shared interactions – it can be used between the machine and one individual or all the

users. Thus, an option is given to the designers of user interactive interfaces on choosing the privacy

levels of each interaction.

Compression Energy Model

4.1.1 Web services

Amazon Web Service is a platform where this communication can be established and controlled.

The AWS IoT network support provides facilitation for communication among computing devices

using MQTT. The communication messages are well structured in JavaScript Object Notation (JSON)

format, which allows for dynamically allocating key/value pairs of different types and lengths in

the message structure. These keys and values are being serialised in the network at the transmitter

and de-serialised at the receiver. Having this infrastructure in place possibilities of communicating

information among computing systems are extremely versatile.

4.1.2 RPI

IoT advancements enabled the availability of inexpensive edge computers to communicate using

Internet protocols. An affordable IoT device, widely available and documented, is the Raspberry Pi

(RPi) [139]. It provides networking capabilities that are compatible with internet standards over a

cable Ethernet connection or a wireless WiFi connection. Such onboard hardware interfaces directly

accessible from the operating system offers the opportunity for developers to utilise the hardware

networking capabilities using the software. The operating system can establish communication

between the Internet and the hardware interfaces of RPi, creating a simple IoT interface.

Compared to the majority of IoT operating systems, RPi relies on standard Linux kernels ported

to the arm architecture discussed in previous chapters. This infrastructure enables the RPi to access

resources available to the Linux ecosystem. Through RPi, developers and users can approach to

ecosystems that were unreachable previously using an inexpensive platform. Over the years, the

community has been expanded on its capabilities of creating intuitive programming, communica-

tion and hardware-user interaction interfaces. Since such a network utilises standard Linux based

operating systems, it does not require a gateway to connect to web services.
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4.1.3 Privacy

A modality that SPHERE project has not yet included but been considered in the literature of impor-

tance in healthcare monitoring is the voice and specific conversations. Privacy concerns of voice and

dialogue data collection have not been addressed with current cloud-based technology implementa-

tions. It can be said that ethical approvals are not straightforward for these systems. Therefore, an

effort has to be made in understanding and taking control of processing pipelines and the flow of

voice data.

Latest speech recognition technologies with adequate performance characteristics are closed-

source implementations. The computational and data storage requirements of these technologies

can be matched with inexpensive IoT devices such as RPi. As a result, the research and development

costs of these so-called home assistants have been significantly reduced, whilst the availability of

such systems has been increased simultaneously.

These assistants are meant to help users with daily living activities. A by-product of the conversa-

tions between the home assistants and the users is the data generated that can be used to infer user

activities. The personal data generated from such devices, together with internet browsing informa-

tion, has considerable value for big corporations. Targeted advertising is one of the most common

applications of this data processing, and voice-based search auto-completion patented by Google

[140] is another example. A real-world illustration of voice auto-completion can be a case where

a person talks about a search term while typing part of it in Google’s search engine, and the voice

input from the user is interpreted into text. This technology is also being used to provide a search

term suggestion to the user. Some individuals have shown concerns about the listening devices and

considered it a serious matter to their privacy [141]. Addressing the privacy data ownership concerns,

thorough understanding and taking control of the flow information from the listening devices can

enable voice modality in data collection.

4.2 Aims

The main focus of the work presented in this chapter is on the use of voice as an interaction modality,

which distinguishes our work from the study of text-based conversational agents and other aspects

of voice-enabled technology, such as speech recognition and artificial intelligence. Looking into the

future of artificial intelligent interfaces, there is a general tendency that the interactions with the

system tend to be initiated by the users. The users’ ability to control and interact with the system can

provide valuable data.

Use of voice interaction in an assisted living environment has not been assessed yet. However,

voice assistants are already in place in smart home environments, and the range of applications is

extending with the potential inclusion of the healthcare sector.

Voice interaction can also be used to alter the behaviour of the system and the network [142].

Having stated the means with which a dataset can be future-proofed with the required metadata
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and data generation guidelines, the next step is to examine the feasibility of the system to meet the

personal and shared space requirements with an intuitive interface. This requirement needs to be

met while verifying that the conversation agent is able to collect data which can be used for training

and validating machine learning algorithms. The need for inclusive, non-intuitive design has already

been discussed in Chapter 1. Having a platform providing labels to a supervised algorithm beyond

mobile phones will enrich the variety of data labelling.

Furthermore, having a voice interface reduces the interruption on users activities, compared

to using a smartphone which requires the user to navigate through an app for such actions. Since

the early 90s, VUIs have been described as practical and have provided much-improved ease of use

and performance. This implementation tries to clear out the flow of data paths and then identifies a

dedicated flow path where data can be exchanged in a separate system that provides privacy to the

user ( interact without voice) and data managed locally or in a dedicated server.

4.2.1 Towards Non-Intuitive and Inclusive Human Computer Interaction Interfaces

The rise of ICT and technology adaptation in the younger population has created a new technological

era where human-beings are surrounded by computer-generated audible and visual cues. Younger

individuals raised with access to computers, smartphones and other computing platforms are seemed

to be more familiar with the technology. This familiarisation with digital platforms provides with

skills required to learn and adopt new technologies. Thus, this age group is the most suitable for

co-designing HCI interfaces [143].

4.2.2 In-school Quiz

Since healthcare ethics are imposing challenges in capturing, processing and studying voice interac-

tions, an alternative cohort must be found. Such a cohort should be able to interact with the voice

agent, which enables evaluation of the potential of conversational agents through observation and

feedback. The elements of privacy in regards to public and private space is of interest when exploring

the capabilities and enabling factors of tangible and multi-sensory technology. The objective was set

to co-design and evaluate a multi-sensory demo that utilises tangible elements and conversational

agents. The chosen environment is a school where the intuition of the design in public and private

space is put to the test.

4.2.3 Conversational Agents for Healthcare

Since the system has to be designed to serve people from an extensive range of cognitive capabilities,

considerations have to be made in the design to make as inclusive and non-intuitive as possible to be

fit for purpose for the majority of users. A parallel can be drawn between digital healthcare monitoring

and VUI on the user’s perception of AI’s capabilities. User is more likely to have high expectations on

the capabilities of AI in terms of their current state of intelligence. Specifically, regarding the VUI in
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questions, people are expecting a higher level of machine intelligence in conversational skills [138]

compared to what the VUI can currently provide. Also, users found that the tasks and goals such

technology can achieve are dramatically out-of-step with the up-to-date systems in operation from

Google, Amazon, Apple and Facebook.

4.3 Methodology

The study of the conversational agent in this work is based on existing commercial implementa-

tion available from Amazon. The Amazon Web Service functionality was implemented on AWS

Lambda[144], an event-driven serverless computing platform. An effort is placed on the customiz-

ability of the interface to allow on-the-fly changes that can make the conversational agent implemen-

tation tailored to the application.

The Voxtopus extensively employed JSON formatted objects using JavaScript (JS) high-level

scripting language. This implementation allows changing the intended functionality based on a script

that uses information from events and instructs different actions and outputs derived from inputs.

Event-driven scripting is a very efficient and customisable way of implementing communication

procedures and desired behaviours of computing systems. In the setup of this study, two systems can

generate those events. The first one is Raspberry Pi, and the other one is Alexa.

Alexa is an intelligent agent accessible using voice. It can be trained to originate events when re-

ceiving voice inputs that match defined criteria. Alexa uses highly sophisticated artificial intelligence

algorithms to interpret voice into semantic descriptive language [66], which enables human interac-

tions using voice to be interpreted into machine codes. These machine codes are then transformed

into key/value pairs, serialised and communicated to the event-driven platform.

The Amazon Web Service functionality was implemented on AWS Lambda[144],an event-driven,

serverless computing platform. The implementation used extensively JSON formatted objects using

JS high-level scripting language. This implementation allow us to change the intended functionality

based on a script that uses information from events and instructs different actions and outputs based

on the inputs. Event-driven scripting is a very efficient and customizable way of implementing

communication procedures and desired behaviours of computing systems. For our setup, two

systems can generate those events. The first one is RPi and the other one is Alexa. Alexa is an intelligent

agent accessible using voice. Alexa can be trained to generate events when receiving voice inputs

that match some defined criteria.Alexa uses highly sophisticated artificial intelligence algorithms to

interpret voice into semantic descriptive language [66]. This allows human interactions using voice

to be interpreted into machine code. That machine code is then transformed into key/value pairs,

serialized and then communicated to our event-driven platform.
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Figure 4.1: Wearable 3 user interaction

4.3.1 System Network Architecture

The network architecture for the Voxtopus interaction with the Amazon servers is shown in Figure 4.2.

Both sensors and actuator signals are communicated bi-directionally with the AWS IoT gateway. A

server-side API controls the state of the device called the device shadow.

The device shadow contains all the variables that the system uses to describe the state of the

inputs and outputs. Device shadow objects are synchronised among devices, allowing the state of

the system to be persistent on all devices. Changes originating from the inputs through the RPi can

be compared against the objects in JSON format, and inputs can then trigger the updating of local

variables. The new values of such variables are compared to their previous state that is stored in the

JSON structure.

Once the differences between the local variables and the reference variables which are in JSON

format is derived, the sun of the differences is then transmitted through MQTT to the AWS IoT

gateway. The changes, once accepted, successfully generate a confirmation message that verifies the

update at both ends. This state persistency allows the device to operate in unreliable networks. Also,

variables are available instantaneously in memory on both ends of the system. The persistency of

state and the reliable mechanism that exchanges serialised variables between the two systems allows

for any binary friendly data to be translated.
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Figure 4.2: “Raspberry Pi is a trademark of the Raspberry Pi Foundation”,“AWS IoT” “AWS” and “Ama-
zon Web Services” are trademarks of Amazon.com Inc. or its affiliates.Copyright 2017-18 Amazon.com,
Inc. or its affiliates. All Rights Reserved

4.3.2 Demo Description

The Alexa quiz interaction setup allows currently up to 3 players. Each player has a box of 4 buttons

with tactile feedback. The tactile feedback is achieved by using small vibration motors in the button

boxes. The main focus for this setup was the bi-directional tactile and audible interaction between

the users and the intelligent agent "Alexa". The specific functionality used from Amazon web services

ecosystem was the Lambda functions and the IoT embedded C platform.

The Amazon Web services and the IoT platform communicate with each other using MQTT

publish/subscribe implementation called Shadow Object where information in JSON format could

be exchanged between the two parties. JSON format provided interoperability across the platforms

and allows for dynamic code execution based on the data stored in the JSON messages exchange. This

IoT implementation was hosted on a RPi, which provided a Linux environment where embedded C

and Linux userspace code could be developed, compiled and executed. The use of embedded c code

enables low latency execution. The code is executed dynamically in response to the inputs from the

user buttons and information received from the web services.

This dynamic nature gives access to customised control of the tactile feedback and sound pre-
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Figure 4.3: Raspberry Pi is a trademark of the Raspberry Pi Foundation

Figure 4.4: Flowchart of the interaction steps
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Figure 4.5: Amazon Echo together with the RPi player boxes

sented in Figure. The sounds and vibrations produced can be configured dynamically from the web

services by changing the parameters shown in the device shadow structure shown in Figure 4.2. An

interrupt handles each button press, and an associated function stored in the memory of the RPi is

then executed. The purpose of the interrupt handler is to provide an interface between the hardware

and the code execution. This interface runs in parallel with all the other operations performed by

the system. The handler can process a button input within a few microseconds. Upon button press,

tactile feedback can be triggered back to the user. This function could be enabled or disabled on the

web services, and be used when turn taking is required.

The common interface and communication sink between Alexa and the IoT platform is the

Lambda functions hosted on Amazon Web Services, using JSON formatted documents being ex-

changed across those platforms – the Lambda functions are invoked from Alexa voice commands or

the IoT platform.

The most notable input data objects are presented in Figure 4.4. The Lambda functions store its

variables and execute javascript code based on the data in JSON format. Regarding the communica-

tion with Alexa, the Lambda function processes voice commands from Alexa and responds to the

user through Alexa using speech or audio.
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In terms of the IoT communication, the functionality includes registering button inputs and

configuring the number of players buttons, tactile and sound feedback. The different operation

scenarios of this system provide substantial flexibility. However, due to limitations set by Amazon, a

Lambda function cannot start a communication with an Alexa enabled device. Thus for the inter-

actions between Alexa and IoT platform, a voice command must be initiated by the user, and these

voice commands must contain an invocation phrase together with specific intent.

Bodystorming has been used as an ideation approach in the original location of teaching and

learning. The Bodystorming session was planned in partnership with the drama and science teachers

at the school. Discussions on the aims and objectives of the session were made in the two meetings

held during the workshops; a set of activities were organised to realise them. The drama teacher also

embedded their own teaching objectives in the session, in particular, role play and improvisation.

4.4 Results

Evaluation for the conceptual design was conducted into multiple iterations of Wizard-of-Oz (WoZ)

prototyping. WoZ is the go-to high fidelity prototyping methodology highly applicable in the current

study, which allows accelerated conceptual design on-situ. WoZ methodology comprises of three

main elements: firstly, a script with included instructions explaining the overall process must be

provided; then, a person who plays the role of the end-user; and finally, a coordinator called the

"wizard".

The role of the "wizard" is to perform tasks that simulate the behaviour of the completed product.

In WoZ methodology, the end-user does not need to know that they are playing a role neither to know

that the "wizard" is performing tasks. The performance of the wizard enables rapid design cycles by

allowing testing on some of the computing design elements before implementation. Eventually, the

prototyping will be evaluated based on the outcomes of each prototyping iteration against a set of

goals derived from design concepts.

4.4.1 Wizard-of-Oz Design First Iteration

The design concepts examined at the first iteration was the familiarisation and ability to formulate

scenarios by the use of VUIs. During the session, about an hour was given to the participants to

interact and familiarise themselves with the Alexa voice agent operated through an Amazon Echo

device. The scenario formulated from the wizard involved an aural presentation of voice technology

and demonstration of the capabilities of this particular voice agent. In particular, concepts such as

the invocation process and conversational flow were simulated and performed. In other words, the

wizard provided a translation between the technical description of the conversion process described

in the methodology to a context-specific interaction triggered by the participant.

The outcomes of the familiarisation session were reached and exceeded. The participants went

beyond the initial familiarisation target by contributing ideas on possible scenarios of use. Another
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aspect evaluated in the first iteration was the deviation of the outcomes from the initial aims. In this

particular example, the educators for the first experiment set the objective of creating co-design

self-learning material for revision exercises. Participants were in line with the aim of the educators by

volunteering in designing a VUI application to help them revise for their history exam in the form of

a quiz game.

The ability to communicate sequential programming and architectural elements were examined

in the second stage. Primarily the focus was placed on deriving simplified concepts of the VUI from

the interpretation of Amazon Web services Lambda explained in previous sections. The interpretation

of the architectural elements was pivotal in directing the co-design exercises in creating feasible

designs. Feedback on the technological design and implementation of the VUI from the participants’

experience was recorded. Participants indicated a preference for a more interactive experience that

allows personalisation and sharing.

In the intermediary between the second and third workshop, a conceptual prototype of the VUI,

which is materialised as the Voxtopus, was prepared. The Voxtopus was used in conjunction with

the "wizard" who was responsible for filling in the conversational gaps and providing additional

functionality to the initial prototype.

Particular emphasis was given on identifying optimisation to the conversational flow and cap-

turing minor details that would elevate the design. Live coding on AWS Lambda and on-the-fly

modification of the Alexa skill allowed the instantaneous examination of design improvements. The

outcomes of this workshop can be separated into three elements described below. These elements are

generalisable for all three workshops and provide insights at the design outcomes from bodystorming

and co-design.

4.4.2 Engagement with Alexa

During the workshops, some accessibility issues arose due to the built-in mechanism. The Echo

device has built-in feedback which uses light to signify whether Alexa has "heard" the trigger word.

As some users were not able to see the light, it was found that options exist to activate a "sound

on receive" and "sound on complete". Such accessibility designs were considered in the Voxtopus

implementation to enhance accessibility and trigger multi-sensory augmentation. In many cases,

participants have been observed missing the invocation part of the conversation leading to constant

reminders on the correct invocation methods. Thus the natural flow of dialogue was not reflected in

the interaction of the users with Alexa. The participants found awkward the conversation flow and

the invocation procedure. Another point raised was the possibility of having the VUI in continuous

listening mode, which was not considered since side conversation happening concurrently with the

voice agent conversation.
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4.4.3 Physical and multisensory augmentation

Following on the co-design workshops, it was clear that an additional dimension was needed to

extend the sensory augmentation of VUIs. Tangible sensor inputs were highly requested. Participants

suggested the usage of physical controllers in controlling the VUI interaction. A physical button press

can create a physical action that directly commands the VUI. Such measures enable customisable

shortening of voice commands or acceleration of the flow, making the conversation more streamlined.

A discussion on the introduction of controllers led to a quiz based VUI application with multiple-

choice questions. Furthermore, participants were further inspired by the potential of controllers

integration on the effectiveness of feedback a controller can provide to each participant individually.

Hence button presses and haptic vibration feedback were recommended as a preferable design

choice.

4.4.3.1 Personal and shared space

In the final workshop, a discussion was made on arbitration on personal and shared space. Con-

tact and interaction levels were not identical for all participants. Participants showed the need for

interaction choices with the VUI that allow for the separation of personal and shared spaces. Rec-

ommendations on the usage of wearable devices, such as wristbands, were considered. Figure 4.1

presents the SPHERE wearable 3 device that supports user interaction over bluetooth, explained

in the previous chapter. However, wristbands can be tampered by other players through physical

contact, which would invade personal space. Another interpretation of personal space was the ability

to hide input, including players’ answer to the quiz, from the system. Thus the need for private and

broadcasted messages to the system must be facilitated using a shared controller or a central button.

4.5 Discussion

The system met its design goals in terms of its intended purpose in terms of connectivity. By deploying

the Voxtopus over an unreliable mobile network into a school, environment verified the necessary

need for object state persistency on the device. In other words, even if the connection to the Internet

was slow, the variables were immediately available to the device. The pauses during information

exchange with the AWS servers were not noticeable to affect the conversational flow. The ability of

the system to sustain a conversation in a noisy room such as a school classroom verified the potential

of such devices operating in multioccupancy and noisy environments.

The ability of the system to run in challenging environments was an essential step in establishing

the viability of such a platform to operate using voice and physical interaction for assisted living.

A Voice-User Interface with customisation potential to meet the requirements of co-designing for

a particular disability was possible based on the design proposed. Customisation was achieved by

utilising concepts from IoT, web services and embedded systems. By employing the multi-sensory

methods, Identification of the flow of information and the optimal cost-effective option for im-
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plementing VUIs can be obtained. The results were given by using communication protocols and

practices used in IoT sensors discussed in the previous chapters. Notably, concepts including MQTT

and embedded systems are incorporated in the design. The generic concept is that function calls

can be generated based on communication, software or hardware triggers. The added element is the

Artificial Intelligence agent conversation with the user that create function calls on an event-driven

computing platform.

The system was also able to meet its design concepts targets — challenges to inclusive education

with design provisioning that allows the extension to broader disabilities and beyond education. The

ability of the system to adapt in the co-design directions contributes towards broadening of the user

group. After each iteration, anecdotal feedback and data are gathered and analysed to help improve

the next round of development. The feedback and design iteration process can be generalised to any

user group.

The novelty in the design process provided a positive experience to the users, verified from the

workshop outcomes. The metrics in terms of challenges and potential, together with weaknesses and

improvements, were ironed out over design iterations.

Furthermore, considerable differences in perceived benefits of the implementation were iden-

tified among the researchers compared to students and their educations. Those differences were

mainly on the perceived ability of the AI conversational agent to maintain a conversational flow. This

limitation was tackled by introducing the Wizard-of-Oz design that could maintain the conversa-

tional flow. These findings are significant as they provide a basis for designing support for inclusive

education through VUIs and extending the design space of VUI application areas beyond home

settings.

4.6 Summary

Voice user interfaces can provide solutions to inclusive design for HCIs. Challenges for voice interfaces

in schools environments have been identified by carrying out exploratory investigations in workshops.

A set of scripted scenarios using a quiz game implementation employing Voxtopus VUI helped to

understand the effectiveness of VUIs usage. Focus groups and brainstorming assisted in generating

the operation of the conversational agent and the details of the quiz implemented.

Compared to traditional WoZ superficial examinations, the customizability of the implementation

in means of live coding and alteration of speech interactions allowed for greater engagement of

participants. Tangible interactions and multi-sensory augmentation, in the form of an example

prototype application, helped validating the identified scenarios of interaction, extending the design

space. Multi-sensory augmentation, which registers inputs in the system other than voice, was

able to improve the effectiveness of VUIs by shortening voice commands and interactions. From

shared experiences on how VUIs could be used effectively and further enhanced, using multi-sensory

augmentation sets a foundation for future design and research in the area could be extended.
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Voice as a data input modality can help solve problems faced in data annotation. Data annotation

for machine learning algorithm training and validation is an essential metric in understanding the

accuracy of a machine learning algorithm. Having good raw data does not necessarily lead to a useful

dataset.

In the context of digital healthcare, machine learning can be used to identify the activities of the

users and assess the quality of them. Similar to humans, machines have to validate their findings

according to specific interactions with the users by having accurate information about the machine’s

observations and the user’s actual real-world activity. The quality of a dataset can be enhanced

by adding conversations that provide data labels and annotations. Using utterances to provide

information for the machine learning algorithms can significantly expand their cluster variety.

Another scenario is where the machine learning algorithm requires validation from the user. The

use of physical interaction, such as pushbuttons, can restrict users to finite choices. This discretisation

helps with the ranking of machine learning classification algorithms and also provides validation. The

ability to switch between finite labels for annotating a data collection exercise was studied in chapter

2 for the verification of the accuracy of the water sensor. By combining these two individual pieces

of work, a user-friendly accessible and intuitive interface can be available to both technician and

users of digital healthcare monitoring systems. Technicians will be able to untangle their hands by

providing instructions or input to the system over voice. Meanwhile, users of healthcare monitoring

systems will have a private and shared space to communicate with the system and potentially provide

data annotations.
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5
OPTIMISATION OF DATA QUALITY AND ENERGY CONSUMPTION TRADE-OFFS

In this chapter, contributions are made in the field of sensor design, focusing on low power. Specif-

ically, using analogue electronics, embedded processing and low power networking, low power

sensors are designed and evaluated. Providing that most low power IoT sensors are used for data

collection, a general understanding of the purpose of those sensors could be established. Conse-

quently, two main motives could be derived – the need to minimise the energy in facilitating sensing

‘and assessing the accuracy of the derived measurements. To examine the impact and validity of

the contributions, tools and processes were developed. Notably, the tools were used to evaluate the

quality and accuracy of the derived data collected, compared to energy usage reduction.

5.1 Introduction

Motion sensors fall into the category of IMU. In particular, motion data collection using wearable

sensors is of interests. IMU’s can measure the angle, angular velocity and angular acceleration. In this

specific case, these kinematic variables are observed for the body part where the sensor is attached

to.

The latest generation of inertial sensors has small electromechanical structures with springs that

move around in an integrated circuit based on the external acceleration. The generic term for them

is MEMS. The added advantage of such systems compared to traditional sensors is that the devices

are extremely small. In addition to that, using the mechanical properties, they can self-generate

energy from external forces causing the acceleration which minimises the energy consumption of

the system.

Inertia sensors have been traditionally used in well-being monitoring in fitness trackers that

are mostly located on the wrist. Some studies have shown that sensors situated around the gait can

provide more information on the posture, which could assist in fall detection [145]. However, the
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adoption of such sensors depends on the generic user acceptance. For long-term monitoring studies

from consultation with members of the public, the best location for an inertia sensor was found to be

the wrist. In this section, evaluation of the wrist-worn inertial sensors will be made in the context of

digital healthcare.

In this study, the movement of the wrist-worn sensor SPW-2 is measured. It is achieved using an

onboard accelerometer, which takes the form of an integrated circuit with an internal electromechan-

ical structure, specified in chapter 3. The accelerometer communicates with the host microcontroller

unit using a serial bus. The data arriving at the microcontroller Unit has already being digitised

internally on the accelerometer. The bit depth of the accelerometer used is 8-bits generated by means

described below.

The accelerometer uses a spring balanced mass that gets displaced when external acceleration is

exerted to them. The displacement is caused by force exerted to the spring system when the inertial

elements inside the mechanical structure are accelerated. For each of the three-dimensional axes,

displacement is measured using differential capacitors. These capacitors are sensitive to the mass

displacement that is a product of the acceleration of the MEMS Integrated Circuit (IC).

In other words, the acceleration is measured using an electromechanical system based on spring-

loaded inertia mass displacement. This acceleration is sampled at regular intervals triggered by an

internal oscillator. The internal oscillator is responsible for generating data points for each of the

three axes on a fixed periodical interval. Periodic sampling, the process of representing a continuous

signal with a sequence of discrete data values, is studied by the field of digital signal processing. In

practice, sampling is performed by applying a continuous signal to an analogue-to-digital (A/D)

converter whose output is a series of binary digits.

In information theory, entropy is the measure of the amount of information that is missing before

the reception and is sometimes referred to as Shannon entropy. Shannon entropy is defined as a

broad and general concept used in information theory as well as thermodynamics.

5.1.1 Data path

The next step of data generation is to migrate that data from the data source to a database or a

gateway where this data will be processed. After the data is generated, there are two choices to be

made on how the data reaches a database. The data can either be stored or not stored locally and

then be off-loaded manually or automatically over wireless or wired communication. Such choice

must be made on the basis of the capabilities of the system, the access to the network and the specific

application.

In every case, however, the storage requirements or network traffic is directly proportional to

the amount of data generated. Thus minimising the data generated creates less burden on the

network and consumes less memory space. IoT sensors tend to produce very little data compared to

traditional computing devices. Hence for those devices use low data rate, wireless networks are the

preferred communication.
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5.1.2 Compression

By observing the distribution of the samples of data, some level of categorisation could be made.

Besides, some ranking can be used for statistically deriving what values are more frequently observed

and which ones are not. It is an efficient way of generating a compression algorithm technique by

precalculating the distribution of the data and apply an algorithm that replaces the sampled values

with a compress version of them.

In computing systems, compression is achieved by reducing the number of bits needed for

representing the data. This method can be applied to individual data entries all over a series of

data entries. Through observing the statistical distributions of the data generated, a variable bit

length compression algorithm can be hard-coded to enable compression in computationally and

memory-restricted devices. Computation of the trade-offs between the LZ compression algorithm

and Huffman coding was made using different parameters to optimise the power consumption.

5.1.3 Entropy minimisation

The true entropy can be obtained by minimising the entropy. By implementing the proposed algo-

rithmic compression approach, the energy efficiency gain can be examined. The entropy decreases

with exponential decay. Thus, an optimal point on the entropy curve must be chosen. Having gener-

ated a large dataset from inertia sensors, the data could then be used to examine the entropy and

the potential of compressing the data while maintaining all information. In other words, making a

lossless compression of it.

The compression has to be on the device itself since a reduction in the data generated can lead to

less energy expenditure for storage and transmission of the data. IoT sensors tend to have restricted

computational power and available memory resource to perform compression.

In the following section, the raw data generated from inertial sensors, especially accelerometers,

will be used as the basis of the quality of data assessment of which the focus will be on the quality

of the raw data generated from those sensors. Lastly, methods of compressing the data in a lossless

format will be examined for those computationally restrained sensors.

5.2 Aims

This chapter aims to optimise the data volume and energy expenditure through the usage of a

compression pipeline that balances accelerometer data volume versus the energy consumption of a

portable wrist-worn sensor. Concepts in information theory and energy expenditure are combined

to derive optimisation of key parameters presented in the methodology section.
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5.2.1 Edge computing

It is highly desirable to have the data is compressed or filtered before transmission to minimise

energy consumption. Also, in multimodal sensor design, information from some sensors might not

be of great importance in particular instances. As such, making sure data is generated when needed

is a useful feature that can be incorporated into sensor design.

Filtering and compression of data can be achieved by digital or analogue processing. Analog

signal processing is usually conducted at the transducer where signals are purely analogue. An

analogue front-end (AFE) IC or circuity can be employed to filter the analogue signals from the

transducer.

On the other hand, digital processing of the signal is digitised by an ADC. Data resolution is

measured in bits. The higher the resolution, the greater the number of distinct states the data could

have. In other words, a signal can be translated into data by converting it from its analogue nature

into a digital sequence of 0s and 1s, representing a number related to the physical quantity of the

signal. This conversion is prone to errors which usually are noise, offset and gain errors.

In terms of the enabling factor, the IoT compression was not achievable prior to the introduction

of efficient ARM-based microcontrollers such as msp430. The digital processing power has increased

in embedded devices since the rise of these microcontrollers, enabling edge computing.

5.3 Methodology

As mentioned in the chapter introduction, a wrist-worn inertial sensor is used to examine the source

entropy of the data empirically. Based on the proposed compression methods, empirical power

consumption and computational parameters are being analysed.

The following characteristics of the data acquisition pipeline are not considered in this chap-

ter’s methodology; signal acquisition techniques for the MEMS sensors are not studied. Instead,

performance characteristics of the digitised data from datasheets and real-world experiments are

examined.

5.3.1 Entropy Overview

Given a set of independent events Ai from some sample space S as outcomes for an experiment E,

the entropy associated with the experiment is as follows (we choose base 2 for the logarithm).

(5.1) H(E) ˘ ¡
X

Ai 2S
p(Ai ) log2 p(Ai )

Background theory regarding entropy can be briefly described using equations and notation

from [146] and [147]. Let A denote the alphabet {0,1, ...,254,255}. Each element of A represents an

8-bit accelerometer sample (x, y, or z) and is denoted as a letter from the alphabet. Let Xi denote a

96



5.3. METHODOLOGY

random variable that takes on an element from A . Let X n denote the block of n sequential letters

{X1, X2, ..., Xn}. By taking blocks of n letters (i.e. samples) as an outcome and letting n ! 1, the

source entropy can be calculated as follows.

(5.2) H(S ) ˘ lim
n!1

¡
1

n

255X

i1˘0

255X

i2˘0
...

255X

in˘0
P (X n) log2 P (X n)

where the probability of a block of size n is defined as

(5.3) P (X n) ˘ p(X1 ˘ i1, X2 ˘ i2, ..., Xn ˘ in)

The best a lossless compression algorithm can achieve for a source on average is given by the

source entropy.

The first-order approximation of the entropy of the source is given by assuming the letters are

independent and identically distributed (i.i.d).

5.3.2 Experiments

The signal source in this work is MEMS inertia measurement units located on the wrists of partici-

pants. Data was collected as part of a collaboration pilot study. The project title is “Enhancing data

collection in ALSPAC-G2 using novel methods: A feasibility study” conducted between 2015 and

2017.

Accelerometer data was acquired during a pilot study between the SPHERE (a Sensor Platform for

Healthcare in a Residential Environment) [10] and ALSPAC (the Avon Longitudinal Study of Parents

and Children) [148] projects. In the experiment, 92 participants wore a wrist-worn device with an

accelerometer (ADXL362) for 7 to 10 days. The wearable took 50 x, y, and z accelerometer samples

per second. Each sample is an 8 bit number in [0,255] measuring between § 4g. Thus, each second,

150 bytes of accelerometer data were produced. A separate file for each axis was created for each

participant; the data was extracted from the wearable over a manually improvised wired link.

About 1 billion x,y and z-axis samples were manually filtered. The filtering criterion was the

prolonged inactivity of the device as this will somehow skew the distribution of the samples. Therefore,

data from non-inactive windows in time were used in the probability distribution algorithm. In

particular, data were collected for two weeks for 90 complete collections of data for an undisclosed

number of participants. In other words, data generated, in some cases, from the same participant for

a duration of 2 weeks while wearing the device had been studied.

In this way, the potential of data to be generalised to broader population wrist movement charac-

teristics has been enhanced. While those inertia sensors were continuously sampling irrespectively

of the user actions, the data that has the most significant is the data that holds some user activity.

Manual filtering of that data was made to remove moments of inactivity or when the device was not
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used. The filtered dataset was very beneficial to examine any optimisations that could be made in

the operation of the sensor.

5.3.3 MEMS Sensors Noise Characterisation

The accelerometers used in the data collection have not been calibrated. To mitigate that, there is

an option to calibrate the gain and the offset of the accelerometers to an accuracy level of ±4 mg

at a resolution of 12 bits, which will then be downsampled to 8 bits. The decrease in granularity

introduced by the lower 8-bit sampling rate translates to the minimum deviation between two values

of 32 mg.

Two worst-case scenarios could exist on the dataset of a particular MEMS accelerometer sensor.

One is that all axes have a positive zero-g offset, specified in the datasheet. Assuming that all axes

have a +40mg offset, they will report +32mg, then the offset of the gravitational force of 1g will be

around 58mg. All the axis values are affected by the gain error due to temperature, non-linearity and

cross-axis sensitivity and noise.

If assuming all these are making the values report lower amplitudes, the error at a temperature

difference of only 7 °C is about ¡14.5mg per axis. This could lead the same device to report, at a

different orientation, a gravitational force with an offset of 12mg, giving the worst-case scenario

difference of 46mg between 2 samples that could be consecutive. Minimising the noise increases the

effective resolution of the device. Having less noise will translate into a higher number of noise-free

bits. An essential aspect of the noise-free bits is that they hold the best representation of the data. All

the subsequent bits are prone to noise and are not representative of the actual signal. As such, having

an exact figure on the noise-free bits of a sensor can directly optimise the best data format available

from that sensor. These specifications are presented in table 5.2

Noise usually refers to background noise. Any signal presented is the fusion of the actual signal

with the noise from the background. The key point is that, while collecting data, only the actual signal

needs to be focused on instead of the background since the background conditions do not vary over

time and do not have any significance. Taking this into a step further, in some situations, no signals

will be presented on the sensor, and the data will be purely noise.

In the context of the healthcare monitoring system when a user is not present in the vicinity of

the sensors, the data generated from those sensors do not have any value. On the other hand, when

the user is in the vicinity of those sensors, data could be generated based on user actions. Thus it is

important for sensors to dynamically generated data based on the digital footprints users generate.

The most basic classification for data is when the digital footprints from the user are presented in

the data and when not. Hence a basic level of activity detection is fundamental for the sensors to

represent characteristics of the user accurately.
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5.3.4 Compression Energy Model

The consumed compression energy per byte is defined as EC . The saved transmit energy per byte is

defined as ET . This gives the net energy saved per byte EN as follows.

(5.4) EN ˘ ET ¡ EC

The EN will be positive if more energy is saved during transmission than consumed during compres-

sion. If EN is negative, then more energy is consumed during compression than saved in transmission.

ET is defined as follows:

(5.5) ET ˘ PT £ TT £ (1 ¡
1

C R
)

The (1 ¡ 1
C R ) term represents the percentage of bytes saved for transmission. For example, if C R ˘ 4,

then the savings are 0.75 per byte. ET could be negative if the compression ratio is less than 1.

The energy required for compression is determined by considering the time it takes to make a

comparison multiplied by the average power while comparing. EC is defined as follows:

(5.6) EC ˘ PC £ TC £ #C

5.3.4.1 Power and computation constants

The power constants PT and PC were derived by taking current measurements at a constant voltage

for a particular wearable device [149]. The device uses a CC2650 System-on-Chip [112] that inte-

grates a Cortex-M3 processor running at 48 MHz and a BLE radio. It also employs an accelerometer

configured to sample at 25 Hz with 8-bit samples between ±4 g, and has an external flash module

with 131072 pages where each page can hold 4 kB of data (total of 512 MB). A nominal 3.7 V battery

with a 100 mAh capacity (1332 Joules) is embedded in the device.

A 1 kB buffer is used to collect the accelerometer samples along with additional meta-data. The

buffer is filled every 10 seconds after which it is compressed using A-LZSS to another 1kB buffer and

then saved to the external flash. Subsequently, a BLE central device can request the data from flash.

Each flash memory page is read and sent to the requester in BLE notification packets.

The device was configured to buffer 1kB worth of accelerometer data. When full, the data was

compressed using A-LZSS (Lbi t s ˘ 4 and Dbi t s ˘ 5) and written to a page in the external flash. Before

compressing, a BLE advertisement was sent (across three different channels).

Figure 5.1 shows the current measurements. This experiment was performed several times and

averages were taken for power consumption while transmitting and compressing. The average

current during compression was » 8 mA and the average current during transmission was » 10 mA.

From these measurements we take PT ˘ 0.037 J/S and PC ˘ 0.0296 J/S were taken.

The time constants TC and TT were also derived from these experiments. TC was found to be »

0.444 „s and TT ˘ 58.3 us per byte. The time to transmit a byte also includes the protocol overhead.
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Figure 5.1: Up: No Compression Down: Energy Measurement Results (current per time)
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Figure 5.2: A trie presenting the bit length for a symbol being equal to its depth on the trie

Using BLE Advertisements (instead of notifications), the three transmissions with 24 bytes of data

were evaluated to determine the average power while transmitting and the average time to transmit

one byte of data (protocol overhead included). It can be observed that PT ˘ 4.83m A£3.7V ˘ 0.017871

J/S and TT ˘ 4.2ms/72by tes ˘ 58.3„S.

5.3.5 Huffman algorithm

Huffman compression belongs to a broad category of sorting based data-compression schemes.

Sorting is achieved on a fixed set of items by representing each item’s weight as an integer. The weight

is generated based on the frequency at which an item is found in the compression queue.

In this particular context, the set of items is the range of an unsigned 8-bit integer which has 256

values. Those values represent instantaneous acceleration sampled at a fixed rate. The weights of

those items are calculated based on empirical frequency distribution statistics. The weights govern

the immediate conversion process from fixed-length byte symbols, as variable-length prefix-free

codes, into a variable-length bitstream. The number of bits of each encoded symbol is equal to the

depth on a trie presented in Figure 5.2. The conversion process is encoded from a source with a

known probability model on the basis of the maximum variance algorithm [146]. The performance

of the Huffman code is measured based on the reduction in length of the bitstream of the encoded

symbols compared to the initial one. This assessment can be achieved by averaging the length, based

on the probability derived from the symbol frequency, for each symbols’ encoded bitstream weighted.

Huffman algorithm [150] can be used to generate a lookup table that maps a sample to a variable-

length code. Using larger blocks of samples would result in better compression performance, however,

would require larger lookup tables exceeding the capability of typical IoT devices (e.g. n ˘ 2 would

require 65536 entries). Considering the memory capabilities of the device on which the algorithm

was tested, a block size of n ˘ 1 was used. The cc2650 microcontroller memory specifications are

representative of a typical IoT microcontroller used for wearable devices.
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5.4 Results

In general, it is not possible to know the source entropy. It has to be estimated using empirical or

modelling approaches. In this chapter, an empirical approach taking each file for a participant as

an experiment is chosen to infer the source entropy. For each file, different block sizes are noted as

n ˘ {1, ...,20} and Equation 5.2 is employed to produce an estimate of the source entropy. In theory, as

suggested in Equation 5.2, as the block size increases, the estimate gets closer to the source entropy.

The ALSPAC data was analysed for various symbol sizes. Let n be an integer in {1, ...,20} repre-

senting the symbol size in bytes (e.g. n=4 is 32 bits). For each value of n, the frequency count for each

symbol is determined.

Each block X n encountered is stored in a customised red-black tree [150], denoted T , that maps

blocks to their frequency count. Let the cardinality of jT j denote the number of blocks stored in the

tree and
P

T denote the sum of the frequency counts in the tree. To limit the memory requirements

(the number of possible outcomes is 28£n)), only blocks with a frequency count greater than 0 are

stored in T; blocks not in T are assumed to have a frequency count of zero (i.e. zero probability).

The sum of the frequency counts is equal to the size of the file in bytes minus the block size. The

frequency count divided by
P

T is used to estimate P (X n) for each block stored in T . The entropy for

each block is summed and divided by n to provide an estimate of H(S ).

This model gives the estimated source entropy per sample for a given participant. It is done for

each participant. Though each person constitutes a specific source of entropy, the source entropy

estimates are averaged, and the results with 99% confidence intervals are shown in Figure 5.3.

As predicted, when the block size increases, the estimates appear to be approaching an asymptote.

According to Figure 5.3, the source entropy can be estimated at approximately 0.8 entropy/sample

(i.e. » 10:1 compression ratio is possible in theory). This compression ratio is possible with these files.

As such, future work would include modelling approaches to generalise these results and considering

dependencies between axes.

As the block size increases the entropy decreases converging towards an asymptote.

5.4.1 Frequency Distribution

The frequency distribution for individual samples for each axis was considered to characterise the

source entropy. Individual samples can be treated as a block size of n ˘ 1. Distribution statistics were

generated from acquired files. These statistics were used to translated the fixed length samples into

variable length code. This translation was achieved by using the Huffman algorithm described in

section5.3.5. Using a block size of n ˘ 1, we can create a frequency distribution for each axis from

acquired files. The frequency distributions for the x, y, and z axes for all files are shown in Figure 5.4.

It can be observed from Figure 5.4 that the x-axis appears normally distributed while the y-axis is

bi-modal and the z-axis tends to be left-skewed. From these frequency distributions, three lookup

tables are generated and stored in ROM. It can be suggested that no code exceeded 32 bits and were
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Figure 5.3: Empirical values for Entropy per axis for different block sizes

Table 5.1: Average length for each axis encoded symbol with probability weights

Axis Average length Compresson Ratio

X-Axis 5.9257 1.3501
Y-Axis 5.9921 1.3351
Z-Axis 5.9882 1.3360

therefore able to store each lookup table in a 256 entry array of 32-bit values along with another

256 entry array with the bit length of the code. Thus, each table consumed approximately 1.25 kB

of ROM for a total of 3.75 kB for all three axes. The initial distribution frequencies were used to

generate Huffman codes. The average length of the Huffman code is an essential metric in examining

the compression of the compression algorithm compared to the initial length of 8. An empirical

calculation of the compression ratio using the Huffman code is presented in table 5.1.

5.4.2 Noise Performance

Table 5.2 showcases the differences between Wearable 3 and SPW-2. The information on the table

advises that the two devices are identified with more than 95% confidence at the 8-bit resolution

specified for the SPHERE platform. The device is capable of providing accelerometer readings using

a +/- 2g range with a 32mg accuracy. Readings are entirely noise-free at a 64mg accuracy, with the
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Figure 5.4: Frequency Histogram for n ˘ 1

least significant bit (32mg) being somewhat noisy.

Accelerometer sampling rate varies slightly under different temperatures. In the previous gen-

eration of the wearable, this would result in some samples getting lost (not transmitted over the

network) or missing samples (network packets containing fewer samples than they should). The

effect was exacerbated by additional heat produced inside the enclosure by the wireless charging

circuitry (when in use). This issue has now been resolved in the latest generation of the hardware.

The discovery of this behaviour was based on data aggregation on datasets including both versions of

the wearable device. As a result, the current generation of the hardware provides better data quality

at a lower energy cost. The improvements in the design lead to an approximate 5% increase in activity

recognition accuracy. This work has been documented in a paper [151].
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Figure 5.5: Differences between accelerometer axis probabilities derived from empirical data

Gain error Units SPW-2 Wearable3
Sensitivity Temperature Coefficient % °C §0.01 §0.15

Zero-g Offset Temperature Coefficient mg / °C §1.2 §1
Noise mg RMS 4.4 6.5

Zero-g Offset mg §40 §40
Non-linearity % Full Scale §0.5 §1

Cross axis sensitivity % Between any two axes §1 §2

Table 5.2: Error and noise on Typical Electronic Devices, in this case, two MEMS accelerometers
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Table 5.3: Energy Model Definitions

Term Description
EC Energy consumed per byte for com-

pression (Joules)
ET Energy saved per byte for transmission

(Joules)
EN Net energy is transmission energy

saved minus compression energy con-
sumed (Joules)

PC Power consumed while comparing
(Joules/second)

PT Power consumed while transmitting
(Joules/second)

TC Time to compare a byte (sec-
onds/byte)

TT Time to transmit a byte (seconds/byte)
C R Compression ratio by tesi n/by tesout

#C Average number of comparisons per
byte

5.4.3 Energy Consumption Optimisation

To determine the efficacy of using compression to save in transmission energy, only the energy cost of

compression versus the energy saved during transmission was considered. Some energy might also be

saved while writing/reading compressed data to non-volatile memory (refer to Figure 5.1); however,

such a scenario was ignored in this study. Future work would include this as well as including reduced

time to download as an objective. The terms used in the model are defined as shown in Table 5.3. An

energy model that considers for one input byte the energy used for compression versus energy saved

for transmission is defined. The model’s parameters are the compression ratio and compression

computation. The other terms are taken as constants determined in section 5.3.4.1. The compression

computation is specified in terms of comparisons, which are the primary source of computation

with this approach.

To determine the efficacy of using compression to save in transmission energy, we only consider

the energy cost of compression versus the energy saved during transmission. Some energy might

also be saved while writing/reading compressed data to non-volatile memory (refer to Figure 5.1),

however, we do not consider this. Future work would include this as well as including reduced time

to download as an objective. The terms used in the model are defined as shown in Table 5.3.

Using the energy model and the derived constants, the parameters for the A-LZSS algorithm

were enumerated to discover the compression ratio and comparisons from an exemplary file with

approximately 30 million samples (about 7 days). The compression ratio, number of comparisons,

and net energy results were then calculated.
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Figure 5.6: Compression Ratio

Figure 5.7: Average comparisons per byte

Figure 5.6 shows the compression ratio achieved for various parameters of Lbi t s and Dbi t s . As

can be seen, increasing Lbi t s becomes detrimental after about four as this increases the size of the

fixed length code. Increasing Dbi t s generally increases the compression ratio, though for Lbi t s ˘ 2

also suffers from an increased code size erasing compression gains by searching a larger dictionary.

Figure 5.7 shows the average number of comparisons per byte #C for the parameters. As expected,

an increasing Dbi t s results in an increase in comparisons. Interestingly, larger Lbi t s do not necessarily

result in more computations. As the pattern in Lbi t s approaches the dictionary Dbi t s , we slide the

pattern less across the dictionary. If Lbi t s is greater than Dbi t s , then the comparisons will not increase

as we only compare up to Dbi t s .

Figure 5.8 shows the different types of event that the microcontroller executes between wake

up cycles. The operation of at any particular time manually labelled is presented on the legend of

the graph. The energy for calculating the BLE transmission cost presented in chapter 3 was used.

Furthermore the energy for compression was based on the execution time of the MCU and the power

consumed during that interval.Based on those calculations the compression energy and net energy
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Figure 5.8: Four different wake up events recorded on the microcontroller and the their decomposi-
tion

Figure 5.9: Net energy per byte

was calculated.

Figure 5.9 shows the net energy EN . The optimal point, at Lbi t s ˘ 4 and Dbi t s ˘ 4, is shown in

Figures 5.6, 5.7, and 5.9. At this point, we save » 1 uJ per byte of energy (i.e. for 1 MB of compressed

data, we save 1 Joule). The X-Y plane is drawn at net energy of zero to show when compression results

in more energy than saved for transmission. After approximately Dbi t s ˘ 8, we always lose energy.

It is important to consider the energy savings versus typical battery energy capacities. If the
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Figure 5.10: Energy Saved relative to Battery Capacity

energy saved is negligible compared to the battery capacity, then compression is obviously not worth

the effort. Based on the optimal energy savings from section 2.4, we calculate the energy saved for

various realistic sizes against the battery capacity.

Figure 5.10 shows that the relative energy savings are indeed significant and worth considering if

the data is to be stored and retrieved later using a low power wireless technology.

5.5 Discussion

Design choices on the determining factors were made based on the operation of SPW-2 compared

to SPW-90s which migrated from onboard storage to BLE networking as the main data off-loading

method.

5.5.1 Embedded IoT Sensors Design Recommendations

Embedded is the embodiment of multiple subsystems into the same package all controlled by an

MCU. To minimise power consumption, these MCUs are sleeping most of the time. The duration of

the time these devices sleeps, compared to being awake, is more than 90%. As such, the idle power

draw of these devices is the most dominant factor.

The design of these MCUs was adapted to limit this power draw figure. It was achieved by limit

the electronics that tend to consume large amounts of current during idle. Generic microprocessors

have a generic clock that is distributed to the whole system while all the cores of the system and all

subsystems are continuously powered.

Moreover, memory is being refreshed constantly, leading to a high idle current consumption.

These MCUs, however, are being driven to different power stated depending on the task undertaken
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at a given time. Periodic or event-driven tasks could be scheduled on the MCU, and the MCU can be

driven into a lower power state counting time until it wakes up again to complete another action.

All the instructions are being transferred to the memory of the MCU. The MCU then restarts

to execute the instructions from memory. The execution is completed in cycles – in stages and for

Cortex-M based systems, and the pipeline usually has three stages. The main point is that the MCU

can execute instructions based on the contents of the addresses.

Apart from execution, some instructions can point to a previous location in memory where a

loop can be formed or another location where conditional statements can be executed. When the

processor is woken up from a sleep state by an event, the execution instruction is pointed to the

memory location where it is to be executed at. Thus for every event, a different execution code can

be performed. To manage those events in terms of priority and queuing protothreads or semaphores

are generally used in this case to point the processor to the highest priority action in the queue. A

recommended design approach for those systems is to make most the task assigned to the MCU as a

separate thread that could be executed based on different signalling conditions on the MCU.

5.5.2 Incorporation of results from ALSPAC pilot study in SPW-2

All the instructions are being transferred to the memory of the MCU. The MCU then restarts to

execute the instructions from memory. The execution is completed in cycles – in stages and for

Cortex-M based systems, and the pipeline usually has three stages. The main point is that the MCU

can execute instructions based on the contents of the addresses.

Apart from execution, some instructions can point to a previous location in memory where a

loop can be formed or another location where conditional statements can be executed. When the

processor is woken up from a sleep state by an event, the execution instruction is pointed to the

memory location where it is to be executed at. Thus for every event, a different execution code can

be performed. To manage those events in terms of priority and queuing protothreads or semaphores

are generally used in this case to point the processor to the highest priority action in the queue. A

recommended design approach for those systems is to make most the task assigned to the MCU as a

separate thread that could be executed based on different signalling conditions on the MCU.

5.5.3 Observed Limitations Incorporated in Wearable 3 Design

Another feature that was examined was the hybrid data storage option of incorporating onboard

storage together with network off-loading. It will require switching the BLE advertisements from

connection-less to an acknowledgement based packet reception verification. When the device is

not in the reach of the network, the device will store the data locally. Mobile low power embedded

devices such as a wrist-worn wearable do not have a reliable and high bandwidth connection with an

off-loading data gateway. In some cases, two-way communication for such mobile devices is difficult

to implement. The proposed low power two-way communication from chapter 3 enables an effective
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network connectivity assessment. In the presence of good two-way radio connectivity, the device can

trigger an off-loading of data stored in the local memory.

5.6 Summary

In this chapter, empirical estimations of source entropy for activities of daily living accelerometer

data using data acquired were presented. Based on this, Huffman codes were generated offline,

suitable for IoT devices. The energy trade-offs between the energy cost to compress versus energy

saved while transmitting Bluetooth Low Energy packets was shown for a particular application. A

comparison of the compression ratio achieved by the compression algorithm versus the estimated

entropy has also been conducted. Works including improving the lossless compression algorithm

and comparing against similar approaches, using a modelling method for entropy estimates, and

generalising the energy model are the future research focus.
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CONCLUSIONS AND RECOMMENDATIONS

T
his PhD has explored the concept of environmental and on-body sensing within the scope

of healthcare monitoring in residential environments and schools. Research questions have

been addressed by approaches from different directions, including power optimisations

by applying compression analogue filtering and reconstructing using decompression or machine

learning algorithms. In addition, the user-friendliness of the deployment has also been concerned.

Methods such as employing aural interaction have increased the potential of interactivity.

6.1 Chapters Summary

Chapter 1 provides an overview of the challenges presented to IoT sensors designed to meet the

demands of a healthcare monitoring platform in the residential environment. Contested radio

channels, high interference and the need for low power make the task of data collection extremely

difficult. A distinguishment between on-body and environmental sensors was made. These two

categories of sensors are required to meet distinct specifications and are optimised for different

purposes.

Besides, a set of parameters were employed for such optimisation in environmental monitoring

and on-board sensors. The literature regarding residential environmental monitoring was presented.

Challenges faced by the current state-of-the-art monitoring systems have been identified in real-

world deployments. A multipurpose environmental sensor focusing on low-maintenance by limiting

power consumption was proposed as a solution.

Chapter 2 showcased novel implementations for residential monitoring, including a generic

sampling sensor and an extension board featuring a water flow sensor. During the development, vital

insights were acquired on data acquisition using microelectronic circuits. It was shown in the field

experiments that the device is energy efficient. Compared to devices that serve a similar purpose,
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the energy consumption was three orders of magnitude less. Furthermore, using machine learning

regression techniques, the device was accurate up to 97%. Important concepts, such as always-on

passive detection, were also introduced. The always-on technique is utilised both by the water sensor

and the PIR sensor on the environmental sensor. Both of them consume little current at about 1„A.

Moreover, when dynamic sampling is used in conjunction with mixed-signal processing, it dra-

matically cuts the sampled data size and subsequently the energy consumption. Using the analogue

filtering stage on the water sensor, the size of the sampled data was reduced from 10 thousand

samples per second to just two. Data generation by capturing the moments of interest lowers the

bandwidth requirements of the devices and energy consumption due to reduced packet transmis-

sions. Dynamic sampling creates an element of unpredictability on the network load. However, if the

data is compressed or processed, this effect is mitigated.

Chapter 3 explored the timeline of on-body wrist sensors design. Important lessons of user

acceptance, reliability and battery life unpredictability were taken into consideration to reach a third

iteration of the design (SPW-3). Data generated from intermediate pilot studies were used to create

optimal specifications. Lessons learned on power consumption minimisation were incorporated in

the design allowing the device to meet its battery life goals.

Chapter 4 was with regards to the accessibility of HCI interfaces. A non-intuitive interconnected

device Voxtopus was successfully deployed in a school environment. The ability of the device to

operate remotely in noise and multi-occupancy environment verified its potential to be used in

remote monitoring systems. The healthcare settings studied in the literature can be benefited from

voice-user interaction due to the added multi-sensory augmentation enabled from the Voxtopus

demo. Co-design tailed to the user group was an essential step in ensuring design consideration are

transferable to other audiences.

Chapter 5 capitalised on lessons learned from data generation using wrist-worn sensors and

how they can be optimised to meet machine learning algorithm requirements. Furthermore, power

optimisation techniques were utilised to evaluate a compression algorithm. Having collected millions

of samples from wrist-worn accelerometer devices experiencing battery failures, the optimisation

requirements set for those devices was driven.

6.2 Solutions Proposed to Research Questions and Objectives

The research questions stated on how digital technology can be migrated into residential monitoring

wille addressed below.

[Q1]: What criteria IoT sensors should meet to be suitable for residential, environmental or

on-body, monitoring?

By designing both fixed and mobile sensors for monitoring, including mains and battery powered

devices the key requirements for those sensors were stated. The suitability of those sensors was

verified from their performance in real world deployments.
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[Q2]: How can the quality of the data generated from IoT sensors can be considered fit for

purpose?

Computation and data storage are scalable and inexpensive options for data processing and

interpretation. Therefore processing IoT sensor data for healthcare with artificial intelligence is a

compeling solution. Data generated from the proposed sensors were made compatible with machine

learning pipelines. Machine learning algorithms training and verification processed described in

chapter 2 and 5 both for environmental and on-body sensors was used as a valitation of data quality.

[Q3]: How maintenance of healthcare monitoring systems can be minimised? Characterisation

of battery life in terms of system parameters was a first step in ensuring battery powered devices are

remain on-line as much as possible.

[Q4]: In what ways a user can interact with a IoT system and what is added value of such interac-

tion?

The lessons learned over multiple co-design activities and workshops provided the basis of the

requiements of user interaction. Having interacted with user focus groups in the creation of the

SPHERE platform and Voxtopus key requirements of user interaction technologies were reinstated.

Non-intuitive and engaging user interaction interfaces based on those lessons learned lead to the

creation of Voxtopus, which was part of a best paper award.

[Q5]: How can the energy consumption of IoT sensors be minimised while meeting the data

quality requirements?

In the context of activities of daily living, the use of machine learning algorithms and lossless data

compression sensor was studied. Significant reductions in computational time, network bandwidth

lead to reduction in the generated data volume and power consumption. The reduction in power

consumption was achieved without reducing the activity recognition accuracy for the activities of

daily living studied.

The contributions to the research question of IoT monitoring for healthcare could be summarised

in Figure 6.1. Sensors designed as part of this work have verified their ability to operate in a home

environment. The lessons learned in developing such sensors and the data generated from them is

an essential milestone in the progression of residential healthcare monitoring.
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Figure A.2: SPHERE Wearable 2 Top and Bottom PCB Layers
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APPENDIX A. SPHERE WEARABLE 2

Figure A.3: SPHERE Wearable 2 Different Render Viewing Angles

(a) Top (b) Bottom

(c) Orthogonal Top (d) Orthogonal Bottom
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Figure A.4: SPHERE wearable 2 Top Assembly Layer

Figure A.5: SPHERE Wearable 2 PCB Photographs

(a) Comparison with a 2 pound coin (b) In the first generation enclosure,
on a wireless "Qi" charger
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APPENDIX A. SPHERE WEARABLE 2

Figure A.6: Wearable 2 Bill of materials

Name Designator Description Footprint Quantity

RESC1005X04L Z7, Z16 Resistor, ±1%, 0.063W RESC1005X04L 2

CAPC1608X06L C1, C11 Capacitor, X5R, ±10% CAPC1608X06L 2

RESC1005X04L R1 Resistor, ±1%, 0.063W RESC1005X04L 1

CAPC1005X04L C6 Capacitor, X7R, ±10% CAPC1005X04L 1

CAPC1005X04L Z1, Z11, Z17 Capacitor, NP0, ±0.05 CAPC1005X04L 3

RESC1005X04L R12 Resistor, ±1%, 0.063W RESC1005X04L 1

INDC1005X04L Z5, Z6 Inductor, 320mA, ±0.1nH INDC1005X04L 2

CAPC1608X06L C3 Capacitor, X5R, ±10% CAPC1608X06L 1

1285AS-H-2R2M L4 1285AS-H-2R2M 1285AS-H-2R2M 1

INDC1005X04L Z2, Z15 Inductor, 320mA, ±0.1nH INDC1005X04L 2

CAPC1005X04L Z4 Capacitor, NP0, ±2% CAPC1005X04L 1

LIPO261534 B1 LIPO261534 LIPO261534 1

RESC1005X04L R9 Resistor, ±1%, 0.063W RESC1005X04L 1

CAPC1608X06L C20, C25, C28 Capacitor, X5R, ±10% CAPC1608X06L 3

CAPC1005X04L Z8 Capacitor, NP0, ±0.05 CAPC1005X04L 1

WE-WPCC L3 WE-WPCC WE-WPCC 1

CAPC1608X06L C2, C34 Capacitor, X5R, ±10% CAPC1608X06L 2

RESC1005X04L R7, R11, R13 Resistor, ±1%, 0.063W RESC1005X04L 3

CAPC1005X04L C23, C26, C36 Capacitor, X7R, ±10% CAPC1005X04L 3

INDC1005X04L Z9 Inductor, 320mA, ±0.1nH INDC1005X04L 1

CAPC1005X04L C4, C5, Z3 Capacitor, NP0, ±2% CAPC1005X04L 3

CAPC1005X04L C24, C29, C32 Capacitor, X7R, ±10% CAPC1005X04L 3

TSX-3225 X1 24MHz Crystal TSX-3225 1

FC-135 X2 EPSON TOYOCOM - FC-135 32.768KHZ ±20PPM,9.0PF - CRYS-
TAL, SM, WATCH

FC-135 1

C0805 C9 Capacitor, X5R, ±20% C0805 1

C0805 C21 Capacitor, X5R, ±20% C0805 1

CAPC1005X04L C22 Capacitor, X7R, ±10% CAPC1005X04L 1

RESC1005X04L R2, R6, R10 Resistor, ±1%, 0.063W RESC1005X04L 3

CAPC1005X04L C8, C10, C12,
C13, C14, C15,
C16, C18, C19,
C33, C35

Capacitor, X7R, ±10% CAPC1005X04L 11

RESC1005X04L R3 Resistor, ±1%, 0.063W RESC1005X04L 1

RESC1005X04L R4 Resistor, ±1%, 0.063W RESC1005X04L 1

CAPC1005X04L C30, C31 Capacitor, X7R, ±10% CAPC1005X04L 2

RESC1005X04L R8 Resistor, ±1%, 0.063W RESC1005X04L 1

RESC1005X04L R5 Resistor, ±1%, 0.063W RESC1005X04L 1

ADXL362 U3, U4 ADXL362 ADXL362 2

bq51050b U7 bq51050b bq51050b 1

cc26xx_qfn48 U1 CC2650_QFN48 cc26xx_qfn48 1

CSD23280F3 Q1 CSD23280F3 CSD23280F3 1

CAPC1005X04L C7, C17, C27,
Z10, Z12, Z13,
Z14

CAPC1005X04L 7

INDC1005X04L L2 Inductor, 320mA, ±0.1nH INDC1005X04L 1

EVPAWCA2A S1 SPST Switch, SMD EVPAWCA2A 1

LSM6DS0 U8 LSM6DS0 LSM6DS0 1

GD5F1GQ4UAY - duplicate U2 MX25U6435FZNI-10G GD5F1GQ4UAY 1

PINHEAD_1x3_127 J3 PINHEAD_1x3_127 PINHEAD_1x3_127 1

PINHEAD_1x4_127 J2 PINHEAD_1x4_127 PINHEAD_1x4_127 1

PINHEAD_2x3_127 J1 PINHEAD_2x3_127 PINHEAD_2x3_127 1

LED_0603 D1 LED, 0603 LED_0603 1

TPS62746YFPT U5 TPS62746YFPT TPS62746YFPT 1

TPS783 U6 TPS78318 TPS783 1

86
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Figure B.2: SPHERE Wearable 3 Schematic 2 of 2, Wireless Charging[1]

Figure B.3: SPHERE Wearable 3 Top and Bottom PCB Layers
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APPENDIX B. SPHERE WEARABLE 3

Figure B.4: SPHERE Wearable 3 Different Render Viewing Angles

(a) Top (b) Bottom

(c) Orthogonal Top (d) Orthogonal Bottom
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Figure B.5: SPHERE Wearable 3 Bottom Assembly Layer
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APPENDIX B. SPHERE WEARABLE 3

Figure B.6: SPHERE Wearable 3 Render and Assembly
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Figure B.7: SPHERE Wearable 3 Qi-Charging Version
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APPENDIX B. SPHERE WEARABLE 3

Figure B.8: Wearable 3 Bill of materials

Name Designator Description Manufacturer Part No. Quantity

1M 5% 0402(1005) R20 1M 0.063W 5% 0402 (1005 Metric) SMD 0402-1M 1
2K2 5% 0402(1005) R10, R13, R15 2K2 0.063W 5% 0402 (1005 Metric) SMD 0402-2K2 3
2N7002,215 Q4 N-Channel Trench MOSFET, 60 V, 0.3 A, 3-Pin SOT23, Tape and

Reel
2N7002,215 1

3K83 1% 0402(1005) R11 3K83 0.063W 1% 0402 (1005 Metric) SMD 0402-3K9 1
4K7 5% 0402(1005) R12, R17 4K7 0.063W 5% 0402 (1005 Metric) SMD 0402-4K7 2
10K 5% 0402(1005) R2, R5, R8, R9,

R14, R16
10K 0.063W 5% 0402 (1005 Metric) SMD 0402-10K 6

91K 5% 0402(1005) R6 91K 0.063W 5% 0402 (1005 Metric) SMD 0402-91K 1
100K 5% 0402(1005) R3, R7, R18,

R21, R22, R23,
R25

100K 0.063W 5% 0402 (1005 Metric) SMD 0402-100K 7

100R 5% 0402(1005) R1, R24 100R 0.063W 5% 0402 (1005 Metric) SMD 0402-100R 2
200R 5% 0402(1005) R4 200R 0.063W 5% 0402 (1005 Metric) SMD 0402-200R 1
470K 5% 0402(1005) R19 470K 0.063W 5% 0402 (1005 Metric) SMD 0402-470K 1
1285AS-H-2R2M L2 Ind Metal Alloy Shielded 2.2uH 20% 1MHz Powdered Iron 1.2A

0806 T/R
1285AS-H-
2R2M=P2

1

2450BM14G0011 U11 RF Balun 2.4GHz 2.5GHz 50 / - Ohm 0603 (1608 Metric) 2450BM14G0011T 1
501461-0891 J5 0.5 mm Pitch Easy-On(TM) Type FPC Connector, 0.8 mm Mated

Height, Right Angle, SMT, Bottom Contact, 8 Circuits, -40 to 85
degC, ELV and RoHS Compliant, Tape and Reel

5014610891 1

10118193-0001LF J4 Micro USB B Type Receptacle, -55 to 85 degC, 5-Pin SMD, RoHS,
Tape and Reel

10118193-
0001LF

1

BQ51013BRHLT U4 WPC 1.1 Compatible Fully Integrated Wireless Power Receiver IC,
4 V Min Input, 20-pin VQFN (RHL), Green (RoHS & no Sb/Br)

BQ51013BRHLT 1

BSS84,215 Q1, Q2, Q3 P-Channel Enhancement Mode Vertical DMOS Transistor, -50 V,
-0.13 A, 3-Pin SOT23, Tape and Reel

BSS84,215 3

C1005X5R1E474K050BB C9, C10 Chip Capacitor, 0.47 uF, +/- 10%, 25 V, -55 to 85 degC, 0402 (1005
Metric), RoHS, Tape and Reel

C1005X5R1E474K050BB 2

CAP 1nF 25V 0402(1005) C35 CAP 1nF 25V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-1nF-50V 1
CAP 1uF 10V 0402(1005) C21, C22, C24,

C29, C32, C34,
C36, C44

CAP 1uF 10V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-1uF-10V 8

CAP 1.1nF 50V 0402(1005) C8 CAP 1.1nF 50V ±10% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-1.2nF-50V 1
CAP 2.2uF 6.3V 0402(1005) C43 CAP 2.2uF 6.3V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-2.2uF-6.3V 1
CAP 2.2uF 10V 0603(1608) C15, C16 CAP 2.2uF 10V ±20% 0603 (1608 Metric) Thickness 0.55mm SMD 0603-2.2uF-16V 2
CAP 3.3pF 50V 0402(1005) C1 CAP 3.3pF 50V ±10% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-3.3pF-50V 1
CAP 4.7uF 10V 0603(1608) C11, C19, C20,

C33
CAP 4.7uF 10V ±20% 0603 (1608 Metric) Thickness 1mm SMD 0603-4.7uF-10V 4

CAP 10nF 6.3V 0402(1005) C37 CAP 10nF 6.3V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-10nF-50V 1
CAP 10nF 50V 0402(1005) C12, C14 CAP 10nF 50V ±10% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-10nF-50V 2
CAP 10uF 6.3V 0603(1608) C30 CAP 10uF 6.3V ±20% 0603 (1608 Metric) Thickness 1mm SMD 0603-10uF-6.3V 1
CAP 12pF 50V 0402(1005) C18, C27 CAP 12pF 50V ±5% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-12pF-50V 2
CAP 22pF 50V 0402(1005) C13 CAP 22pF 50V ±5% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-22pF-50V 1
CAP 33nF 25V 0402(1005) C3 CAP 33nF 25V ±10% 0402 (1005 Metric) Thickness 0.6mm SMD C1005X7R1E333K 1
CAP 47nF 25V 0402(1005) C2, C5, C6 CAP 47nF 25V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-47nF-25V 3
CAP 100nF 6.3V 0402(1005) C4, C7, C17,

C23, C25, C26,
C28, C31, C38,
C40, C41

CAP 100nF 6.3V ±20% 0402 (1005 Metric) Thickness 0.6mm SMD 0402-100nF-16V 11

cc2650_qfn48 U9 CC2650_QFN48 CC2650F128RGZT 1
CSD87502Q2 U8 Dual Channel N MOSFET CSD87502Q2T 1
FC-135 32.7680KA-A3 X1 Crystal, 32.768 KHz, 12.5 pF, -40 to 85 degC, 2-Pin SMD, RoHS, Tape

and Reel
FC-
13532.7680KA-
A3

1

ICM-20948 U6 World’s Lowest Power 9-Axis MEMS MotionTracking(TM) Device,
1.71 to 3.6 V, -40 to 85 degC, 24-Pin QFN, RoHS, Tape and Reel

ICM-20948 1

LP5907SNX-3.3/NOPB U7 Ultra-Low-Noise, Low-IQ LDO, 0.25 A, Fixed 3.3 V Output, 2.2 to
5.5 V Input, -40 to 125 degC, 5-Pin SOT-23 (DBV), Green (RoHS &
no Sb/Br), Tape and Reel

LP5907SNX-
3.3/NOPB

1

MC3635 U12 MC3635 3-Axis Accelerometer MC3635 1
MCP73832T-2DCI/MC U5 Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge

Management Controller, 4.2V, 8-Pin DFN, Industrial Temperature,
Tape and Reel

MCP73832T-
2DCI/MC

1

MX25R6435FZAIH0 U3 FLASH - NOR Memory IC 64Mb (8M x 8) SPI 80MHz 8-USON (4x4) MX25R6435FZAIH0 1
OPSUN33F U2 TOUCH Sensor IC OPSUN33f 1
TPS62746 U10 Buck Switching Regulator IC Positive Programmable 1.2V, 1.8V 1

Output 300mA 8-XFBGA, DSBGA
TPS62746YFPT 1

TPS78318DDCR U13 Single Output LDO, 150 mA, Fixed 1.8 V Output, 2.2 to 5.5 V Input,
with Ultra-Low IQ, 5-pin SOT (DDC), -40 to 105 degC, Green (RoHS
& no Sb/Br)

TPS78318DDCR 1

TSX-3225 24.0000MF15X-
AC3

X2 MHz Range Crystal, 24 MHz, -40 to 85 degC, 4-Pin SMD, RoHS,
Tape and Reel

TSX-
322524.0000MF15X-
AC3

1
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Figure C.2: Water Sensor Top and Bottom PCB Layers
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APPENDIX C. SPHERE SPES WATER SENSOR EXTENSION BOARD

Figure C.3: Water Sensor Different Render Viewing Angles

(a) Top (b) Bottom

(c) Orthogonal Top (d) Orthogonal Bottom

(c) Top Testing Variance (d) Orthogonal Top Testing Variance
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Figure C.4: Water Sensor 3 Top Assembly Layer

Figure C.5: Water Sensor Bill of materials

Name Designator Description Manufacturer Part No. Quantity

ONSC-D-A1K3-3 D1, D2 ON Semi 30V 200mA, Schottky Diode, 3-Pin SOT-
323 MMBD330T1G

MMBD330T1G 2

LPV802DGKT U5 Dual Channel 320nA Nanopower Operational Amplifier 8-VSSOP
-40 to 125

LPV802DGKT 1

TLV3691 U3, U4 0.9V to 6.5V, Nano-Power Comparator 5-SC70 -40 to 125 TLV3691IDCKT 2
1M3 1% 0603(1608) R2 1M3 0.1W 1% 0603 (1608 Metric) SMD CRCW06031M30FKEA 1
3M3 5% 0603(1608) R4, R5, R6, R7 3M3 0.1W 5% 0603 (1608 Metric) SMD CRCW06033M30JNEA 4
8M66 1% 0603(1608) R1 8M66 0.1W 1% 0603 (1608 Metric) SMD CRCW06038M66FKEA 1
10M 1% 0603(1608) R3 10M 0.1W 1% 0603 (1608 Metric) SMD RC0603FR-0710ML 1
MCP6142T-I/SN U2 600 nA, Non-Unity Gain Rail-to-Rail Input/Output Operational

Amplifier, 8-Pin SOIC, Industrial Temperature, Tape and Reel
MCP6142T-I/SN 1

CAP 1uF 25V 0603(1608) C10, C12 CAP 1uF 25V ±20% 0603 (1608 Metric) Thickness 1mm SMD C0603C105M3PACTU 2
CAP 4.7pF 10V 0603(1608) C2, C4 CAP 4.7pF 10V ±0.5pF 0603 (1608 Metric) Thickness 1mm SMD VJ0603A4R7DXQPW1BC 2
CAP 20pF 10V 0603(1608) C5, C8 CAP 20pF 10V ±5% 0603 (1608 Metric) Thickness 1mm SMD C0603C200J8GACTU 2
CAP 33nF 6.3V 0805(2012) C6, C7 CAP 33nF 6.3V ±5% 0805 (2012 Metric) Thickness 1mm SMD MC0805B333K250CT 2
CAP 33pF 10V 0603(1608) C1, C3 CAP 33pF 10V ±10% 0603 (1608 Metric) Thickness 1mm SMD VJ0603A330KXQCW1BC 2
CAP 100nF 25V
0603(1608)

C9, C11 CAP 100nF 25V ±20% 0603 (1608 Metric) Thickness 1mm SMD VJ0603V104MXXCW1BC 2

Header 2x8 J1 Header 2x8 2.54mm pitch 215307-4 1
LPV811DBVT U1 LPV811 LPV811DBVT 1
BSS138LT3G Q1, Q2 Power MOSFET, 200 mA, 50 V, N-Channel, 3-Pin SOT-23, Pb-Free,

Tape and Reel
BSS138LT3G 2

4 Way Screw Terminal P1 Screw terminal 0.50 mm², 4 Way Pitch 2,54 mm 1725672 1
5003 TP1, TP2, TP3,

TP4
Test Point, Orange, 1-Pin THD, RoHS 5003 4

418121160805 SW1 WS-DISV 2.54 mm small compact SMD Dip Switch with top tape A6S-4102-H 1
35
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