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Abstract

The demand for reliable and replicable short-term probabilistic earthquake forecasts
is becoming increasingly compelling, as we continue to witness seismic sequences
with occasionally multiple disturbing or damaging earthquakes.
Purely statistical models of earthquake clustering adequately capture the patterns
of triggered seismicity and currently represent the standard approach for di!erent
operational earthquake forecasting systems.
On the other hand, developing and testing physics-based forecast models let us vali-
date the most popular physical hypotheses for earthquake triggering and clustering.
These models couple complex stress interactions between faults with laboratory-
derived frictional laws providing a framework for earthquake forecasting in the con-
text of continuum mechanics. However, while featuring the unique characteristic
of integrating many products of observational seismology, they are extremely data-
intensive especially in near real-time settings where their applicability is still con-
tentious.
Over the last decade, the scientific advancements in seismology have provided higher
resolution seismic catalogues as well as improved fault characterisations; this presents
us with great opportunities to (1) evaluate their usefulness in improving the short-
term performance of models of both forecast categories, (2) explore which specific
modelling choices driven by real-time data quality and availability boost our fore-
casting skills and by how much, and (3) assess what are the data products required
for such model improvements to be operationally delivered.
To answer the above points, this thesis presents three forecasting experiments o!er-
ing a novel experimental strategy, where the absolute and relative performance of
statistical and physics-based models is formally quantified under di!erent forecast-
ing modes and modelling choices, in both cases of tectonic and induced seismicity.
Looking ahead to the future improvements in near real-time input data quality
promised by the most recent progresses in artificial intelligence techniques, the re-
sults of these experiments suggest what are the pathways that should be undertaken
for future model developments.
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Chapter 1

Introduction

Earthquakes continue to produce losses of human lives and enormous damages
around the world. Predicting the time, location and magnitude of destructive
earthquakes has been considered the ultimate goal of modern seismology since its
birth in the early 20th century.
For many years, scientists have been searching for observable and measurable
precursors that would enable us to precisely anticipate the occurrence of seismic
events. Di!erent hypotheses on earthquake preparatory phenomena were formu-
lated in the 1970s and 1980s with occasional successes and several failures.
Nowadays, that early enthusiasm has mostly vanished as seismicity precursors
proved unreliable, and the so-called ’deterministic’ prediction of earthquakes is
considered as a pipe dream by the seismological community.

The current research in the field focuses instead on probabilistic approaches that
fall into the category of mathematical models known as ’earthquake forecasts’.
Such modelling e!ort is made possible in the first place by the study of the large
scale characteristics of Earth’s seismicity: our knowledge of plate tectonics, paleo-
seismological investigations of earthquake recurrence times, together with studies
of historical seismicity and fault mapping, provide us with an understanding of
which areas are more likely to experience strong ground shaking in the long term
(i.e. several decades or centuries). These elements contribute to time-independent
earthquake forecasts, which usually take the form of seismic hazard maps express-
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ing the convolution of long term earthquake probabilities with site conditions.
This kind of research product is generally important for uses in risk management
including building code developments but also covers wider applications in the
field of insurance and re-insurance financial products.

However, a critical element comes from the observations that earthquakes tend to
cluster in space and time in what we commonly call ’earthquake sequences’. Such
empirical evidence, which is not considered in time-independent models, suggests
that the occurrence of an earthquake alters the short-term spatiotemporal prob-
abilities of further seismic events, usually called ’aftershocks’. Hence, short-term
models (e.g. few minutes to several months) are required to capture the space-
time fluctuations of the seismic hazard, as aftershock cascades can generate various
moderate to large magnitude events over weeks, months or years that expand the
damage zones extensively causing even more severe disruption to livelihoods.

1.1 Short-term Earthquake Forecasting

A turning point in the field of short-term earthquake forecasting is represented by
the destructive 2009 L’Aquila (Central Italy) earthquake, where an accelerating
pattern of M3+ seismicity was felt by the population a few days before a Mw =
6.3 mainshock that caused more than 300 fatalities. In that case, seven members
of the Italian National Commission for the Forecast and Prevention of Major Risks
were accused of inaccurate risk communication and eventually indicted on charges
of manslaughter (for more details, see Stucchi et al., 2016).
While e!orts to develop time-dependent earthquake forecast models were surely
under way well before the 2009 Italian case, these tragic events dramatically epito-
mised (1) the need to quickly move towards a community e!ort to establish testable
aftershock forecasts to inform short-term decision-making protocols, and (2) the
challenge to enhance societal awareness and preparedness to pending disasters by
delivering hazard information to the general public in an e!ective and timely man-
ner.
Therefore, following the L’Aquila disaster, the Italian government convened an
International Commission on Earthquake Forecasting for Civil Protection (ICEF),
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where a group of experts was asked to describe the state-of-the-art of short-term
earthquake forecasting and provide suggestions for its future developments. In
the resulting report, the framework of Operational Earthquake Forecasting (OEF)
was conceptualised for the first time, and defined as: ”the continual updating
of authoritative information about the future occurrence of potentially damaging
earthquakes, and the o!cially sanctioned dissemination of this information to en-
hance earthquake preparedness in threatened communities” (Jordan et al., 2011).

Instead of directly focusing on the definition of OEF protocols (that actually
involve critical research in other fields such as risk communication), this thesis
concerns the scientific advance that supports OEF improvements in the form of
testable aftershock forecast models.

These models can be divided into three categories:

1. Statistical models, that are based on purely empirical relationships provid-
ing a description of the probabilistic evolution of triggered seismicity. These
include the modified Omori-Utsu (OU) law for the aftershock time decay,
the Gutenberg-Richter (GR) law for the earthquake magnitude distribution,
and other relationships that scale the aftershock area and the number of
triggered events (i.e. the aftershock productivity) with the magnitude of the
mainshock.

2. Physics-based models that seek to forecast the space-time distribution
of future seismicity based on the physical mechanisms that are believed to
drive earthquake triggering. These models are commonly named ”stress-
based” forecasts as they couple the co-seismic and/or post-seismic stress
interactions between faults with constitutive laws that project earthquake
rates over di!erent time horizons.

3. Hybrid models implement a combination of the two previously mentioned
categories. For example, successful hybrid models sample earthquake magni-
tudes and occurrence times from the GR and OU laws and then redistribute
events in space using the fault-to-fault stress interaction patterns (e.g. Steacy
et al., 2014; Cattania et al., 2018).
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Because of their recognised ease of implementation and robustness in describing
the short-term spatiotemporal patterns of triggered seismicity, statistical forecasts
are the most widespread models currently adopted in OEF systems. In particular,
the Epidemic-Type Aftershock Sequence (ETAS) forecasts (Ogata, 1988; 1998)
have shown considerable skills in capturing the clustering characteristics of trig-
gered seismicity and are an integral part of many OEF strategies worldwide, where
they are either used alone or in combination with other models (e.g. Gerstenberger
& Rhoades, 2010; Marzocchi et al., 2014; Field et al., 2017; Omi et al., 2019).
ETAS models are also commonly recognised as the most robust benchmark against
which modellers evaluate any performance improvement of competing forecasting
techniques. On the other hand, these models o!er limited insight into the physics
of earthquake nucleation and short-term fault interaction in terms of continuum
mechanics.
Here, an indirect benefit of OEF emerges: while representing a practical aspect of
science to understand how well proposed models forecast seismicity, it also serves
as a community get-together to establish the veracity of the underlying scientific
hypotheses, such as those for the physical mechanisms governing earthquake trig-
gering and clustering.

1.2 The Challenge of Stress-based Forecasts

The idea of causal relationships between the occurrence of earthquakes dates back
to the second half of the twentieth century, when it was first postulated that earth-
quakes change the equilibrium of stresses on neighbouring faults (Richter, 1958).
Possible correlations between areas of increased shear stresses and aftershock lo-
cations were proposed by Das and Scholz (1981). However, it was not until the
seminal work of Harris and Simpson (1992) that the so-called static stress trans-
fer hypothesis was formally formulated. According to this hypothesis, which now
represents a commonly accepted physical interpretation for earthquake triggering,
a discrete dislocation in the Earth’s crust (i.e. an earthquake) statically (that is,
quasi-permanently) perturbs the state of stress in the surrounding crustal volume.
It follows that shear and normal stresses on fault surfaces are modified, inhibiting
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some ruptures and making others more likely.
The way static stress changes are implemented, that is, the vehicle to quantify
the actual amount of statically transferred stress is the Coulomb stress theory (see
Chapter 2): seismicity is promoted on neighbouring faults experiencing positive
static stress changes, while it is suppressed in those areas of negative stress change
commonly indicated as ’stress shadows’.
Despite promising applications in several regions of the world (e.g. Stein et al.,
1992; King et al., 1994), the stress transfer hypothesis has been challenged by
many authors pointing to the fact that a non-negligible portion of triggered seis-
micity (in extreme cases up to 30-40%) occurs in stress shadows (e.g. Hardebeck
et al., 1998; Mallmann & Parsons, 2008). These observations highlight the actual
complexity of earthquake triggering processes, that are likely to go beyond the
mere coseismic stress perturbations. Another recognised triggering mechanism,
especially at longer distances from the source fault, is represented by the tran-
sient perturbations due to the passage of seismic waves known as dynamic stress
changes (e.g. Gomberg et al., 1998; 2001; Brodsky & van der Elst, 2014). In ad-
dition, post-seismic processes are likely to contribute toward the observed longer
term aftershock patterns (e.g. Freed, 2005). These include afterslip (e.g. Perfet-
tini, 2004; Ross et al., 2017), poro-elastic e!ects (e.g. Cocco & Rice, 2002) and, at
decadal scale, viscoelastic relaxation of the lower crust (Wang et al., 2012, Diao
et al., 2014).

Although static stress changes alone do not always fully explain triggered earth-
quakes patterns, they represent the basis to produce physics-based short-term af-
tershock forecasts. In particular, stress changes are coupled to laboratory-derived
friction laws describing the seismicity response to an earthquake perturbation (Di-
eterich, 1994) to define a family of models known as Coulomb rate-and-state (CRS)
forecasts (Toda et al., 2005; Cocco et al., 2010; Toda & Enescu, 2011; Parsons et
al., 2012, 2014; Segou et al., 2016, Cattania et al., 2018, among others).
During the last "25 years, the development of CRS models has almost gone hand-
in-hand with the evolution in the production and quality of seismological data.
In the early to mid ’90s, earthquake catalogues were not large enough, and anal-
yses of spatial correlations between stress changes and occurrence of subsequent

5



CHAPTER 1. INTRODUCTION

moderate-to-large magnitude events were mainly qualitative (e.g. Stein et al.,
1994; Toda et al., 1998; Stein, 1999). In this regard, the 1992 Landers sequence is
often reported to be the clearest example of how the static stress change signatures
can drive aftershock sequences (King et al., 1994).
To start supporting a more systematic testing of stress transfers within the spe-
cific CRS implementation, a critical period came in the early 2000s when the im-
provement of regional networks and the introduction of new algorithms to develop
enhanced seismic catalogues started to bear fruit (e.g. Waldhauser & Elssworth,
2000). It was indeed not before the work of Toda et al. (2005) that CRS models
could be more rigorously tested on southern California seismicity benefitting from
the first large-scale relocated catalogue by Richards-Dinger and Shearer (2000).
However, this first generation of CRS models was usually rooted on simple descrip-
tions of earthquake sources and hazardous faults leading to mixed successes, up to
the point that Woessner et al. (2011) argued that their performance was nowhere
near to that of competing empirical models such as ETAS and STEP (Short-Term
Earthquake Probabilities; Gerstenberger et al., 2005).
In the last "10 years, the level of science around CRS modelling has evolved.
More complete global seismicity catalogues and increasingly detailed fault charac-
terisations drove us into the development of a second generation of physics-based
models that in preliminary experiments perform sensibly better than before (e.g.
Segou et al., 2013; Cattania et al., 2018). These results motivate further testing
of these models (1) for comparing their predicting skills against competing fore-
cast techniques in transparent evaluation platforms such as the Collaboratory for
the Study of Earthquake Predictability (CSEP, Jordan, 2006; Michael & Werner,
2018), and (2) ultimately, for future consideration in OEF protocols.

In spite of the recent improvements in physics-based modelling, a major chal-
lenge regards quantifying their actual real-time performance. Indeed, most of the
past literature regarding CRS models assesses their ability to reproduce the spa-
tiotemporal evolution of aftershock sequences in retrospective mode, that is, taking
advantage of best-quality datasets (especially in terms of high-quality source mod-
els) that are extremely unlikely to be available in real-time conditions following a
major earthquake. The need for a model parameterisation that goes beyond an
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input earthquake catalogue (as opposed to ETAS models) and that brings together
geological, seismological and geophysical information about the Earth system is
still an obstacle to integrate all these data products into an operational protocol.
To evaluate and quantify the predictive power of CRS models in operational con-
texts, and more importantly to understand which are the most critical pathways
to improve their near real-time skills, an increasing number of pseudo-prospective
and purely prospective experiments are needed. Both these ’blind’ forecasting
modes allow a so-called ’out-of-sample’ validation, since they do not use any fea-
ture of the data sample that the model is intended to forecast and avoid possible
biases introduced by the incorporation of refined input data that would not be
achievable in near real time. In this way, essential questions may be pursued: how
do CRS forecasts perform when their parameterisation is driven by real-time data
availability and quality? Which model components and modelling choices are the
most critical and by how much?

1.3 Forecast Models of Induced Seismicity

The interest of the seismological community toward human-induced seismicity has
appeared and dramatically grown over the last few years. The main reason lies
in the increased development of subsurface geo-energy reservoirs, including uncon-
ventional shale gas development, enhanced geothermal energy systems, wastewater
injection, and underground storage of liquid carbon (Ellsworth, 2013).
In recent years, fluid-induced seismicity with moderate magnitudes (M5-5.7) in
regions such as the central United States and South Korea has led to significant
damages and losses (Keranen et al., 2013; Ellsworth et al., 2019; Lee et al., 2019).
In this kind of environment, injection operations entail pumping pressurised fluid
at depth that promotes seismicity in previously low seismic hazard regions or fur-
ther increases existing high seismic rates. As a consequence, these activities raised
severe concern from governments and harsh criticism from the general public.
For specific applications such as hydraulic fracturing (HF) and geothermal ex-
ploitation, several countries around the world adopt the so-called ’tra#c light’
system (Bommer et al., 2006) as a mitigation strategy. According to these proto-
cols, operators are required to reduce or even stop injection if an earthquake with
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magnitude larger than a set threshold occurs. Variable magnitude limits are in
force in di!erent countries, from the ML = 4.0 of Canada (Kao et al., 2018) down
to the ML = 0.5 of the UK (Clarke et al., 2019).
Given this emerging type of anthropogenic hazard, and notwithstanding the huge
economic interests behind the exploitation of geo-energy reservoirs, researchers are
more frequently asked to provide operators and regulators with forecast models
of induced seismicity. The most studied aspects regard the maximum expected
magnitudes (e.g. Clarke et al., 2019) and forecasts of earthquake rates in response
to injected fluid volumes, rates, and pressures.
While several hypotheses about the interplay of physical mechanisms controlling
the seismic response to subsurface fluid injection are under investigation, our cur-
rent approach in modelling such short-lived transient hazard mostly relies on prob-
abilistic methods providing a framework for epistemic and aleatory uncertainties.
Passing the natural earthquake forecast problem to the induced seismicity environ-
ment introduces new challenges. (1) Forecasting event with generally low to very
low magnitudes; (2) creating forecasts with shorter time horizons: the compara-
tive analysis of Omori’s p-values of tectonic and induced seismicity rates shows
that the latter often decay more quickly and can vary dramatically even within
minutes; (3) developing models that need to account for additional sources of seis-
micity forcing (e.g. external fluid pumping) and their complex relationships with
the induced event rates.
One consequence arising from the points illustrated above is the importance of
enhanced, dense monitoring systems in fluid-induced seismicity contexts allowing
for high-quality data products to be adequately developed and promptly processed
within extremely short time windows. The aim is to integrate such input data into
forecast models to provide operators with reliable and easily implementable tools
for real-time hazard estimates.

1.4 Objectives of the Thesis and Outline

This thesis explores the modelling elements that improve the performance of short-
term stress-based and statistical earthquake forecasts in operational contexts. Its
goal is to provide quantifiable evidence on the type and quality of datasets required
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for future model developments, as well as to assess guidelines for their near real-
time implementation in cases of both tectonic and induced seismicity. To that end,
we explore how individual modelling choices driven by the actual data availability
a!ect the predictive skills of the forecasts.
Additional motivations for this dissertation are provided by a unique chance of-
fered by stress-based modelling of aftershock sequences, that is, testing how the
increasingly improving real-time data products help us to validate the existing
physical hypotheses for earthquake triggering.

In Chapter 2 we present the theoretical framework and briefly discuss the state-of-
the-art of Coulomb rate-and-state and ETAS models, as well as their limitations
in terms of model uncertainties and parameterisation. We also introduce the sta-
tistical metrics used to evaluate model performance.

Chapters 3 is dedicated to assessing the pseudo-prospective performance of Coulomb
rate-and-state models benchmarked against a standard ETAS during the 2016-2017
Central Italy aftershock cascade. We test a wide range of CRS models with in-
creasing level of complexity tied to real-time conditions in terms of data quality
and availability. Guided by a rigorous comparative model evaluation, we quantify
how the out-of-sample forecasting skills are a!ected by the gradual incorpora-
tion of: spatially variable background seismicity rates, optimised model param-
eters, crustal structural heterogeneities describing hazardous faults informed by
past earthquakes, spatially variable source models, and the contribution of smaller
magnitude earthquakes in reshaping the co-seismic stress field (i.e. ’secondary
triggering’ e!ects).

We start Chapter 4 by applying a similar experimental framework to the 2019
Ridgecrest (California) earthquake sequence. While prior studies in literature tend
to apply di!erent models to separate case studies, without much evidence of repli-
cable and robust inferences between di!erent seismic sequences, here our aim is
to explore whether the same conclusions drawn from the Central Italy experiment
are also valid in a completely di!erent tectonic setting.
Also, the data-wealthy environment of southern California allows us to expand
the analysis on some critical points, specifically the influence of (1) artefacts and
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errors in preliminary finite-fault slip models (2) the choice among di!erent data
sources to characterise earthquake ruptures (i.e. uncertainty in focal mechanisms),
and (3) the incorporation of unfolding aftershock ruptures to better resolve the
evolving co-seismic stresses in the near source region.

In Chapter 5, we move the focus of our models to an induced seismicity envi-
ronment, specifically to the microseismicity recorded during and after hydraulic
fracturing operations at the Preston New Road site in UK. Here, we probe the fore-
casting skills of the standard (tectonic) ETAS model and compare them against
those of a modified ETAS that accounts for external forcing in the form of time-
dependent fluid injection rates. Given the rich datasets coming from operations
carried out at two di!erent wells during two distinct time windows, we could also
evaluate the comparative performance of ETAS models parameterised using both
in-sample and out-of-sample data. The results of this study let us draw conclu-
sions on the operational applicability of ETAS in hydraulic fracturing contexts
and on which are the modelling strategies to be adopted for its successful future
implementations.

Finally, in Chapter 6 we examine the significance of our findings, their limitations
and discuss future directions.
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Chapter 2

Formulation and Evaluation of
Short-term Earthquake Forecast
Models

Part of the text included in this chapter appears in the following article:

• Mancini, S., Segou, M., Werner, M. J., and Cattania, C. (2019). Improv-
ing physics-based aftershock forecasts during the 2016-2017 Central Italy
Earthquake Cascade. J. of Geophys. Res. Solid Earth, 124, 8626-8643.
https://doi.org/10.1029/2019JB017874.

In this chapter, we introduce the mathematical framework that we use to pass from
the Coulomb theory to the creation of testable models of earthquake clustering.
We also present the main features of the ETAS model, as well as the formulation
of the most common statistical performance evaluation metrics implemented in
CSEP.

2.1 Coulomb Rate-and-state Modelling

2.1.1 Coulomb Stress Changes

Earthquake slip on faults is approximated by tensile and shear dislocations that
induce strain in the surrounding crustal volume, whose resulting deformation de-
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pends on the specific rheology assumed. For an elastic half-space, the perturbation
of the stress field (i.e. the change in the shear and normal components of the stress
tensor) imparted by discrete rectangular dislocations is calculated using the ana-
lytical coe#cients derived by Okada (1992).
According to the Mohr-Coulomb failure criterion, brittle ruptures such as earth-
quakes are encouraged when either (i) the shear stress (") acting on a fault plane
increases, or (ii) a fault is unclamped following a normal stress (!n) reduction.
The stress tensor obtained by means of the Okada solutions is then resolved on
a given fault geometry (commonly known as ”receiver fault”) to compute " and
!n. These values are used to calculate the change in the value of the Coulomb
Failure Function (CFF), which is a common physical quantity used to estimate
the variation of the state of stresses on neighbouring faults.
Rice (1992) formulates the "CFF as:

"CFF = "" + µ#("!n), (2.1)

where "" is the change in shear stress resolved on a receiver fault and set positive
in direction of fault slip, "! is the change in normal stress (positive when the fault
is unclamped), µ# = µ(1 # Bk) is the e!ective coe#cient of friction, with Bk the
Skempton’s coe#cient describing pore pressure changes in response to a change in
applied stress.

2.1.2 The Rate-and-state Framework

As the Coulomb stress hypothesis alone does not account for the time dependency
of seismicity, Coulomb rate-and-state (CRS) forecast models couple the coseismic
static stress change calculations with rate-and-state friction constitutive laws to
estimate the expected rates of earthquake occurrence. Although more recent re-
views of the rate-and-state model have been proposed (e.g. Heimisson & Segall,
2018), the approach presented in this study implements the standard formulation
by Dieterich (1994). According to the latter, the spatiotemporal seismicity rate
evolves as:
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R(t, x, y) =
r0(x, y)
&(t)"̇

, (2.2)

where r0 represents the background seismicity rate in space (x, y), "̇ is the secular
shear stressing rate (that is, it is assumed to remain constant) and & is a variable
that under stable conditions reaches the steady state with a value given by:

&0 =
1
"̇

. (2.3)

In the absence of stress perturbations, the seismicity rate R equals the background
rate r0. When a stress step is applied to the population of receiver faults, the state
variable instantaneously assumes a new value:

&n = &n"1 exp
!

#"S
A!

"
, (2.4)

where A! expresses the e!ective normal stress acting on the receiver fault, "S
is the stress imparted by the earthquake, and &n"1 and &n represent the values
of the & variable before and after the stress change, respectively. While in the
Dieterich (1994) formulation the applied stress change is the shear stress change,
CRS modelling usually assumes it to be a ”modified” Coulomb stress change (Di-
eterich et al., 2000) that also includes the contribution of the e!ective normal
stress changes. This is achieved by considering S = " # (! # $)(1 # Bk)!, with
$ a positive non-dimensional constitutive parameter controlling perturbations in
normal stress (Linker & Dieterich, 1992). To approximate S in equation (2.4) to
the Coulomb stress change as traditionally defined in equation (2.1), CRS models
assume that µ# = (! # $)(1 # Bk).
Dieterich (1994) and Dieterich et al. (2000) show that the state variable evolves as:

d& =
1

A!
[dt # &dS], (2.5)

Following equation (2.4), a positive stress change causes a drop of the & value and
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consequently a higher earthquake rate according to equation (2.2). However, the
seismicity rate eventually recovers as the state variable evolves in time according
to Dieterich (1994):

&n+1 =
!

&n #
1
"̇

"
exp

!
#"t"̇

A!

"
+

1
"̇

, (2.6)

where "t is the time step.
In the Dieterich’s (1994) rate-and-state framework, the ratio between the normal
stress A! and the secular shear stressing rate "̇ is the aftershock recovery time (ta)
required for the seismicity rate R to return to the background value r0 through an
Omori-like decay:

ta =
A!
"̇

. (2.7)

Given this inverse correlation between the stressing rate and the aftershock dura-
tion, it is evident that the seismicity rate on the most slowly stressed faults takes
more time to decay towards background values (Stein & Liu, 2009).

2.1.3 Sources of Uncertainty in CRS Modelling

The propagation of epistemic and aleatory uncertainties in CRS models has been
investigated by several authors (Hainzl et al., 2009; Woessner et al., 2012; Catta-
nia et al., 2014 among others).

First, the static stress change calculations usually do not take into account any
spatial variability in the elastic properties of the crust. Given our current limita-
tions in treating rheological variations at a fault-specific level, elastic parameters
(i.e. Lamé parameter, shear modulus and Poisson’s ratio) are commonly assumed
to be homogeneous throughout the study region, with values representing the aver-
age elastic properties of the upper crustal seismogenic layer. Although this source
of aleatory uncertainty likely a!ects our capability to resolve the small-scale pat-
terns of coseismic stresses, it has been shown that it is not a primary factor of
uncertainty when compared to other elements, such as the existence of diverse
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receiver fault populations, even for high model resolutions (Cattania et al., 2014).
Therefor, in the absence of further constraints, using a simplified elastic medium
seems acceptable from a modelling perspective.

The spatial heterogeneity of the receiver planes has been indeed reported to be
the main source of epistemic uncertainty in CRS forecasts by many authors (e.g.
McCloskey et al., 2003; Steacy et al., 2005; Hainzl et al., 2010). In the literature,
the receiver fault formulation usually follows two approaches: the ”optimally ori-
ented planes” (OOP; King et al., 1994), that assumes that earthquakes nucleate
on hypothetical faults in favourable orientation with respect to the regional plus
coseismic stress field, and the geological receiver plane (GRP) approach, where
receivers are informed from mapped faults. Both approaches received extensive
criticism in recent years; the OOP for relying on the knowledge of the largely un-
known regional stress tensor to resolve stress changes on hypothetical planes that
might not even exist (Segou & Parsons, 2016), whereas GRP may miss unmapped
faults (Jackson, 2018), when even in well-studied regions such as California ap-
proximately 30% of seismicity occurs on previously unidentified structures (Field
et al., 2014).

Furthermore, the array of receiver faults in a region likely have di!erent apparent
friction coe#cients (µ’), with small, limited o!set faults having higher values than
more evolved higher slip faults (e.g. Parsons et al., 1999). However, in an opera-
tional forecast setting where it is not possible to assess the frictional state of every
fault, an average intermediate value is a usually taken as a reasonable modelling
approach for a broad region.

Stress-based aftershock models are also critically a!ected by the epistemic uncer-
tainties behind complex source representations, that have more pronounced e!ects
in the near-source region of a forecast. It is in fact common that many, and po-
tentially conflicting, slip model versions for the same causative earthquake are
available to modellers. Such slip models can be obtained by inverting di!erent
kind of datasets picking up the coseismic and/or post-seismic deformations. In
this regard, Cattania et al., 2014 show that ensemble forecasts based on sets of
alternative slip distributions potentially outperform individual models.
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Cocco et al. (2010) also show how these models are particularly sensitive to the
definition of the background rate (r0), specifically, to the use of a declustered
(i.e. purely background) or non-declustered (”reference rate”) precursory seis-
micity and to its spatial variability. Spatially variable background (or reference)
seismicity rates are clearly supported by observations (e.g. Toda & Enescu, 2011);
however, their application within CRS models is still debated, since the spatial
correlation between background rates and the pattern of calculated stress changes
can locally produce a forecasted seismicity rate (R) that strongly diverges from
the observations.

Furthermore, it is widely accepted that faults constitutive properties used in the
rate-and-state forecast implementation, namely A! and "̇ , are poorly constrained
(Cocco et al., 2010). While assigning predetermined values to the rate-and-state
variables is one possible modelling choice (especially at local scales, where they are
hardly resolvable for each single fault), fitting the parameters to a learning phase
catalogue of past seismicity can represent a more reliable estimate and guarantees
a more objective model parameterisation. One approach to the latter method con-
sists in maximising a log-likelihood function (Zhuang et al., 2012) that measures
the goodness of fit between a model R(x, y, t) and a catalogue made of N earth-
quakes at xi, yi, zi, ti, with i = 1, ..., N . For a point process, it is defined as:

LL =
N#

i

log (R (xi, yi, zi, ti)) #
$ t1

t0

$

V
R(x, y, z, t)dxdydzdt, (2.8)

where R(x, y, z, t) is the seismicity rate at the time and location of the observed
events in the catalogue, while t0 and t1 represent the learning phase start and end
time.

2.2 A Statistical Approach: the ETAS Model

The Epidemic-Type Aftershock Sequence (ETAS) model was first introduced by
Ogata (1988) to describe the occurrence times and magnitudes of clustered seis-
micity and it was successively extended into the spatial domain by Ogata (1998).
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Given their relatively simple formulations and considerable performance, di!erent
versions of ETAS models are currently employed by government agencies in several
countries, including California (Field et al., 2017), Italy (Marzocchi et al., 2014),
New Zealand (Gerstenberger & Rhoades, 2010), and Japan (Omi et al., 2019).
Previous applications of ETAS show a good performance both in retrospective tests
(Helmstetter et al., 2006; Werner et al., 2011; Woessner et al., 2011; Marzocchi et
al., 2012; Cattania et al., 2018) and during unfolding sequences (e.g. Marzocchi
& Lombardi, 2009; Marzocchi et al., 2017). However, the model presents some
weaknesses in earthquake sequences a!ected by considerable early catalogue in-
completeness (Omi et al., 2016; Segou & Parsons, 2016) and due to its purely
statistical nature it does not include interaction e!ects between specific faults at
short, intermediate and long o!-fault distances.

The ETAS seismicity corresponds to a point process with a stochastic spatiotem-
poral branching evolution, where each earthquake triggers its own o!spring events,
whose number depends on the parent’s magnitude and follow an Omori law decay.
In the ETAS model, triggered earthquakes can have a larger magnitude than their
parent event. The total space-time seismicity rate ' (or ”conditional intensity”)
is defined as:

'(x, y, t|Ht) = µ(x, y) +
#

i:ti<t

g(t # ti, x # xi, y # yi; Mi), (2.9)

where µ(x, y) is the background rate, a time-independent and spatially heteroge-
neous Poisson process, while the summation term represents the triggering history
(Ht) from all preceding earthquakes occurring at ti < t. The triggering function
is expressed by empirical relations, according to the form of Ogata (1998):

g(t, x, y; M) = K0e!(M"Mcut) $ cp"1(t + c)"p(p # 1) $ f(x, y|M), (2.10)

with normalised temporal and spatial distributions as second and third terms
on the right-hand-side, respectively. The parameter K0 regulates the short-term
aftershock productivity by a parent event with magnitude M equal or above a
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minimum triggering magnitude (Mcut); $ establishes the e#ciency of earthquakes
in triggering aftershocks as a function of magnitude. The second term on the right-
hand side of equation (2.10) is the modified Omori law (Utsu, 1961) describing the
temporal distribution of triggered earthquakes. The term f(x, y|M) represents
the probability distribution function (pdf ) of the spatial decay of triggered seis-
micity near the parent event given the parent’s magnitude. Although spatially
anisotropic kernels have been proposed and tested in literature (e.g. Helmstetter
et al., 2006; Werner et al., 2011; Savran et al., 2020), here we adopt a spatially
isotropic power law (e.g. Ogata & Zhuang, 2006; Seif et al., 2017) as it is the
standard ETAS spatial distribution and still represents a very common modelling
approach in most of those OEF-implemented ETAS models that are the bench-
mark for our stress-based counterparts:

f(x, y|M) = (d e"(M"Mcut))q"1/)(x2 + y2 + d e"(Mi"Mcut))"q(q # 1), (2.11)

where q describes how triggered events decay in space, and the term d e"(Mi"Mcut)

scales the size of the Mcut aftershock zone with the magnitude of the parent earth-
quake.

2.2.1 ETAS Parameterisation

The robust estimation of input parameters has been reported in many cases to be
one of the hardest challenges within the ETAS framework (e.g. Seif et al., 2017;
Zhang et al., 2020). The most used method to estimate the ETAS parameters is
the Maximum Likelihood Estimation (MLE) approach, following which the mod-
eller obtains the set of parameters that, given the observations (i.e. a seismicity
catalogue with N events, the ”learning catalogue”), maximise the following point
process log-likelihood function (Zhuang et al., 2012):

log L(K, c, p, $, d, q, &) =
N#

i=1

log ' (ti, xi, yi|Ht)#
$

S

$ T1

T0

' (t, x, y) dtdxdy, (2.12)

where T and S represent the selected time and space windows to fit the data,
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respectively. Within the MLE criterion, a number of possible ways to reach sta-
ble global optima of the function have been proposed in the literature, including
simulated annealing (Lombardi, 2015), expectation-maximisation (EM) algorithms
(Veen & Schoenberg , 2008), and algorithms based on grid search methods (Lippiello
et al., 2014). In this work we adopt the latter approach; in particular, we apply
the iterative algorithm by Zhuang et al. (2002) that simultaneously estimates the
background rate, as the knowledge of µ(x, y) is required for the inversion of ETAS
parameters.
A particular debate in the ETAS community regards whether the $ value of the
productivity law should be fixed a-priori or let converge to the Maximum Likeli-
hood value. While both approaches can be found in the literature, several lines
of evidence suggest that $ should be set equal to % (e.g. Helmstetter et al., 2005,
2006; Hainzl et al., 2008; Zhang et al., 2020). Among them: (1) it reproduces the
Bath’s law (e.g. Felzer, 2002); (2) when the spatial kernel is isotropic, the value of
$ is generally underestimated and K0 is overestimated (Hainzl et al., 2008; Seif et
al., 2017) and to reduce the bias in the productivity parameters a common choice
is to re-estimate parameters fixing $=2.3 (assuming a b-value =1; Helmstetter et
al., 2006; Hainzl et al., 2013); (3) $ is very close to % when considering incomplete
aftershock sequences in combination with a time variable background rate (Hainzl,
2013); (4) $ % % would be in agreement with static stress triggering models (Hainzl
et al., 2010). On the other hand, setting $=% often leads to the undesired e!ect
of obtaining a branching ratio, defined as the mean number of triggered events
per earthquake averaged over all magnitudes, larger than 1. In practical terms,
this means that the ETAS earthquake-generating process becomes supercritical
(or ’explosive’) and the triggered seismicity projected by the model never dies out.
To overcome this potential issue, a popular solution (also adopted in this work) is
to re-scale the estimates of the productivity parameters K0 and $ such that they
return a stable process (e.g. Seif et al., 2017).

2.2.2 ETAS Simulations

Forecasts of the ETAS model require simulations because the rate is conditional
on the history. Here, we follow the simulation algorithm by Zhuang and Touati
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(2015): (i) the number of unknown events is a random variable drawn from a
Poisson probability mass function with parameter controlled by the productivity
law, (ii) the occurrence times are sampled from the modified Omori law, (iii) the
spatial locations follow the isotropic spatial kernel of equation (2.11), (iv) magni-
tudes are drawn from the Gutenberg-Richter distribution. For higher generations
of triggered events, the algorithm is repeated until the simulation process eventu-
ally runs out of potential parent shocks.
In addition to triggered seismicity, the forecast has to account for background (i.e.
spontaneous) events. One way to achieve this is by simulating those events as-
suming that (i) their number is Poisson distributed with mean equal to the rate
of background events identified after declustering of the learning catalogue, (ii)
their location is consistent with the smoothed spatial distribution of background
seismicity in the study area, (iii) their occurrence times are sampled from a uni-
form distribution rather than from the Omori law, and (iv) magnitudes are drawn
from the Gutenberg-Richter distribution. An alternative approach is to account
analytically for the background seismicity occurring inside the forecast window.
In this study we adopt the latter approach; we assign 2D Gaussian kernels with
variable bandwidth around each background event identified after the stochastic
declustering (Zhuang, 2002) of the ETAS learning catalogue. We set a minimum
bandwidth value consistent with a reliable estimate of the average location error
of the implemented ETAS learning phase catalogue. Finally, we integrate the con-
tribution of all kernels over each grid cell, obtaining a background spatial density.
The expected total mean rate (Rtot) due to the occurrence of potential background
events and their related generations of triggered earthquakes in each cell is given
by:

Rtot = µ
!

1
1 # n

"
, (2.13)

where µ is the local value of background rate and n is the branching ratio.
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2.3 Performance Evaluation Metrics

2.3.1 CSEP tests based on likelihoods

A number of statistical tests (Schorlemmer et al., 2007; Zechar et al., 2010; Werner
et al., 2011; Rhoades et al., 2011; Marzocchi et al., 2012) are implemented within
the Collaboratory for the Study of Earthquake Predictability (CSEP) in order to
e#ciently evaluate the spatiotemporal performance of short and long-term earth-
quake forecast models.
The most commonly used metrics are: (1) the modified N-test (Zechar et al., 2010)
to compare the total number of observed vs. forecasted earthquakes over a specific
time horizon; (2) The S-test log-likelihood scores of the forecasts (Schorlemmer et
al., 2007; Zechar et al., 2010) to measure the consistency between the observed and
expected spatial distribution of the events; (3) the T-test (Rhoades et al., 2011) to
compare the relative performance of the models in terms of information gain per
earthquake.

N-test

The N-test makes use of two metrics, under the assumption that the tested forecast
is correct: #1 to assess the probability of observing at least Nobs earthquakes given
a forecast of Nfore, and #2 to evaluate the probability of observing at most Nobs

earthquakes given Nfore. To compute these two quantiles, the test implements a
Poisson cumulative mass function F:

#1 = 1 # F ((Nobs # 1) |Nfore) , (2.14)

#2 = F (Nobs|Nfore) . (2.15)

The N-test is then evaluated by applying a one-sided significance test and the
forecast is ”rejected” if either #1(t) < $ or #2(t) < $, where $ = 0.025 is the
e!ective significance value (Zechar et al., 2010).
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S-test

To determine the spatial consistency of the models, their log-likelihood scores are
used. Given a forecast and under the assumption that it is correct, we ask what
the likelihood of the observation is in each bin of the testing region. For a single
spatial cell, the log-likelihood (LL) of observing ( earthquakes given a forecast of
' events is defined as (Zechar, 2010):

LL((|') = log(Pr((|')) = #' + ( log ' # log((!), (2.16)

where Pr((|') is the probability of observing ( assuming that ' is correct. The
log-likelihoods used in the S-test (LLS) make use of normalised ' rates in order to
isolate the spatial component of the forecasts, under the assumption that the total
number of expected events equals the total number of observed events. Because
of the bold Poissonian assumption on the independency of the number of events
in di!erent spatial bins, the joint S-test log-likelihood scores (jLLS) are obtained
by summing the LLS of all the (i, j) cells:

jLLS(%|$) =
#

(i,j)$R

(#'(i, j) + ((i, j) log('(i, j)) # log(((i, j)!)), (2.17)

where % and $ are the observed and forecasted catalogues.
Log-likelihoods are negative by definition, with higher values (that is, values closer
to zero) indicating better predictive skills.

T-test

The T-test (Rhoades et al., 2011) quantifies the relative performance of competing
models by ranking the forecasts according to their information gain per earthquake
(IG) over a selected benchmark model. The IG score can be simply defined as the
average log-likelihood di!erence, per earthquake, between a model A and a bench-
mark B:

IG(A, B) =
jLLA # jLLB

N
, (2.18)
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where N is the number of observed events. T-test’s likelihoods are calculated from
unnormalised rates so that both the spatial aftershock distribution and the fore-
casted seismicity rates influence the score. The 95% confidence interval over the
mean IG are calculated from a paired Student’s t-test (Rhoades et al., 2011). A
positive information gain per earthquake over the benchmark indicates a model
performance improvement, which we deem significant if the confidence interval
does not enclose zero (or if the confidence bounds of two competing forecast bench-
marked over the same model do not overlap).

2.3.2 Non-likelihood based alternatives

Because of their formulations, the current likelihood-based CSEP validation met-
rics penalise false negative forecasts (i.e. bins where no earthquake is predicted but
at least one occurs) much more than false positives (i.e. locations where seismicity
is expected to increase but no event is observed). While this characteristic does
not have a marked e!ect on ”all positive” models like ETAS, it can be detrimen-
tal for models that forecast local seismic rate suppressions, such as the Coulomb
stress shadows. To introduce fairer consistency and comparison tests among mod-
els rooted in di!erent approaches, CSEP is now committed to reformulating some
of the existing evaluation techniques to establish new standard procedures for fu-
ture experiments. For example, Savran et al. (2020) proposed a strategy that
overcomes the usage of standard grid-based probability maps and compares spe-
cific characteristics of competing forecasts on the basis of the similarity between
synthetic catalogues simulated by the model and the observations. Importantly,
transitioning from a grid-based to a simulation-based model evaluation would al-
low exploring the true model variability by relaxing the simplifying assumption
that earthquakes are Poisson distributed in discrete space-time-magnitude bins.

A variety of other evaluation metrics have been applied to the validation of earth-
quake forecasts in recent years. Among these, it is worth mentioning the method
applied by Schneider et al. (2014), who evaluated a set of forecasts for the 2010 El
Mayor-Cucapah (Southern California) sequence using point process residual scores
(Clements et al., 2011). These residuals measure how much a model underpredicts
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(high positive residuals) or overpredicts (high negative residuals) the number of
target events in a bin. Marzocchi et al. (2012) introduced a Bayesian framework
to assess the relative performance of multiple models. Instead of being based on
a binary acceptance/rejection criterion, the Bayesian approach emphasises model
comparison by providing the posterior probability of each competing model, that
is, the probability for each forecast to be the data-generating model.

Regarding a slightly di!erent family of earthquake models, the alarm-based fore-
casts, performance evaluation usually hinges on a binary framework, that is, it
depends on the number of models hits (’Yes’) and misses (’No’). In this context,
the most popular evaluation method is the Area Skill Score (Zechar & Jordan,
2008), which quantifies the performance of an ’alarm function’ relative to a ref-
erence model using the Molchan diagrams (Molchan, 1991; Molchan & Kagan,
1992), where the model’s miss rate is plotted against the fraction of space-time
occupied by an alarm. Zechar and Zhuang (2014) proposed a scoring metric that
can be applied also to cases where it is not possible to define a miss rate and that
does not require selecting a specific reference model (which can often represent a
controversial choice); such method, the Parimutuel Gambling Score, is also appli-
cable to both fully binary and probabilistic predictions.

For an overview of some of the tests listed above, including the CSEP-style scores
of grid-based forecasts, the reader is referred to Zechar (2010) and the material
available within the Community Online Resource for Statistical Seismicity Analy-
sis (CORSSA) project.
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Chapter 3

Improving Physics-based
Aftershock Forecasts during the
2016-2017 Central Italy
Earthquake Cascade

The material presented in this chapter appears in the following article:

• Mancini, S., Segou, M., Werner, M. J., and Cattania, C. (2019). Improv-
ing physics-based aftershock forecasts during the 2016-2017 Central Italy
Earthquake Cascade. J. of Geophys. Res. Solid Earth, 124, 8626-8643.
https://doi.org/10.1029/2019JB017874.

3.1 Introduction

The 2016-2017 Central Apennines earthquake sequence is one of the most recent
examples of how damages from subsequent aftershocks can exceed those caused
by the initial mainshock. Recent studies reveal that physics-based aftershock fore-
casts hold potential for reaching comparable skills to their statistical counterparts,
but their performance remains a controversial subject.
In this study, we employ physics-based models that combine the elasto-static stress
transfer with rate-and-state friction laws, and short-term statistical ETAS models
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to describe the spatiotemporal evolution of the Amatrice-Visso-Norcia (hereinafter,
AVN) earthquake cascade. We then track the absolute and relative model perfor-
mance using CSEP’s log-likelihood statistics over di!erent time windows (and for
total forecast horizon of one year) after the 24th August 2016 Mw=6.0 Amatrice
earthquake. We propose a pseudo-prospective experimental framework with the
goal of (1) assessing how data quality and individual model choices driven by real-
time conditions a!ect the performance of physics-based forecasts benchmarked
against a standard statistical ETAS model and (2) evaluating the comparative
performance of the forecasts in critical time windows, such as the period following
the 26th October Visso earthquakes leading to the 30th October Mw=6.5 Norcia
mainshock.
In particular, we present 7 classes of physics-based models with gradual complexity
increase. The simplest forecasts include preliminary data available a few minutes
after each Mw ! 5.4 event, featuring synthetic source models with empirically de-
rived fault length and previously determined fault constitutive parameters. More
complex models incorporate: (i) optimised rate-state parameters, (ii) spatially het-
erogeneous receiver fault planes, (iii) best available slip models, and (iv) secondary
triggering e!ects.
Our results show that the preliminary assumptions made to fill the early post-
disaster knowledge gap severely hamper the absolute performance of CRS fore-
casts. When we incorporate revised data, optimise the rate-and-state parametrisa-
tion on previous regional seismicity and account for the multi-level heterogeneities
as (1) 3D spatial distribution of receivers, (2) spatially variable fault slip models,
and (3) smaller magnitude aftershocks that reshape the local stress field, we obtain
a dramatic performance improvement of physics-based models.
Results suggest that CRS performance is comparable to ETAS only when sec-
ondary triggering is taken into account.

3.1.1 The Central Apennines Earthquake Sequence

The Central Apennines are among the highest seismic hazard zones in Europe
(Woessner et al., 2015). Present day deformation is taken up by NW-SE trend-
ing normal fault systems, expressing the post-orogenic extension at a rate of "3
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mm/yr (Serpelloni et al., 2005). Historical and modern seismicity indicate moder-
ate (M5+) to large (M6+) magnitude earthquake cascades associated with heavy
damage patterns in the broader area (Rovida et al., 2016) such as the 1703 Norcia
cascade where three M6.2+ earthquakes occurred within less than 20 days (Boschi
et al., 2000), the six M5.2+ events that struck Colfiorito between September and
October 1997 (Amato et al., 1998; Chiaraluce et al., 2003; 2004), the 2009 Mw=6.3
L’Aquila sequence with an accelerating seismicity pattern observed few days be-
fore the mainshock (Chiarabba et al., 2009; Chiaraluce et al., 2011).
The 24th August 2016 Amatrice earthquake activated a 60-km long normal fault
system (Figure 3.1a) and was followed by an Mw=5.4 aftershock within less than
one hour at the northern up-dip part of the mainshock rupture (Chiaraluce et al.,
2017 and references therein). Two months later, on October 26th, two Mw=5.4
and Mw=5.9 earthquakes occurred further north near the village of Visso, closer
to the southernmost aftershock zone of the 1997 Colfiorito sequence. The October
30th Mw=6.5 Norcia event remains the largest event of the sequence to date and
the strongest in Italy since the 1980 Mw=6.9 Irpinia earthquake. Few months
later, on January 18th 2017, four M5+ earthquakes occurred within a 4-hour win-
dow to the south of the Norcia mainshock rupture, coinciding with the northern
aftershock zone of the 2009 L’Aquila sequence. The January 2017 seismicity raised
immediate concerns about the Campotosto artificial dam lake, the second largest
man-made lake in Europe.
In Table 3.1 we summarise the preliminary and revised source parameters of the
major earthquakes of the AVN sequence.
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Figure 3.1: The 2016-2017 AVN sequence (M3+). (a) Map view. Colours in-
dicate di!erent seismicity phases: red August 24th 2016 - October 25th 2016,
green October 26th - October 29th 2016, blue October 30th 2016 - January 17th
2017, yellow January 18th - August 24th 2017. The focal mechanisms of the three
largest events are also displayed. Grey symbols indicate the 1997 Colfiorito and
2009 L’Aquila seismic sequences (M3+). We report the mapped active faults of
the region (EMERGEO Working Group, 2016); (b) Cumulative seismicity (M3+)
with time; (c) depth distribution of M3+ events in the first 24 hours following the
Mw=6.0 Amatrice (red bars) and Mw=6.5 Norcia (blue bars) mainshocks.

28



3.2. DATA

Table 3.1: Source parameters for the M5+ events of the AVN sequence. Time-
stamps and magnitudes are available at http://cnt.rm.ingv.it, while the re-
vised hypocentral depths are taken from the corresponding slip models where avail-
able. The period between the moment an event is recorded and the time when
its rupture model is estimated varies from few days to several weeks. For the
AVN sequence, finite-fault slip models were computed for six out of the nine M5+
events, and for most of them a period of 2-3 weeks from their occurrence passed
before the release of a first robust version.

3.2 Data

We implement our models within a 3D grid (0-12 km of depth) with 2 km spacing
in a "150 x 150 km testing region (see Appendix A, Figures A1-A2). We use: (1)
the seismicity catalogue of the Italian Seismological Instrumental and Parametric
Data-Base (ISIDe) for the period between January 1st 1990 - August 23rd 2016
(learning phase, 1533 M3+ events), (2) the near-real time catalogue for the 1
year after the Mw=6.0 Amatrice earthquake (testing phase, 1160 M3+ events),
(3) Centroid Moment Tensors (CMT) catalogues for the learning phase (Figure
A1) and the Database of Individual Seismogenic Sources (Basili et al., 2008; DISS
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Working Group, 2018) for constraining the active seismogenic sources and regional
rupture styles of the Central Apennines.
For the primary events (Mw ! 5.4), we estimate the coseismic stress changes using
the finite-fault slip models of Tinti et al. (2016) and Scognamiglio et al. (2016)
for the Amatrice I-II events, respectively, and Chiaraluce et al. (2017) for the
Visso II and Norcia events. For the January 18th 2017 Mw=5.5 and Mw=5.4
Campotosto earthquakes, we use the only preliminary slip models available, as
no refined versions have been issued. For the sources that lack a rupture model,
we construct a synthetic slip distribution from their moment tensor solution, with
empirically-derived fault dimensions (Wells & Coppersmith, 1994) and uniform
slip (from the moment relation of Hanks & Kanamori, 1979) tapered at the edges.

3.3 Methods

In this section, we describe forecast characteristics and parameters. All models
share a 1-year forecast horizon, with model update frequency of 24-hour time
windows (dt) and M3+ target seismicity magnitude.

3.3.1 Development of CRS Forecast Models

All the Coulomb rate-and-state models presented below share some common char-
acteristics, such as the implementation of an elastic half-space with a shear mod-
ulus of 30 GPa and Poisson’s ratio *=0.25, and the adoption of an average value
of the coe#cient of e!ective friction (µ# = 0.4). However, in Appendix A.1 we also
tested the e!ect of implementing a lower µ# in the stress change calculations.

We first develop a reference model, CRS-1, based on: (1) real-time preliminary
catalogue data, including hypocentres and focal mechanisms available within few
minutes to 1 hour, (2) stress perturbations from Mw ! 5.4 events estimated us-
ing a uniform slip model with kinematic parameters from focal mechanisms with
nodal planes selection constrained by the predominant rupture geometries reported
in the DISS database, (3) a spatially homogeneous background rate obtained by
stochastic declustering (Zhuang et al., 2002) of the CRS learning phase catalogue
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and averaged over the testing region (r0=0.034 M3+ events/day), and (4) spa-
tially uniform receiver planes (SUP) for "CFF estimation expressing the NW-SE
striking, SW dipping main trend of the Central Apennines normal fault systems
(Basili et al., 2008). This latter assumption is valid when we do not know enough
about the complex structures of the neighbouring faults (McCloskey et al., 2003).
This preliminary forecast realisation features rate-and-state parameters A! = 0.04
MPa and "̇ = 10"3 MPa/yr (ta = 40 years), previously used to characterise the
active faults of the 1997 Colfiorito sequence (Catalli et al., 2008).
The only di!erence between models CRS-1 and CRS-2 is that the latter implements
a heterogeneous background rate, smoothed in space according to the adaptive ker-
nel method proposed by Helmstetter et al. (2007).
From CRS-3 onwards we use: (1) revised hypocentral locations and moment ten-
sor solutions available within 1-3 hours after a large earthquake (Table 3.1), and
(2) fault constitutive parameters derived from a log-likelihood optimisation on the
learning phase catalogue (see Section 2.1.3). During the optimisation procedure,
the grid search for A! ranges between [0.01-0.1] MPa enveloping all estimated val-
ues in previous experiments (e.g. Toda et al., 1998; Console et al., 2006; Catalli
et al., 2008) with aftershock durations (ta) of [1-1000] years. The best-fit A!-"̇
couples for each model are shown in Table 3.2. Otherwise, CRS-3 features the
same implementation parameters as model CRS-2.
In model CRS-4, we introduce spatially variable receiver planes (SVP) to achieve
a better representation of the structural heterogeneity of the fault system. In par-
ticular, we adopt the Segou et al. (2013) approach where geological receiver planes
(GRP) are informed by pre-sequence focal mechanisms and active fault maps. We
start by randomly selecting a nodal plane for each of the focal mechanisms in-
cluded in the learning phase catalogue (Figure A1) and then we assign a rupture
plane to each grid point through a 3D nearest neighbour spatial association. In
regions where no previous focal mechanism exists, the assignment of a receiver
fault is aided by the DISS database of active seismogenic structures. The resulting
discrete fault grid is shown in Figure A2.
In CRS-5, we include the finite-fault rupture models for events with Mw ! 5.4 to
implement a representation of spatial slip variability together with the structural

31



CHAPTER 3. IMPROVING PHYSICS-BASED AFTERSHOCK FORECASTS
DURING THE 2016-2017 CENTRAL ITALY EARTHQUAKE CASCADE

heterogeneity expressed by the SVP receiver matrix in CRS-4.
The CRS-6 and CRS-7 models incorporate secondary triggering e!ects of smaller
magnitudes with di!erent thresholds (CRS-6, 41 M4+ events; CRS-7, 1167 M3+
events). In CRS-6, we represent 35 M4+ events using uniform slip distributions
(similar to CRS-1 to CRS-4) with random selection of rupture planes from Time
Domain Moment Tensor (TDMT) solutions of the Italian CMT database and peer-
reviewed slip models for 6 events with Mw ! 5.4. In CRS-7, we have rupture
characterisations for only 4% of the M < 4.0 earthquakes. Therefore, for those
events we assign an isotropic distribution of coseismic stress changes (Helmstetter
et al., 2005; Marsan, 2005), following the formulation of Chen et al. (2013):

"CFF =
M0

6)r3 , (3.1)

with M0 the seismic moment and r the hypocentral distance. While not physically
realistic, the assumption of an isotropic stress field for the smaller events is rea-
sonable in a modelling perspective; indeed, our lack of knowledge about the nodal
plane parameters for most of those events would likely introduce a major source
of uncertainty in the calculation of the full anisotropic stress field. Furthermore,
this method is similar to the approach adopted in ETAS or in smoothed seismicity
models (Helmstetter et al., 2007).

We also produce two additional models, CRS-6s and CRS-7s, that isolate the sole
contribution of secondary triggering (M4+ and M3+ stress sources, respectively)
on model performance, where we omit the rate-and-state optimisation by imple-
menting the same fault constitutive parameters previously derived for CRS-5. We
take these two additional models into consideration during the model validation
stage.

The implementation of CRS models is based on a parallel computer code for cal-
culating seismicity induced by time dependent stress changes (Cattania & Khalid,
2016).
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Table 3.2: Main features of CRS models. Mmin = minimum magnitude for stress
sources; USD = uniform slip distribution; FFM = finite-fault rupture model; I =
isotropic stress field; SUP = spatially uniform receiver planes; SVP = spatially
variable planes; Ho = homogeneous; He = heterogeneous.

3.3.2 The ETAS Reference Model

As a benchmark for the CRS forecasts, we use a standard version of the ETAS
model (Seif et al., 2017). Although the focus of this study is on the improvements
of CRS models, we acknowledge that other ETAS parameterisations may perform
di!erently.

To estimate the ETAS parameters we use the Maximum Likelihood Estimation
(MLE) method during the ETAS learning phase corresponding to the latter part
of the ISIDe catalogue (2005-2016) after the Italian permanent seismic network
was considerably improved (Schorlemmer et al., 2010).
In our benchmark ETAS we set $ = % = b · log(10) with Gutenberg-Richter b-
value = 1, requiring larger magnitude earthquakes to have a higher triggering
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potential than the small ones. For the estimation of the ETAS parameters we
use the M3+ ETAS learning phase seismicity within a polygon covering the entire
Italian mainland (Figure A3a). To account for earthquake interactions outside
the spatiotemporal boundaries of the inversion, we also use events in auxiliary
spatial and temporal windows (Figure A3b). The inverted parameters (Table 3.3)
are in close agreement with those of Seif et al. (2017) for the same areal extent,
time window and Mcut. For the ETAS simulations we set a minimum triggering
magnitude (Mcut) of 3.0 and an Mmax=7.5, consistent with historical seismicity and
modern regional strain rates (Rong et al., 2016). We fix the ETAS parameters for
the whole forecast horizon, and we use them to simulate 1,000 synthetic catalogues
within each forecast window (dt).

Table 3.3: ETAS parameters used for the simulations, with Mcut=3.0 and $ =
% = b · log(10). We report parameter uncertainties as 1! standard deviations.

3.4 Results

In this section, we present the forecast results in the form of (a) temporal evolution
of expected seismicity, (b) maps of predicted earthquake occurrence for period-
specific (between mainshocks) and long-term (1 year) time windows. We then
focus on the performance evaluation using the N-, S-, T-test metrics (Zechar et
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