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The contribution of NOx emissions and background O3 to the sources and partitioning of

the oxidants [OX (¼ O3 + NO2)] at the Marylebone Road site in London during the 2000s

and 2010s has been investigated to see the impact of the control measures or technology

changes inline with the London Mayor’s Air Quality Strategy. The abatement of the

pollution emissions has an impact on the trends of local and background oxidants,

[OX]L and [OX]B, decreasing by 1.4% per year and 0.4% per year, respectively from 2000

to 2019. We also extend our study to three roadside sites (Din Daeng, Thonburi and

Chokchai) in another megacity, Bangkok, to compare [OX]L and [OX]B and their

behavioural changes with respect to the Marylebone Road site. [OX]L and [OX]B at the

Marylebone Road site (0.21[NOx] and 32 ppbv) are comparable with the roadside sites of

Thailand (0.12[NOx] to 0.26[NOx] and 29 to 32 ppbv). The seasonal variation of [OX]B
levels displays a spring maximum for London, which is due to the higher northern

hemispheric ozone baseline, but a maximum during the dry season is found for

Bangkok which is likely due to regional-scale long-range transport from the Asian

continent. The diurnal variations of [OX]L for both London and Bangkok roadside sites

confirm the dominance of the oxidants from road transport emissions, which are found

to be higher throughout the daytime. WRF-Chem-CRI model simulations of the
aSchool of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK. E-mail: anwar.khan@bristol.

ac.uk
bAtmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK
cSchool of Earth, Atmospheric and Environmental Science, The University of Manchester, Manchester M13 9PL,

UK
dLaboratories of Environmental Toxicology/Chemical Carcinogenesis, Chulabhorn Research Institute, Laksi,

Bangkok 10210, Thailand
eNASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109,

USA
fDepartment of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, 7375, South Africa

† Electronic supplementary information (ESI) available: Additional data (Fig. S1–S5 and Table S1). See
DOI: 10.1039/d0fd00086h

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.

http://orcid.org/0000-0001-7836-3344
http://orcid.org/0000-0002-1975-0587
http://orcid.org/0000-0002-8911-5554
http://orcid.org/0000-0003-2525-160X
http://orcid.org/0000-0001-7614-9221
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00086h
https://pubs.rsc.org/en/journals/journal/FD


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 1
5 

O
ct

ob
er

 2
02

0.
 D

ow
nl

oa
de

d 
on

 3
/1

1/
20

21
 1

1:
14

:4
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
distribution of [OX] showed that the model performed well for London background sites

when predicting [OX] levels compared with the measured [OX] levels suggesting that

the model is treating the chemistry of the oxidants correctly. However, there are large

discrepancies for the model–measurement [OX] levels at the traffic site because of the

difficulties in the modelling of [OX] at large road networks in megacities for the

complex sub grid-scale dynamics that are taking place, both in terms of atmospheric

processes and time-varying sources, such as traffic volumes. For roadside sites in

Bangkok, the trend in changes of [OX] is predicted by the model correctly but

overestimated in absolute magnitude. We suggest that this large deviation is likely to be

due to discrepancies in the EDGAR emission inventory (emission overestimates) beyond

the resolution of the model.
Introduction

Nitrogen dioxide (NO2) and ozone (O3) are key urban air pollutants with well-
documented public health impacts.1 It is well established that the chemistry of
O3, NO2 and nitric oxide (NO) is strongly coupled by the following null cycle,
typically on the timescale of a few minutes under most ambient conditions.2,3

NO + O3 / NO2 + O2 (1)

NO2 + hn (+ O2) / NO + O3 (2)

Because of this rapid interconversion, the term “oxidant” (herea�er denoted
OX) has sometimes been used as a collective term for NO2 and O3,4,5 similarly to
NOx being the well-established collective term for NO and NO2. Reactions (1) and
(2) therefore partition NOx between its component forms of NO and NO2, and OX
between its component forms of O3 and NO2, but conserves both NOx and OX.

Reported analyses of ambient data have shown that the concentration of OX at
a given location, [OX], can be described in terms of the combination of a back-
ground (NOx-independent) source and a local (NOx-dependent) source, denoted
here as [OX]B and [OX]L, respectively,5,6 as also apparent from the example data
shown in Fig. 1.

[OX] ¼ [OX]B + [OX]L (i)

[OX]L is believed to be mainly derived from primary emissions of NO2,
particularly at roadside and kerbside locations, such that the slope of the [OX] vs.
[NOx] relationship provides an estimate of the volumetric fraction of NOx emitted
as NO2.6,7 [OX]B provides a quanti�cation of the background [O3] which would
exist at the given location in the notional absence of NOx. It can therefore be
regarded as the global (hemispheric) baseline O3 level, modi�ed by regional-scale
processes (i.e. deposition and chemistry) that can either remove or produce OX.
Analyses of this type have been carried out in a number of studies,5,6,8,9 with values
of [OX]B and [OX]L reported for a variety of locations and time periods.

There is a substantial spatial variability in the levels of NO2 and O3 in urban
areas, resulting from localised sources of NOx and its relatively short life-time.10–12

The dominant NOx sources are road tra�c and static combustion in domestic,
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Variation of hourly OX with NOx at the Marylebone Road site for the month of
August 2012.
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commercial, and industrial processes.13–15 The combined health e�ect of NO2 and
O3 has been reported to be elevated compared with their individual e�ects, which
has led to interest in the processes controlling OX levels in the urban areas.16,17 A
recent study showed that the OX can enhance the chronic health risks of �ne
particulate matter (PM2.5),18 thus the reduction of OX levels could be bene�cial to
reduce the public health impacts of PM2.5.

Currently there are 33 megacities (cities with population of more than 10
million) declared by United Nations in 2018 and the number is likely to increase
to 43 by 2030.19 London is one of the megacities in the world where air quality is
an issue of increasing public concern. For example, levels of NO2 at roadside and
kerbside locations in London have exceeded the EU annual mean limit value of 40
mg m�3 on many occasions.20 The U.K. has progressively adopted EU emissions
control measures for both NOx and volatile organic compounds (VOCs) since the
early 1990s, with potential impacts on the magnitude of [OX]L and [OX]B.21–23 We
therefore investigate the time dependence of these oxidant components at the
London Marylebone Road kerbside site, over the time period 2000–2019, to
examine the e�ects of the control measures.

Thailand is one of the rapid economically developing and urbanised countries,
which has led to the emergence of a megacity (e.g. Bangkok) and concomitant
problems of poor air quality. The transportation, electricity generation and
manufacturing industries are considered to be the major sources of air pollutants
in Bangkok.24 A recent study showed that NOx levels in Bangkok are mostly below
the National Ambient Air Quality Standards (NAAQS), but, O3 levels in Bangkok
frequently exceed the NAAQS.25 Uttamang et al.25 analysed the Bangkok metro-
politan region pollutant data for 2010–2014 and found that both local and
background OX contributions are responsible for increasing the concentration of
O3. We update the work of Uttamang et al.25 using more calendar year-coverage
data (2005–2018), highlighting roadside and kerbside locations in Bangkok and
compare the results with those of the Marylebone Road site in London to inves-
tigate any systematic di�erences in the magnitudes and time dependences of the
oxidant components for the two di�erent scenarios (midaltitude vs. tropics).

Megacities are immense sources of air pollutants, with large impacts on
regional and global atmospheric chemistry.26 In addition to local sources, ozone
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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precursors (NOx, volatile organic compounds (VOCs)) can also be transported over
long distances from the source and cause ozone formation in the downwind
locations.27 The balance between local and long-range transport e�ects are
assumed to depend strongly on regional meteorological and geographical di�er-
ences. The representation of chemistry and accurate ozone precursor emission
inventories in the model is very important to reproduce O3 globally and regionally.
Recently, we used a mesoscale non-hydrostatic 3-D meteorological model, WRF-
Chem-CRI, to simulate the distribution of important trace gases (e.g. NOx, O3)
over North-West Europe and found reasonable agreement with measurement data
of urban and rural areas of the U.K.28 In this study, we use the similar model set-up
to conduct month-long simulations of O3 and NOx during summer and winter
months of 2012 over the U.K. and week-long simulations of O3 and NOx during
January, May and September months of 2017 over Thailand which is then evaluated
with Automatic Urban and Rural Network (AURN), Department for Environment,
Food and Rural A�airs (DEFRA), measurement data for London and Pollution
Control Department (PCD) measurement data for Bangkok. We compare the
modelled and measured OX data of London sites with di�erent environments (e.g.
suburban background, urban background, urban tra�c, and urban industrial) to
investigate how the WRF-Chem model predicts background OX in these sites.
Methods
Site description

Marylebone Road is a kerbside site in central London, which is located next to
a busy six-lane road in a street canyon with tra�c �ows of over 80 000 vehicles per
day with frequent congestion.29 For model comparison, we selected �ve sites with
di�erent environmental conditions: two urban background (Westminster, 17 m
away from the nearest road; Bloomsbury, 25 m away from the nearest road), one
suburban background (Eltham, 25 m away from the nearest road), one urban
industrial (Harlington, 10 m away from the nearest road) and one urban tra�c
(Marylebone Road, 1 m away from the road).

Three roadside monitoring sites: Kheha Chumchon Din Daeng, Chokchai
Police Station and Thonburi Electricity Authority substation site in Bangkok
operated by PCD were chosen based on tra�c density and tra�c �ow. The Din
Daeng site is located in central Bangkok, next to a busy six-lane road. South of the
measurement site are tall apartment buildings, but to the north is a school and
grassy spaces. Thonburi Electricity Authority substation site is next to a six-lane
road, which is based in an industrial area with a canal to the west, a nearby gas
station to the east and a residential area to the north. Chokchai is next to an eight-
lane road, which can accumulate air pollutants due to frequent congestion. The
site is not located in the business centre district, but the inlet of the sampling site
is very close to a bus stop.
Measurement technique

NOx and O3 have been monitored simultaneously at the Marylebone Road since
July 1997 as part of the AURN set up by DEFRA. Throughout the AURN,
measurements were made with commercial instrumentation using recognised
techniques (i.e. photometry is used for O3 measurements and
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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chemiluminescence is used for NOx measurements) as described by DEFRA.30

However, it is important to note that these analysers are subject to potential
interferences from several other oxidised nitrogen species, which can be
erroneously reported as NO2.31,32 Despite this, these species are only likely to
have a signi�cant impact at rural or remote locations where NOx concentra-
tions are reduced and so-called NOz components abound, due to their forma-
tion from NOx processing (e.g. PANs). Thus, [NOz]/[NOx] increases with
chemical processing time, so the interferences are not important to consider at
roadside or kerbside locations. The uncertainty (expressed at a 95% con�dence
level) of the measured data for NOx and O3 was around 15%.33 Measurements
for these species are reported at hourly resolution and are openly available
from the U.K. Air Information Resource (http://uk-air.defra.gov.uk/data/
data_selector). This study considers the hourly mean OX and NOx data for
the years 2000–2019 inclusive where data has been divided by hour of the day
for each month of the year. The data coverage at this site is reasonably
consistent except 2011 with the majority of months showing well over the 80%
coverage required for inclusion in this study.

For the Bangkok roadside sites, NO and NO2 measurements were performed
using chemiluminescence detection (Thermo Scienti�c 42i). The working range
of the instrument is 0–500 ppb to 0–20 ppm with a minimum detection limit
<0.5 ppb and the precision of the instrument is 0.5 ppb (<1%). O3 was analysed by
using UV absorption photometry detection spectroscopy (Thermo Scienti�c 49i).
The working range of the instrument is 0–500 ppb to 0–10 ppm and the instru-
ment has a detection limit of <0.6 ppb and with a precision of <1%. The single
point calibration for detectors was performed every 15 days and the multi-point
calibration with 3 span levels (20%, 40% and 80%) was performed every 90
days. The data was accepted with the span dri� better than �10% of full scale for
the NO2 detector and �10% of full scale for the O3 detector and zero dri� better
�5 ppb for both NO2 and O3 detectors. The hourly data of NOx and O3

measurements over the period from January 2005 to December 2014 for Din
Daeng and Chokchai and January 2005 to December 2018 for Thonburi was
retrieved from o�ine source of PCD (http://www.pcd.go.th). The monthly data of
NOx and O3 have been computed for [OX] calculation if more than 70% of the data
was captured over the individual month (see ESI Fig. S1† for valid data coverage of
each site).
Background and local OX calculations

Using the approach of Jenkin,6,7 the ‘background’ and ‘local’ contributions to the
total oxidant, [OX]B and [OX]L, are estimated from a linear �t of [OX] against
[NOx]. The annual NOx mixing ratios vary over a wide range of values with diurnal
and seasonal variations. Thus, we used the hourly data of NOx and OX for each
measurement site in London and Bangkok to generate the [NOx] vs. [OX] plots on
a month-by-month basis. From here, statistics for the linear relationship were
calculated using the ‘least squares’ method to give exact values from gradient
(local NOx-dependent contribution), intercept (background NOx-independent
contribution) and standard errors for both values. This data was compiled and
averaged accordingly to give insights into the monthly and hourly dependencies
of [OX]B and [OX]L and how their contributions and trends vary over time.
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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Modelling

We used a mesoscale non-hydrostatic 3-D meteorological model, WRF-Chem-CRI,
which is an online fully coupled chemistry transport model.34 The chemistry and
aerosol components, along with the prognostic meteorological variables, are
integrated over the same timestep as the transport processes, using the same
advection and physical parameterisations.34 The meteorological, physical and
chemical parameterizations of the model are described in detail elsewhere.28,35

The meteorology was driven by the European Centre for Medium Range Weather
Forecasts (ECMWF) ERA-Interim reanalysis data.36 The chemical boundary
conditions were provided from MOZART-4 global model.37 Biogenic emissions
were calculated online by the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) (https://www2.acom.ucar.edu/modeling/model-emissions-
gases-and-aerosols-nature-megan).38 The MEGAN model calculates the biogenic
emissions of the species from terrestrial ecosystems with a resolution of 1 km � 1
km and is driven by land cover by vegetation, environmental factors (e.g.
temperature, humidity, solar intensity, soil moisture) and atmospheric chemical
composition. The anthropogenic emissions for the London study have been
sourced from a combination of the UK National Atmospheric Emissions Inventory
(NAEI) (https://naei.beis.gov.uk) and the European The Netherlands Organisation
for Applied Scienti�c Research, Monitoring Atmospheric Composition and
Climate’s emission inventory (TNO-MACC-IIIT).39 The NAEI data for the year 2012
with a resolution of 1 km � 1 km was used in this study. The NAEI includes seven
direct greenhouse gases addressed at the Kyoto summit, as well as other trace
gases believed to be of atmospheric signi�cance: NOx, CO, non-methane volatile
organic compounds (NMVOCs) and SO2. Where data from the NAEI was not
available, the TNO was employed to �ll the gaps. The TNO data with a resolution
of 0.125� � 0.0625� for the year 2011 was used in the study. Scaling factors based
on those built for the EMEP model are applied to the anthropogenic emission
inventories in order to account for daily, weekly and monthly di�erences.40 The
anthropogenic emissions for the Bangkok study were extracted from the global
Emission Database for Global Atmospheric Research with Task Force on Hemi-
spheric Transport of Air Pollution (EDGAR v4.3.2) emission inventories for 2010 at
0.1� � 0.1� resolution.41,42 These datasets are provided as monthly means giving
the seasonal cycles. Daily activity cycles, and speciation of NMVOC emissions (see
ESI, Table S1†), have been imposed (see details in Chen et al.43 and Lowe).44 The
chemistry scheme used is CRI (Common Representatives Intermediate Mecha-
nism), a chemical mechanism describing gas-phase transformations of methane
and 25 NMVOCs, via 232 chemical species participating in 638 simulated
reactions.28

The model domain for the London study covers North-West Europe with a 15
km horizontal resolution with a size of 134 (E–W) by 146 (N–S) grid cells and 41
vertical levels with enhanced resolution within the planetary boundary layer. Two
scenarios were run using this domain from 00:00 UTC on 30 July 2012 to 00:00
UTC 24 August 2012 and from 00:00 UTC on 8 January 2012 to 00:00 UTC on 12
February 2012 covering summer and winter months, respectively. Because of the
long time period in the scenarios, the re-initialisation of the model meteorology
was performed every 3 days using ECMWF meteorology to minimize the errors in
the modelled meteorology (bias from model to actual). The Bangkok study region
Faraday Discuss. This journal is © The Royal Society of Chemistry 2020
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included Thailand, Vietnam, Laos and Cambodia (8�N–22�N and 94�E–108�E, see
ESI Fig. S2†) centred at 15�N and 101�E with 15 km horizontal resolution and 41
vertical levels. Three scenarios were run using this domain for the periods of 1–7
January 2017 (winter season), 1–7 May 2017 (summer season) and 1–7 September
2017 (rainy season) with 2 additional days for spin-up.
Results and discussion
Local and background oxidants and their contribution and trend

The comparison of the average ‘local’ and ‘background’ contribution to the OX
levels, [OX]L and [OX]B, in the Marylebone Road (2000–2019), Din Daeng (2005–

2014), Chokchai (2005–2014) and Thonburi (2005–2018) with the other studies is
shown in Table 1. The variability of [OX]L for London and Bangkok for di�erent
studies could be due to the control strategy response (e.g. changing the �eet
technology by introducing Euro-classes and alternative-fuelled vehicles and/or
adopting a range of regulations) for reducing vehicle emissions over time. The
[OX]L and [OX]B levels in the Marylebone Road found in the study are comparable
with the study of Jenkin6 who analysed the [OX]L and [OX]B in London rural, urban
and kerbside sites over 1992–2001. The large di�erence of [OX]L levels in the study
from the Jenkin6 study can be explained by the larger fraction of NOx emitted as
NO2 in the roadside site than that in the rural, urban and kerbside sites. For
Bangkok roadside sites, we found average [OX]B levels of 32 ppb, 31 ppb, and
29 ppb for Din Daeng, Chokchai and Thonburi, respectively, but Uttamang et al.25

reported signi�cantly higher average [OX]B of 48 ppb and 95 ppb for non-episodes
([O3] < 100 ppb) and episodes ([O3] > 100 ppb), respectively. This is to be expected
Table 1 The comparison of the local and background OX levels in London and Bangkok
sites derived from fitted linear regression analysis

Site Site information Time period [OX ]L (ppb)
[OX]B
(ppb) Ref.

Din Daeng, Bangkok Roadside 2005–2014 0.12 � 0.03
[NOx]

32.0 �
4.4

This
study

Thonburi, Bangkok Roadside 2005–2018 0.26 � 0.11
[NOx]

29.1 �
5.4

This
study

Chokchai, Bangkok Roadside 2005–2014 0.18 � 0.08
[NOx]

31.4 �
5.5

This
study

Marylebone Road,
London

Roadside 2000–2009 0.22 � 0.02
[NOx]

32.4 �
3.2

This
study

2010–2019 0.20 � 0.03
[NOx]

32.1 �
3.1

Bangkok Roadside suburb 2010–2014 0.13[NOx] 53.9 25
2010–2014 0.31[NOx] 47.0

Greater London Rural, urban &
kerbside

1992–2001 0.10[NOx] 34.7 6

Greater London Rural, urban &
kerbside

June 98 and
June 99

0.10[NOx] 38.2 5

Buenos Aires,
Argentina

Urban background Aug–Sep 2011 0.10[NOx] 22.0 9

Delhi, India Urban background Sep 2010–Aug
2012

0.54[NOx] 28.9 45

This journal is © The Royal Society of Chemistry 2020 Faraday Discuss.
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for Bangkok where our study analysed 24 hour data of NOx and O3 during 2005–

2018 for Thonburi and 2005–2014 for Din Daeng and Chokchai, but the Uttamang
et al.25 study considered only daytime data during 2010–2014 for Din Daeng and
Thonburi. The higher [OX]L levels at Bangkok roadside sites in this study
compared with the Uttamang et al.25 study are caused by the fact that the Bangkok
data set is a much longer data set, and the initial years of the study (2005–2009)
resulted in much higher local pollution levels as emissions control technologies
or vehicle �eet composition were not implemented during this time period.

We averaged the hourly gradient from the plot of [NOx] vs. [OX] for each month
and then multiplied by the monthly average NOx levels to calculate the monthly
[OX]L mixing ratios. The summation of [OX]L and [OX]B for each month is found
to be very similar with the summation of O3 and NO2 for both London and
Bangkok roadside sites (correlation coe�cient � 1, r2 ¼ 0.99 for each site, ESI
Fig. S3†). At the Marylebone Road, the average [OX]L over the last 20 years
contributes a signi�cant amount of 25.0 � 3.2 ppb (44% to the total OX levels,
Fig. 2b). A reduction of contribution of average [OX]L from the 2000s (28.0 � 3.1
ppb; 46% to the total OX) to the 2010s (22.0 � 3.2 ppb; 41% to the total OX) is
found. However, our results still indicate that there is a signi�cant local pollution
source (e.g. the fraction of NOx emitted as NO2) in the Marylebone Road site (see
ESI Fig. S4a†) that contributes to a large fraction of [OX]L levels during the 2010s.
At the Bangkok roadside sites, the contribution of average [OX]L to the total
Fig. 2 (a) The trends and (b) the percent contribution of oxidant levels in the Marylebone
Road for the period of 2000–2019. Statistical significance is based on a p < 0.001 and the
trends are reported with 95% confidence intervals.
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