This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk

Author:
Donnelly, Bethan

Title:
[2+2]-Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode. This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g., breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

* Your contact details
* Bibliographic details for the item, including a URL
* An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.
[2+2]-Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Bethan L. Donnelly

A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science.
Abstract

[2+2]-Photocycloaddition reactions are a valuable method for the synthesis of cyclobutanes and cyclobutenes, as the basis for complex novel ring-systems, or as intermediates in the synthesis of natural products. This thesis outlines the use of such cycloaddition reactions in two distinct applications; the synthesis of novel tricyclic scaffolds; and a route towards the maleidride natural product, viburspiran. An introduction to photochemistry is given in Chapter 1, followed by specific details pertaining to [2+2]-cycloaddition reactions.

In Chapter 2, a method for the synthesis of fused cyclobutane heterocycles using tandem [2+2]-photocycloaddition and Prins cyclisation reactions is outlined. This modular method allows the transformation of four simple starting materials into complex tricyclic systems. The two-step process offers excellent diastereoselectivity and the products formed contain multiple points for further derivatisation, making them attractive novel scaffolds for drug-like libraries in medicinal chemistry.

Chapter 3 describes the use of [2+2]-cycloadditions for the total synthesis of the core carbocyclic scaffold of maleidride natural product viburspiran. The proposed key step involves an intramolecular de Mayo reaction which upon ring opening, allows synthesis of the bridged cyclooctane structure of viburspiran. A strategy for the completion of the total synthesis has been devised and is currently under investigation.
Acknowledgements

My thanks must go first to Kevin and Chris for their support and guidance throughout my PhD that has enabled me to learn all that I have. Thank-you both for giving me the freedom to explore and develop my own ideas independently and the enthusiasm and encouragement to have confidence in those ideas.

I’ve been lucky to be a part of two amazing research groups who have helped make my PhD so unforgettable, so thank-you to all members of the Willis and KBM groups, past and present. Your support and friendship have been so valuable to me and have made my time in Bristol so much fun. Thank-you to Hannah, my PhD twin, Macclesfield roomie and running inspiration, it’s been a pleasure sharing my PhD with you, despite the few near-death experiences! To Dan, thank-you for understanding and sharing my love for pizza, nerdy space stuff and for constantly making me laugh. Dawn, Mark, and Kate, as well as Beth, Maria, Maike, Thom, Will and Callum thank-you all for making the KBM lab such a fun place to work. Thank-you to Luke and Jon for teaching me all you know about photochemistry. Angus, thank-you for keeping the final months of my PhD fully caffeinated, thank-you Jon for making David look relatively less grumpy, thanks to Joe for providing me with admirable competition throughout my PhD and thanks to Sbu for giving me many excuses to make fancy dress costumes and eat my weight in cheese and wine. Drew, James, Joe R, Felix, Catherine, Kun, Edith, Marija, Nick, Paul and Dan, thanks for (unofficially and eventually officially) adopting me into your group, always making me feel incredibly welcome and giving me many happy (mostly pub-related) memories. Matt, Annabel and Freya thank-you for being great students to supervise, it was great working with you all.

Thanks must also go to the wonderful people I have worked with during my placement months. Thank-you to AstraZeneca, particularly Katie Cooper and Brian Taylor who supported me during my CASE placement in Macclesfield. Also thank-you to the Royal Society for hosting me for a Policy Internship and to Tom Frostick for introducing me to the world of science policy and encouraging me to broaden my horizons.

Tim Harrison, thank-you for all of the opportunities you’ve given me to inspire a younger generation of scientists, overcome my fear of public speaking and to travel around the country in the process! Thank-you to Natalie Fey for teaching me everything I know about computational chemistry and inspiring me with your crochet zoo! Thank-you also to the NMR and MS staff, particularly to Craig Butts and Paul Lawrence for always being on hand to answer questions and help solve problems. Thank-you to the Bristol Chemical Synthesis CDT,
EPSRC, AstraZeneca and the University of Bristol for funding and to Emma, Laura and Mar for all they do for the CDT.

Massive thanks to the whole 2016 cohort; Jenny, Debbie, Hannah, Lauren, Rory, Joe, Jamie, Frank and Dan. You made the first year of my PhD so much fun with so many hilarious memories. Hopefully we’ll all meet again for a tequila-fuelled reunion soon. Special thanks to Jenny and Debbie for being the most perfect housemates, I’ll really miss living with you!

Imogen, Ellie, Nat, Ellie and IB, thank-you all for being such amazing friends and supporting me outside of the lab. You all deserve a lot of wine.

David, the past four years wouldn’t have been half as easy or fun without you to spend it with. You are always there to give me confidence and inspire me to keep going when I need it most. Thank-you for being my best friend and helping create so many happy memories, here’s to many more adventures together.

Finally, thank-you to my family, especially to my parents for your complete and unwavering love, support and encouragement in everything I do.

(Some glassware was harmed in the making of this thesis.)
Author's Declaration

I declare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE:.............................
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-BBN</td>
<td>9-borabicyclo[3.3.1]nonane</td>
</tr>
<tr>
<td>ADEQUATE</td>
<td>adequate double quantum transfer experiment</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>COSY</td>
<td>1H-1H correlation spectroscopy</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DIAD</td>
<td>diisopropylazodicarboxylate</td>
</tr>
<tr>
<td>DMAP</td>
<td>dimethylaminopyridine</td>
</tr>
<tr>
<td>DMC</td>
<td>dimethylcarbonate</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>DMPU</td>
<td>N-N'-dimethylpropyleneurea</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>EDG</td>
<td>electron donating group</td>
</tr>
<tr>
<td>EE</td>
<td>ethoxyethyl acetal</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalents</td>
</tr>
<tr>
<td>er</td>
<td>enantiomeric ratio</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HMDS</td>
<td>bis(trimethylsilyl)amine</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramide</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>hrPKS</td>
<td>highly reducing polyketide synthase</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC</td>
<td>internal conversion</td>
</tr>
<tr>
<td>im</td>
<td>imidazole</td>
</tr>
<tr>
<td>INADEQUATE</td>
<td>incredible natural abundance double quantum transfer experiment</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>IRD</td>
<td>inter-radical distance</td>
</tr>
<tr>
<td>ISC</td>
<td>inter-system crossing</td>
</tr>
</tbody>
</table>
Table of Contents

Abstract ... i

Acknowledgements ... ii

Author’s Declaration ... iv

Abbreviations ... v

Table of Contents ... vii

1. **Introduction** ... 2
 1.1. History of Photochemistry ... 2
 1.2. Theoretical Photochemistry ... 3
 1.3. Practical Photochemistry ... 5
 1.4. Organic Photochemistry ... 5
 1.4.1. [2+2]-Photocycloaddition .. 6

2. **Prins Cyclisation of Photochemically Synthesised Cyclobutenes** ... 12
 2.1. Introduction to the Prins Cyclisation ... 12
 2.1.1. Prins Reactions for the Synthesis of Fused Ring Systems .. 13
 2.1.2. Scaffolds in Medicinal Chemistry ... 15
 2.1.3. Cyclobutene Synthesis .. 17
 2.2. Aims .. 18
 2.3. Results and Discussion .. 19
 2.3.1. Substrate Synthesis .. 19
 2.3.2. Reagent Screening ... 20
 2.3.3. Mechanisms of Side-Product Formation .. 21
 2.3.4. Design of Experiments Optimisation .. 28
 2.3.5. Reaction Scope ... 36
 2.3.6. Diastereoselectivity ... 44
 2.3.7. Computational Modelling .. 47
 2.4. Conclusions .. 48
 2.5. Future Work ... 50

3. **Towards the Total Synthesis of Viburspiran** ... 55
 3.1. Introduction to the Maleidrides ... 55
 3.1.1. Viburspiran .. 56
 3.1.2. Photochemistry in the Synthesis of (±)-Byssochlamic Acid ... 58
 3.1.3. Ring-Opening of Cyclobutanes and the de Mayo Reaction ... 59
 3.2. Aims .. 61
 3.3. Results and Discussion ... 62
 3.3.1. Synthesis of the Model Substrate .. 62
 3.3.2. Intramolecular Dioxenone Substitution Patterns ... 65
3.3.3. [2+2]-Cycloaddition to form the Carbocyclic Structure of Viburspiran .. 71
3.3.4. First Generation Synthetic Route .. 75
3.3.5. Synthesis of a Suitable Alkylationg Agent .. 83
3.3.6. Second Generation Synthetic Route ... 87
3.4. Conclusions .. 101
3.5. Future Work .. 103
4. **Experimental** ... 107
4.1. General Information .. 107
4.2. Experimental Procedures for Chapter 2 .. 108
4.2.1. General Procedures for Prins Cyclisations ... 118
4.2.2. Prins–Ritter Reactions .. 119
4.2.3. Fluoride Prins Reactions ... 130
4.2.4. Aza-Prins–Ritter Reactions .. 134
4.3. Design of Experiments .. 139
4.4. Experimental Procedures for Chapter 3 .. 140
4.5. Computational Modelling .. 189
4.5.1. Raw Data for Chapter 2 ... 189
4.5.2. Raw Data for Chapter 3 ... 193
4.6. X-Ray Crystallography ... 204
5. **References** .. 207
6. **Appendix** .. 215
6.1. Selected Spectra ... 215
6.2. Publications .. 223
Chapter 1: Introduction
1. Introduction

1.1. History of Photochemistry

In the early 1900s Italian photochemist Giacomo Luigi Ciamician became one of the first scientists to outline the increasing need for an effective replacement for fossil fuels. ‘The Photochemistry of the Future’ was published in 1912, describing how photochemical reactions, achieved so easily by plants, should be the inspiration for the much-needed change in energy sourcing. As well as suggesting that solar energy should be a future alternative to fossil fuels, Ciamician also highlighted the importance of photochemistry as a method for the synthesis of complex molecules. On the photochemical pathways active in plants, he wrote:

“Plants are unsurpassed masters of photochemical synthesis of the fundamental substances, building up from carbon dioxide with the help of solar energy. They also produce the so-called secondary substances with the greatest ease.” – Ciamician

As well as his pioneering work in this field of artificial photosynthesis, in his earlier work Ciamician was one of the first chemists to discover the link between colour and molecular structure. This discovery was one of the first insights into how molecules absorb light and the properties that result from their absorption. This was followed in 1876 by Witt et al. who more formally coined the term ‘chromophore’ to describe the specific region of a molecule that has the potential to create colour.

Many years before these key observations were made, organic photochemical reactions had been observed and described; for example the photoreaction of santonin observed by Trommsdorff in 1834 (Scheme 1). He observed that exposure to sunlight caused santonin to turn yellow, an observation which was later explained by Sestini and Cannizzaro as the formation of photosantonic acid, the structure of which was not fully realised until 1958.

Early photochemical reactions used exclusively sunlight as a photon source, with only a handful of useful reactions identified. The development of mercury arc lamps at the turn of the twentieth century allowed more specific photochemical transformations to be performed by narrowing the spectrum of light that could be used. These technological advances, along with developments in analytical techniques, have allowed the field of organic photochemistry to expand to become a prominent research area within organic chemistry. Many established photochemical reactions have been applied in the synthesis of natural products and highly complex novel scaffolds.
Photochemistry is the study of the interaction of light with molecules. Generally, this involves a molecule absorbing radiation in the ultraviolet, visible, or infrared region of the electromagnetic spectrum, allowing it to undergo a chemical transformation. Reactions involving photochemical activation proceed via high energy intermediates that often cannot be generated thermally. This allows molecules to overcome activation barriers for reactions and undergo transformations that are not possible with ground state chemistry.

Wave-particle duality is a quantum mechanical concept that describes how light exhibits both wave and particle like behaviour. As a particle, light can be described as discrete packages called photons, that have a quantised energy levels depending on their wavelength. Molecules have various quantised translational, rotational, vibrational and electronic energy levels. Thermal energy allows excitation of translational, rotational and vibration states, however electronic excited states require vast amounts of heat to become thermally accessible. The use of ultraviolet light allows electronic excited states to become accessible under ambient conditions.

There are two main laws that govern the theory of photochemical reactions. The Grotthuss–Draper Law (1812) states that for a photochemical reaction to take place, the molecule must absorb a photon of light. This is extended by the Stark–Einstein law (1908-1913) which specifies that for each photon absorbed by the system, one molecule is activated for the given photochemical reaction. The efficiency of a photochemical reaction can therefore be quantified by its quantum yield; the amount of product formed per unit of photons absorbed. Typically quantum yield values for photochemical processes are less than 1 as not all photons absorbed lead to productive outcomes.
When a ground state singlet (S_0) molecule absorbs light of required energy, an electron can be promoted to a higher singlet energy orbital (S_1) (Figure 1). Upon this excitation from HOMO (highest occupied molecular orbital) to LUMO (lowest unoccupied molecular orbital), the spin of the electron is conserved due to the law of conservation of angular momentum. Following this initial excitation, several processes can occur. Higher energy singlet excited states can be accessed (S_2, S_3 etc.), however Kasha’s rule states that photon emission can only occur from the lowest excited state of a given multiplicity. This means that higher energy states are short-lived and often relax back to S_1 quickly through processes such as internal conversion (IC). Excited singlet states (e.g. S_1) can undergo inter-system crossing (ISC) to access the excited triplet state T_1 where both electrons have the same spin; this is a lower energy state. Radiative relaxation pathways to S_0 can occur either from S_1 (fluorescence) or T_1 (phosphorescence). Both S_1 and T_1 states have low energy half-full orbitals and are therefore more reactive than the ground state. The processes described above are summarised in a Jablonski diagram (Figure 1).

Figure 1 – Jablonski diagram showing energy levels and transitions in photochemical reactions

Excited state molecules differ dramatically in their reactivity from ground state molecules, a property which is exploited in organic photochemistry. The efficiency of photochemical reactions is limited by the lifetime of the excited state.

In some cases, when the reactant molecule undergoes inefficient ISC from singlet to triplet states, the use of photosensitising molecules such as acetone, benzophenone or acetophenone is necessary. Photosensitisers are molecules that can be selectively excited to T_1 to then transfer energy to the reacting molecule. Efficient photosensitisers have a triplet state energy greater than that of the reacting molecule.
1.3. Practical Photochemistry

There are several practical considerations to be made when setting up a photochemical reaction. Glassware must be suitable for the reaction it is used for, as some glasses absorb certain wavelengths of UV light, preventing it from reaching the reaction. Pyrex for example absorbs light with wavelengths shorter than \(\sim 275 \text{ nm} \), so quartz reaction vessels are often used for reactions that require shorter wavelengths as they allow all light with wavelengths above 170 nm to pass through. Mercury arc lamps are the most commonly used source of UV light, with the spectra of light produced dependent on the mercury vapour pressure. Low pressure lamps emit primarily light of wavelengths 253.7 and 184.9 nm, while in medium pressure lamps, where mercury atoms undergo more frequent collisions with electrons, wavelengths of 313.9 and 365.4 nm are accessible (Figure 2). Mercury arc lamps often require water cooling due to high running temperatures that can reach up to around 600 °C.¹⁰

![Figure 2 – Wavelengths of light emitted by low and medium pressure mercury-arc lamps](image)

1.4. Organic Photochemistry

In organic molecules, the nature of the chromophore dictates the wavelengths of light that can be absorbed. In most cases chromophores are predominantly made up of conjugated \(\pi \)-bonds and lone pairs on heteroatoms, resulting in transitions between bonding and anti-bonding orbitals upon absorption of a photon of light. Inner shell electrons are not involved in photochemical excitation and so only valence electrons are considered. The transitions most commonly observed in organic molecules, shown in Figure 3, are mainly low energy \(n-\pi^* \) or \(\pi-\pi^* \) transitions; \(\sigma-\sigma^* \) transitions are much higher in energy and are rarely observed in organic photochemistry.
Figure 3 – Typical transitions in organic photochemistry

UV-visible absorption spectroscopy is a valuable tool in predicting the reactivity of an organic molecule towards ultraviolet light, providing information about the wavelengths absorbed by a molecule. However, UV-visible spectroscopy does not provide any information about subsequent photophysical processes such as IC. Table 1 describes some characteristic absorbances for isolated functional groups, which can be useful in predicting reactivity, however these values do not take into account additional conjugation or the wider chromophore. These values were calculated based on theoretical data from single molecules and monochromatic light.

Table 1 – Common chromophores and their absorbance

<table>
<thead>
<tr>
<th>chromophore</th>
<th>transition</th>
<th>$\lambda_{\text{max}} / \text{nm}$</th>
<th>chromophore</th>
<th>transition</th>
<th>$\lambda_{\text{max}} / \text{nm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=O</td>
<td>n \rightarrow π^*</td>
<td>660</td>
<td>C=N</td>
<td>n \rightarrow π^*</td>
<td>240</td>
</tr>
<tr>
<td>C=S</td>
<td>n \rightarrow π^*</td>
<td>520</td>
<td>C=C-C-O</td>
<td>π \rightarrow π^*</td>
<td>220</td>
</tr>
<tr>
<td>N=N</td>
<td>n \rightarrow π^*</td>
<td>350</td>
<td>C=C-C-C</td>
<td>π \rightarrow π^*</td>
<td>220</td>
</tr>
<tr>
<td>C=C-C=O</td>
<td>n \rightarrow π^*</td>
<td>350</td>
<td>S=O</td>
<td>n \rightarrow π^*</td>
<td>210</td>
</tr>
<tr>
<td>C=O</td>
<td>n \rightarrow π^*</td>
<td>280</td>
<td>C=C</td>
<td>π \rightarrow π^*</td>
<td>180</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>π \rightarrow π^*</td>
<td>260</td>
<td>C-C, C-H</td>
<td>σ \rightarrow σ^*</td>
<td>< 180</td>
</tr>
</tbody>
</table>

1.4.1. [2+2]-Photocycloaddition

[2+2]-Photocycloadditions are arguably one of the most commonly used and studied photochemical reactions. The first example was reported in 1908 by Ciamician who observed that carvone had undergone a photochemical reaction after being left exposed to light for up to a year (Scheme 2). It was not until 1957 that the proposed structure of the product of this [2+2]-photocycloaddition was confirmed by Büchi and Goldman. Following extensive investigations into the mechanistic aspects of this reaction, it has been utilised in numerous total syntheses, as well as in the synthesis of interesting non-natural compounds such as cubane.
For cycloaddition reactions to take place, the orbitals in each π-system must form a favourable interaction. Thermally, the HOMO and LUMO of two alkenes are not of the right phase to successfully overlap, however upon photochemical excitation, an electron can be excited from the HOMO to form a new singly occupied HOMO* and a SOMO (singly occupied molecular orbital) as shown in Scheme 3. Overlap between the HOMO* and LUMO of a ground state molecule allows the [2+2]-photocycloaddition to proceed. Enones are often used as one of the components in [2+2]-cycloadditions, as additional conjugation leads to a smaller HOMO-LUMO gap, and therefore more effective excitation.

For [2+2]-photocycloaddition, the possible mechanistic pathways have been extensively investigated but ultimately depend on the conditions and substrate. One component in the reaction, usually an enone or other functional group able to act as a chromophore, undergoes photoexcitation to an S_1 state. Often this singlet state is short-lived, due to its ability to decay through ISC to a T_1 state, and can then form an excited complex (exciplex) with the other component in the reaction in its ground state, usually an alkene, thus forming triplet diradical (Scheme 4). The final bond can then be formed following internal conversion to the singlet diradical. Reactions going through the concerted pathway will generally be stereospecific, whilst due to possible bond rotations, other mechanisms result in loss of specificity.\(^\text{17}\)
Another factor to consider which has been the subject of extensive theoretical study, is the regioselectivity in [2+2]-cycloadditions.18,19 In most cases, the reacting alkenes are not symmetrical and the regioselectivity of addition can give various products. For [2+2]-reactions between enones and alkenes, alkenes with an electron donating group such as a methoxy (R = OMe) usually give the head-to-tail product, whereas electron withdrawing groups such as nitrile (R = CN) give the head-to-head product as shown in Scheme 5.20 Although this general rule can be used in most cases, there are exceptions, and the effect is less pronounced with electron withdrawing substituents.21,22 Other variables such as solvent, temperature and steric interactions can influence the regiochemical outcome.9

As well as regioselectivity, diastereoselectivity must be considered. Up to four new stereocentres can be created through [2+2]-cycloaddition, allowing in some cases up to 16 possible stereoisomers to form, although often the system will be biased towards several major isomers. For cyclobutane bonds annulated to another ring, the relationship along the bond is described as \textit{cis} or \textit{trans}, and for bonds not annulated to another ring, the relationship can be described as \textit{syn} or \textit{anti} (Scheme 5).9 In some cases, the stereochemical outcome of [2+2]-cycloadditions can be influenced by stereochemistry in the starting material. Most stereocontrolled [2+2]-cycloadditions rely on intramolecular additions to control the orientation of the approaching alkene.23,24
Regiochemical outcomes of intramolecular [2+2]-cycloadditions have frequently been explained using the ‘rule of five’; a term used to describe the preferential formation of 5-membered rings in photochemical [2+2]-reactions. It is analogous to the observations by Beckwith who reported that the ring closure of hex-5-enyl radicals proceed to give the cyclopentyl product 75 times faster than the cyclohexyl product. A similar observation was made in photochemical processes in 1967 by both Srinivasan and Hammond. This was investigated further by Maradyn and Weedon through experiments that investigated trapping the biradical intermediates using hydrogen selenide. Of four possible biradicals, the only two that progressed to form products were those that led to 5-membered rings, indicating that any other biradical intermediates formed must fragment to starting material. For enones with tethered alkenes, two regioisomeric products are possible and for a tether length of 3 (or 4) the straight product gives a more favourable 5-membered ring (Scheme 6, left). For a 2-carbon tether length, the crossed product dominates (Scheme 6, right), preventing the formation of an additional 4-membered ring due to the additional energy associated with strained rings.

Although a good method for the prediction of regiochemistry in these reactions, the ‘rule of five’ does not correctly predict the results in all cases, for example enones in which a tether is not attached to the α- or β-carbon of the enone. As an alternative method for the prediction of regiochemical outcome, computational calculations of the biradical intermediates have been previously shown to be successful. Calculation of the minimum energy conformations of all
possible biradical intermediates can explain the regiochemistry for those examples that do not fit the ‘rule of five’ explanation, as well as confirming those that do. A suitable conformation for ring closure has been considered one with a short inter-radical distance (IRD) of approximately 3 Å.

Enantioselective photochemical reactions are particularly challenging and efforts in this area have only recently come to fruition. Reactions initiated by UV/visible light cannot induce significant asymmetric induction, even if the light used is in a circularly polarised form.32,33 More successful methods have included induction of asymmetry through chiral substituents, complexing agent, photosensitisers or solvents. Bach et al. have reported the use of chiral lactam complexing agents 1 that induce facial discrimination and therefore allows both intra- and intermolecular [2+2]-cycloadditions to be conducted enantioselectively (Scheme 7).34–36 Later developments to the chiral template led to the thioxanthone 2 which as well as a chiral template also acts as a photosensitiser and allows similar transformations to be carried out catalytically.37

![Scheme 7 - Use of chiral templates for enantioselective [2+2]-photocycloaddition reactions34–36](image-url)
Chapter 2: Prins Cyclisation of Photochemically Synthesised Cyclobutenes
2. Prins Cyclisation of Photochemically Synthesised Cyclobutenes

2.1. Introduction to the Prins Cyclisation

The Prins cyclisation involves formation of an oxocarbenium ion, for example through the acid-mediated reaction of a homoallylic alcohol with an aldehyde, to synthesise tetrahydropyran rings. Hendrik Jacobus Prins discovered the reaction during his doctoral studies in 1919. It has now become a powerful method for the formation of C-C and C-O bonds, as well as being successful to reliably create stereocentres around a tetrahydro pyran ring. The reaction and its applications have been widely reviewed so only a concise introduction to Prins cyclisations is given here.

Scheme 8 – Mechanism of the Prins cyclisation

The mechanism of the reaction begins with protonation of an aldehyde or coordination of a Lewis acid (Scheme 8). This facilitates attack of the alcohol onto the aldehyde, followed by loss of water to form an oxocarbenium ion 3. Cyclisation via a chair transition state then forms carbocation 4 with the conformation of the transition state setting the stereochemistry of the groups positioned around the ring. The final step involves the attack of the carbocation by an appropriate nucleophile.

The stereochemical control can be attributed to the nature of the transition states in this reaction. During the cyclisation step, the attack can proceed to give one of two possible chair conformations (Scheme 9). The favoured transition state is the one in which substituents are oriented equatorially, to minimise unfavourable 1,3-diaxial interactions. Attack from the nucleophile also occurs to give the most stable chair conformation.
As well as its desirable diastereoselectivity, the reaction is also versatile and a wide range of reaction conditions have been identified, including the use of olefins with differing substitution patterns, various nucleophiles, and substituted aldehydes. Variations on the reaction have also been investigated widely, including the aza-Prins reaction, tandem processes such as the Prins-pinacol and Prins-Friedel-Crafts reactions, and reductive and oxidative Prins cyclisation reactions.

2.1.1. Prins Reactions for the Synthesis of Fused Ring Systems

As a carbon-carbon bond forming reaction, the Prins cyclisation is an important transformation in synthetic organic chemistry and has been utilised in the formation of many different tetrahydropyrans. It has been employed for the synthesis of five, seven, eight and nine membered rings and aza-cyclisations have also been developed. Despite this, the scope of the cyclisation with respect to the alkene component has been limited, with most cases involving only terminal or 1,2-disubstituted alkenes. Examples of Prins cyclisations which contain the alkene within a ring system itself are rare, but the few examples reported have provided facile access to novel core structures.

One such example was reported in 2007 by Cha et al. in which addition of TMS ethers to \(\alpha,\beta \)-unsaturated acetalts under acidic conditions was shown to give spirocyclobutanones with the formation of three contiguous stereocentres (Scheme 10). The reaction is diastereoselective and has been shown to work with both cyclopentene and cyclohexenes. It has also been used in the total synthesis of natural products cyathin A and B and lepadiformines A and C.

![Scheme 9 – Stereochemical control in the Prins cyclisation](image-url)
One of the first general examples of the use of Prins cyclisations for the formation of a fused bicyclic system was published by Willis et al. in 2008. In this reaction the homoallylic alcohol has a tethered nucleophile, in this case a methyl ester, that can be used to intramolecularly trap the carbocation intermediate, giving the novel bicyclic products of the general structure 5 in good yields and with the generation of three new stereogenic centres (Scheme 11).

![Scheme 11 - Prins cyclisation for the synthesis of bicyclic tetrahydropyrans using an internal nucleophile](image)

Following on from this work, alcohols were also shown to be successful nucleophiles in intramolecular Prins cyclisations in 2009 by Yadav et al. (Scheme 12). Using E- or Z-olefins in the cyclisation of diol 6 with a range of aldehydes gave the trans and cis-bicyclic products 7 respectively in good yields.

![Scheme 12 - Use of alcohols as nucleophiles in intramolecular Prins cyclisations](image)

A further interesting example of the use of cyclic alkenes in Prins cyclisation was reported in 2009 by Chavre et al. in which oxaspirocycles were synthesised in good yields and diastereoselectivity through reaction of cycloalkene diols (Scheme 13).

![Scheme 13 - Synthesis of oxaspirobicycles by the Prins cyclisation of cyclic alken diols](image)

One of the most commonly reported examples of Prins cyclisations using alternative alkene components is the use of dioxenones. First reported in 2005 by Scheidt et al. this reaction takes the readily formed dioxenone alcohols 8 and in a reaction with aldehydes under acidic conditions forms the highly substituted dihydropyrans 9 in good yields and diastereoselectivity (Scheme 14). The dioxenones were deprotected under basic conditions to give the β-keto ester 10 products. This work was later extended to allow the preparation of spirooxindole pyrans and more recently a similar reaction involving a tandem oxidative cleavage/Prins cyclisation to synthesise oxa-bridged carbocyclic rings has been reported.
Although the Prins reaction has been applied to cyclic alkenes, cyclobutenes have rarely been used in Prins cyclisations. To the best of our knowledge, the only published example was carried out in the Willis research group where the simple cyclobutene 11 was reacted with p-chlorobenzaldehyde in the presence of TFA to give tetrahydropyran 12a and 12b, albeit in low yield and as a mixture of diastereomers (Scheme 15). This offers a powerful tool for the synthesis of fused [4.2.0]-oxabicycles and warrants further investigations. Photochemistry allows straightforward access to the necessary cyclobutene starting materials.

2.1.2. Scaffolds in Medicinal Chemistry

Although the development of methods for forming sp²-sp² bonds has been extremely successful in recent years, the range of structures that can be synthesised through these approaches are limited, and there is a demand from the drug-development industry for methods to synthesise sp³-rich molecules. The seminal publication ‘Escape from Flatland’ describes this problem and outlines the success of drug compounds with a high Fsp³ values, (number of sp³ hybridised carbons/total carbon count). Also valuable to medicinal chemistry is the ability to derivatise core structures to produce structurally related compounds. An investigation published in 2014 on the structural diversity of nitrogen containing pharmaceuticals described the frequency with which identical core structures are found in successful pharmaceuticals. This analysis also found that 59% of small-molecule drugs contain a nitrogen heterocycle, with piperidine, piperazine and pyrrolidine among the most common aliphatic examples. Development of methods for the synthesis of these common saturated nitrogen heterocycles is therefore of clear industrial importance.
One drawback of the use of saturated heterocycles in drug development is the lack of structural rigidity they confer. Use of saturated bicycles or bridged systems can be one way to add conformational restriction to the scaffold that can mimic the rigidity of unsaturated systems without compromising the added benefit of three-dimensionality. Research in this area has recently proposed the use of nitrogen bicycles as analogues for piperidine, morpholine, piperazine and GABA. Synthesis of these scaffolds can be achieved photochemically and the resulting products can be easily functionalised at multiple positions to act as analogues for the monocyclic systems (Scheme 16a-c).

a) Piotrowski (1999)

b) Mykhailiiuk (2017)

c) Mykhailiiuk (2018)

Photochemical methods are ideal for the formation of conformationally restricted cyclobutanes and the Booker-Milburn group has previously had success in this area, for example the intramolecular photocycloaddition of N-alkenyl substituted maleimides to construct ring expanded amides or the synthesis of tricyclic aziridines from a photochemical pyrrole rearrangement (Scheme 17). Both reactions generate complex polyheterocycles with a high proportion of sp3 centres, demonstrating the utility of photochemistry for novel scaffold synthesis. Research in our group has also focused on the scale-up of such reactions, to make them synthetically valuable in an industrial setting. In order to do this, new reactors for flow photochemistry have been developed, allowing the synthesis of large quantities of photochemical products. Many of these molecules also include groups that could be further
functionalised either for their use as scaffolds in drug libraries, or for the creation of further complex core structures.

Cycloaddition of N-alkenyl maleimides:

![Cycloaddition reaction](image)

Scheme 17 – Photochemical synthesis of small complex molecules by the Booker–Milburn group²,⁷³

2.1.3. Cyclobutene Synthesis

Cyclobutanes and cyclobutenes are versatile structures in organic chemistry due to their inherent ring strain. Relief of ring strain provides a driving force for further synthetic transformations such as ring opening to acyclic products or ring expansion. Despite their synthetic utility approaches for their synthesis are dominated by photochemical [2+2]-cycloaddition reactions. Other methods that have been less frequently used for the preparation of cyclobutanes and cyclobutenes include ring expansions of cyclopropyl precursors, ring contractions and 1,4-cyclisation of acyclic precursors.⁹,⁷⁶,⁷⁷

[2+2]-Photocycloaddition of chromophores with alkenes is arguably one of the most useful photochemical processes in synthesis allowing a relatively facile and tuneable method for the synthesis of cyclobutanes and cyclobutenes. In the Booker-Milburn group, extensive research has been carried out specifically on the [2+2]-photocycloaddition of maleimides with various alkynes and alkenes. Maleimides are excellent chromophores with a strong absorption in the UV region at ~275 nm.⁷⁸ Cycloaddition reactions using maleimides as the chromophore have been used routinely as a method for accessing functionalised cyclobutanes as they offer flexibility in the possible derivatives afforded from reduction of the resulting succinimide.

The cycloaddition of maleimide with propargyl alcohol to form cyclobutene ₁₅, has been used as a model photochemical reaction to determine the advantages of flow chemistry over batch (Scheme 18).⁷⁸ Reaction yields were around 65% in both batch and flow, with the productivity slightly higher for flow, and in most cases, it was found that yields for batch and flow reactions were essentially the same at full conversion. As reactions can be successfully
scaled up using our flow reactors, the choice of batch or flow can be informed by other aspects of the reaction.

\[
\text{HO-}+\text{maleimide} \text{MeCN} \xrightarrow{\text{hv}} \text{15}
\]

\text{batch (0.1 M, 120 min) - 65%}

\text{flow (0.1 M, 4 mL min}-1) - 64%

Scheme 18 – Synthesis of succinimide-fused cyclobutene 15; comparison of batch and flow methods78

2.2. Aims

Use of flow photochemistry allows access to large quantities of cyclobutenes using mild methods. The aim of this project was to combine the utility of flow photochemistry to access large quantities of cyclobutenes for use in Prins cyclisations, to provide a library of novel heterocycles. The products from the Prins cyclisation should have multiple sites for further functionalisation to make them amenable to medicinal chemistry, along with being synthesised in a diastereoselective fashion.

\[
\text{HO-}+\text{maleimide} \text{MeCN} \xrightarrow{\text{hv}} \text{16} \xrightarrow{\text{Nu, [H]}} \text{17}
\]

Scheme 19 – Proposed photochemical and Prins reactions for the synthesis of tricyclic structures 17

It was proposed that cyclobutene alcohol 16 formed from reaction of maleimide with homopropargyl alcohol would be a suitable substrate for Prins cyclisation. This would allow formation of a further fused ring and give tricyclic products with the general structure 17. The modular nature of the reaction allows multiple sites for further derivatisation for example by using different chromophores and substituted alkynes in the initial photochemical reaction, and by using various aldehydes and nucleophiles in the Prins cyclisation reaction. The versatility of the Prins cyclisation and the array of successful reaction conditions that have been previously published offer broad scope for development in this work.
2.3. Results and Discussion

2.3.1. Substrate Synthesis

In previous unpublished work reported by Willis et al. on the Prins cyclisation of cyclobutenes, the homoallylic alcohol substrate was prepared through addition of methylenecyclobutane to acetaldehyde and Lewis acid dimethylaluminium chloride (Scheme 20) to give $18a$.\(^{60}\) Unfortunately attempts to synthesise $18b$ using the same method were unsuccessful, with volatility of the product a contributing factor. This problem highlights the benefits of photochemistry as a tool to access substituted cyclobutenes, providing both functionality that could be later derivatised along with an increase in molecular mass to aid isolation of the starting materials.

\[\text{RCHO} \quad \text{Me}_2\text{AlCl} \quad \text{CH}_2\text{Cl}_2 \quad \text{OH} \quad 18a \quad R = \text{CH}_3 \quad 58\% \quad 18b \quad R = \text{H} \quad 0\%\]

Scheme 20 – Attempt to synthesise cyclobutene alcohol $18b$ for Prins reactions\(^{60}\)

Due to the ease with which cyclobutenes can be synthesised through [2+2]-photocycloaddition reactions, homopropargyl alcohol 19 was reacted with maleimide 20 in acetonitrile to give cyclobutene alcohol $16a$ as an appropriate substrate for the subsequent Prins reactions (Scheme 21). One minor drawback with the use of maleimide as a chromophore is its tendency to dimerise to form the by-product 21. Much of the by-product can be removed by filtration of the reaction mixture prior to purification, however it was also found that formation of this dimer could be suppressed. Dropwise addition of a solution of 20 in acetonitrile over 2 h led to an increase in yield of $16a$ by ca. 30%.\(^{79}\) Following the photochemical synthesis of $16a$, the succinimide was protected with benzyl bromide in good yield to give $16b$.

\[\text{hv} \quad \text{MeCN} \quad 16a \quad R = \text{H} \quad 61\% \quad 16b \quad R = \text{Bn}\]

Scheme 21 – Photochemical synthesis of $16a$ and undesired dimer 21. (a) – BnBr, K$_2$CO$_3$, TBAI, acetone, Δ
2.3.2. Reagent Screening

As a starting point for this investigation several conditions that have been previously reported for Prins cyclisations were attempted.18 Both Lewis and Brønsted acids were screened for the Prins reaction of 16b with either benzaldehyde or hydrocinnamaldehyde and various nucleophile and solvent combinations (Table 2). It was clear that for the cyclisation of 16b to take place, a strong protic acid was needed, as only trifluoromethanesulfonic acid or tetrafluoroboric acid gave any reaction. In acetonitrile, the Prins–Ritter product was observed, with acetonitrile acting as the nucleophile before hydrolysis on workup to give the amide product in good yield. Using tetrafluoroboric acid (HBF\textsubscript{4}), the fluorinated product was isolated in 36\% yield.

Table 2 – Acid screening for the Prins cyclisation of 16b to give products with the general structure 17

<table>
<thead>
<tr>
<th>entry</th>
<th>acid</th>
<th>nucleophile</th>
<th>R</th>
<th>solvent</th>
<th>temp / °C</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TFA</td>
<td>TFA</td>
<td>(CH\textsubscript{2})\textsubscript{2}Ph</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>-40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>BF\textsubscript{3}.Et\textsubscript{2}O</td>
<td>n/a</td>
<td>(CH\textsubscript{2})\textsubscript{2}Ph</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>BF\textsubscript{3}, AcOH, TMSOAc</td>
<td>AcOH</td>
<td>(CH\textsubscript{2})\textsubscript{2}Ph</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TfOH</td>
<td>MeCN</td>
<td>(CH\textsubscript{2})\textsubscript{2}Ph</td>
<td>MeCN</td>
<td>rt</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>TfOH</td>
<td>AcOH</td>
<td>Ph</td>
<td>AcOH</td>
<td>rt</td>
<td>0a</td>
</tr>
<tr>
<td>6</td>
<td>HCl</td>
<td>Cl-</td>
<td>Ph</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>rt</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>amberlyst-15</td>
<td>n/a</td>
<td>Ph</td>
<td>-</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>HBF\textsubscript{4}</td>
<td>F-</td>
<td>Ph</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>rt</td>
<td>36</td>
</tr>
</tbody>
</table>

In all cases, 1 equivalent of aldehyde and 1.2 equivalents of acid were used. aMajor product isolated was the acetylated starting material 16b. All other reactions gave only recovered starting material.

The Ritter reaction proceeds by the nucleophilic addition of a nitrile to a suitable electrophile such as a carbocation (Scheme 22). The resulting nitrilium ion is then hydrolysed by water to give the desired amide. Prins-Ritter reactions to form 4-amidotetrahydropyrans were first reported by Willis et al.80 and in recent years methods have been developed for the synthesis of 4-amidopiperidine derivatives and 2,6-disubstituted tetrahydropyrans using a Sakurai-Prins-Ritter variation.81–87

In the most successful example from the screen of Prins reaction conditions (Table 2, Entry 4) the Prins-Ritter reaction gave amide 22a in 75\% yield and as a single diastereomer (Scheme 22). The stereochemistry of the resulting products is discussed in Section 2.3.6.
2.3.3. Mechanisms of Side-Product Formation

With successful conditions for the formation of 22a in hand, expansion of the scope of the reaction was desired. Despite the excellent yield obtained with the initial reaction conditions and hydrocinnamaldehyde to give 22a, other aldehydes, such as benzaldehyde, gave only moderate yields (33%) with the same conditions. Reaction conditions were briefly optimised using a one-variable-at-a-time (OVAT) approach. In doing so, the yield for reaction of 22b with benzaldehyde was increased from 33% to 49% by increasing the equivalents of the aldehyde and acid to 1.2 and 1.5 equivalents respectively. However, due to the persisting variation in yield for different aldehydes, the reaction was scaled up to aid isolation of other products being formed. Along with the desired product 22b, two major side-products 23 and 24 were isolated from the reaction of 16b with benzaldehyde (Scheme 23) as a 1:1 mixture (34% combined yield). Further investigations were carried out to determine the origin of the side products with the aim of using this information to improve the yield of desired product 22b.

Due to the two side products being inseparable by column chromatography and present in a 1:1 mixture, it was not immediately obvious that two distinct side products were present and ADEQUATE NMR was used to elucidate their structures (Figure 5). 1,1-ADEQUATE
Prins Cyclisation of Photochemically Synthesised Cyclobutenes - Results and Discussion

(Adequate Double QUantum Transfer Experiment) NMR is a powerful technique for structural elucidation and provides correlations through successive 1JCH and 1JCC couplings.88–90 ADEQUATE NMR is a proton-detected version of INADEQUATE NMR, both of which rely on the use of 13C-13C couplings requiring two adjacent 13C nuclei, making these methods insensitive.91,92 The proton detection of ADEQUATE NMR allows an increase in sensitivity relative to INADEQUATE NMR and also has an advantage over HMBC NMR by only showing correlations for protons and carbons exactly two bonds apart. These techniques are especially effective for molecules containing several contiguous quaternary centres and have been used in the structure elucidation of many natural products.93

Data obtained by ADEQUATE NMR allowed determination that the mixture consisted of two distinct structures, 23 and 24. This was further confirmed when it was found that 24 could be isolated from the mixture by recrystallisation, allowing 1H-NMR data to be obtained for each side product (Figure 6). X-ray crystallography was then used to corroborate the structure of 24 along with its relative stereochemistry (Figure 4).

![Figure 4 – X-ray crystal structure of 24](image-url)
Figure 5 – ADEQUATE-NMR spectra of the 1:1 mixture of 23 and 24
Figure 6 – 1H-NMR spectra of the 1:1 mixture of 23 and 24 (top), 24 (middle) and 23 (bottom)
Acetate 23 was proposed to arise from nucleophilic attack of the starting alcohol onto the protonated acetonitrile generated in the strongly acidic reaction conditions, Scheme 24.

![Scheme 24 - Proposed mechanism for the formation of acetate 23](image)

Formation of 24 proceeds through fragmentation of the central cyclobutane ring, and several possible mechanisms for the fragmentation were proposed. One possibility (A - Scheme 25) was that the Prins–Ritter product 22b is unstable to the reaction conditions, and the ketone 24 forms because of fragmentation of the product. Resubjecting 22b to the reaction conditions showed no conversion to 24, therefore confirming the stability of 22b in the presence of triflic acid.

A - product instability

![Scheme 25 - Possible mechanisms for the formation of 24](image)

The second proposed mechanism for the formation of 24, (B - Scheme 25), involves addition of water to the intermediate carbocation followed by ring fragmentation of the resulting alcohol. This hypothesis was tested by repeating the reaction using rigorously anhydrous conditions, and addition of 4Å molecular sieves. However even under these conditions a small amount of 24 was still isolated. During the condensation between the alcohol and aldehyde, an equivalent of water is liberated which could be responsible for formation of side product 24. The reaction was therefore repeated with the dimethyl acetal, which upon condensation, would produce an equivalent methanol rather than water. With these conditions, a single new product was observed by 1H NMR spectroscopy and identified as the acetimidate 25 (Scheme 26). It is proposed that 25 is formed through a Pinner reaction$^{94-96}$ of methanol with the intermediate...
nitrilium ion 26. When exposed to silica gel for purification by column chromatography, 25 degraded to give both the desired product 22b, and the ketone side product 24. This degradation also occurred when 25 was left in CDCl₃ for 3 days, indicating that the fragmentation of 25 to 24 requires only mildly acidic conditions.

Formation of the 24 through degradation of the acetimidate 25 was feasible for Prins reactions using acetals, however this did not provide an explanation for its formation in the absence of methanol. If water is instead formed from the condensation, nucleophilic addition of water to the nitrilium ion simply results in formation of the product, which has been proven stable to the reaction conditions.

During work undertaken at AstraZeneca (PT&D, Macclesfield) the mechanism of the formation of 24 was further investigated and the reaction conditions optimised. Initially reaction profiling was carried out using UHPLC, with standards of 22b, 23 and 24 used and samples taken at 1, 2, 5, 10 and 20 minutes. The results indicated that the reaction was fast, with no starting material observed after one minute and subsequent samples showing no change in the ratio of products. Despite being observed when conducting the reaction previously, comparison of the crude reaction material to known standards of 23 and 24 confirmed that they were not present in the reaction mixture, however a new peak (m/z 644) was observed. ¹H-NMR data of the crude reaction mixture showed presence of the desired product 22b, as well as signals for an unidentified product, very similar, but not identical, to the starting material 16b and product 22b. Comparing this spectrum with previous data from similar crude reactions, the unidentified product had also been formed previously, however not in any appreciable amount and had never been isolated. The new product (m/z 644) was identified as acetimidate 27 which was present as a 1:1 mixture of diastereomers due to the racemic nature of alcohol 16b.
Upon re-evaluation and comparison of the 1H-NMR of the crude material from previously performed reactions, small amounts of 27 had been formed as a by-product, however had never been isolated. In this case, 27 was then purified using alternative methods allowing its structure to be confirmed by 2D-NMR and HRMS.

Formation of 27 in the reaction mixture results from attack of the nitrilium ion by another molecule of the cyclobutene alcohol 16b in a Pinner reaction to form the carboximidate 27 (Scheme 27). This result is analogous to a previous reaction carried out with benzaldehyde dimethyl acetal, in which a carboximidate 25 was formed by a similar mechanism when methanol was present in the reaction mixture. This demonstrates that although an alcohol was not being formed in the reaction, as an alcohol, the starting material can act in a similar fashion to form 27.

Dimer 27 was stirred with silica gel resulting in recovery of 27 (60%) and isolation of a 1:1 mixture of 23 and 24 (30%). This interesting outcome indicates that dimer 27 is a precursor to side-products 23 and 24. The instability of 27 to certain column chromatography conditions explains why it was never previously isolated, and only observed as its degradation products 23 and 24. The dimer 27 was also found to be unstable to more forcing hydrolysis conditions (e.g. aq. HCl).

With this information in hand, a method to prevent formation of 27 and therefore 23 and 24 was desired. This was achieved by changing the order of addition of reagents. Previously alcohol 16b was dissolved in solvent and the aldehyde and acid then added. By adding a solution of 16b dropwise to a solution of the aldehyde and acid, the local concentration of 16b

Automated column chromatography (CombiFlash) on silica using tert-butylmethylether (TBME) and isohexanes as solvent was used. The change in solvent from what had been used previously was due to the UV absorbance of ethyl acetate (cut-off 210 nm) which would interfere with UV detection of products of this reaction which absorb most strongly at 220 nm. TBME is similar in polarity to ethyl acetate so it was therefore assumed that this would not have a great impact on separation.
in the reaction mixture was minimised and this resulted in complete inhibition of formation of 27. However, the yield of 22b did not substantially increase, and further work to optimise the reaction conditions was therefore necessary.

2.3.4. Design of Experiments Optimisation

Design of Experiments (DoE) is a systematic approach to data collection that allows generation of valid statistical conclusions when considering trends in data sets. Traditionally, reaction optimisation is carried out through a one-variable-at-a-time (OVAT) approach in which variables are individually varied whilst all others are kept constant (Figure 7). This method has several pitfalls; it can often result in missing the ‘true optimum’ by limiting coverage of the design space, it is experimentally inefficient, and does not consider interactions between factors. DoE allows for a more thorough investigation into a wider range of results and therefore often gives more detailed insight into the reaction.

In DoE, combinations of the extreme value of each factor are investigated (represented by corners of a cube) as well as at the centre point for all factors (Figure 7). Factors are chosen based on prior knowledge of the reaction and appropriate high (H) and low (L) levels set. Responses are also chosen (usually percentage yield or selectivity) and methods for the consistent collection of data outlined. It is important that experiments are carried out in as consistent manner as possible to minimise experimental error, however experiment replicates (usually at the centre point) allow some experimental error to be accounted for by the model. Nuisance factors such as temperature, time, batch of materials, etc. must be closely controlled, and this is often aided by randomising the order in which experiments are carried out.

One major advantage of DoE is the small number of experiments required to achieve a significant model of the reaction. The number of experiments varies depends on the number of factors and the type of design used. Full-factorial designs involve all combinations of factors at
all levels, whereas fractional designs cover only a specific subset of the total possible number of runs whilst retaining the maximum amount of information. Table 3 shows how a full-factorial design for three factors at two levels can be carried out in eight experiments. Carrying out a fractional-factorial design with the same factors and levels would take only four experiments (shaded in grey). Fractional-factorial designs can have the advantage of being experimentally cheaper, however they do introduce confounding into the design which can sometimes make it difficult to assign a response to an individual factor.

Table 3 – Full-factorial experimental design for 3 factors at two levels (+/-) (fractional-factorial shaded in grey).

<table>
<thead>
<tr>
<th>exp no.</th>
<th>factor 1</th>
<th>factor 2</th>
<th>factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Optimisation of the cyclobutene Prins reaction using DoE was carried out in an attempt to increase the yield of 22b. Prior to this optimisation, the maximum yield achieved for the reaction (Scheme 23) was 49%. Based on prior experimental work, the factors chosen were; addition rate of alcohol 16b (equiv./min), equivalents of benzaldehyde and excess of triflic acid (with respect to benzaldehyde). Addition rate was previously shown to be important to inhibit formation of the dimeric side product 27 and high and low values were chosen to ensure the widest experimental range possible was being investigated. Equivalents of benzaldehyde was also chosen as a factor as it was hypothesised that a large excess of the aldehyde could lower the local concentration of unreacted starting material 16b and therefore also limit formation of the dimer. Equivalents of triflic acid were varied with respect to benzaldehyde and the high and low values shown indicate the excess of the reagent and not the absolute value.
Table 4 – Factors and levels chosen for first DoE (Full-factorial with 3 replicates at the centre point = 11 experiments)

<table>
<thead>
<tr>
<th>factor</th>
<th>units</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A amount of aldehyde</td>
<td>equivalents</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>B excess of TfOH w.r.t. aldehyde</td>
<td>equivalents</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>C addition rate of alcohol 16b</td>
<td>equivalents min⁻¹</td>
<td>0.80</td>
<td>0.04</td>
</tr>
</tbody>
</table>

To keep reactions as consistent as possible, all experiments were carried out using the same equipment (syringe pump and Integrity10 reaction station) with temperature set to 25 °C and batches of all chemicals kept constant throughout, including a stock solution of 16b in MeCN. Responses were recorded by analysing ¹H-NMR spectra of the reaction mixture with an internal standard 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB). As well as the product yield, yields of previously identified by-products 23 and 24 were also recorded.

Once reactions had been carried out the data were analysed using the DoE software MODDE 12.1, allowing a model to be generated based on the experimental data. After refinement of the model by excluding any terms deemed statistically insignificant, it was clear that the only factor found to influence product yield was the equivalents of benzaldehyde. Figure 8 shows a coefficient plot for the data, which describes the effect each factor has on the response (percentage yield). A negative bar indicates that as the factor increases from low to high, this has a negative impact on the response, i.e. the yield is higher at the low value for benzaldehyde charge.

Figure 8 – Coefficients plot for Design 1 showing only benzaldehyde as a significant factor
In the experiments where benzaldehyde was at the high level, significant quantities of new imine by-product 28 were detected which could be responsible for the drop in yield. A plausible mechanism for the formation of 28 could be by reaction of the previously identified acetimidate dimer 27 with excess benzaldehyde, however this is yet to be confirmed (Scheme 28).

Scheme 28 – Proposed mechanism for the formation of imine 28

R² values are used to describe the amount of variability in the results and ideally should be as close to 1 as possible. Q² describes the model’s ability to predict results accurately and should also be close to 1 and within 0.3 of R². For the first DoE, R² = 0.565 and Q² = 0.387, indicating that there is some variation not accounted for by the model and that this model may not be able to satisfactorily predict results. This is also clearly shown in Figure 9 which shows how the experimental yields do not correlate with those predicted by the model.

Experimental vs. predicted yield values for Design 1

Figure 9 – Experimental vs. predicted plot for Design 1
Although the model could not be used as a predictive tool, within the experiments carried out the highest product yield obtained was 76% which was achieved at the low values of each factor (Section 4.3, Table 11– Design 1) and is a 27% improvement on the previous optimum yield. It seemed that rate of addition was not a significant factor, as the percentage yields for these experiments were comparable at low and high addition rates. For this reason, it was decided that a second design should be carried out to further lower the amount of benzaldehyde and investigate the possibility of using catalytic triflic acid.

For the second design the same factors were used, however the levels altered based on the results of the first design. Addition rate was not found to be significant at the levels chosen previously, so the design was initially fixed at the high level (i.e. 2-factor full-factorial design). It was later decided to complement this design by running the same experiments at the low level for addition rate and the data from both combined to give a 3-factor full-factorial set of results. Equivalents of benzaldehyde were reduced to H: 1.20 and L: 1.02 and the excess of triflic acid was also reduced to H: 0.0 (corresponding to equal benzaldehyde and triflic acid) and L: -0.9 (indicating a 0.9 equivalent deficit), Table 5.

<table>
<thead>
<tr>
<th>factor</th>
<th>units</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>amount of aldehyde</td>
<td>equivalents</td>
<td>1.20</td>
</tr>
<tr>
<td>B</td>
<td>excess of TfOH w.r.t. aldehyde</td>
<td>equivalents</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>addition rate of alcohol 16b</td>
<td>equivalents min(^{-1})</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Analysis of the results using MODDE gave a model for these data that included significant interaction terms, one between benzaldehyde and triflic acid charges, and another between triflic acid excess and addition rate. These significant interactions mean that the individual terms for addition rate and benzaldehyde charge cannot be eliminated from the model even though their error bars render them statistically insignificant. It is clear from Figure 10 that the factor contributing most strongly to a change in response is the triflic acid excess, showing that having this factor at the high level (0.00 equivalents excess w.r.t. aldehyde) has the average effect of increasing product yield by \textit{ca.} 27%. This therefore indicates that the reaction is not able to proceed catalytically, and the best results are observed with stoichiometric acid.

R\(^2\) (0.977) and Q\(^2\) (0.912) values for this data set were excellent showing that experimental variability is well accounted for by the model and it can be used for the prediction of results. This was also indicated by the observed \textit{vs.} predicted plot which shows close alignment between experimental results and model prediction (Figure 11). Formation of imine 28 in this design
was extremely low with all experiments giving < 4%. Formation of by-products 23 and 24 was observed in some reactions; however, no model could be generated based on the data collected and again, only the product 22b yield was analysed as a response.

Figure 10 - Coefficients plot for the second DoE showing triflic acid excess as the most significant factor

Figure 11 - Experimental vs. predicted plot for Design 2
Interaction factors were also found to be present in the model, meaning that the effect of one variable may not be the same at all levels of another variable. In this case, interaction factors were found between the benzaldehyde charge and triflic acid excess (A^*B) and between triflic acid excess and addition rate (B^*C).

Interaction plots can be a helpful way of representing the data as shown in Figure 12 (A^*B) and Figure 13 (B^*C). For A^*B, the general trend indicates that percentage yield is highest at
the high level of triflic acid excess, however the non-parallel lines indicate the interaction with benzaldehyde charge, i.e. triflic acid excess has a different effect at high and low levels of benzaldehyde charge. At the low level of triflic acid excess, a higher benzaldehyde charge is beneficial, however the reverse is true at the high triflic acid level. Although an interesting subtlety to this reaction, the yield is consistently higher at the high level of triflic acid and therefore any effect at the low level is insignificant with respect to yield optimisation. Similar analysis can be drawn from (B*C, Figure 13) where the triflic acid excess has a different effect on the yield at high and low levels of addition rate. Again, this is a rather subtle interaction, and the product yield is consistently higher when triflic acid is at its high level.

Response contour plot of product yield (%) - Design 2

![Response contour plot](image)

Figure 14 – Response contour plot for the three factors in the second design

Response contour plots, Figure 14, represent all interactions between factors. The far-left block shows the low yield achieved at the low level of triflic acid and shows how this changes slightly with changes in the other two factors. Similarly, the far-right block (high triflic acid level) shows the best yields with slight changes depending on levels for the other two factors.

Table 6 - Optimum conditions for OVAT and DOE optimisation

<table>
<thead>
<tr>
<th>A - benzaldehyde / equiv.</th>
<th>B - triflic acid excess / equiv.</th>
<th>C - addition rate of 16b / equiv. min(^{-1})</th>
<th>yield 22b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVAT</td>
<td>1.20</td>
<td>0.30</td>
<td>49</td>
</tr>
<tr>
<td>Design 1</td>
<td>1.20</td>
<td>0.10</td>
<td>76/73</td>
</tr>
<tr>
<td>Design 2</td>
<td>1.02</td>
<td>0.00</td>
<td>69/79</td>
</tr>
</tbody>
</table>
Overall, this design highlighted some interesting interaction results and fundamentally proved that stoichiometric acid is necessary for achieving optimum yields. Despite Design of Experiments often allowing prediction of optimum results based on experimental data, in this case the best results found were close to the feasible limits of the reaction – predictions of sub-stoichiometric benzaldehyde giving higher yields lacks chemical sense. Therefore, extrapolation of these results would not give any meaningful improvement in yield. Optimum yields from this set of data gave similar conditions to the previous design, with the best result achieving a modest improvement to 79% overall yield and these conditions were therefore taken as the overall optimised conditions for this reaction, representing a 30% increase in yield vs. OVAT optimisation (Table 6).

2.3.5. Reaction Scope

The scope of this Prins–Ritter reaction was investigated by performing the reaction with a range of aldehydes giving the tricyclic products 22a-k with excellent diastereoselectivity (Scheme 29).

Generally good yields (24-95%) were achieved, with longer aliphatic chain aldehydes giving slightly higher yields. As well as the N-benzyl protected starting material, the reaction was carried out with both the N-methyl and the unprotected maleimides, 16c and 16a respectively. Whereas the reaction of 16c with hydrocinnamaldehyde gave 29a in 95% yield, the analogous reaction with benzaldehyde gave 29b in a moderate yield of 43%. The reaction was also successful with an unprotected maleimide, however the yields for both products 30a and 30b were significantly lower. No Prins products were isolated using ketones such as acetone and cyclohexanone.

By replacing the nucleophilic solvent acetonitrile with dichloromethane, the major product was alkene 31a, formed by elimination of the β-hydrogen (Scheme 30). This type of elimination is known, but rarely seen in Prins cyclisations due to the slow nature of the elimination step. In this case, the cyclobutane could promote the elimination by destabilising the carbocation as it cannot achieve the optimal bond angles for an sp² carbocation.
An aldehyde with a nitrile tether, 3-cyanopropanal, was also used under these conditions to determine whether an intramolecular Ritter reaction would occur (Scheme 30). However along with degradation, the elimination product 31b was isolated in 15% yield.

The cyclobutene Prins reaction was also found to be successful using enol ether 32; based on reactions previously used in total syntheses by Willis and coworkers.\(^\text{99-101}\) Enol ether 32 was synthesised by reaction of 16b with methyl propiolate under basic conditions (Scheme 24).
Subjecting 32 to the cyclisation conditions, gave the Prins–Ritter product 33 in 48% yield. This demonstrates the ability to introduce sidechains at the C-9 that have the potential for further functionalisation. Using aldehydes with more reactive side-chains directly in this Prins–Ritter reaction, such as nitriles or ketones was found to be unsuccessful.

2.3.5.1. Aza-Prins Cyclisation of Cyclobutenes

As well as the Prins–Ritter reaction, the possibility of an analogous aza-Prins reaction was investigated based on previous literature success in this area. The substrate 34 was synthesised by Mitsunobu reaction of the alcohol 16b with a protected amine. Carbamate protecting groups were considered ideal, as it was expected that they would deprotect in situ under the Prins–Ritter reaction conditions. t-Butyl tosylcarbamate was found to be optimal for this reaction, giving the protected amine 34 in a 49% yield. Attempts to form the carbamates 35 and 36 using t-butyl carbamate and di-t-butyl carbamate respectively both gave the eliminated product 37, Scheme 32.

For the aza-variation of the cyclobutene Prins–Ritter reaction, 34 was first treated with an equivalent of triflic acid, allowing clean deprotection of the carbamate in just 5 minutes. This was followed by addition of hydrocinnamaldehyde and a further equivalent of triflic acid to give the aza-Prins product 38b in an 83% yield. With this promising result in hand, the scope of the reaction was again investigated and found to be successful for several aromatic and aliphatic aldehydes 38a-g, Scheme 33. This reaction was also found to be diastereoselective in most cases, however the major diastereomer was found to have opposite relative stereochemistry at C-9, a result which is further discussed in Section 2.3.6.
2.3.5.2. Fluoride as a Nucleophile in the Cyclobutene Prins Cyclisation

As well as the Prins–Ritter reaction with triflic acid, the reaction was also found to proceed with HBF₄, giving the fluorinated product 39a in 36% yield (Section 2.3.2, Table 2, Entry 8). Having determined a possible mechanism for the formation of the side-products 23 and 24, investigation into side products formed in the tetrafluoroboric acid variation of this reaction was also carried out. It was found that despite there being no potential to form an acetimidate (due to the lack of acetonitrile) 24 still formed under these conditions. This suggests that the direct reaction of water with the intermediate carbocation, B - Scheme 25, might be the mechanism of formation of 24 in this reaction.

The reaction of 16b with benzaldehyde in the presence of HBF₄ was repeated, along with the analogous reaction using the dimethyl acetal of benzaldehyde, as this would prevent water forming in the condensation step, formation of 24 should also be inhibited. Figure 15 shows the ¹H NMR spectra of the crude product for the two reactions, showing clearly that use of the dimethyl acetal gives a far cleaner reaction, with no side-product 24 observed. By using the dimethyl acetal, the yield for this reaction increased from 36 to 56%.
Figure 15 – ^1^H-NMR of the reaction of 16b with aldehyde or acetal to prevent fragmentation to 24

With this modification in hand, the scope of the tetrafluoroboric acid reaction was studied using dialkyl acetals, Scheme 34, giving fluoride products 39a-g. As with the Prins-Ritter reaction, a single diastereomer was isolated in most cases.

Scheme 34 – Scope of the Prins reaction of 16b using fluoride as a nucleophile (unless specified dr>20:1)
2.3.5.3. Prins Cyclisation of a Reduced Cyclobutene Alcohol

As an alternative method for the prevention of side product formation, the possibility of reducing the maleimide moiety was investigated. Following literature precedent104 reduction of 16a with LiAlH\textsubscript{4} gave pyrrolidine 40 in good yield and without the need for purification (Scheme 35).

![Scheme 35 – Reduction of maleimide 16a and application of the Prins cyclisation to the reduced substrate](image)

Prins reaction of 40 with benzaldehyde in the presence of triflic acid gave the heterocyclic scaffold 41 in 78\% yield (\textit{cf.} 27\% of 30b formed from reaction of 16a under analogous conditions, Scheme 29) and no significant side products detected. Reduction of the maleimide therefore offers a viable option for the optimisation of this reaction through prevention of side-product formation and reveals that it may be conducted in the presence of a secondary amine, which was unexpected given the poor yields for cyclisation with the unprotected maleimide 16a. This could allow further derivatisation of the amine.

2.3.5.4. Cyclisation of Cyclobutene Aldehydes

As well as the oxo- and aza-Prins reactions previously described, it was envisaged that a carbocycle could be synthesised through reaction of the alkene with an internal aldehyde. The longer chain alkyne 42 was used for a [2+2]-photocycloaddition to give alcohol 43. Benzyl protection followed by oxidation to the aldehyde using Dess–Martin periodinane (DMP) gave 44 (Scheme 36). It was envisaged that a 6-exo-trig cyclisation could take place to give the Prins-type carbocation under acidic conditions, which could then be trapped by an appropriate nucleophile to give carbocycles such as 45, analogous to the Prins products already synthesised. However, when the aldehyde 44 was treated with HBF\textsubscript{4}, the spirocycle 46 was the major product isolated in 11\% yield.
Prins Cyclisation of Photochemically Synthesised Cyclobutenes - Results and Discussion

Scheme 36 – Unexpected synthesis of a cyclobutane spirocycle 46

This reaction was further investigated by MSci candidate Matthew Holt. Unfortunately, it was found that stability of the aldehyde 44 was a limiting factor in this work which prevented further optimisation of the formation of spirocycle 46. Attempts to use Brady’s reagent (2,4-dinitrophenylhydrazine) to synthesise a crystalline derivative of 46 for X-ray crystallography were also unsuccessful.

Scheme 37 – Proposed mechanism for the formation of 46

The mechanism for the unexpected formation of 46 is currently unknown. It was reasoned that either the expected 6-exo-trig cyclisation occurs, followed by migration or alternatively a direct 5-exo-trig mechanism would form the same product (Scheme 37). This can then undergo a [1,3]-hydrogen shift to give 46. Woodward-Hoffmann rules dictate that [1,3]-hydrogen shifts are disallowed under thermal conditions and therefore further evidence in the form of deuterium labelling experiments would be necessary to confirm the proposed mechanism. In addition, it would be interesting to investigate the effect on chain length on the outcome of this reaction, as well as a potential acid screen for this transformation.

Insight into the reaction mechanism would provide valuable information about the potentially novel transformation happening and allow facile access to these structurally interesting compounds.
2.3.5.5. Oxepane Synthesis

Along with the formation of fused tetrahydropyrans, it was proposed that the corresponding oxepane fused cyclobutanes could be synthesised in a similar fashion. [2+2]-Photocycloaddition of maleimide with 1-hexynol gave cyclobutene 47. Under the previously optimised reaction conditions, formation of oxepane 48 proceeded in 37% yield with 32% unreacted starting material recovered. Hence, more forcing conditions may be necessary for the reaction to proceed more successfully.

(a) Prins-type reaction for the formation of cyclobutane-fused oxepanes

\[
\begin{align*}
\text{NMe}_2
\end{align*}
\]

\[
\begin{align*}
\text{hv, MeCN} & \quad \text{HO} \quad \text{MeCN} \quad \text{HO} \\
\text{MeCN} & \quad \text{TfOH, PhCHO} \\
\text{MeCN} & \quad \text{NHAc} \\
\end{align*}
\]

47 - 53%

48 - 48%

(b) Attempts at carbocation stabilisation

\[
\begin{align*}
\text{HO} \quad \text{R} = \text{TMS} \\
\text{NHAc} \quad \text{R} = \text{Ph} \\
\text{MeCN} \quad 50 ^\circ \text{C} \\
\end{align*}
\]

Scheme 38 – Investigations carried out by A. Phillips106 into a) the formation of cyclobutane-fused oxepanes 48 and b) the effect of stabilising groups on this cyclisation

In work carried out by A. Phillips (MSci),106 optimisation of this reaction was carried out using DoE leading to an improvement in yield of 48 from 37% to 48%. X-ray crystallography of 48 confirmed that the stereochemical outcome of the reaction was analogous to that for the tetrahydropyran work.

As an extension to this work, investigations were carried out on the effect of functional groups with the ability to stabilise or destabilise the intermediate carbocation. Cyclobutenes 49 and 50 were synthesised in a similar photochemical fashion to 47 (Scheme 38). It was hypothesised that having \(R = \text{TMS} \) (49) may provide a \(\beta \)-silicon effect and aid stabilisation of the carbocation at C-2 leading to more facile cyclisation and a faster 7-endo-trig reaction.107 Conversely, incorporation of a phenyl group (50) could theoretically provide stabilisation of a
cation at C-1 and lead instead to a π-endo-trig reaction. Unfortunately, cyclisation of 49 and 50 led to only formation of 48 and recovered starting material respectively.

2.3.6. Diastereoselectivity

Prins reactions are known for their diastereoselectivity which arises from the nature of the chair transition state involved in the reaction mechanism. Prins cyclisations that form 2,4,6-substituted tetrahydropyran are the most commonly reported and give the all-cis products due to the all-equatorial conformation in the transition state of the reaction (Scheme 39).$^{108–111}$ Prins cyclisations forming 2,3,4-substituted THPs from primary alcohols are less common and require internal alkene starting materials.112

a) Stereochemical outcome in the formation of 2,4,6-substituted THPs

$$
\begin{align*}
\text{R} & \quad \text{OH} \quad \text{R}^1 \quad \text{H} \\
\overset{\text{O}}{\text{R}} \quad \overset{\text{O}}{\text{R}} \quad \overset{\text{O}}{\text{R}} \\
\text{R} & \quad \text{O} \quad \text{R}^1 \\
\text{R} & \quad \text{O} \quad \text{R}^1
\end{align*}
$$

b) Stereochemical outcome in the formation of 2,3,4-substituted THPs

$$
\begin{align*}
\text{R} & \quad \text{OH} \quad \text{R}^1 \quad \text{H} \\
\overset{\text{O}}{\text{R}} \quad \overset{\text{O}}{\text{R}} \quad \overset{\text{O}}{\text{R}} \\
\text{R} & \quad \text{O} \quad \text{R}^1 \\
\text{R} & \quad \text{O} \quad \text{R}^1
\end{align*}
$$

Scheme 39 – Stereochemical outcome in the formation of a) 2,4,6-substituted THPs$^{108–111}$ and b) 2,3,4-substituted THPs112

Synthesis of 2,3,4,4-tetrasubstituted THPs are even less frequently reported. One rare example from Perron-Sierra et al. where good diastereoselectivity was achieved is shown in Scheme 40.113 In this case, an anomeric effect is proposed to be present in the transition state for carbon-carbon bond formation, and the major product is the one in which groups at the 2,3,4-positions are on one face 53, with nucleophilic addition of chloride from the opposite face.

$$
\begin{align*}
\text{OH} & \quad \text{SnCl} \quad \text{HCl(OMe)}_2 \\
\text{CH}_2\text{Cl}_2 & \quad \text{78 °C}
\end{align*}
$$

Scheme 40 – Anomeric effect in the Prins cyclisation of trisubstituted olefins113
Another example, reported by Loh et al. outlines a novel synthesis of 3-oxaterpenoids achieved through a Prins-polyene cascade cyclisation (Scheme 41a). The reaction gives fused, multi-substituted THP products in good yields and excellent diastereoselectivities. In this reaction, the trans-geometry of the alkene 54 is conserved, leading to the trans-relationship between the 3-H and 4-Me in the product 55. The R1-group is oriented in a pseudo-equatorial position in the transition state, leading to the cis-relationship between 2-R and 3-H of 55. Comparing this to the Prins cyclisation of cyclobutenes, the same relative stereochemical outcome could be envisaged using a similar rationale (Scheme 41b).

![Scheme 41 – Stereochemical outcome of a Prins-polyene cascade and comparison to the cyclobutene system](image)

In a similar manner, it could be envisaged that cyclisation of 18b would also lead to a cis-relationship between 2-R1 and 3-H in the cyclised product 56. Intermolecular addition of a nucleophile would be expected to occur such that the cis-fused product 56 forms. Despite comparison to similar literature, the Prins cyclisation of cyclobutenes is sufficiently different that prediction of the stereochemical outcome of this reaction was still challenging. Prins reactions with influence from a cyclobutene ring have not been previously reported.

In the Prins-Ritter reactions of 16b (Scheme 29), it was found that in almost all cases, excellent diastereoselectivity was obtained. In the few examples where the selectivity was lower, the aldehydes used had small substituents that would not bias selectivity in the transition state to such a great extent. Coupling constants and NOE-NMR data for the protons at the C-4, 7 and 8-positions did not give a clear indication of the relative stereochemistry so X-ray crystal structures were obtained to confirm the structure of the isolated diastereomer. This was done through a modification of the original Prins–Ritter reaction to introduce an additional aromatic group and therefore increase crystallinity.
Reaction of 16b and benzaldehyde in benzonitrile rather than acetonitrile gave the benzamide heterocycle 57 as a crystalline solid in good yield (Scheme 42). The X-ray crystal structure of 57 showed the cis-anti-cis-stereochemistry around the cyclobutene, as well as the relative position of the phenyl group incorporated by the aldehyde and this was used to infer stereochemistry for the other cyclobutene Prins-Ritter products in the substrate scope. The relative stereochemistry obtained here matches that obtained in the Prins-polyene cascade example.

\[
\text{16b} \quad \xrightarrow{\text{Ph} \cdot \text{H} \ (1.2 \text{ eq.})} \quad \text{PhO} \quad \xrightarrow{\text{57 - 53\%}} \quad \text{57 - 53\%}
\]

Scheme 42 – Prins–Ritter reaction of cyclobutene 16b in benzonitrile and crystal structure of 57

X-ray structures of aza-Prins-Ritter product 38a and fluoride-Prins product 39e were also obtained, highlighting an interesting difference in the stereochemical outcome. Fluoride 39e showed the same stereochemistry as determined for 57, however the diastereomer formed in aza-Prins reactions 38a was found to have the opposite stereochemistry at C-9 (Scheme 43).

This change in stereochemistry can be attributed to the steric bulk of the N-tosyl protecting group and has been previously noted for aza-Prins cyclisations. In oxo-Prins reaction, the intermediate responsible for the final stereochemistry adopts a chair-like transition state with all pendent groups occupying equatorial positions if possible. Conversely for aza-Prins reaction, steric clash of the N-tosyl protecting group with neighbouring substituent forces this group into an axial position (Scheme 44).
2.3.7. Computational Modelling

DFT modelling was used to rationalise the diastereoselectivity in the Prins reactions. Selectivity at C-9 is well understood and has been discussed in Section 2.3.6, however the reaction creates products with good stereocontrol at all positions. The relative stereochemistry of C-4 and C-7 is set during the [2+2]-photocycloaddition reaction, where exclusively the cis-fused product is formed due to the small ring size. This leaves the C-3 and C-8 positions, which are controlled by the transition states of the Prins cyclisation, and computational efforts to determine the control over these stereocentres is described below.

Using DFT, discrete intermediates in the reaction pathway for the Prins cyclisation were optimised to their minimum on the potential energy surface (PES) (B3LYP/6-31+G(d), Gaussian09). Gas phase potential and free energies were considered for each intermediate and gas-phase potential energies relative to the oxocarbenium intermediate I are shown in Scheme 45 (Raw data can be found in Section 4.5.1).

It was clear from the calculations that the lowest energy conformation of the starting material (in the gas-phase) involves the oxocarbenium of I positioning itself on the opposite face of the cyclobutene to the maleimide, presumably to avoid unfavourable steric interactions.
Cyclisation of the alkene from this face would result in the observed relative stereochemistry at the C-8 position. Following this, the resulting carbocation intermediate with the observed C-8 stereochemistry was optimised using the same computational method. No minimum energy corresponding to the tertiary carbocation intermediate could be found, indicating that this could be a transition state structure. It also indicates that cyclisation and nucleophilic attack may be occurring in a more concerted fashion than expected. The intermediates II and III were optimised, resulting from attack of acetonitrile from either face of the molecule. Gas-phase potential energies for these structures were compared to the oxocarbenium ion showing that the intermediate with the observed stereochemistry at C-3 is ca. 14 kcal mol$^{-1}$ lower in energy than the unobserved diastereomer. The results obtained using gas-phase potential energies were then corroborated by the gas-phase free energies and by considering solvation (acetonitrile). All results indicated a preference for the observed stereochemistry. Attempts to locate transition states for the cyclisation pathway were unsuccessful.

2.4. Conclusions

Prins-Ritter reactions of cyclobutene alcohols with aldehydes produced substituted tricyclic scaffolds with excellent stereocontrol and only two modular steps. The products from this reaction are, in most cases, isolated as a single diastereomer, with five contiguous stereocentres (Scheme 46).

![Scheme 46 - Diastereoselective synthesis of tricyclic scaffolds from four simple building blocks](image)

The stereochemistry of the products was determined by NOE NMR analysis and X-ray crystallography. The diastereoselectivity of the reaction was excellent in most cases, and only aldehydes with small R2-groups gave a mixture of diastereomers. Products from the aza-Prins reaction were found exhibit different diastereoselectivity at C-9 due to the bulky nature of the amine protecting group.

Computational modelling of intermediates in the reaction pathway has provided insight and confirmation of the selectivity achieved in these reactions. Energy minimisations for intermediates in the pathway allowed the orientation for the cyclisation and nucleophilic addition steps of the mechanism to be rationalised, giving further understanding of the diastereoselectivity. Transition states for the reaction pathway were not investigated here.
Several variations of the reaction have also been successfully developed and include methods for the synthesis of cyclobutane-fused piperidine products 38a-g, and 4-fluoro substituted THPs 39a-g by varying the starting material and nucleophile components of the reaction respectively (Scheme 47). The scope of the reaction has been extensively and successfully explored for all variations by use of a wide range of aldehydes.

Optimisation of the reaction has involved the isolation and characterisation of side products, and methods for preventing the formation of these have been found. Dimeric product 27 was found to be a key by-product which upon column chromatography or similar mildly acidic conditions can degrade to give a 1:1 mixture of 23 and 24. Formation of the dimer was successfully found to be suppressed simply by a change in the order of addition.

<table>
<thead>
<tr>
<th>A - benzaldehyde / equiv.</th>
<th>B - triflic acid excess / equiv.</th>
<th>C - addition rate of 16b / equiv. min⁻¹</th>
<th>yield 22b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVAT</td>
<td>1.20</td>
<td>0.30</td>
<td>49</td>
</tr>
<tr>
<td>Design 1</td>
<td>1.20</td>
<td>0.10</td>
<td>76/73</td>
</tr>
<tr>
<td>Design 2</td>
<td>1.02</td>
<td>0.00</td>
<td>69/79</td>
</tr>
</tbody>
</table>

Following this discovery, Design of Experiments was successfully employed and allowed optimisation of the product yield from 49% to 79% relative to optimisation using an OVAT approach (Table 7). Changes in the conditions involved reduction in both the equivalents of benzaldehyde and triflic acid from 1.2 and 1.5 to 1.02 and 1.02 respectively. Addition rate of the starting material was found to have little effect on the yield of 22b. These statistical results
also gave insight into interactions present between factors, however these were not found to have a significant impact on the outcome of the reaction.

The success of this body of work led to its publication in *Angewandte Chemie – International Edition* in 2019 (See Appendix for full publication).114

2.5. Future Work

As the reaction of cyclic alkenes in Prins cyclisations has been underexplored, future work in this area should aim to extend the scope of the Prins cyclisation to include such substrates. This may lead to efficient methods for the synthesis of fused tetrahydropyrans, with novel substitution patterns. Influence of fused rings of differing sizes on the resulting stereochemical outcome would also be interesting to investigate (Scheme 48).

![Scheme 48 – Proposed extension of the Prins cyclisation for the synthesis of fused tetrahydropyran systems](image)

Reaction of 5-membered cyclic olefins for the formation of fused-THPs appears absent from the literature in much the same way as the 4-membered ring systems. Extension of this methodology to cyclopentanes could allow for the facile synthesis of highly substituted fused ring systems.

Cyclohexene Prins cyclisations have also been rarely reported, however a similar \(\pi\)-cyclisation of \(\alpha\)-methoxycarbonyl oxycarbenium ions was reported in 1994 by Lolkema *et al.* (Scheme 49)115 In these reactions it was demonstrated that such substrates could form oxycarbenium ions, analogous to intermediates commonly formed in Prins cyclisations, which undergo similar reactions to form THP systems. Reaction of cyclic olefins under these conditions led to the fused THP products 58 and 59 in moderate yields and selectivity. Interestingly it was also found that reaction of cyclic olefin 60 led instead to the 5-exo product 61 in good yield.
Application of this interesting result to the cyclobutene system could be easily achieved through reduction of the maleimide starting material. Unpublished work has shown that maleimides 62 can be regioselectively ring opened and reduced to give products of the type 63 (Scheme 50). Following this, reaction of the resulting cyclobutene alcohol 63 under Prins reaction conditions could lead to the 5-endo cyclisation as observed in similar literature examples.115 This could lead to THF-fused cyclobutanes 64 with novel substitution patterns.

Another rare example of cyclohexene Prins reactions appears in a substrate scope for a FeCl$_3$ catalysed synthesis of 4-OH tetrahydropyrans reported in 2012 (Scheme 51).116 In this example the use of cyclic olefins is not the sole focus of the research and as such, the stereochemical result obtained in this example is not extensively explored. The yield and diastereoselectivity for the reaction to form fused-THP 65 are both low.

The under-explored area of the Prins cyclisation of cyclic olefins warrants further research into the area. Future work could provide methods for the synthesis of novel fused heterocyclic...
structures of value in the synthesis of natural products as well as use in small molecule scaffolds for medicinal chemistry.

Further development of the alternative reactions outlined in sections 2.3.5.4 and 2.3.5.5 should also be undertaken. Reaction of alcohol 43 under acidic conditions resulted in unexpected and as yet unexplained formation of spirocycle 46. To elucidate the mechanism for its formation, deuterated aldehyde 44a and its transformation to deuterated spirocycle 46a could be investigated (Scheme 52). Extension of the cyclobutene Prins cyclisation methodology to include formation of oxepanes 48 was discussed in Section 2.3.5.5 and also requires further work. Optimisation of the reaction conditions has been carried out however there is still room for improvement and exploration of the substrate scope should be completed.

Scheme 52 – Proposed deuterium labelling study to investigate the mechanism for formation of spirocycle 46a

Although the reaction outlined in this chapter allows successful synthesis of tricyclic scaffolds, their use as scaffolds in medicinal chemistry is dependent on the ease with which derivatives can be synthesised. The reaction is modular, demonstrating the ability for multiple variants of the products to be synthesised by using different aldehydes, acids and nucleophiles. Conversely further reaction of the products obtained has been largely underexplored and additional work into the derivatisation of these interesting structures could be carried out. A few examples of future studies are outlined in Scheme 53 and include nucleophilic addition, global reduction, and acid hydrolysis which could lead to the previously observed ring opened product 24 or with a suitable R-group, may provide options for further cyclisations.

Scheme 53 – Opportunities for derivatisation of the tricyclic scaffolds
A future development of this chemistry could involve the elaboration into a flow process and the development of photochemical processes into flow systems has been extensively researched within the Booker-Milburn group. Both photochemical and Prins reaction steps can be carried out in acetonitrile, which could allow a solution of starting materials to be flowed through a photochemical reactor, followed by addition of acid or passing the reaction mixture over a solid supported acid catalyst to initiate cyclisation. This would allow transformation from three simple starting materials to a single diastereomer complex fused polyheterocycle in a single flow process (Scheme 54).

Scheme 54 – Development of the photochemical and Prins cyclisation steps into a tandem flow process
Chapter 3: Towards the Total Synthesis of Viburspiran
3. Towards the Total Synthesis of Viburspiran

3.1. Introduction to the Maleidrides

Maleidrides are a class of polyketide natural products consisting of medium sized carbocycles with one or more fused cyclic anhydride moieties. The first maleidrides were reported in 1931 by Wijkman, who characterised two compounds, glaucanic and glauconic acid, 66 and 67, that were isolated from Penicillium glaucum, and later the structural isomer byssochlamic acid 68 was isolated by Raistrick (Figure 16). These three maleidrides were biosynthesised from C9 precursors, leading to their naming as ‘nonadrides’. The term is now more widely used to describe maleidrides consisting of a nine-membered carbocyclic core such as scytalidin 69, deoxyscytalidin 70 and cornexistin 71, and analogous octadride (viburspiran 72 and zopfiellin 73) and heptadride (agnestadride A, 74) natural products have since been isolated.

![Figure 16 – Natural products in the maleidride family]

Viburspiran 72 and zopfiellin 73 are both octadrides with an eight-membered carbocyclic framework. Both contain two cyclic anhydride units, however viburspiran has an additional ethylene bridge from C-5 to C-8 giving each a quaternary centre and therefore a structurally interesting and challenging target for total synthesis.

The biosynthesis of maleidrides has been studied extensively and the use of isotopic labelling, gene knockouts and heterologous expression experiments has allowed the formulation of a universal pathway towards the maleidrides based on dimerisation of maleic anhydride monomers. Monomers 75, 76 and 77 are formed via an iterative highly reducing polyketide
Towards the Total Synthesis of Viburspiran - Introduction to the Maleidrides

The synthesis of viburspiran (PKS) followed by coupling of the PKS product with oxaloacetate by citrate synthase-like enzymes then subsequent dehydration (Scheme 55, 75), decarboxylation (Scheme 55, 76) and tautomerisation (Scheme 55, 77). Coupling of two of these monomers can then occur, with different dimerisation orientations leading to different general maleidride structures (Scheme 55).

In 2020, Willis et al. confirmed the absolute stereochemistry of both zopfiellin 73 and scytalidin 69 using X-ray crystallography along with evidence from the biosynthetic pathway. Synthesis of a p-nitrobenzoate derivative of 73 and Mosher’s ester derivatives allowed determination of its absolute stereochemistry. The discovery that the biosynthesis of both zopfiellin 73 and scytalidin 69 occurs through the common intermediate deoxyscytalidin 70 allowed the absolute stereochemistry of 69 and 70 to be inferred.

3.1.1. Viburspiran

Viburspiran 72 was isolated in 2011 from the fungal endophyte Cryptosporiopsis sp., and its structure and absolute stereochemistry determined by NMR analysis, X-ray crystallography and circular dichroism (CD) calculations. 72 exhibits antifungal activity against the fungi Microbotryum violaceum and Botrytis cinerea, however no antibacterial activity was observed against the strains tested.

Biosynthetic work carried out by C. Greco provided insight into the biosynthetic pathway responsible for the formation of viburspiran. Feeding studies with [13C]-labelled precursors showed that viburspiran is constructed from the tetraketide monomer 78 and a triketide monomer 79, which is thought to arise from a series of oxidations and rearrangements of 80.
Towards the Total Synthesis of Viburspiran - Introduction to the Maleidrides

(Scheme 56). A proposed head-to-head dimerisation of 78 and 79 forms hexadride 81. This is then oxidised to epoxide 82 which can undergo a Meinwald rearrangement\(^ {132} \) to give 83, the presence of which was confirmed by results from \(^ {13} \)C-labelling studies. Intramolecular aldol reaction forms 84 which can then undergo a series of alkene reductions, confirmed by isolation of 85, to give viburspiran 72. Although work has been carried out on its biosynthesis, to date there has been no published total synthesis of viburspiran.

Scheme 56 – Proposed biosynthetic pathway for the formation of viburspiran based on \(^ {13} \)C-labelling studies
3.1.2. Photochemistry in the Synthesis of (±)-Byssochlamic Acid

Total synthesis of maleidride natural products has been investigated in the past and the successful total syntheses of byssochlamic acid133–135 and cornexistin136,137 have both been completed. Work is ongoing in the Willis research group towards the total syntheses of zopfiellin130 and scytalidin.129

In 1992, White and co-workers reported a total synthesis of (±)-byssochlamic acid 68 using a key photochemical step (Scheme 57).133 Thereafter an enantioselective synthesis of 68 was described based on the same route.135

![Scheme 57 – Key photochemical step in the total synthesis of (±)-byssochlamic acid by White et al.133](image)

The key step in White’s synthesis involved a photoaddition-cycloreversion metathesis to form the nine-membered ring system, with pendent lactones that could be later converted to the necessary anhydrides. As well as the key photochemical step, a photochemical [2+2]-cycloaddition was used to synthesise the cyclobutene portion of the substrate 86. Intramolecular [2+2]-cycloaddition of 86 gave the 4-membered ring product 87 which, upon heating in toluene, underwent cycloreversion to give 88. Basic hydrolysis followed by oxidation also resulted in epimerisation of the propyl side chain to give solely the more stable and naturally occurring \textit{cis}-product, 68. White \textit{et al.} revisited the synthesis in 2000 and reported modifications to the route to allow the synthesis of both enantiomers of byssochlamic acid.135

This synthesis showcases the potential for photochemistry in the synthesis of medium ring systems in relatively few steps. The presence of maleic anhydrides in the maleidride natural products also makes them ideal candidates for total synthesis by photochemical routes, due to
the versatility of maleic anhydrides, maleimides and diacids/diesters as chromophores in photochemistry.131,135

3.1.3. Ring-Opening of Cyclobutanes and the de Mayo Reaction

[2+2]-Photocycloaddition is one of the most efficient methods for the synthesis of cyclobutanes, a structural feature found in many natural products.138 However cyclobutanes are not only useful for the synthesis of natural products; their inherent ring strain is a property that can be taken advantage of in the formation of larger sized rings through fragmentation. Tandem [2+2]-cycloaddition-fragmentation sequences allow the elegant construction of more complex ring structures. Fragmentation pathways include Grob fragmentation, radical fragmentations, formal metathesis and de Mayo reactions.7,9 In this report, the de Mayo reaction will be explored as a method for the synthesis of medium-sized ring natural products.

The de Mayo reaction is the combined reaction pathway involving [2+2]-photocycloaddition of an enone (or α,β-unsaturated carbonyl compound) with an alkene, followed by a retro-aldol reaction. It was reported in 1962 by de Mayo and co-workers after the observation of the production of 1,5-diketones from the irradiation of alkenes in the presence of acetylacetone.139

The de Mayo reaction requires the enol tautomer of the 1,3-dicarbonyl compound to act as the chromophore, allowing [2+2]-photocycloaddition with an alkene to occur (Scheme 58). The resulting β-acylcyclobutanol 89 can then spontaneously fragment through a retro-aldol pathway to give a 1,5-diketone 90. Poor regioselectivity is often obtained in the de Mayo reaction due to the need for the triplet 1,4-biradical to undergo spin inversion to a singlet biradical for the cyclobutane to form, although this can be more easily controlled in intramolecular systems.15,140

The de Mayo reaction has been used in numerous total syntheses, including (±)-daucene and (±)-longifolene (Scheme 59).141 Both syntheses involve an intramolecular [2+2]-photocycloaddition of a 1,3-diketone that has been protected as the enol tautomer to assist in photocyclisation. Irradiation allows cyclisation to the cyclobutane. In the synthesis of (±)-longifolene, photocycloaddition of 91 gave the cyclobutane product 92, then hydrogenation of the benzyl carbonate revealed the alcohol which underwent the retro-aldol step of the de Mayo reaction sequence to form the ring expanded product 93.142 For (±)-daucene, irradiation of the key intermediate 94 resulted in regioselective photocyclisation to 95, followed by alkaline
Towards the Total Synthesis of Viburspiran - Introduction to the Maleidrides

hydrolysis of the acetate to initiate a retro-aldol reaction to the seven-membered ring 96.143 These examples highlight the potential for de Mayo reaction sequences as powerful tools in the synthesis of medium-sized ring-containing natural products.

Scheme 59 – Use of the de Mayo reaction in the total synthesis of (±)-longifolene142 and (±)-daucene143

Recent developments of the de Mayo reaction have included a visible light mediated process between 1,3-diketones and α or β-substituted styrenes using a visible light photosensitiser. Seven-membered rings were also shown to be successfully synthesised using this methodology.144 In another recent publication, medium sized carbocycles have been synthesised through an intramolecular de Mayo reaction with alkyne tethers (Scheme 60). The scope of the reaction is broad in terms of chain lengths and heteroatoms, giving access to a range of substituted medium ring structures.145

Scheme 60 – Recently reported alkyne de Mayo reaction to give substituted medium-sized carbocycles145

Although the de Mayo reaction has been repeatedly applied to 1,3-diketones, extension to β-keto esters has not been as successful since β-keto esters are reluctant partners in [2+2]-photocycloadditions because of the ease of their tautomerisation.146,147 Baldwin reported a solution to this problem in 1980; a variation employing the dioxenones of the β-keto esters, such as 97, covalently locking the 1,3-dicarbonyl in the enol form (Scheme 61a).148 This chemistry has been extended by Winkler, who has investigated the intermolecular use of this chemistry on substrates such as 98 to synthesise medium sized rings 99,149,150 as well as the stereochemical implications of using dioxenones in [2+2]-photocycloaddition (Scheme 61b).151-
The methodology has also been applied to several total syntheses154,155 and used to develop methods for asymmetric [2+2]-photocycloaditions.156

\textit{a) Baldwin (1980):}

\begin{align*}
\text{hv, hexane} & \quad \text{24 h} & \rightarrow & \quad \text{97} \\
\text{DIBAL-H} & \quad \text{hexane} & \quad -60 \text{ } ^\circ \text{C, 1 h} & \rightarrow & \quad \text{90\%} \\
& & & \rightarrow & \quad \text{98} \\
\text{5\% pTSA} & \quad \text{benzene} & \quad \Delta, 2-3 \text{ h} & \rightarrow & \quad \text{76\%}
\end{align*}

\textit{b) Winkler (1989):}

\begin{align*}
\text{hv} & \quad \text{10\% acetone/acetonitrile} & \rightarrow & \quad \text{98} \\
\text{10\% pTSA} & \quad \text{MeOH} & \rightarrow & \quad \text{99}
\end{align*}

Scheme 61 – Developments in the photochemistry of dioxenones by Baldwin148 and Winkler150,153

3.2. Aims

The broad aim of this project was to utilise photochemical methods in the synthesis of medium-sized ring natural products, namely maleidrides. Ring expansion through a de Mayo reaction was seen to be an ideal route towards the core structure of these natural products. Anhydride functionality around the ring also complements the unsaturated carbonyl functionality necessary for photochemical reactivity.

Viburspiran was chosen as a target due to its interesting, bridged ring system and 8-membered ring core. It was proposed that the core structure could be synthesised through an intramolecular de Mayo cyclisation (Scheme 62).

\begin{align*}
\text{hv} & \quad \rightarrow & \quad \text{100} \\
\text{10\% pTSA} & \quad \rightarrow & \quad \text{101} \\
\text{MeOH} & \quad \rightarrow & \quad \text{102}
\end{align*}

Scheme 62 – Retrosynthetic plan for the synthesis of the viburspiran core

Irradiation of protected β-keto ester with the general structure 100 should give the [2+2]-photoaddition product 101, which could, upon deprotection, spontaneously ring open in a de Mayo reaction to give the core structure 102 of viburspiran. This would leave two esters in place to later form anhydrides, along with a ketone which could be used to introduce the
methyl and alcohol groups. Initial investigations involved the synthesis of a model substrate to prove the viability of the proposed key step.

3.3. Results and Discussion

3.3.1. Synthesis of the Model Substrate 103

Investigations into the total synthesis of viburspiran began with the formation of a model substrate that could be used to test the suitability of the key intramolecular photochemical step. Ester 103 was identified as a suitable target, with a TBS-enol ether acting as the chromophore and a butenyl tether to form the bridge (Scheme 63). Synthesis of 103 was achieved in three steps from commercially available starting materials. Michael–Michael–Dieckmann cyclisation of methyl acetate with methyl acrylate following a literature procedure gave diester 104a. The yield for this step was initially lower than quoted in the literature but was later found to be more successful using ethyl acetate and ethyl acrylate to give 104b. Silyl protection of the β-ketoester gave 105, and was followed by alkylation to give the target substrate 103.

Scheme 63 – Synthesis of a model substrate for intramolecular photocycloaddition

UV-Vis analysis of the model substrate 103 confirmed that the absorption was in an appropriate region for photochemical excitation (Figure 17). However irradiation of 103 in acetonitrile with a 125 W medium pressure Hg lamp returned only starting material. The reaction was repeated with the thioxanthone photosensitiser ITX but again, only starting material was obtained. It was thought this could be due to the bulky nature of the TBS protecting group blocking access to the enol alkene. It has also been noted previously in the literature that β-ketoesters are notoriously poor partners in [2+2]-photocycloaddition reactions, even when protected as the silyl enol ethers or enol acetates.
Based on this result, several alternative chromophores were considered for use in the key-step of the synthesis. In 1980, Baldwin demonstrated that dioxenones can act as surrogates for β-ketoesters in de Mayo reactions, requiring a simple acidic or basic hydrolysis to undergo the ring-opening step. Alternatively, the Booker-Milburn group has extensive experience of the use of maleimides and maleic anhydrides in [2+2]-photocycloadditions. Both approaches were investigated as potential solutions for the key-step in this total synthesis.

3.3.1.1. Maleimides as Chromophores in [2+2]-Photocycloadditions

Due to the succinic anhydride units present in viburspiran, it was envisaged that a maleimide or maleic anhydride could be used as a chromophore in a [2+2]-photocycloaddition and incorporate the functionality into the final structure. Maleimide has been found to be a more effective chromophore than maleic anhydride in photochemical reactions and protected maleimides can be easily converted to anhydrides at a later stage in the synthesis.

It was envisaged that [2+2]-photocycloaddition of N-methylmaleimide with β-ketoester 106 may form the cyclobutane intermediate 107, which upon fragmentation would give the ring expanded eight-membered ring with a fused maleimide unit, 108 (A - Scheme 64). Although 106 did undergo the desired photocycloaddition to 107, an unexpected fragmentation occurred instead (much like the fragmentation observed as a side product of the Prins cyclisation – Section 2.3.3) to give 109 (B - Scheme 64). The second observation of this fragmentation demonstrates the ease with which cyclobutane fused maleimides can fragment in this way.
In order to suppress this fragmentation, the carbonyls of the maleimide would need to be removed, however this would also remove the key functionality of the maleimide to act as a chromophore. One possibility would be to replace the maleimide with 2-furanone, which could lead to the two regioisomeric products 110 and 111 (Scheme 65). Literature precedent for the regioselectivity of [2+2]-photocycloadditions suggests that the head-to-head product 111 would be formed preferentially as electron-withdrawing groups usually lead to head-to-head products, (Section 1.4.1).20 Fragmentation of 111 would lead to the desired eight-membered ring. Unfortunately upon irradiation of 106 with 2-furanone, no reaction was observed.

Dioxenones as Chromophores in [2+2]-Photocycloadditions

To test the suitability of the dioxenone methodology, an intermolecular model reaction was first carried out. Although this lacks the ethylene bridge in the natural product viburspiran, it was a valuable proof of concept before carrying out further intramolecular substrate synthesis. Dioxenone 112 was synthesised based on a literature procedure from β-ketoester 106 and then irradiated in the presence of cyclohexene in 10% acetone/acetonitrile (acetone acts as a photosensitiser)(Scheme 66).149,166 This gave the [2+2]-product 113 in 82% yield and 2D-NMR, HRMS and X-ray crystallography were used to confirm the structure of the product. 113 was then subjected to the ring-opening conditions to give the cyclooctane product 114 in 78% yield.
With the success of the intermolecular reaction of dioxenone 112 and cyclohexene, efforts turned towards synthesis of an analogous intramolecular system, with the hope of using this method to synthesise the carbocyclic core of viburspiran.

3.3.2. Intramolecular Dioxenone Substitution Patterns

In 1989 Winkler *et al.* explored the effect of the substitution-position of dioxenones (or dioxenone transposition) on the stereochemical outcome of [2+2]-cyclisation in intramolecular dioxenone reactions (Scheme 67).

Two dioxenones 115 and 116 were subjected to UV-light and both cyclised to give the straight cycloaddition products, as would be predicted based on the relative rate of formation of possible ring sizes. Their relative stereochemistry differed however, with 115 and 116 forming the *trans*- and *cis*-photoadducts respectively. Deuterium labelling was used to explain this difference, 117 was isolated as a 1:1 mixture of epimers, whereas 118 was a single diastereomer at the C-5’ position. This indicates that upon excitation, formation of a bond with C-5 of the dioxenone occurs first, allowing conformation relaxation of the resulting biradical prior to intersystem crossing. For 117 this allows epimerisation at the C-5’ position and explains formation of a 1:1 mixture of diastereomers, and for 118 this allows formation of the more stable *cis*-photoadduct.
To form the core structure of viburspiran, a similar intramolecular dioxenone approach was proposed, using a tether one methylene unit shorter than the substrates investigated by Winkler. Various substitutions 119a-d were considered and predictions on their suitability made based on the previous literature and the rate of formation for the intermediate biradical species (Scheme 68). As the rate of formation of a cyclopentylmethyl biradical is around 75 times faster than that for the cyclohexyl biradical, 5-membered rings are often preferentially formed, a rule often referred to as the ‘rule-of-five’. The rule is a useful predictive tool, and in this case would predict that, given 119a and 119d are able to form 5- or 6-membered rings through straight or crossed cycloadditions, the 5-membered ring would predominate and they would therefore not form the required carbocycle. For 119b and 119c, the cycloaddition would proceed to form either 6- or 7-membered rings, in which case formation of the 6-membered ring would be kinetically favourable. Therefore, substitution at C-4 or C-5 may mean that 119c and 119b respectively are more suitable for the synthesis of the desired carbocyclic core.
To investigate the selectivity of the variously substituted dioxenones 119a-d, these model substrates were synthesised. Routes to the four intramolecular substrates 119a-d were based on the original method published by Winkler,150 as well as using well known Michael-addition chemistry.

3.3.2.1. Synthesis of 6-butenyldioxenone 119a

Synthesis of 6-butenyldioxenone 119a proceeded through dianion alkylation of 106 to give 120 in 70% yield, followed by dioxenone formation (Scheme 69).149 Several methods for the synthesis of dioxenones from β-ketoesters have been reported by Sato and Winkler.167,168 The method described by Sato involves the basic hydrolysis of the β-keto ester, followed by reaction with acetone in the presence of acetic anhydride and catalytic sulfuric acid. Although this method was successful in the synthesis of 119a, the yield was only 16% over the two steps, possibly due to the instability of the intermediate β-ketoacid which is prone to decarboxylation (Scheme 69).

![Scheme 69 – Synthesis of 6-butenyldioxenone 119a.](image)

(a) i) NaOH, THF ii) H$_2$SO$_4$, Ac$_2$O, acetone (16% over 2 steps) (b) i) PMBOH, pTSA, toluene, Δ (73%) ii) TFA, TFAA, Ac$_2$O, acetone (40%)

A more commonly used method involves using a t-butyl or p-methoxybenzyl β-ketoester as a precursor to dioxenones.151,152,154,168,169 These can be reacted with acetone in the presence of an excess of trifluoroacetic acid and trifluoroacetic anhydride to form the desired dioxenone in high yields. In this case, transesterification proceeded smoothly in a 73% yield, however in the formation of 119a from 120, only a 40% yield was achieved (literature reactions using the same conditions have been achieved in 80% yield151). Along with this low yield, the product was found to be inseparable from other p-methoxybenzyl related side products. Neither of the methods here resulted in formation of 119a with a comparable yield to the literature and further work could be carried out to optimise this transformation by investigating both the reaction conditions and product purification procedures.
3.3.2.2. Synthesis of 5-butenyldioxenone 119b

Synthesis of the 5-butenyldioxenone 119b was carried out through conjugate addition of 3-butenylmagnesium bromide with cyclohexenone giving 121 (Scheme 70). Deprotonation of 121 followed by reaction with dimethyl carbonate gave exclusively ester 122 substituted at the least-hindered position, as has been previously observed with similar reactions. Pleasingly, optimisation of the reaction conditions allowed for high yields (99% and 84%) to be achieved for both of these steps. In a similar manner to the previous dioexones, 119b was synthesised by transesterification with p-methoxybenzyl alcohol followed by acid-mediated formation of the dioxenone to give the 5-butenyldioxenone 119b.

Scheme 70 – Synthesis of 4-butenyldioxenone 119b

3.3.2.3. Synthesis of 4-butenyldioxenone 119c

The first method investigated for the synthesis of 119c was through Grignard addition to a mono-protected 1,4-cyclohexanedione, followed by methoxycarbonylation with dimethyl carbonate (Scheme 71). It was then envisaged that Barton radical deoxygenation could be used to remove the tertiary alcohol if necessary. Although Grignard addition gave alcohol 123, the yield (15%) was low and attempts at methoxycarbonylation were unsuccessful, presumably due to the presence of the tertiary alcohol. Therefore, an alternative method for the synthesis of 119c was devised.

Scheme 71 – Attempted synthesis of 119c
The new approach involved alkylation of enol ether 124 to give 125, which could be subsequently reduced to give enone 126 (Scheme 72). This Stork-Danheiser enone transposition has been previously reported as a method for the synthesis of functionalised cyclohexenones.172 Despite several attempts at this reaction, alkylation to form 125 was unsuccessful and only unreacted starting material was returned.

![Scheme 72 – Alkylation followed by Stork-Danheiser enone transposition to give enone 126](image)

A final alternative route to 119c (Scheme 73) was devised involving a cyclisation reaction similar to that used in the synthesis of initial model substrate 103 (Scheme 63). Ethyl acetoacetate was alkylated to give the substituted β-ketoester 127, which then underwent further alkylation with ethyl acrylate and spontaneous cyclisation to give 128. It was also found that this sequence could be carried out in one-pot without a detrimental impact on the yield. 128 bears an ester in the 4-position which needed to be removed. A direct Krapcho decarboxylation of 128 gave no reaction, however decarboxylation was successful when carried out after formation of the ethyl enol ether and gave 125 in 25\% yield over the two steps.

![Scheme 73 – Current route towards 4-substituted dioxenone 119c](image)
Enone transposition of 125 with lithium aluminium hydride gave 126 in 79% yield, which was then reduced with L-selectride® to give ketone 129. Ketone 129 was found to be slightly volatile and was carried through to the subsequent step immediately. Unfortunately, the attempted carbonylation was unsuccessful and, due to time constraints, the synthesis of 119c was not completed.

3.3.2.4. Synthesis of 3-butenyldioxenone 119d

Synthesis of 3-butenyldioxenone 119d was achieved through conjugate addition of a butenylorganocuprate, followed by addition of methyl chloroformate. Although successful in the formation of the β-ketoester 132 (Table 8), the yield for this reaction was poor (14%) so alternative conditions were investigated.

Table 8 – Optimisation of the synthesis of 132

<table>
<thead>
<tr>
<th>entry</th>
<th>X</th>
<th>R</th>
<th>yield of 132a/b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl</td>
<td>Me</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>OMe</td>
<td>Me</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>im</td>
<td>Me</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>CN</td>
<td>Et</td>
<td>69</td>
</tr>
</tbody>
</table>

As alternatives to the chloroformate, dimethyl carbonate, N-(carbomethoxy)-imidazole (Heller-Sarpong reagent, Entry 3, Table 8) and methyl cyanoformate (Manders’ reagent) were investigated (Table 8). Dimethylcarbonate returned only starting material. The Heller-Sarpong reagent was originally developed for the mild esterification of carboxylic acids but has also been shown by Herzon et al. to be successful in a similar conjugate addition – acylation reaction. It was used in this case to give the β-keto ester 132a in 45% yield, however it was not as successful as the cyanoformate which gave the ester 132b in 69% yield. As the reaction was being carried out on a small-scale, formation of cyanide was not a problem, however if this reaction were to be later incorporated into a larger scale synthesis, the Heller-Sarpong reagent has the advantage of avoiding the production of cyanide waste, as well as being a cheaper alternative.
Once the synthesis of 133 had been achieved, the final steps to form the dioxenone were carried out (Scheme 74). Transesterification with \(p \)-methoxybenzyl alcohol gave 134 which was directly converted to dioxenone 119d with TFA, TFAA, \(\text{Ac}_2\text{O} \) and acetone in 37\% yield over two steps. As previously observed, a small amount of \(p \)-methoxybenzyl containing side product was present in the final product.

3.3.3. [2+2]-Cycloaddition to form the Carbocyclic Structure of Viburspiran

With 119a, 119b and 119d successfully synthesised, the [2+2]-photocycloaddition and ring opening reactions were carried out (Scheme 75). Each substrate was subjected to UV-light from a medium pressure mercury lamp. Pleasingly 119a and 119b both underwent cycloaddition reactions to give 135 and 136 respectively. As previously predicted, irradiation of 119a gave the 5-membered product as is often favoured in radical reactions. The structure of 135 was confirmed by ADEQUATE-NMR which provides correlations of carbon and proton chemical shifts through successive \(J_{\text{CH}} \) and \(J_{\text{CC}} \) couplings. In this example correlations between C-1 and H-3 and between C-2 and H-4 (Figure 18) provided confirmation that the 5-membered ring product had been formed. 135 was unexpectedly isolated as the free carboxylic acid rather than the protected product which could have been a result of impurities present in the starting material due to the challenging purification of precursors. Under both acidic or basic hydrolysis conditions, no conversion to the ring-opened product 137 was observed.
Scheme 75 – Cycloaddition and fragmentation reactions of the model substrates 119a, 119b and 119d

119b gave the cyclised product 136 when subjected to the same photochemical conditions, in this case with the dioxenone still intact. The structure of 136 was again confirmed by ADEQUATE-NMR showing correlations between C-1 and H-3 and between C-2 and H-4 (Figure 19). Under basic conditions 136 was hydrolysed and spontaneously ring opened to give 138, matching the core carbocyclic structure of viburspiran.

Unfortunately, when 119d was subjected to the photochemical conditions, no cycloaddition product 139 was observed and only starting material was returned. The reason for this was unclear but suggested substitution at the 6-position as unsuitable for the synthesis of the viburspiran core.

These investigations revealed that the substitution pattern in 119b was suitable for the synthesis of the core viburspiran scaffold. Despite the difficulties in synthesis of model substrate 119c, the possibility of using this substitution pattern in a total synthesis of viburspiran was not ruled out, as along with 119b, it is predicted to give the correct core structure on reaction under photochemical conditions.
Figure 18 - ADEQUATE-NMR of 135 to confirm regiochemistry, showing correlations between H-3 and C-1 & C-4 and between H-4 and C-2 & C-3.
Figure 19 - ADEQUATE-NMR of 136 to confirm regiochemistry, showing correlations between H-3 and C-2 & C-1, and between H-3 and C-1.
3.3.4. First Generation Synthetic Route

Having demonstrated that the core structure of viburspiran can be synthesised using the [2+2]-photocycloaddition reaction of dioxenones such as 119b or 119c, a synthetic route to viburspiran 72 was proposed (Scheme 76). Based on literature procedures, a route with substitution at the 4-position (119c) of the dioxenone appeared to provide a wider range of synthetic options than substitution at the 3-position (119b). The resulting bicyclo[4.2.2]decane structure provides functional groups in positions that allow for easier late-stage functionalisation to viburspiran.

Scheme 76 – First generation synthesis plan for viburspiran using key dioxenone intermediate 140
The key target in the synthesis was identified as 140, in which the 4-butenyldioxenone would also be functionalised with necessary groups to form the anhydrides at a later stage. The decision was made to use benzyl ethers, which could later be removed by hydrogenation, then oxidation and ring closure would give the anhydrides. Benzyl ethers are widely compatible with a range of reaction conditions, including photochemistry, allowing the greatest flexibility throughout the route.

The synthetic route towards 140 was designed such that the majority of required substituents were installed prior to the photochemical step, after which their incorporation would become more challenging (Scheme 76). Alkylation of ethyl acetoacetate with alkylating agent 141 to give 142 would provide a protected alcohol for later conversion to an anhydride as well as the required alkene for photochemistry. Subsequent cyclisation with 143, using a similar method to that demonstrated in synthesis of model substrates (Scheme 73), would give diketone 144. As has been previously shown, there is potential for these two reactions to be performed in a one-pot process. Transformation of the ketone to a protected enol or vinyl halide 145 would allow enone transposition to 146 to occur. Conditions for the enone transposition would be likely to also reduce the ester, however this could be easily protected as a third benzyl ether. Conjugate addition of the enone 146 followed by trapping of the electrophile with cyanoformate to give 147 and subsequent formation of the dioxenone would give the key intermediate 140 ready for photochemical cyclisation. Later steps in the synthesis included global deprotection and anhydride formation, and incorporation of the C-2 methyl and C-1 hydroxyl.

![Synthesis of unsaturated ester 143 and attempted cyclisation](image)

For the initial cyclisation reaction, ester 143 was prepared via reaction of ethyl but-2-ynoate with benzyl alcohol, triphenyl phosphine and acetic acid (Scheme 77). This reaction has been reported by Trost et al. and was developed as a method for the intramolecular formation of
tetrahydrofurans, however can also be applied to intermolecular reactions to give products such as 143. The mechanism involves a phosphine-catalysed internal redox process. As an initial model reaction, commercially available 4-bromobut-1-ene was used in place of substituted alkylation agent 141. Unfortunately, reaction of ethyl acetoacetate with 4-bromobut-1-ene followed by 143 resulted only in a complex mixture of products with no clear formation of the cyclised product 148 observed (Scheme 77).

As an alternative, the possibility of alkylation after cyclisation was investigated. A similar strategy featuring in the synthesis of (±)-dysidiolide by Demekke and Forsyth showed that the first two steps can be achieved using a crotyl ester 149 in place of 143 to give 150. They also report that 150 can then be protected as the vinyl chloride 151 and alkylated at the α-position to give 152, followed by transposition to the enone 153 which can then undergo conjugate addition to give 154.

Scheme 78 – Cyclisation and vinyl chloride formation to synthesise 157 following a literature procedure

(*literature yield 176)

Cyclisation of 143 with ethyl acetoacetate gave ester 155 in 70% yield which was subsequently converted to the vinyl chloride 156 (Scheme 78). The next step required alkylation of 156 at the α-position. Initial attempts at alkylation using commercially available alkylation agents such as 4-bromobut-1-ene were unsuccessful, and reaction with mesylates gave similar results. Alkylation of similar systems have been reported in the literature with methyl iodide. Reaction of 156 with methyl iodide in the presence of DMPU gave a 46% yield of the methylated product 157 however a higher yielding alkylation method was required.

One potential solution was to instead employ a Michael addition with a vinyl ketone 158 to give ketone 159, a proposed methylenation of the ketone would then give the desired alkene...
tether. Initially this reaction was attempted with methylvinylketone 158 to give ketone 159 in 28% yield. Interestingly, as well as the desired product 159, the cyclised product 160 was also isolated. It was proposed that following the desired Michael addition, deprotonation at C-4 and attack on the side-chain carbonyl would give 160. 160 was found to have the alternative relative stereochemistry to 159, implying that both C-2 diastereomers form during Michael addition, and one of these can react further to give alcohol 160. Despite poor stereocontrol in the Michael addition, formation of alcohol 160 enabled easy separation of the two products.

![Scheme 79 - Michael addition of 156 to 158 or 161](image)

Benzyoxygenyl ketone 161 was synthesised in two steps through Weinreb amide 162 following a literature procedure (Scheme 80). 177 Reaction of vinyl chloride 156 with 161 in the presence of triethylamine (Scheme 79) unfortunately gave only the cyclised product 163 with no formation of the desired product 164.

![Scheme 80 - Synthesis of 161 via Weinreb amide 162](image)

This implies that alkylation of 156 from the top face is preferred, and that use of a bulkier electrophile exacerbates this effect. As can be more easily seen from Scheme 81, alkylation is most likely to proceed from the opposite face to the R-group at the 3-position in order to minimise steric repulsion. This effect was not observed in the alkylation with 158 and seemingly both diastereomers were formed in equal quantities. With a larger R’-group this effect affords complete selectivity for the diastereomer which in this case undergoes a further cyclisation to give 163. Due to formation of this undesired side product and the low yields obtained, Michael addition as an alkylation method was ruled out.
Next, the possibility of protecting enol 155 with an alternative group was investigated. Reaction of enol 155 was reacted with iso-propanol in the presence of catalytic pTSA gave enol ether 165 (Table 9). Use of ethanol was found to give a 3:1 mixture of regioisomers, whilst iso-propanol gave a single product.

Table 9 - Protection of 155 as enol ether 165 and alkylation attempts

<table>
<thead>
<tr>
<th>base</th>
<th>R-X</th>
<th>solvent</th>
<th>additive</th>
<th>temp / °C</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH (1.5 equiv.)</td>
<td>allyl bromide (1.5 equiv.)</td>
<td>THF</td>
<td>-</td>
<td>rt</td>
<td>72% (d.r. >20:1)</td>
</tr>
<tr>
<td>NaH (10 equiv.)</td>
<td>bromobutene (10 equiv.)</td>
<td>THF</td>
<td>-</td>
<td>66</td>
<td>14% (d.r. 5:1)</td>
</tr>
<tr>
<td>NaH (1.5 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>DMF</td>
<td>-</td>
<td>rt</td>
<td>NR</td>
</tr>
<tr>
<td>NaH (1.5 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>THF</td>
<td>NaI (1.5 equiv.)</td>
<td>rt</td>
<td>NR</td>
</tr>
<tr>
<td>NaH (1.5 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>THF</td>
<td>TBAI (1.5 equiv.)</td>
<td>rt</td>
<td>NR</td>
</tr>
<tr>
<td>K₂CO₃ (2.0 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>DMF</td>
<td>NaI (1.5 equiv.)</td>
<td>rt</td>
<td>NR</td>
</tr>
<tr>
<td>NaOEt (1.5 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>EtOH</td>
<td>-</td>
<td>78</td>
<td>NR</td>
</tr>
<tr>
<td>NaH (1.5 equiv.)</td>
<td>bromobutene (1.5 equiv.)</td>
<td>DMF</td>
<td>-</td>
<td>153</td>
<td>48% (d.r. >20:1)</td>
</tr>
</tbody>
</table>

Alkylation of 165 was first attempted with allylbromide to confirm that alkylation could proceed successfully, and this indeed showed that the alkylated product 166 was formed in 72% yield with a high level of stereocontrol. This reaction was then repeated with 4-bromobut-1-ene, however it was found that 10 equivalents of both base and alkylating agent along with higher temperatures were necessary before any reaction was observed. Even with these forcing reaction conditions, only 14% of the desired product 167 was isolated with an accompanying decrease in diastereoselectivity. A range of other conditions were investigated, including different solvents, bases, and additives, however in most cases no reaction was observed. Sodium hydride
Towards the Total Synthesis of Viburspiran - Results and Discussion

and 4-bromobut-1-ene in DMF at reflux eventually gave a 48% yield of ester 167 as the only observed product and these conditions were used in further syntheses. The relative stereochemistry of the alkylation product 167 could not be confirmed by 1H-NMR spectroscopy but was assumed to match the selectivity previously observed in similar reactions (Scheme 81). Reaction from the opposite face to the benzyl ether group would result in the stereochemistry of 167 depicted in Table 9.

Although the conditions were successful with 4-bromo-but-1-ene, the target substrate requires additional functionality in the form of an ester or protected alcohol that could be later oxidised. Synthesis of such an alkylation agent, 141, proved challenging and it was decided to investigate this concurrently with continuation of the synthetic route with 167. This would allow the next steps to be investigated with the goal of testing the viability of the key photochemical step and, if successful, could also lead to an interesting decarboxy-viburspiran analogue. Synthesis of a suitable alkylation agent 141 is described in further detail in Section 3.3.5.

With 167 in hand, the next step of the synthesis was reduction of the enol ether to give enone 168. First, lithium aluminium hydride was used but led to a complex mixture of products including the expected product 168, aldehyde 169 and over-reduced product 170 (Scheme 82). Reduction in the number of equivalents of hydride used was found to have little effect on the selectivity of the reaction. NOE NMR analysis of the enone 168 confirmed that the relative stereochemistry matched the prediction. Although this relative stereochemistry is not that needed for the natural product, it was hoped that upon final oxidation, the stereocentre at C-5 may be epimerised before ring closure, giving the required stereochemistry. Methods to correct this relative stereochemistry were explored later and are discussed in Section 3.3.6.1.

![Scheme 82](image)

Scheme 82 – Enone transposition to form a mixture of reduction products 168-171

Closer inspection of the literature revealed that sodium borohydride has also been successful in analogous transposition reactions. Some involve the use of cerium chloride in a reaction similar to the Luche reduction. These conditions were used for the reduction of 167 to 171
Towards the Total Synthesis of Viburspiran - Results and Discussion

(Scheme 82), and although the yield for this reaction was low (36%), unlike the previous example using LiAlH₄, selectivity was much improved, and no reduction of the ester was observed. The only by-product observed when using cerium chloride was a small amount of decarboxylated product which could be easily removed, and its formation was suppressed at lower temperature.

Conjugate addition to enone 171 with pentyilmagnesium bromide and a copper halide, followed by addition of a cyanoformate to introduce the α-ester was then carried out (Scheme 83). Copper iodide gave only formation of the 1,2-addition product 172, however CuBr·SMe₂ gave the desired product 173 in 20% yield but good diastereoselectivity. From the ¹H-NMR and NOE-NMR data, it was unclear which diastereomer of 173 had been isolated from the conjugate addition reaction. Ley et al. had previously shown that conjugate addition of similar 4,4,5-trisubstituted cyclohexenones with the same relative stereochemistry undergo attack from the top-face to give the diastereomer shown in Scheme 83. The same selectivity has been reported for conjugate additions with esters at the 4-position in numerous total syntheses and so the relative stereochemistry of 173 has been inferred from the literature.

Dioxenone formation was carried out in a similar manner to that used for the model substrates, involving transesterification to the PMB ester, followed by reaction with acetone under acidic conditions (Scheme 84). Dioxenone 174 was isolated in 15% yield over the two steps. The low yields were as mainly attributed to a large amount of PMB-side product as had
been observed when this reaction was previously carried out. Interestingly, the benzyl group was removed during the reaction and had been replaced by an acetate. The small amount of 174 successfully synthesised was subjected to photochemical conditions however unfortunately, upon irradiation, no conversion to 175 was observed.

To investigate this unexpected result, DFT calculations (Gaussian 09, DFT: B3LYP,6-31G) were carried out to determine the conformation of the dioxenone 174. A simplified version of the dioxenone 176 was used in order to minimise the degrees of rotational freedom and therefore make the calculations less computationally time-consuming. Both ring flip conformations 176_{ax} and 176_{eq} were considered and named based on the position of the 4-methyl group which corresponds to the reactive alkene in the photochemical reaction of 174. It was hypothesised that the orientation of this alkene group is crucial in the success of [2+2]-cyclisation with the dioxenone.

![Scheme 85 - Energies for ring-flip conformations 176_{ax} and 176_{eq} and the TS energy (DFT: B3LYP,6-31G)](image)

Energy minimisation of 176_{ax} and 176_{eq} showed that 176_{eq} was around 7.9 kJ mol\(^{-1}\) lower in energy than 176_{ax}, which could be as a result of the slightly smaller ester group preferentially occupying an axial conformation. A transition state for the ring-flip was located and found to be around 40 kJ mol\(^{-1}\) higher in energy than the 176_{eq} conformation (Scheme 85). Therefore, the equilibrium between the two conformers will be in favour of the more stable conformer 176_{eq}. Extrapolating these results to the synthesised substrate 174 could explain why the photochemical reaction was unsuccessful. If the same conformation is thermodynamically dominant for 174 as was calculated for 176, this would mean the alkenyl chain is predominantly in an equatorial position. In this conformation the alkene is unable to come within bond-forming distance of the dioxenone in the way required for successful [2+2]-cyclisation. Conversely, the axial conformer would allow the alkene to come into close proximity with the dioxenone,
however it may not be thermally accessible in this system. There are some limitations to this argument; the calculations were carried out with a simplified model substrate which may affect results. It would be assumed however that bulkier substituents around the ring would have the effect of increasing the TS energy for ring flip and therefore make this effect even more profound. Another limiting factor is the effect of photochemical excitation on the substrate. In the [2+2]-photocyclisation, the biradical that forms could display a different conformational preference and so computational studies could be repeated on the biradical intermediate rather than 176 to give more accurate results.

Scheme 86 – Possible conformers of dioxenone 174 and their ability to undergo [2+2]-cyclisation

3.3.5. Synthesis of a Suitable Alkylating Agent

Previous alkylations in this route have used commercially available alkylating agents such as 4-bromobut-1-ene, which allows incorporation of the ethylene bridge into the carbocyclic structure of viburspiran by [2+2]-photocycloaddition. Ideally the alkylating agent would also include an R-group suitable for transformation to an anhydride later in the synthesis (Scheme 87). Along with this, the alkylating agent needs a suitable leaving group, along with the alkene required for cycloaddition.

Scheme 87 – Structural requirements for a fully functionalised alkylating agent with the general structure 141

Despite the simple structure, methods to synthesise such molecules are rare in the literature and synthesis of a suitable alkylating agent was more challenging than originally anticipated. The first attempt was of the synthesis of silyl ether 177 which incorporates the R-group as a dimethyl acetal protected aldehyde. Synthesis of iodide 178 has been previously reported and
uses an oxidation-methylenation strategy to incorporate the corresponding functional groups (Scheme 88a).187

Use of this methodology was hampered by the availability of reagents necessary to synthesise the ethoxyethyl acetal (EE) protecting group. The same methodology was instead carried out with the TBS-protected diol 179. Oxidation and subsequent methylenation gave aldehyde 180 in 32\% yield. Attempted protection of the aldehyde as the dimethyl acetal failed and led only to deprotection of the TBS-ether and some evidence of cyclisation products (Scheme 88b). Using an alternative approach, it was shown that THF could be ring opened under acidic conditions, either to give aldehyde 181 directly,188 or through formation of the alcohol followed by oxidation to 181.189 Methylenation of 181 to give 182 was unsuccessful and only resulted in degradation of the starting material (Scheme 88c).

\begin{equation}
\text{Scheme 88 – Synthesis of dimethyl acetal alkylating agent 178 or 183}
\end{equation}

Due to the issues with \(\alpha\)-methylenation of aldehydes prior to alkylation, it was proposed that methylenation could be carried out after alkylation. Hence, ester 165 was alkylated with commercially available bromide 184 (methyl 5-bromopentanoate was used for this test in place of methyl 4-bromobutanoate due to availability)(Scheme 89). Alkylation under these conditions proceeded smoothly and gave diester 185 in 56\% yield. Methylenation of 185 resulted only in degradation of the starting material and no formation of desired product 186.
A final strategy investigated for the synthesis of a suitable alkylating agent was to start from commercially available itaconic acid and its ester derivatives. Initially, monoethyl itaconate 187 was reduced using sodium borohydride to give 188, followed by methylation of the carboxylic acid and an Appel reaction to form iodide 189 (Scheme 90). Alkylation of 165, under the same conditions that have been previously successful were used, gave no formation of the desired alkylated product 190. Instead, a considerable amount of the cyclopropane product 191 was isolated, which results from Michael addition followed by cyclisation of the resulting enolate onto the alkyl iodide.\(^{190,192}\) was also isolated as a result of elimination and Diels-Alder reaction of 189.

Based on this result, both unsaturated esters and protected unsaturated aldehydes had now been ruled out as options for an easily accessible electrophile. One of the final options was to use a protected alcohol, which would require oxidation at a later stage in the synthesis. This was not deemed unreasonable, as other functionality would need the same modification at a late stage in order to form the anhydride units. A literature method for the synthesis of iodide 193 has been reported (Scheme 91).\(^{191,192}\) This approach was carried out on a small scale and similar results to the literature were achieved. DIBAL-H reduction of dimethyl itaconate 194
Towards the Total Synthesis of Viburspiran - Results and Discussion

gave diol 195 in 78% yield. TBS protection to give 196 was carried out with conditions that had previously been shown to be selective for allylic alcohols, however no major improvement in yield was observed (37% vs 43%). By-products from this reaction, namely the di-protected alcohol and the undesired regioisomer can be recycled by conversion back to the diol using TBAF. Appel reaction of 196 with iodine and PPh₃ gave iodide 193 in 91% yield. Alkylation and continuation of the route with 193 is discussed in Section 3.3.6. Although this route was successful in forming a suitable alkylating agent, concerns with the scale up of the DIBAL-H reduction meant that alternative methods of reduction were investigated.

\[
\begin{align*}
\text{MeO} & \quad \text{DIBAL-H} \quad \text{THF, -78 °C} \\
\text{194} & \quad \text{OH} \quad \text{195 - 78% (lit. 95%)} \\
\text{OTBS} & \quad \text{196 - 37% (lit. 43%)*} \\
& \quad \text{I₂, PPh₃, imidazole, CH₃CN/Et₂O 3:1} \\
\text{193 - 91% (lit. 96%)**} \\
\end{align*}
\]

Scheme 91 – Synthesis of iodide 193 from dimethyl itaconate
(*TBSCI, NaH, THF, 10 °C **I₂, PPh₃, imidazole, CH₃CN/Et₂O 3:1)

One method involves reduction of a mixed anhydride of itaconic acid, by reaction with ethyl chloroformate followed by addition of sodium borohydride. This reaction gave none of the required diol 195, so instead the reaction was repeated with monoethyl itaconate 187 (Scheme 92). This reaction was low-yielding (17%) and the product was isolated as a 1:0.6 mixture of 197 and the inseparable 1,4-reduction product. Despite this, the starting material is inexpensive (£1.75/g Fluorochem), and the reaction can be carried out safely on a large scale which makes it appealing as the initial step in the total synthesis. For these reasons, the mixture was carried through and pleasingly the subsequent protection (to give 198), reduction (to give 196) and Appel reactions all proceeded in excellent yields to give 193 which was also isolated as a 1:06 ratio of 193 to the saturated iodide 199. This by-product was found to be inseparable through all stages of this route and was present in the same ratio throughout. Theoretically 199 could be carried through the synthesis until the photochemical step where the resulting product would not undergo [2+2]-cyclisation and at this point, it was hoped, the products would become separable. Subsequent steps carried out on this mixture of 193 and 199 are detailed in Section 3.3.6.
Towards the Total Synthesis of Viburspiran - Results and Discussion

3.3.6. Second Generation Synthetic Route

As the key photochemical step with dioxenone 174 failed, the synthetic route was revisited in order to establish alternative options. It was realised that previously synthesised intermediate 167 on the pathway, may in fact be able to act as a chromophore in [2+2]-cycloadditions in a similar manner to the dioxenone. Enol ethers have been used successfully in similar intramolecular cycloaddition and de Mayo ring openings, for example in the synthesis of (±)-longifolene and (±)-daucene (Scheme 59).142,143

Irradiation of 167 under UV-light gave complete conversion to cyclobutane 200 (Scheme 93). It was also found that acetone was not necessary as a sensitiser for this reaction and the transformation could be carried out in acetonitrile. Treatment of 200 with 2% HCl (aq.) gave the ring opened product 201 in 96% yield. The cyclobutane 200 could also be ring opened in the presence of acetic anhydride to give 202 in a 40% yield. Synthesis of 201 provided confirmation that the proposed key step in the total synthesis was feasible and allowed synthesis of the core structure of viburspiran with functionality in place to install most of the remaining moieties.

Scheme 92 – Mixed anhydride method for the synthesis of 193 and formation of saturated by-product 199

(*Present as a 1:06 ratio of unsaturated to saturated products)

Scheme 93 – Photochemical irradiation of 167 to form 200 and retro-aldol reaction to give 201 or 202

87
The remainder of the proposed synthetic route to viburspiran was revisited and modified to take the success of this reaction into account (Scheme 94). Alkylation with the now synthesised alkylating agent 193 would give 203 which was expected to undergo photochemical [2+2]-cycloaddition and ring opening to give 204. From there, several modifications are necessary on both sides of the molecule. The presence of two ketones and three acidic positions was acknowledged and it was hoped the three-dimensionality of the molecule and other proximal substituents may help to bias reactivity. The order in which the subsequent modification steps could be carried out was flexible and so several options were explored.

On the left-hand-side (as drawn, Scheme 94), deprotonation at the α-position (C-7) and reaction with a chloro- or cyanoformate would allow incorporation of the remaining ester. Following this, formation of the enol triflate would then allow introduction of the pentyl chain at C-6 through a conjugate addition, and subsequent conjugate reduction of the alkene would give 205. Based on three-dimensional models of the precursor to 205, the top face appears less sterically hindered and so conjugate reduction is predicted to occur to give the desired diastereomer.

Scheme 94 – Revised plan for the synthesis of viburspiran based on photochemical cyclisation of 167
On the right-hand-side, addition of either methyllithium or methylmagnesium bromide would form the tertiary alcohol, which could then be eliminated to give the endocyclic olefin 206, followed by a series of transformations to the anhydride rings in 207. A mixture of regioisomers of 206 could form during the elimination step, however if successful, this should allow for a simple hydroboration-oxidation to incorporate the alcohol at C-1 as the final step in the synthesis.

To preserve synthetically valuable alkylating agent 193, several of the modification steps were first investigated on the slightly simpler diketone 201, which could be readily synthesised using commercially available 4-bromobut-1-ene. The first of these was the introduction of an ester at C-7, which required deprotonation at this position. Due to the presence of a second ketone at C-2 with two possible acidic positions, any selectivity was unclear. To investigate the effects of thermodynamics on selectivity, DFT studies (Gaussian 09, DFT: B3LYP,6-31G) on the possible enolates that could result from deprotonation was carried out.

![Scheme 95 – Relative energies of geometry optimised (DFT: B3LYP,6-31G) lithium enolates 208a-c and their stabilising interactions](image)

Optimisation of the structures of enolates 208a-c and comparison of the minimised energies made it clear that thermodynamically, 208a is the most stable enolate due to the stabilisation afforded by the ester (Scheme 95). 208b is 8.4 kJ mol⁻¹ higher in energy than 208a with some stabilisation provided by an interaction with the ether lone pair. Lithium enolate 208c cannot be stabilised by either the ether or ester and is therefore significantly higher in energy.

Based on the computational evidence, it was considered worth attempting a selective deprotonation of diketone 201 (Scheme 96). Addition of LiHMDS followed by ethyl cyanoformate resulted in formation of the desired product 209, along with some of the
regioisomer 210, which was inseparable from 209, and unreacted starting material 201 in a 2:1:6 ratio (209:210:201). In an attempt to increase the regioselectivity of the reaction, magnesium chloride was added to coordinate to both the enolate, and the neighbouring ester carbonyl and therefore stabilise the desired enolate. Pleasingly this led to increased selectivity from 2:1 to 5:1 for the two regioisomers (Entries 1 & 2, Scheme 96). The reaction time was also increased from 3 to 16 h, however this was found to have little effect on the conversion and an appreciable amount of starting material was recovered in each case.

Regioisomers 209 and 210 were inseparable by column chromatography, so conditions that afforded even higher selectivity were needed. Alternative bases such as LDA, NaHMDS and KHMDS were also tested in case the size of the counterion influenced enolate stability. Unfortunately, in these reactions an alternative batch of starting material was used that was found to contain residual chloroform, presumably from NMR analysis. Despite preventing formation of the desired product, the residual chloroform caused formation of some interesting side-products that gave valuable insight into the reactivity of 201.

With LDA, no desired product was observed but formation of 211 and 212 occurred, and with NaHMDS and KHMDS, 213 was also isolated (Scheme 97). Interestingly, products 211, 212 and 213 all contain a CCl₃ group, the presence of which was confirmed by HRMS. Under basic conditions, chloroform can be deprotonated and act as a nucleophile, resulting in addition to the carbonyl as observed in 211, 212 and 213.\(^{194-197}\)

In the formation of 211, the desired carbonylation reaction had also taken place. Isolation of 212 and 213 occurred concurrently with no formation of desired product 209, so it can be assumed the reaction with chloroform is faster than the carbonylation reaction and that this
occurs first, followed by the carbonylation. 213 is formed by 212 undergoing an intramolecular hemi-acetal formation by reaction of the C-2 alcohol with the C-6 ketone. Transannular reactions in similar eight-membered rings have been previously reported.198,199 To prevent formation of these chloroform related side products, the starting material was more rigorously dried and the reaction repeated. However, 1H-NMR analysis of the crude material showed a complex mixture of products with no formation of any previously observed products, including no recovery of starting material.

Although the carbonylation of 201 gave mixed results and was somewhat complicated by the presence of residual chloroform in the reaction, these results provided valuable insights into the reactivity of 201. In the presence of a CCl\textsubscript{3} anion, nucleophilic addition proceeded exclusively at C-2, with no C-6 addition product observed in any of the reactions. This attack also seemed to occur faster than the desired carbonylation reaction, which was never observed to reach completion. Since the transformation necessary at the C-2 position involved methylation, it was proposed that conducting this reaction first may be more successful in both yield and selectivity.

\textbf{Scheme 98} – Methylation of 201 to form 214 and further reaction of diastereomer 216 to give 215

Reaction of 201 with methyllithium resulted in selective addition to the C-2 ketone to give desired product 214 and no evidence of reaction at the C-6 ketone was observed (Scheme 98). As the next step of the sequence is elimination, the stereoselectivity in this reaction was unimportant, however it did demonstrate an interesting result. Isolation of side product 215 indicated that one of the diastereomers formed, 216, was able to undergo transannular acetal formation, as had been previously observed (Scheme 97). However, in this case, further ring-opening of the hemi-ketal with use of the C-5 ester, allowed 215 to be formed as the
by-product for this reaction. The excellent mass recovery achieved in this reaction indicates that the desired transformation is successful and with 2:1 selectivity for the stable diastereomer 214.

Scheme 99 – Elimination of 213 to give possible products 217, 218 and 219 and DFT prediction of the result (*10 mg of a 2:1 mixture of 214 and 215 used)

Elimination of the tertiary alcohol could in theory occur to form one of three alkenes. DFT calculations were again used to help predict the regiochemistry of this step before it was carried out. Geometry optimisation (Gaussian 09, DFT: B3LYP,6-31G) of the three possible products 217, 218 and 219 was carried out and showed that the desired alkene 217 was the lowest in energy and would therefore be the expected thermodynamic product of the reaction, however transition state energies for each of the possible elimination routes were not considered here due to time constraints. Heating 214 with pTSA in toluene (214 and 215 were unfortunately inseparable so this reaction was carried out on a 2:1 mixture respectively on an 1H-NMR sample scale) gave full conversion to 217 and the regioselectivity of the reaction was confirmed by 2D-NMR. Recovery of 215 from this reaction was also observed.

Scheme 100 – Alkylation of 165 with 193 and 199 to give 221 and 222 (*1:0.6 ratio of 193:199, **51% with respect to 193)

With these promising results for modification of the RHS of the molecule, attention turned to alkylation with the fully functionalised tether 193 (Scheme 100). Initially, the alkylation was carried out with 193 isolated from the mixed anhydride reduction route, which was a 1:0.6 ratio of saturated and unsaturated iodides 193 and 199. Unfortunately, upon alkylation of 165 elimination of 193 occurred to form diene 220 accounting for 51% of the unsaturated iodide 193 added. This meant that although the alkylation was successful, the ratio of unsaturated to saturated alkylation products 221-222 was now 1:1.3 in favour of 222.
Towards the Total Synthesis of Viburspiran - Results and Discussion

Unfortunately, as 221 and 222 were inseparable by column chromatography and due to the presence of a chiral centre in the saturated side chain of 222, a complex mixture of 221 and diastereomers of 222 made characterisation difficult and the product mixture was carried immediately through to photochemical cyclisation. Photochemical irradiation of the mixture followed by ring opening under acidic conditions gave 22% of 204 from 221 and 16% recovery of 222 (Scheme 101). The majority of material isolated from this two-step sequence was a mixture of 223 and 224 in which deprotection of the TBS-group had occurred.

These results showed that the presence of the saturated alkylation agent 199 was not as benign as anticipated, and although the alternative method required a large scale DIBAL-H reduction (Scheme 91), using a pure alkylation agent would lead to fewer issues with inseparable side products. In addition to this, methods to avoid the elimination of alkylation agent 193 were also investigated. One such method was to synthesise the alkyl bromide 225 in a hope that elimination of the bromide would occur less readily than with the iodide.

Optimisation of the alkylation reaction with bromide and iodide 225 and 193 was then carried out. Bromide 225 was investigated first as it was hoped that elimination to the diene 220 may be less likely to occur. Sodium hydride and caesium carbonate were used as bases and in both cases, aromatised products 226, 227 and 228 were observed, with a small amount (11%) of the desired product 221 formed when Cs₂CO₃ was used (Scheme 103). Aromatisation of 165 was unexpected and had not been observed previously with alkyl iodide 193. It was hypothesised this may be due to an impurity present in 225. Presence of an electrophilic source of bromine arising from the Appel reaction to form 225 could allow bromination of 165 which...
could facilitate aromatisation. Following formation of 226, alkylation with 225 would form 228. Under sodium hydride conditions, deprotection of the TBS group was observed to form 227.

The alkylation was then re-investigated with alkyl iodide 193 synthesised through the method shown in Scheme 91. The reaction was conducted at room temperature to begin with in order to reduce formation of eliminated product 220. This gave 24% of the desired product 221, with 12% recovery of starting material and 10% formation of the diene 220 (Table 10). At this point alternative alkylation conditions were trialled, and it was found that the yield could be increased to 44% with Cs_2CO_3 in acetonitrile at 60 °C. Starting material 165 was also recovered, but the overall mass recovery was better than when sodium hydride was used, meaning that the starting material recovered could be recycled. It was also found that this reaction scaled favourably with a 59% yield (91% BRSM) achieved when the reaction was carried out on a 12.5 mmol scale. (For entries 3 & 4, Table 10, 220 was not isolated but found to be present in a similar ratio to entry 2 based on the ^1H-NMR of the crude material.)
Towards the Total Synthesis of Viburspiran - Results and Discussion

Table 10 – Alkylations of 165 with 193

<table>
<thead>
<tr>
<th>entry</th>
<th>conditions</th>
<th>scale / mmol of 165</th>
<th>165 (%)</th>
<th>221 (%)</th>
<th>220 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaH, DMF, rt, 48 h</td>
<td>0.25</td>
<td>12</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Cs₂CO₃, MeCN, 60 °C, 65 h</td>
<td>1.50</td>
<td>27</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Cs₂CO₃, MeCN, 60 °C, 65 h</td>
<td>4.50</td>
<td>39</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Cs₂CO₃, MeCN, 60 °C, 65 h</td>
<td>12.5</td>
<td>35</td>
<td>59</td>
<td>-</td>
</tr>
</tbody>
</table>

Following successful alkylation, enol ether 221 was subjected to UV-light and successfully reached 100% conversion after 6 h (Scheme 104). Cyclisation product 229 was found to be unstable and sensitive to slightly acidic conditions (e.g. chloroform or silica gel) and so full characterisation of 229 was not pursued and instead it was immediately ring-opened to 204. With the simpler photochemical product 200, 2% HCl (aq.) in THF at reflux had been used to achieve the retro-aldol reaction, however the previously observed issues with TBS-deprotection meant that these conditions were no longer feasible. The same transformation could instead be achieved by stirring with ρTSA in dichloromethane at room temperature.

Based on the model studies, the next step was addition of methyllithium to 204 which resulted in only 18% of the desired product 230 (Scheme 105). In addition, 13% of the transannular acetal 231 was isolated. Repeating the reaction with methylmagnesium bromide returned only starting material.
As the regioselective nucleophilic addition to diketone 201 was more successful than regioselective deprotonation, an alternative nucleophilic method for the addition of a methyl group was investigated. Molander et al. have shown that Wittig reaction of cyclooctadione 232 gave exocyclic alkene 233 which can then be isomerised under catalytic hydrogenation conditions to afford an internal alkene 234 (Scheme 106a).²⁰⁰ Nucleophilic addition of a Wittig reagent to 204 should be expected to exhibit the same regioselectivity as observed for methyllithium addition. By-products formed from transannular reactions should also be inhibited as the resulting alkoxide should rapidly react with the phosphonium.

Scheme 106 – Successful Wittig reaction of 204 and mechanism for formation of by-product 236

Treatment of diketone 204 with methyltriphenylphosphonium bromide gave exocyclic alkene 235 in 61% yield after brief optimisation (Scheme 106b). By-product 236 was also isolated and presumably formed as a result of the basic conditions. Hence in later reactions, formation of
the Wittig reagent was carried out for at least 1 h at 40 °C followed by cooling to 0 °C for addition of 236 to give the optimal 61% yield.

3.3.6.1. Alkylation Stereochemistry

As determined in initial alkylation reactions of 165, the major product 221 has the 3-ester and 4-benzyloxymethyl groups on the same side. Although the cis-diastereoselectivity achieved in these reactions has always been excellent, these moieties will eventually go on to form one of the anhydrides in viburspiran, in which the relationship between them should be trans. As one of the final steps in the synthesis, deprotection of the benzyl ether and oxidation followed by ring closure should allow formation of the anhydride rings. It was thought that the acidic/basic conditions necessary to form these groups would also lead to epimerisation at C-4 and therefore provide the desired relative stereochemistry trans-207 (Scheme 107a).

![Proposed epimerisation that could occur upon anhydride formation to give trans-207](image)

Scheme 107 – a) Proposed epimerisation that could occur upon anhydride formation to give trans-207 b) DFT minimised structures (Gaussian 09, DFT: B3LYP,6-31G)\(^\text{186}\) of cis- and trans-237

As a basic model for viburspiran, trans-237 (with some functionality omitted for computational simplicity) was subjected to energy minimisation (Gaussian 09, DFT: B3LYP,6-31G)\(^\text{186}\) and found to adopt a twisted chair conformation. Minimisation of the lowest energy conformer of cis-237, in which the stereochemistry at C-4 and C-7 is inverted from the natural viburspiran stereochemistry, was found to exist in a boat-like conformation and consequently had an energy of around 19 kJ mol\(^{-1}\) higher than the trans-237 diastereomer. As well as being one of the higher energy conformers for cyclooctanes, steric interaction between the C-6 alkyl and the RHS of the ring also likely increases the energy of this diastereomer. This...
indicates that should epimerisation at C-4 and C-7 occur, ring closure to form the trans-anhydrides should give the lowest energy structure.

In the event that epimerisation is found to be unsuccessful in forming the desired diastereomer upon anhydride formation, alternative solutions to set this stereochemistry earlier in the synthesis were explored. It was envisaged that if 221 were to undergo decarboxylation, re-carboxylation would occur from the opposite face to the benzyl ether, forming the trans-product.

Decarboxylation of 221 was initially attempted by basic hydrolysis of the ethyl ester to the carboxylic acid followed by heating to promote decarboxylation of the β-keto acid. Unfortunately, this method was unsuccessful and only afforded ring opened products resulting from the retro-aldol reaction of the β-keto ester. Instead, Krapcho decarboxylation conditions were used to prevent ring-opening, which led to 238 in a 60% yield as a 3:1 mixture of diastereomers (Scheme 108).201 Subsequent deprotonation of 238 at the α-position meant that the diastereoselectivity was not an issue, and addition of ethyl cyanoformate led to the re-carboxylated product 4-epi-167 in 48% yield and excellent diastereoselectivity. The relative stereochemistry of 4-epi-167 was confirmed by NOE NMR, showing a correlation between C-7 and C-8/9 which was not present in 167.

4-epi-167 was then subjected to the de Mayo reaction under the same conditions as previously to give 5-epi-200 in 50% yield (Scheme 109). 5-epi-200 was then ring opened under aqueous acidic conditions to give 4-epi-201 in 75% yield or alternatively use of a Lewis acid and acetic anhydride gave the enol acetate 4-epi-202 in 36% yield. Due to lack of material, the route was not continued further with this stereochemistry, however it was valuable to know that 4-epi-167 is able to undergo these transformations.
When comparing the 1H-NMR spectra of 201 and 4-epi-201, the signals assigned to H$_2$-9 were distinctive (Figure 20). In 201, H$_2$-9 appeared as a triplet and a doublets of doublets with geminal coupling ($J = 9.8$ Hz) and vicinal coupling to H$_2$-4 ($J = 9.8$ and 3.0 Hz). In 4-epi-201 however, the signal assigned to H$_2$-9 appears as a doublet with only vicinal coupling ($J = 6.1$ Hz) implying that the protons experience little or no coupling to one-another despite being diastereotopic.
Figure 20 - Comparison of the 1H-NMR spectra of 201 and 4-epi-201

- H_2-9 (d, $J 6.1$)
- H-4 (p, $J 6.1$)
- H-9 (t, $J 9.8$)
- H-9 (dd, $J 9.8$, 3.0)
- H-3
3.4. Conclusions

In summary, good progress has been made towards the first total synthesis of the maleidride natural product viburspiran using a de Mayo [2+2]-photocycloaddition-retro aldol reaction as the key step. Initial intramolecular [2+2]-photocycloaddition of model substrate 103 was unsuccessful and the use of either dioxenones or maleimides as a viable alternative chromophore was explored (Section 3.3.1.1 and 3.3.1.2). Dioxenone 112 underwent intermolecular photoaddition with cyclohexene giving 114 in 64% yield, and a suitable intramolecular route was explored (Scheme 110). Three β-ketoester substrates 119a-c suitable for intramolecular photochemical cycloadditions were synthesised, differing in their substitution pattern, in order to investigate possible routes towards the viburspiran core (Section 3.3.2). 119b was used in the synthesis of the core carbocyclic structure of viburspiran and gave 138 in 18% yield over 2 steps (Scheme 110). Two other regioisomers with substitution at C-3 (119d) and C-6 (119a) were found to exhibit no reaction or give the wrong photochemical regioisomer respectively (Section 3.3.3, Scheme 75). The synthesis of 119c was unfortunately unsuccessful but was predicted to react in a similar manner as 119b.

Scheme 110 – Inter- and intramolecular dioxenone test reactions for the synthesis of eight-membered carbocycles

With much of the functionality of viburspiran in place, dioxenone 174 was synthesised in 7 steps (Scheme 111). Unfortunately, photochemical irradiation of 174 was unsuccessful, and DFT optimisation of the possible conformers of the simplified model structure 176 revealed that the optimum geometry of 174 may disfavour reaction of the alkene tether with the dioxenone (Section 3.3.4, Scheme 85). After reconsideration of the total synthesis, 167 was identified as an alternative substrate for [2+2]-cyclisation (Scheme 112). 167 successfully
underwent the desired transformation to give 201 in excellent yield, and the route was redesigned around this successful result (Section 3.3.6).

Scheme 111 – Summary of the route to dioxenone 174 in 7 steps

After successful cyclisation of 167 to give the diketone 201, methods for the functionalisation of the LHS and RHS of the molecule were investigated. Selective deprotonation of 201 at C-7 gave a complex mixture of products under most conditions. Regioselective reaction of diketone 201 with a nucleophile was more successful and allowed synthesis of the tertiary alcohol followed by elimination to the alkene 217 (Scheme 112). Elimination was found to be selective and this work was also backed up by preliminary DFT studies used to accurately predict the lowest energy product of this reaction (Section 3.3.6, Scheme 99).
Scheme 112 – Key de Mayo reaction and subsequent methylation-elimination or methylenation to give 217 and 235

Synthesis of a substituted alkylating agent 193 was also carried out and the optimal route was found to begin with reduction of dimethyl itaconate with DIBAL-H, followed by mono-TBS protection and an Appel reaction to install the iodide (Section 3.3.5, Scheme 91). After some optimisation, successful conditions for alkylation of 165 with 193 were identified and led to synthesis of the key diketone product 204. Nucleophilic addition of a methyl group to 204 was unfortunately low-yielding and accompanied by a significant amount of by-product formation. However, it was instead found that Wittig reaction of 204 proceeded regioselectively in 61% yield to give 235 (Scheme 112).

Overall progress has been made towards the total synthesis of maleidride natural product viburspiran using a key photochemical step. Synthesis of the core carbocyclic structure has been carried out and optimised to allow easy access to functionalised [2.2.4]-decacylic molecules that will facilitate further transformations towards the natural product.

3.5. Future Work

Future work on this project will involve completion of the total synthesis based on the route established in this thesis. Following synthesis of 235 by selective Wittig reaction, functionalisation of the LHS will be necessary to install the C-7 carboxyl and C-6 penty units followed by formation of the anhydrides, and finally installation of the 2-hydroxy group through hydroboration-oxidation (Scheme 113).

The presence of a single acidic site on 235 should allow easy deprotonation and carboxylation using ethyl cyanofomate or similar, to give 238. Incorporation of the n-pentyl chain at C-5 could be achieved in several ways. Published methods include the reaction of enol pivalates with Grignard reagents in the presence of FeCl₂ and LiCl,²⁰² reaction of enol acetates with Grignard reagents in the presence of catalytic FeCl₂ and NMP,²⁰³ and reaction of enol triflates
with organocuprates. Most of these methods have been widely used giving several options to achieve this step and form 239 successfully.

Following incorporation of the \(n \)-pentyl chain, reduction of the \(\alpha,\beta \)-unsaturated ester to give 240, deprotection of the benzyl and TBS groups and isomerisation of the exocyclic methylene to give 241 need to be carried out. Deprotection of the benzyl ether and TBS group may be carried out in one step by hydrogenolysis in the presence of \(\text{Pd(OH)}_2 \), or alternatively could be carried out in two steps by hydrogenation followed by TBAF deprotection. Using either of these methods, the hydrogenation conditions could also allow reduction of the \(\alpha,\beta \)-unsaturated ester and cause isomerisation of the exocyclic methylene to the internal alkene based on a similar literature procedure (Scheme 106a). DFT calculations carried out (Scheme 99) also indicate that the C-1 alkene should be thermodynamically favoured over the C-3 alkene. If the \(\alpha,\beta \)-unsaturated ester is not able to be reduced by hydrogenolysis, L-selectride could be used to achieve this first, followed by the deprotection and isomerisation steps to give 241 (Scheme 113).

Scheme 113 – Proposed steps for completion of the total synthesis of \((\pm)\)-viburspuiran from 235
The penultimate step in the synthesis will involve formation of the anhydride units through oxidation of the alcohols. White et al. have demonstrated a similar process in the final step of the synthesis of (±)-byssochlamic acid, where they found that aqueous basic hydrolysis of the ester followed by permanganate oxidation allowed formation of the maleic anhydride units from the butenolide.133 Using the same conditions, the ester units could be hydrolysed to the carboxylic acids, followed by oxidation of the alcohols to the respective carboxylic acids, and finally an acidic workup to form the anhydride units to give 207. Multiple reaction conditions could be used for the oxidation including the permanganate conditions used by White et al.,133 or if necessary a milder approach of DMP oxidation to the aldehyde, followed by a Pinnick oxidation could be attempted.

The final step in the synthesis is proposed to be hydroboration-oxidation to install the secondary alcohol at C-1. Making this the final step means that the resulting alcohol there are no selectivity issues in the formation of the anhydrides. Based on three-dimensional representations of 207, hydroboration from the bottom face seems more favourable as it would avoid interaction with the ethylene bridge (Scheme 114). Similar diastereoselectivity has been observed in the hydroboration-oxidation of functionalised medium-sized rings where hydroboration occurs from the least hindered face.206,207 Borane THF complex is most commonly used for this transformation but bulkier boranes such as 9-BBN could be used to enhance selectivity if necessary. Oxidation of the alkyl borane with hydrogen peroxide should then allow transformation to (±)-viburspiran to complete the total synthesis.

![Scheme 114 – 3-Dimensional representation of 207 demonstrating the stereochemical effect steric-hinderance from the ethylene bridge could have on hydroboration](image-url)
Chapter 4: Experimental
4. Experimental

4.1. General Information

All reactions were carried out under an inert atmosphere using Schlenk like techniques and flame-dried glassware unless otherwise stated. Reaction temperatures at -78 °C were achieved with a dry ice and acetone bath. CH$_2$Cl$_2$, and THF and MeCN were collected from a Grubbs type solvent purification system. Solvents used for photochemical reactions were degassed prior to use by subjecting them to vacuum. Other commercial reagents were used as supplied unless otherwise stated. Flash chromatography was performed using silica gel 60 (Fisher Scientific or Sigma Aldrich) and a suitable eluent. Analytical TLC was carried out on pre-coated UV-254 plates, with visualisation by UV light at 254 nm and potassium permanganate dip.

1H and 13C NMR spectra were recorded at ambient temperature unless otherwise stated on Jeol ECP (Eclipse) 300, Jeol ECS 300, Jeol ECS 400, Varian 400-MR, Varian VNMRS 500 spectrometers and a Bruker Advance III HD 500 spectrometer equipped with a 13C-observe (DCH) cryogenic probe. Chemical shifts δ are given in parts per million (ppm) and referenced to the appropriate solvent peak(s) (δ H: CDCl$_3$ 7.26 ppm, D$_2$O 4.79 ppm, CD$_3$OD 3.31 ppm, δ C: CDCl$_3$ 77.0 ppm, CD$_3$OD 49.0 ppm,) and coupling constants J are in Hz. In instances of ambiguity, mean J values have been quoted, rounded to the nearest decimal point. For simplicity, in some cases, the numbering system used for 1H-NMR assignment does not reflect IUPAC name and numbering system.

Mass Spectra were recorded by the University of Bristol Mass Spectrometry Service on a VG Analytical Autospec (EI) or VG Analytical Quattro (ESI) spectrometer. Melting points were measured on a Kofler Hotstage melting point apparatus and are uncorrected. IR spectra were recorded on neat compounds using a Perkin Elmer (Spectrum One) FT-IR spectrometer (ATR sampling accessory). Only selected absorbance’s (ν_{max} expressed in cm$^{-1}$) are reported.

Photochemical reactions were carried out in a Pyrex 150 mL batch reactor with a medium pressure 125 W mercury lamp under nitrogen. The reaction vessel was wrapped in aluminium foil to reduce risk of exposure and maximise internal reflection.
4.2. Experimental Procedures for Chapter 2

16a – (±)-6-(2-Hydroxyethyl)-3-azabicyclo[3.2.0]hept-6-ene-2,4-dione

Maleimide (1.46 g, 15.0 mmol) and but-3-yn-1-ol (1.70 mL, 22.5 mmol) were dissolved in degassed acetonitrile (150 mL) and irradiated for 3 h. After this time the solvent was removed under reduced pressure to yield the crude product as an off-white residue. The product was purified by column chromatography (80-100% ethyl acetate/petroleum ether) giving 16a (1.54 g, 61%) as a white solid; m.p. (acetonitrile) 114-116 °C; IR νmax/cm⁻¹ 3197, 1762, 1699, 1669; ¹H NMR (400 MHz, D₂O) δ 6.28 (app. q, J 1.5, 1H, H-2), 3.91 (m, 1H, H-4), 3.83 – 3.73 (m, 3H, H-8 & H-3), 2.51 – 2.41 (m, 2H, H-7); ¹³C NMR (101 MHz, D₂O) δ 180.5 (C-5/6), 179.6 (C-5/6), 150.5 (C-1), 131.4 (C-2), 58.4 (C-8), 50.1 (C-4), 45.8 (C-3), 32.2 (C-7); HRMS (ESI⁺) 190.0475 [M + Na⁺] requires 190.0481). Data in accordance with literature.²⁰⁸

16b – (±)-3-Benzyl-6-(2-hydroxyethyl)-3-azabicyclo[3.2.0]hept-6-ene-2,4-dione

16a (1.54 g, 9.2 mmol), potassium carbonate (1.91 g, 13.8 mmol) and tetrabutylammonium iodide (0.17 g, 0.46 mmol) were dissolved in acetone (20 mL). Benzyl bromide (1.2 mL, 10.1 mmol) was added, and the solution heated at reflux. After 4 h at reflux the reaction mixture was cooled to room temperature to give a pale pink suspension. The solids were removed by filtration and the filtrate concentrated under reduced pressure to give the crude product as an orange oil. The product was purified by column chromatography (5% diethyl ether/DCM) to give the pure product 16b (1.77 g, 75%) as an off white solid; m.p. (acetonitrile) 76-77 °C; IR νmax/cm⁻¹ 3345, 1764, 1693; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.15 (m, 5H, CH arom.), 6.13 (s, 1H, H-2), 4.57 (s, 2H, PhCH₂) 3.81 – 3.57 (m, 4H, H-8, H-4 and H-3), 2.78 (t, J 5.4, 1H, -OH), 2.37 (t, J 6.0, 2H, H-7); ¹³C NMR (101 MHz, CDCl₃) δ 175.4 (C-5/6), 175.0 (C-5/6), 151.2 (C-1), 135.7 (C arom.), 131.4 (C-2), 128.6 (CH arom.), 128.3 (CH arom.), 127.8 (CH arom.), 59.5 (C-8), 48.6 (C-4), 44.4 (C-3), 42.1 (PhCH₂), 33.3 (C-7); HRMS (ESI⁺) 280.0942 [M + Na⁺] (C₁₅H₁₅NNaO₃ requires 280.0944).
Photocycloaddition Reaction in the Synthesis of Novel Scaffolds and Natural Products

N-methylmaleimide (1.68 g, 15 mmol) and 3-buten-1-ol (1.70 mL, 22.5 mmol) were dissolved in degassed acetonitrile (150 mL) and irradiated with a 125 W UV lamp. After 5 h, the solvent was removed under reduced pressure and the crude product purified by column chromatography (50% ethyl acetate/petroleum ether) to give the pure product 16c (1.26 g, 46%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3440 (br), 2949, 1764, 1683; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.17 (m, 1H, H-8), 3.85–3.70 (m, 3H, H-1 & H-4), 3.66 (m, 1H, H-7), 2.94 (s, 3H, CH\(_3\)), 2.57–2.33 (m, 2H, H-2); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 175.8 (C=O), 175.4 (C=O), 151.2 (C-3), 131.4 (C-8), 59.5 (C-1), 48.6 (C-4), 44.4 (C-7), 33.3 (C-2), 24.9 (CH\(_3\)); HRMS (ESI\(^+\)) 204.0638 [M + Na\(^+\)] (C\(_9\)H\(_{11}\)NNaO\(_3\) requires 204.0631).

23 and 24 – (\(\pm\)-2-(3-Benzyl-2,4-dioxo-3-azabicyclo[3.2.0]hept-6-en-6-yl)ethyl acetate and (\(\pm\)-1-benzyl-3-(4-oxo-2-phenyltetrahydro-2H-pyran-3-yl)pyrrolidine-2,5-dione

Homoallylic alcohol 16b (1.00 g, 3.89 mmol) and benzaldehyde (0.40 mL, 3.89 mmol) were dissolved in anhydrous acetonitrile (20 mL) and trifluoromethanesulfonic acid (0.41 mL, 4.67 mmol) added dropwise at room temperature. After 30 min, the reaction was quenched with water (10 mL) before extracting with ethyl acetate (3 \(\times \) 10 mL). The combined organic layers were washed with sodium hydrogen carbonate, dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure to yield the crude product which was purified by column chromatography (50-75% ethyl acetate/petroleum ether) to give the products 22b (49%), 23 (17%) and 24 (17%). 23 – IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2966, 1766, 1736, 1695; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.39–7.22 (m, 5H, CH arom.), 6.16 (m, 1H, H-8), 4.59 (s, 2H, PhCH\(_2\)), 4.22 (dt, J 11.0, 6.4, 1H, H-1), 4.12 (dt, J 11.0, 6.4, 1H, H-1), 3.72 (m, 1H, H-4/7), 3.63 (m, 1H, H-4/7), 2.52–2.43 (m, 2H, H-2), 1.99 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 174.8 (C=O), 174.0 (C=O), 170.8 (C=O), 149.9 (C-3), 135.8 (C arom.), 135.7 (C arom.), 131.8 (C-8), 129.3 (CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 127.8 (CH arom.), 60.9 (C-1), 48.7 (C-4), 44.3
(C-7), 42.1 (PhHCH), 29.3 (C-2), 20.8 (CH3); HRMS (ESI+) 300.1238 [M+H]+, 322.1063 [M + Na]+ (C17H15NO4 requires 300.1230, C17H15NNaO4 requires 322.1050); 24 - m.p. (methanol) 159-161 °C; IR v_{max}/cm^{-1} 2950, 1766, 1700; 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.05 (m, 10H, CH arom.), 4.58 (d, J 14.4, 1H, PhCH2), 4.49 (d, J 14.4, 1H, PhCH2), 4.30 (ddd, J 11.7, 7.6, 1.2, 1H, H-3), 4.22 (ddd, J 10.8, 1H, H-4), 3.70 (dd, J 12.8, 11.7, 2.6, 1H, H-3), 3.40 (dd, J 10.8, 3.5, 1.2, 1H, H-5), 2.76 (ddd, J 14.4, 12.8, 7.6, 1.2, 1H, H-2), 2.47 (d, J 8.7, 1H, H-7), 2.45 (d, J 7.0, 1H, H-7), 2.34 (ddd, J 14.4, 2.6, 1.2, 1H, H-2) 2.17 (ddd, J 8.7, 7.0, 3.5, 1H, H-6); 13C NMR (101 MHz, CDCl3) δ 205.1 (C-1), 178.2 (C-9), 175.5 (C-8), 137.9 (C arom.), 135.7 (C arom.), 129.4 (CH arom.), 129.2 (CH arom.), 128.5 (CH arom.), 127.7 (CH arom.), 126.8 (CH arom.), 83.6 (C-4), 67.2 (C-3), 56.9 (C-5), 42.5 (PhCH2), 42.4 (C-2), 37.3 (C-6), 31.3 (C-7); HRMS (ESI+) 386.1354 [M + Na]+ (C22H21NNaO4 requires 386.1368).

13C NMR (126 MHz, CDCl3) δ 135.8, 131.8, 129.3, 128.6, 128.5, 127.8

25 – (±)-Methyl(E)-N-(2-benzyl-1,3-dioxo-4-phenyloctahydropyran[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetimidate

![Chemical structure](image)

16b (1.00 g, 3.90 mmol) and benzaldehyde dimethylacetal (0.70 mL, 4.70 mmol) were dissolved in anhydrous acetonitrile (20 mL) and trifluoromethanesulfonic acid (0.52 mL, 5.80 mmol) was added dropwise at room temperature. After 18 h, the reaction was quenched with saturated aqueous sodium hydrogen carbonate solution (3.0 mL) and extracted with DCM (3 x 10 mL). The organic layers were combined and dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The resulting crude product was purified by trituration with hexane to give 25 (0.48 g, 29%) as a colourless solid; m.p. (hexane) 135-137 °C; IR v_{max}/cm^{-1} 2965, 1763, 1694, 1672; 1H NMR (CDCl3, 400 MHz) δ 7.67 – 7.50 (m, 2H, CH arom.), 7.44 – 7.17 (m, 8H, CH arom.), 4.85 (d, J 5.0, 1H, H-9), 4.66 (s, 2H, PhCH2), 3.88 (ddd, J 11.8, 7.7, 4.5, 1H, H-1), 3.70 (ddd, J 11.8, 6.8, 4.5, 1H, H-1), 3.56 (d, J 6.5, 1H, H-4), 3.49 (s, 3H, OCH3), 3.20 (dd, J 6.5, 5.0, 1H, H-7), 2.92 (t, J 5.0, 1H, H-8), 2.20 (ddd, J 14.4, 7.7, 4.5, 1H, H-2), 2.02 (s, 3H, H-11), 1.92 (ddd, J 14.4, 6.8, 4.5, 1H, H-2); 13C NMR (101 MHz, CDCl3) δ 177.9 (C-6), 175.2 (C-5), 163.1 (C-10), 140.6 (C arom.), 135.9 (C arom.), 128.6 (CH arom.), 128.4 (CH arom.), 127.8 (CH arom.), 127.8 (CH arom.), 127.3 (CH arom.), 78.9 (C-9),
60.4 (C-1), 56.7 (C-3), 52.7 (OCH₃), 50.3 (C-8), 49.7 (C-4), 42.4 (PhCH₂), 39.5 (C-7), 35.3 (C-2), 19.0 (C-11); **HRMS (ESI⁺)** 441.1766 [M + Na]⁺ (C₃₅H₄₈N₃O₆ requires 441.1785).

27 – (±)-3-Benzyl-2,4-dioxo-3-azabicyclo[3.2.0]hept-6-en-6-yl)ethyl(Z)-N-(2-benzyl-1,3-dioxo-4-phenyloctahydropyran[3',4',3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetimidate

![Chemical Structure of 27](image)

Reaction conducted according to general procedure A (see Section 4.2.1), product purified using automated column chromatography (CombiFlash, 60-100% TBME/isohexanes) to give 27 as a colourless solid (1:1 mixture of diastereomers); **IR** ν max/cm⁻¹ 2932, 1763, 1686; **¹H NMR** (500 MHz, CDCl₃) δ 7.57 – 7.49 (m, 4H, CH arom.), 7.45 – 7.18 (m, 26H, CH arom.), 6.13 (q, J 1.5, 1H, H-19), 6.11 (q, J 1.5, 1H, H-19), 4.86 – 4.81 (m, 2H, 2 × H-9), 4.64 – 4.57 (m, 8H, 4 × PhCH₂), 4.04 (app. dt, J 10.9, 6.3, 1H, H-12), 3.99 (dd, J 10.9, 7.1, 5.7, 1H, H-12), 3.95 (app. dt, J 10.9, 6.1, 1H, H-12), 3.87 – 3.76 (m, 3H, H-12 & 2 × H-1), 3.76 – 3.60 (m, 6H, 2 × H-1, 2 × H-15 & 2 × H-18), 3.56 – 3.49 (m, 2H, 2 × H-4), 3.22 – 3.14 (m, 2H, 2 × H-7), 2.92 – 2.85 (m, 2H, 2 × H-8), 2.45 – 2.38 (m, 4H, 2 × H-13), 2.22 – 2.13 (m, 2H, 2 × H-2), 1.97 (s, 3H, H-11), 1.93 (s, 3H, H-11), 1.92 – 1.84 (m, 2H, 2 × H-2); **¹³C NMR** (126 MHz, CDCl₃) δ 177.9 (C-6), 177.8 (C-6), 175.5 (2 × C-16/17), 175.1 (2 × C-5), 174.1 (2 × C-16/17), 162.5 (C-10), 162.4 (C-10), 150.9 (C-14), 150.8 (C-14), 140.6 (2 × C arom.), 135.9 (2 × C arom.), 131.5 (2 × C arom.), 131.2 (2 × C-19), 128.7 (CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 128.4 (CH arom.), 127.9 (CH arom.), 127.8 (CH arom.), 127.3 (CH arom.), 127.2 (CH arom.), 78.6 (C-9), 78.4 (C-9), 61.8 (C-12), 61.7 (C-12), 60.3 (C-1), 60.2 (C-1), 59.6, 56.6 (C-3), 56.5 (C-3), 50.3 (2 × C-8), 49.7 (2 × C-4), 48.8 (C-15), 48.7 (C-15), 48.6, 44.4 (2 × C-18), 42.5 (PhCH₂), 42.4 (PhCH₂), 42.2 (PhCH₂), 42.1 (PhCH₂), 39.4 (C-7), 39.3 (C-7), 35.3 (C-2), 35.2 (C-2), 29.1 (C-13), 29.0 (C-13), 19.2 (C-11), 19.1 (C-11); **HRMS (ESI⁺)** 644.2775 [M+H]+ (C₅₀H₆₂N₃O₆ requires 644.2755).
28 - (±)-2-Benzyl-7a-(((E)-benzylidene)amino)-4-phenylhexahydropyran-3',4':3,4)cyclobuta[1,2-c]-pyrrole-1,3(2H,3aH)-dione

![28](image)

28 was isolated in various reactions from the Design of Experiments reactions (e.g. Table 11, Design 1, entry 9, 32%) as a colourless oil; IR ν_max/cm⁻¹ 3032 (w), 2972 (w), 1774 (w), 1698, 1401, 1170, 699; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H, H-10), 7.65 – 7.58 (m, 2H, CH arom.), 7.47 – 7.20 (m, 13H, CH arom.), 4.92 (d, J 6.7, 1H, H-9), 4.67 (d, J 14.0, 1H, PhCH₂), 4.54 (d, J 14.0, 1H, PhCH₂), 4.10 (m, 1H, H-1), 3.98 (ddd, J 11.3, 8.2, 5.4, 1H, H-1), 3.71 (dd, J 6.5, 1.0, 1H, H-4), 3.27 (dd, J 6.5, 4.4, 1H, H-7), 2.99 (ddd, J 6.7, 4.4, 1H, H-8), 2.37 (ddd, J 14.1, 8.2, 5.6, 1H, H-2), 2.04 (m, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃) δ 177.5 (C-6), 174.7 (C-5), 160.3 (C-10), 140.7 (C arom.), 135.7 (C arom.), 135.6 (C arom.), 129.2 (CH arom.), 128.7 (CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 128.4 (CH arom.), 128.4 (CH arom.), 127.9 (CH arom.), 127.7 (CH arom.), 125.9 (CH arom.), 76.5 (C-9), 62.6 (C-3), 61.2 (C-1), 50.3 (C-4), 48.8 (C-8), 42.4 (PhCH₂), 39.0 (C-7), 32.7 (C-2); HRMS (ESI⁺) 451.2019 [M+H]⁺ (C₂₅H₂₇N₂O₃ requires 451.2016), 473.1834 [M+Na]⁺ (C₂₅H₂₆N₂NaO₃ requires 473.1836).

32 – (±)-Methyl (E)-3-(2-(3-benzyl-2,4-dioxo-3-azabicyclo[3.2.0]hept-6-en-6-yl)ethoxy)acrylate

![32](image)

16b (0.20 g, 0.78 mmol) and quinuclidine (2.6 mg, 0.02 mmol) were dissolved in dry DCM (2.0 mL). A solution of methyl propiolate (0.10 mL, 1.2 mmol) in dry DCM (4.0 mL) was added dropwise and the solution stirred at room temperature for 30 min. The reaction was quenched with 5% acetic acid (3 mL) before extracting with DCM (3 × 10 mL). The combined organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the crude product as a brown residue. The product was purified by column chromatography (25% ethyl acetate/petroleum ether) to give the pure product 32 (0.20 g, 76%) as a colourless oil; IR ν_max/cm⁻¹ 1766, 1698, 1624; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J 12.7, 1H, H-3’), 7.32 – 7.24 (m, 5H, CH arom.), 6.19 (s, 1H, H-7), 5.15 (d, J 12.7, 1H,
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

\[H-2' \], 4.61 (d, \(J \) 14.5, 1H, N-CH\(_2\)), 4.57 (d, \(J \) 14.5, 1H, N-CH\(_2\)), 3.98 – 3.85 (m, 2H, H-9), 3.71 (d, \(J \) 3.1, 1H, H-5), 3.70 (s, 3H, -CH\(_3\)), 3.66 (m, 1H, H-1), 2.56 (t, \(J \) 6.4, 2H, H-8); \[^{13}C\] NMR (101 MHz, CDCl\(_3\)) \(\delta \) 174.7 (C-2/4), 174.1 (C-2/4), 168.1 (C-1'), 161.81 (C-3'), 149.1 (C-6), 135.7 (C arom.), 132.4 (C-7), 128.6 (CH arom.), 128.5 (CH arom.), 127.9 (CH arom.), 96.7 (C-2'), 67.0 (C-9), 51.2 (CH\(_3\)), 48.6 (C-5), 44.3 (C-1), 42.1 (N-CH\(_2\)-), 29.5 (C-8); HRMS (ESI\(^+\)) \(\text{requires} \ 364.1155 \ [M + Na]^+ \ (C_{19}H_{19}NNaO}_5 \text{requires} \ 364.1155\).

33 - (\(\pm \))-Methyl 2-(7a-acetamido-2-benzyl-1,3-dioxodecahydropyrano[3',4':3,4]cyclobuta[1,2-c]-pyrrol-4-yl)acetate

![Chemical structure of 32 and 33](image)

32 (100 mg, 0.29 mmol) was dissolved in dry DCM (1.5 mL) and dry acetonitrile (2.5 mL). Trifluorosulfonic acid (60 mg, 40 \(\mu \)L, 0.44 mmol) was added dropwise at room temperature and the reaction mixture left to stir for 30 min. The reaction was then quenched with aqueous sodium hydrogen carbonate solution (3 mL) and extracted with DCM (3 × 10 mL). The combined organic layers were dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the crude product. The crude product was purified by column chromatography (80-100\% ethyl acetate/petroleum ether) to give the pure product 33 (55 mg, 48\%) as a colourless oil; IR \(v_{\text{max}}/\text{cm}^{-1} \) 3357, 1771, 1734, 1699; \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.43 – 7.33 (m, 2H, CH arom.), 7.33 – 7.20 (m, 3H, CH arom.), 5.60 (s, 1H, NH), 4.65 (s, 2H, N-CH\(_2\)), 4.21 (dt, \(J \) 8.0, 5.8, 1H, H-9), 3.95 – 3.83 (m, 2H, H-1), 3.70 (s, 3H, H-12), 3.31 (d, \(J \) 6.6, 1H, H-4), 3.06 (dd, \(J \) 6.6, 5.8, 1H, H-7), 2.73 (t, \(J \) 5.8, 1H, H-8), 2.68 (dd, \(J \) 15.5, 8.0, 1H, H-10), 2.60 (dd, \(J \) 15.5, 5.8, 1H, H-10), 2.43 (dt, \(J \) 14.8, 4.4, 1H, H-2), 2.04 (ddd, \(J \) 14.8, 9.5, 6.9, 1H, H-2), 1.81 (s, 3H, H-14); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta \) 177.2 (C-6), 174.7 (C-5), 171.1 (C-13), 170.4 (C-11), 135.85 (C arom.), 128.72 (CH arom.), 128.62 (CH arom.), 127.93 (CH arom.), 70.8 (C-9), 60.2 (C-1), 52.1 (C-3), 51.9 (C-12), 48.3 (C-4), 46.0 (C-8), 42.8 (N-CH\(_2\)), 39.2 (C-10), 38.7 (C-7), 31.1 (C-2), 23.5 (C-14); HRMS (ESI\(^+\)) \(\text{requires} \ 401.1705 \ [M + H]^+ \ 423.1532 \ [M + Na]^+ \ (C_{21}H_{25}N3O_6 \text{requires} \ 401.1707, C_{21}H_{23}N2NaO_6 \text{requires} \ 423.1527\).
34 – (±)-t-Butyl (2-(3-benzyl-2,4-dioxo-3-azabicyclo[3.2.0]hept-6-en-6-yl)ethyl)tosyl)carbamate

Triphenylphosphine (1.53 g, 5.8 mmol) and t-butyliosylcarbamate (1.05 g, 3.9 mmol) were dissolved in THF and cooled to 0 °C. DIAD (1.10 mL, 5.8 mmol) was added dropwise followed by addition of 16b (1.00 g, 3.9 mmol). The mixture was stirred at 0 °C for 30 min before warming to room temperature. After 24 h, the solvent was removed under reduced pressure to give a brown oil. Excess diethyl ether was added forming a white precipitate which was removed by filtration. The solvent was removed from the filtrate under reduced pressure to give a colourless oil which was purified by column chromatography (10% ethyl acetate/petroleum ether) giving the pure product 34 (0.96 g, 48%) as a colourless solid; m.p. (diethyl ether) 153-155 °C; IR \(\nu_{max}/cm^{-1}\) 2980, 1725, 1702, 1167, 1156; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.76 – 7.70 (m, 2H, CH arom.), 7.36 – 7.20 (m, 7H, CH arom.), 6.18 (d, \(J\) 0.9, 1H, H-7), 4.62 (d, \(J\) 15.1, 1H, PhCH\(_2\)), 4.58 (d, \(J\) 15.1, 1H, PhCH\(_2\)), 4.00 (ddd, \(J\) 14.5, 8.2, 7.0, 1H, H-1'), 3.88 (ddd, \(J\) 14.5, 8.2, 5.5, 1H, H-1'), 3.80 (d, \(J\) 3.0, 1H, H-5), 3.62 (m, 1H, H-1), 2.72 – 2.52 (m, 2H, H-2'), 2.43 (s, 3H, Ar-CH\(_3\)), 1.31 (s, 9H, -C(CH\(_3\))\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 175.0 (C=O), 174.3 (C=O), 150.0 (C=O), 144.4 (C arom.), 137.3 (C arom.), 136.0 (C arom.), 132.3 (C-7), 129.4 (CH arom.), 128.7 (CH arom.), 128.5 (CH arom.), 127.9 (CH arom.), 127.9 (CH arom.), 84.7 (-O(C(CH\(_3\)))\(_3\)), 48.8 (C-5), 44.4 (C-1), 44.0 (C-1'), 42.2 (PhCH\(_2\)), 30.9 (C-2'), 27.9 (-O(C(CH\(_3\)))\(_3\)), 21.7 (Ar-CH\(_3\)); HRMS (ESI\(^+\)) 533.1714 [M + Na]\(^+\) (C\(_{27}\)H\(_{30}\)N\(_2\)NaO\(_6\)S requires 533.1717).

40 – (±)-2-(3-Azabicyclo[3.2.0]hept-6-en-6-yl)ethan-1-ol

16a (1.00 g 5.98 mmol,) was dissolved in dry THF and cooled to 0 °C. A solution of lithium aluminium hydride (2.40 M in THF, 6.00 mL) was added dropwise forming a white precipitate. After addition was complete the reaction mixture was heated to 60 °C and left for 18 h. The reaction was quenched with addition of water (1.0 mL) and aqueous sodium hydroxide solution (2.0 M, 0.5 mL), stirred for 10 min and then filtered, washed with THF and the filtrate dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give the
pure product 40 (0.61 g, 73%) as a yellow oil; IR, v_{max}/cm$^{-1}$ 3280, 2928, 2863, 1631, 1527, 1416; 1H NMR (400 MHz, CDCl$_3$) δ 5.67 (s, 1H, H-7), 3.68 (td, J 6.4, 1.0, 2H, H-1'), 3.15 – 3.09 (m, 3H, H-5 & NH/OH), 3.05 (m, 1H, H-1), 2.80 (d, J 11.9, 1H, H-4), 2.69 (d, J 11.9, 1H, H-2), 2.29 (dd, J 11.9, 1.8, 1H, H-2), 2.27 (dd, J 11.9, 1.9, 1H, H-4), 2.22 – 2.16 (m, 2H, H-2'); 13C NMR (101 MHz, CDCl$_3$) δ 147.5 (C-6), 129.9 (C-7), 59.8 (C-1'), 48.5 (C-5), 46.6 (C-2), 45.7 (C-4), 44.3 (C-1), 32.8 (C-2'); HRMS (ESI$^+$) 152.1076 [M + H]$^+$, (C$_9$H$_{14}$NO requires 152.1070).

S1 – (±)-6-(4-Hydroxybutyl)-3-azabicyclo[3.2.0]hept-6-ene-2,4-dione

Maleimide (1.46 g, 15 mmol) and 5-hexyn-1-ol (2.5 mL, 22.5 mmol) were dissolved in degassed acetonitrile (150 mL) and irradiated with a 125 W UV lamp. After 16 h, the solvent was removed under reduced pressure and the crude product purified by column chromatography (50% ethyl acetate/petroleum ether) to give the pure product S1 (1.67 g, 39%) as a colourless oil; IR, v_{max}/cm$^{-1}$ 3343, 3234, 2937, 1762, 1703; 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (s, 1H, NH), 6.11 (m, 1H, H-7), 3.71 (m, 1H, H-5), 3.68 – 3.58 (m, 3H, H-4' & H-1'), 2.26 – 2.18 (m, 2H, H-1'), 1.63 – 1.51 (m, 4H, H-2' & H-3'); 13C NMR (101 MHz, CDCl$_3$) δ 175.6 (C=O), 174.9 (C=O), 153.5 (C-6), 129.5 (C-7), 62.3 (C-4'), 50.0 (C-5), 45.3 (C-1), 32.0 (C-2'), 29.7 (C-1'), 22.2 (C-3'); HRMS (ESI$^+$) 196.0694 [M + H]$^+$, 218.0796 [M + Na]$^+$ (C$_{10}$H$_{14}$NO requires 196.0968, C$_{10}$H$_{13}$NNaO$_3$ requires 218.0788).

43 – (±)-3-Benzyl-6-(4-hydroxybutyl)-3-azabicyclo[3.2.0]hept-6-ene-2,4-dione

S1 (1.67 g, 8.55 mmol), benzyl bromide (1.12 mL, 9.41 mmol), potassium carbonate (1.77 g, 12.8 mmol) and tetrabutylammonium iodide (0.16 g, 0.43 mmol) were dissolved in acetone (20 mL) and the resulting suspension heated at reflux for 18 h. After cooling to room temperature, the solids were removed by filtration and the solvent removed from the filtrate under reduced pressure to give the crude product. The crude product was purified by column chromatography (50% ethyl acetate/petroleum ether) to give the pure product 43 as a pale yellow oil (1.55 g, 64%); IR, v_{max}/cm$^{-1}$ 3447 (br), 2937, 1764, 1698; 1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.14 (m, 5H, CH arom.) 6.08 (m, 1H, H-7), 4.62 (d, J 14.2, 1H, PhCH$_2$), 4.57 (d, J 14.2, 1H, PhCH$_2$),
3.68 (m, 1H, H-1/5), 3.61 (m, 1H, H-1/5), 3.56 (t, J 6.0, 2H, H-4’), 2.21 – 2.14 (m, 2H, H-1’), 1.57 – 1.41 (m, 4H, H-2’ & H-3’); 13C NMR (101 MHz, CDCl3) δ 175.3 (C=O), 174.5 (C=O), 153.7 (C-6), 135.9 (C arom.), 129.7 (C-7), 129.7 (CH arom.), 128.6 (CH arom.), 128.47 (C-1/5), 48.6 (C-1/5), 42.0 (PhCH2), 32.0 (C-3’), 29.6 (C-1’), 22.3 (C-2’); HRMS (ESI+) 286.1448 [M + H]+ (C17H20NO3 requires 286.1438).

44 – (±)-4-(3-Benzyl-2,4-dioxo-3-azabicyclo[3.2.0]hept-6-en-6-yl)butanal

43 (1.56 g, 5.43 mmol) was dissolved in DCM (20 mL) and cooled to 0 °C. Dess-Martin periodinane (2.77 g, 6.52 mmol) was added dropwise and after 1 h the solution warmed to room temperature. After a further 3 h of stirring at room temperature, the reaction was quenched by the addition of sodium hydrogen carbonate solution (10 mL) and extracted with diethyl ether (3 × 10 mL). The combined organic layers were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give the crude product. Column chromatography (50% ethyl acetate/petroleum ether) was used to afford the pure product 44 as a colourless oil (0.61 g, 40%); IR Ṽmax/cm⁻¹ 2935 (C–H), 1765 (C=O), 1694 (C=O); 1H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H, H-4’), 7.37 – 7.21 (m, 5H, CH arom.), 6.10 (s, 1H, H-7), 4.62 (d, J 14.2, 1H, PhCH2), 4.57 (d, J 14.2, 1H, PhCH2), 3.68 (d, J 3.1, 1H, H-5), 3.62 (m, 1H, H-1), 2.32 (t, J 7.3, 2H, H-3’), 2.17 (t, J 7.3, 2H, H-1’), 1.75 (app. p, J 7.3, 2H, H-2’); 13C NMR (101 MHz, CDCl3) δ 201.4 (C-4’), 175.1 (C-2/4), 174.3 (C-2/4), 152.8 (C-6), 135.8 (C-7), 130.4 (C arom.), 128.6 (CH arom.), 128.5 (CH arom.), 48.6 (C-5), 43.9 (C-1), 42.8 (C-3’), 42.0 (PhCH2), 29.2 (C-1’), 18.4 (C-2’); HRMS (ESI+) 284.1279 [M + H]+, 306.1107 [M + Na]+ (C17H18NO3 requires 284.1281, C17H17NNaO3 requires 306.1101).

46 – (±)-3-Benzyl-3-azaspiro[bicyclo[3.2.0]heptane-6,1′-cyclopentane]-2,2',4-trione

Aldehyde 44 (0.12 g, 0.42 mmol) was dissolved in DCM (3.0 mL) and stirred at room temperature. Tetrafluoroboric acid (0.086 mL, 0.63 mmol) was added dropwise causing the solution to turn bright yellow. After 20 min the reaction was quenched by addition of saturated sodium hydrogen carbonate solution (3 mL). The aqueous layer was extracted with DCM (3 ×
5 mL), and the combined organic extracts dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give the crude product. Column chromatography (40% ethyl acetate/petroleum ether) afforded the pure product 46 (13.5 mg, 11%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2924, 2852, 1738, 1702; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.48 – 7.19 (m, 5H, CH arom.), 4.69 (s, 2H, PhCH\(_2\)), 3.33 (d, \(J = 6.7 \), 1H, H-6), 3.22 (ddd, \(J = 10.4, 6.7, 4.6 \), 1H, H-9), 2.72 (ddd, \(J = 12.8, 10.4, 1.0 \), 1H, H\(_6\)-10), 2.26 (t, \(J = 7.4 \), 2H, H-2), 1.95 (m, 1H, H-4), 1.86 (dd, \(J = 12.8, 4.6 \), 1H, H\(_6\)-10), 1.71 (m, 1H, H-3), 1.55 (m, 1H, H-3); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 218.2 (C-1), 178.7 (C-8), 176.0 (C-7), 135.8 (C arom.), 128.9 (CH arom.), 128.7 (CH arom.), 128.1 (CH arom.), 49.8 (C-5), 43.2 (C-6), 42.6 (PhCH\(_2\)), 36.0 (C-2), 33.5 (C-9), 32.9 (C-4), 32.1 (C-10), 18.6 (C-3); HRMS (ESI\(^+\)) 306.1109 [M + Na]\(^+\) (C\(_{17}\)H\(_{17}\)NNaO\(_3\) requires 306.1101).
4.2.1. General Procedures for Prins Cyclisations

For the products formed from these reactions, IUPAC rules have been used for naming, however a simplified numbering system has been used to facilitate NMR-assignment:

![IUPAC numbering system used for compound names and NMR-assignment](image)

Figure 21 – Numbering systems used for characterisation of products from the Prins cyclisations of cyclobutenes

4.2.1.1. Prins–Ritter general procedure (A):

Homoallylic alcohol (0.5 mmol) and aldehyde (0.6 mmol) were dissolved in solvent (5 mL) and trifluoromethanesulfonic acid (1 mmol) added dropwise at room temperature. After 20-30 min, the reaction was quenched with sodium hydrogen carbonate (4 mL) before extracting with DCM (3 × 5 mL). The combined organic layers were dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure to yield the crude product which was purified by column chromatography.

4.2.1.2. Prins–Fluoride general procedure (B):

To a solution of homoallylic alcohol (0.58 mmol) and aldehyde (0.70 mmol) in DCM (5 mL), was added trifluoromethanesulfonic acid (0.88 mmol) dropwise. The resulting solution was stirred until completion by TLC. The reaction mixture was quenched with saturated sodium hydrogen carbonate solution (5 mL), extracted with DCM (3 × 5 mL), and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude products were purified by column chromatography.

4.2.1.3. Aza-Prins–Ritter general procedure (C):

34 (0.29 mmol) was dissolved in acetonitrile forming a suspension. Trifluoromethanesulfonic acid (0.44 mmol) was added dropwise and the suspension stirred vigorously. After ca. 5 min, 34 had dissolved completely, giving a colourless solution, and TLC confirmed an increase in polarity associated with Boc-deprotection. Aldehyde (0.35 mmol) was then added dropwise forming a yellow solution. Once complete, the reaction was quenched with sat. sodium hydrogen carbonate (2 mL). The product was extracted with DCM (3 × 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the crude product.
4.2.2. Prins–Ritter Reactions

22b - (±)-N-((3aS,3bS,4S,7aR,7bS)-2-benzyl-1,3-dioxo-4-phenyloctahydropyrano[3′,4′:3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Prepared according to the general procedure A using 16b and benzaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 20 min reaction time. Purified by column chromatography (75% ethyl acetate/petroleum ether) to give the product 22b (0.10 g, 48%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3298, 1770, 1698, 1659; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.43 – 7.17 (m, 10H, \(\text{C}-\text{H arom.} \)), 5.56 (s, 1H, \(\text{N}-\text{H} \)), 4.79 (d, \(J = 6.9 \), 1H, \(\text{H}-9 \)), 4.64 (s, 2H, \(\text{N}^-\text{C}-\text{H} \)), 4.06 – 3.90 (m, 2H, \(\text{H}-1 \)), 3.37 (d, \(J = 6.6 \), 1H, \(\text{H}-4 \)), 3.27 (dd, \(J = 6.9 \), 5.3, 1H, \(\text{H}-8 \)), 3.18 (dd, \(J = 6.6 \), 5.3, 1H, \(\text{H}-7 \)), 2.46 (dt, \(J = 14.6 \), 4.6, 1H, \(\text{H}-2 \)), 2.11 (ddd, \(J = 14.6 \), 9.9, 6.7, 1H, \(\text{H}-2 \)), 1.82 (s, 3H, \(\text{H}-11 \)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 177.2 (\(\text{C}-6 \)), 174.4 (\(\text{C}-5 \)), 170.7 (\(\text{C}-10 \)), 140.2 (\(\text{C}-\text{arom.} \)), 136.0 (\(\text{C}-\text{arom.} \)), 128.9 (\(\text{C}-\text{H arom.} \)), 128.6 (\(\text{C}-\text{H arom.} \)), 127.9 (\(\text{C}-\text{H arom.} \)), 125.7 (\(\text{C}-\text{arom.} \)), 74.7 (\(\text{C}-9 \)), 60.9 (\(\text{C}-1 \)), 52.8 (\(\text{C}-3 \)), 48.8 (\(\text{C}-4 \)), 47.3 (\(\text{C}-8 \)), 42.9 (\(\text{N}^-\text{C}-\text{H} \)), 38.7 (\(\text{C}-7 \)), 30.7 (\(\text{C}-2 \)), 25.3 (\(\text{C}-11 \)); HRMS (ESI\(^+\)) 405.1812 [M + H]\(^+\) 427.1631 [M + Na]\(^+\) (\(\text{C}_{24}\text{H}_{25}\text{N}_2\text{O}_4 \) requires 405.1809, \(\text{C}_{24}\text{H}_{24}\text{N}_2\text{NaO}_4 \) requires 427.1628).

22a - (±)-N-((3aS,3bS,4S,7aR,7bS)-2-benzyl-1,3-dioxo-4-phenethyloctahydropyrano[3′,4′:3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Prepared according to the general procedure A using 16b and hydrocinnamaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 20 min reaction time. Purified by column chromatography (70-90% ethyl acetate/petroleum ether) to give the product 22a (0.16 g, 75%) as a white solid; m.p. 159-160 °C (from methanol); IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3299, 1770, 1699, 1660; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.40 – 7.12 (m, 10H, \(\text{C}-\text{H arom.} \)), 5.74 (s, 1H, \(\text{N}-\text{H} \)), 4.63 (s, 2H, \(\text{Ph}^-\text{C}-\text{H} \)), 3.90 – 3.77 (m, 2H, \(\text{H}-1 \)), 3.60 (dd, \(J = 8.5 \), 6.7, 4.9, 1H, \(\text{H}-9 \)), 3.30 (dd, \(J = 6.5 \), 0.9, 1H, \(\text{H}-4 \)), 2.89 (dd, \(J = 6.5 \), 5.3, 1H, \(\text{H}-7 \)), 2.81 – 2.63 (m, 2H, \(\text{H}-11 \)), 2.61 (dd, \(J = 6.7 \), 5.3, 1H, \(\text{H}-8 \)), 2.45 (dt, \(J = 14.6 \), 4.0, 1H, \(\text{H}-2 \)), 2.01 – 1.82 (m, 2H, \(\text{H}-2 \), \(\text{H}-10 \)), 1.80 (s, 3H, \(\text{C}-\text{H} \)), 1.79 – 1.72.
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

1H NMR (101 MHz, CDCl₃) δ 177.5 (C-6), 174.6 (C-5), 170.6 (C-13), 141.4 (C arom.), 136.0 (C arom.), 128.8 (CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 128.4 (CH arom.), 128.0 (CH arom.), 126.0 (CH arom.), 72.7 (C-9), 60.1 (C-1), 52.3 (C-3), 48.7 (C-4), 47.6 (C-8), 42.7 (PhCH₂), 38.5 (C-7), 35.9 (C-10), 31.4 (C-11), 30.4 (C-2), 23.5 (CH₃); HRMS (ESI⁺) 433.2122 [M + H]⁺ 455.1941 [M + Na]⁺ (C₂₆H₂₉N₂O₄ requires 433.2122, C₂₆H₂₈N₂NaO₄ requires 455.1947).

22c - (t)-N-[(3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-ethynyl-1,3-dioxooctahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl]acetamide

[Image of the compound 22c]

Prepared according to general procedure A using 16b and 3,3-diethoxy-1-propyne (1.2 equiv.) and acetonitrile solvent at room temperature and 21 h reaction time. After the first 2 h, a further portion of triflic acid (3 equiv.) was added. Product purified by column chromatography (40-60% ethyl acetate/petroleum ether) to give the required product 22c (73 mg, 36%, d.r. 5:1) as a yellow oil; IR v_max/cm⁻¹ 3273, 2926, 2852, 2125, 1771, 1699, 1661; 1H NMR (400 MHz, CDCl₃) δ 7.43 – 7.21 (m, 5H, CH arom.), 6.20 (s, 1H, NH), 4.91 (dd, J 3.4, 2.2, 1H, H-9), 4.73 (d, J 14.0, 1H, PhCH₂), 4.64 (d, J 14.0, 1H, PhCH₂), 3.93 (dd, J 7.7, 4.7, 2H, H-1), 3.48 (t, J 6.5, 1H, H-7), 3.15 (dd, J 6.5, 1.0, 1H, H-4), 2.71 (dd, J 6.5, 3.4, 1H, H-8), 2.60 (d, J 2.2, 1H, H-11), 2.25 (dt, J 15.0, 4.7, 1H, H-2), 1.94 (dt, J 15.0, 7.7, 1H, H-2), 1.79 (s, 3H, CH₃); 13C NMR (101 MHz, CDCl₃) δ 177.2 (C-6), 175.6 (C-6), 169.6 (C=O), 135.5 (C arom.), 128.7 (CH arom.), 128.6 (CH arom.), 128.1 (CH arom.), 79.3 (C-10), 75.3 (C-11), 64.8 (C-9), 63.5 (C-1), 51.0 (C-3), 46.7 (C-8), 46.5 (C-4), 42.8 (PhCH₂), 35.9 (C-7), 35.5 (C-2), 23.2 (CH₃); HRMS (ESI⁺) 375.1329 [M + Na]⁺ (C₂₀H₂₀N₂O₄ requires 375.1315).
22d - (±)-N-[(3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-(but-3-en-1-yl)-1,3-dioxooctahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl]acetamide

Following general procedure A, the reaction was conducted with 16b and 4-pentenal (1.2 equiv.). The product was purified by column chromatography (75% ethyl acetate/petroleum ether) to give 22d (94.4 mg, 42%) as a colourless oil: \(\text{IR } \nu_{\text{max}}/\text{cm}^{-1} 3298, 2973, 2927, 2873, 1769, 1700, 1665; \text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.40 - 7.20 \text{ (m, 5H, CH arom.)}, 5.77 \text{ (ddt, } J 16.9, 10.2, 6.6, 1\text{H, H-12}), 5.56 \text{ (s, 1H, NH)}, 5.11 - 4.90 \text{ (m, 2H, H-13), 4.64 (s, 2H, PhCH}_2) \text{, 3.84 (dd, } J 8.8, 4.1, 2\text{H, H-1}), 3.62 \text{ (m, 1H, H-9), 3.32 (d, } J 6.5, 1\text{H, H-4}), 2.95 \text{ (t, } J 6.5, 1\text{H, H-7), 2.58 (t, } J 6.5, 1\text{H, H-8), 2.47 (dt, } J 14.6, 4.1, 1\text{H, H-2), 2.24 - 2.08 (m, 2H, H-11), 2.02 (m, 1H, H-2), 1.81 (s, 3H, CH}_3), 1.72 - 1.46 (m, 2H, H-10); \text{C NMR (101 MHz, CDCl}_3) \delta 177.4 (\text{C-6), 174.6 (C-5), 170.4 (C=O), 137.7 (C-12), 136.0 (C arom.), 128.8 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 115.3 (C-13), 73.1 (C-9), 60.2 (C-1), 52.4 (C-3), 48.6 (C-4), 47.7 (C-8), 42.7 (PhCH}_2), 38.5 (C-7), 33.6 (C-10), 30.4 (C-2), 29.4 (C-11), 23.5 (CH}_3); \text{HRMS (ESI+)} 405.1786 \text{ [M + Na]+ (C}_22\text{H}_26\text{N}_2\text{O}_4 \text{ requires 405.1785).}

22e - (±)-N-[(3aS,3bS,4S,7aR,7bS)-2-Benzyl-1,3-dioxo-4-propyloctahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl]acetamide

Prepared according to the general procedure A using 16b and butryaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 30 min reaction time. Product purified by column chromatography (50% ethyl acetate/petroleum ether) to give the required product 22e as a colourless oil (129 mg, 60%); \(\text{IR } \nu_{\text{max}}/\text{cm}^{-1} 3300, 2957, 2871, 1768, 1701, 1662; \text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.42 - 7.38 \text{ (m, 2H, CH arom.)}, 7.34 - 7.25 \text{ (m, 3H, CH arom.), 5.59 (s, 1H, NH), 4.67 (s, 2H, PhCH}_2), 3.86 (dd, } J 8.8, 4.0, 2\text{H, H-1), 3.64 (m, 1H, H-9), 3.35 (dd, } J 6.5, 1.0, 1\text{H, H-4), 2.97 (dd, } J 6.5, 5.2, 1\text{H, H-7), 2.58 (m, 1H, H-8), 2.51 (ddd, } J 14.7, 4.2, 1.0, 1\text{H, H-2), 2.05 (m, 1H, H-2), 1.84 (s, 3H, CH}_3), 1.67 - 1.29 (m, 4H, H-10 & H-11), 0.94 (t, } J
7.0, 3H, H-12); \textbf{13C NMR} (101 MHz, CDCl$_3$) \(\delta\) 177.5 (C-6), 174.6 (C-5), 170.5 (C=O), 136.0 (C arom.), 128.9 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 73.7 (C-9), 60.3 (C-1), 52.5 (C-3), 48.7 (C-4), 47.9 (C-8), 42.8 (PhCH$_2$), 38.7 (C-7), 36.6 (C-10/11), 30.3 (C-2), 23.5 (CH$_3$), 18.7 (C-10/11), 14.0 (C-12); \textbf{HRMS} (ESI$^+$) 393.1800 [M + Na]$^+$ (C$_{21}$H$_{26}$N$_2$O$_4$ requires 393.1785).

22f - (±)-N-[(3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-(tert-butyl)-1,3-dioxooctahydropyran[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl]acetamide

Prepared according to the general procedure A using 16b and trimethylacetaldehyde (1.2 equiv.) acetonitrile solvent at room temperature and 30 min reaction time. Product purified by column chromatography (50-80% ethyl acetate/petroleum ether) to give the required product 22f (102 mg, 46%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1}\) 3290, 2955, 1769, 1698, 1660; \textbf{1H NMR} (400 MHz, CDCl$_3$) \(\delta\) 7.45 – 7.34 (m, 2H, CH arom.), 7.34 – 7.21 (m, 3H, CH arom.), 5.32 (s, 1H, NH), 4.68 (d, J 13.9, 1H, PhCH$_2$), 4.64 (d, J 13.9, 1H, PhCH$_2$), 3.98 – 3.77 (m, 2H, H-1), 3.35 (d, J 6.5, 1H, H-4), 3.19 (d, J 9.2, 1H, H-9), 2.89 (dd, J 6.5, 5.1, 1H, H-7), 2.72 (dd, J 9.2, 5.1, 1H, H-8), 2.53 (m, 1H, H-2), 2.01 (ddd, J 14.5, 10.6, 8.2, 1H, H-2), 1.84 (s, 3H, CH$_3$), 0.90 (s, 9H, H-11); \textbf{13C NMR} (101 MHz, CDCl$_3$) \(\delta\) 177.2 (C-6), 174.2 (C-5), 170.5 (C=O), 136.2 (C arom.), 128.9 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 81.8 (C-9), 62.2 (C-1), 53.3 (C-3), 48.9 (C-4), 44.4 (C-8), 42.8 (PhCH$_2$), 39.6 (C-7), 34.1 (C-10), 28.8 (C-2), 25.6 (C-11), 23.6 (CH$_3$); \textbf{HRMS} (ESI$^+$) 385.2127 [M + H]$^+$ 408.1983 [M + Na]$^+$ (C$_{22}$H$_{29}$N$_2$O$_4$ requires 385.2122, C$_{22}$H$_{29}$N$_2$NaO$_4$ requires 408.2020).

22g - (±)-N-[(3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-cyclopropyl-1,3-dioxooctahydropyran[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl]acetamide

Prepared according to the general procedure A using 16b and cyclopropanecarboxaldehyde (1.2 equiv.) acetonitrile solvent at room temperature and 50 min reaction time. Product purified by column chromatography (20-50% ethyl acetate/petroleum ether) to give the required
product 22g (92 mg, 43%) as a colourless oil; IR ν max/cm⁻¹ 3288, 2877, 1769, 1700, 1663; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H, CH arom.), 7.32 – 7.23 (m, 3H, CH arom.), 5.67 (s, 1H, NH), 4.67 (d, J 14.1, 1H, PhCH₂), 4.63 (d, J 14.1, 1H, PhCH₂), 3.95 (td, J 11.0, 5.0, 1H, H-1), 3.84 (ddd, J 11.0, 6.4, 3.6, 1H, H-1), 3.30 (d, J 6.5, 1H, H-4), 3.04 – 2.88 (m, 2H, H-7 & H-9), 2.78 (t, J 5.5, 1H, H-8), 2.47 (ddd, J 14.7, 5.0, 3.6, 1H, H-2), 1.98 (m, 1H, H-2), 1.82 (s, 3H, CH₃), 1.06 (qt, J 8.3, 4.9, 1H, H-10), 0.61 – 0.49 (m, 2H, H-11), 0.36 (m, 1H, H-11), 0.25 (m, 1H, H-11); ¹³C NMR (101 MHz, CDCl₃) δ 177.4 (C₆), 174.8 (C₅), 170.2 (C=O), 135.9 (C arom.), 128.9 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 78.9 (C₉), 60.1 (C-1), 52.3 (C-3), 48.4 (C-4), 47.1 (C-8), 42.8 (PhCH₂), 39.0 (C-7), 31.3 (C-2), 23.6 (CH₃), 14.3 (C-10), 3.1 (C-11), 2.2 (C-11); HRMS (ESI⁺) 369.1811 [M + H]⁺ 391.1637 [M + Na]⁺ (C₂₅H₂₆N₂O₄ requires 391.1628).

22h - (±)-N-[(3aS,3bS,4S,5aR,7bS)-2-Benzyl-4-(4-methoxyphenyl)-1,3-dioxooctahydropyrano[3',4':3,4]cyclo-buta[1,2-c]pyrrolo-7a(1H)-yl]acetamide

Prepared according to the general procedure A using 16b and para-methoxybenzaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 30 min reaction time. Purified by column chromatography (60% ethyl acetate/petroleum ether) to give the product 22h (0.11 g, 51%) as a colourless oil; IR ν max/cm⁻¹ 3299, 1772, 1698, 1659; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 7H, CH arom.), 6.94 – 6.89 (m, 2H, CH arom.), 6.14 (s, 1H, NH), 5.26 (d, J 2.9, 1H, H-9), 4.67 (d, J 14.1, 1H, PhCH₂), 4.58 (d, J 14.1, 1H, PhCH₂), 4.18 – 4.06 (m, 2H, H-1), 3.81 (s, 3H, -OCH₃), 3.28 (t, J 6.0, 1H, H-4), 3.20 (dd, J 6.0, 0.9, 1H, H-7), 2.93 (ddd, J 6.0, 2.9, 0.9, 1H, H-8), 2.52 (dt, J 14.6, 5.9, 1H, H-2), 1.92 (ddd, J 14.6, 6.9, 5.9, 1H, H-2), 1.84 (s, 3H, H-11); ¹³C NMR (101 MHz, CDCl₃) δ 177.4 (C₆), 175.9 (C₅), 169.6 (C-10), 159.3 (C arom.), 135.6 (C arom.), 130.9 (CH arom.), 128.7 (CH arom.), 128.6 (CH arom.), 128.1 (CH arom.) 127.0 (CH arom.), 113.8 (CH arom.), 73.9 (C₉), 63.3 (C-1), 55.2 (-OCH₃), 52.4 (C-3), 48.4 (C-8), 46.0 (C-7), 42.6 (PhCH₂), 35.1 (C-4), 34.1 (C-2), 23.5 (C-11); HRMS (ESI⁺) 435.1905 [M + H]⁺ 457.1727 [M + Na]⁺ (C₂₅H₂₇N₂O₅ requires 435.1914, C₂₅H₂₆N₂NaO₅ requires 457.1734).
22i - (±)-N-((3aS,3bS,4S,7aR,7bS)-2-Benzyl-1,3-dioxo-4-(4-(trifluoromethyl)phenyl)octahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Prepared according to the general procedure A using 16b and para-trifluoromethylbenzaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 21 h reaction time. Purified by column chromatography (40% ethyl acetate/petroleum ether) to give the product 22i (80 mg, 40%) as a white solid; m.p. (methanol) 199-200 °C; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3456, 1771, 1699, 1643; \(^1\)H NMR (400 MHz, CD\(_3\)OD) \(\delta \) 7.63 (d, \(J = 8.7 \), 2H, CH arom.), 7.60 (d, \(J = 8.7 \), 2H, CH arom.), 7.39 – 7.14 (m, 5H, CH arom.), 4.90 (d, \(J = 8.4 \), 1H, H-9), 4.61 (d, \(J = 14.5 \), 1H, PhCH\(_2\)), 4.56 (d, \(J = 14.5 \), 1H, PhCH\(_2\)), (ddd, \(J = 11.0, 7.0, 2.4 \), 1H, H-1), 4.37 (d, \(J = 6.6 \), 1H, H-4), 3.35 (dd, \(J = 6.6, 5.2, 1H, H-7 \)), 3.24 (dd, \(J = 8.4, 5.2, 1H, H-8 \)), 2.48 (ddd, \(J = 14.8, 5.4, 2.4, 1H, H-2 \)), 2.35 (ddd, \(J = 14.8, 11.0, 7.0, 1H, H-2 \)), 1.84 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, CD\(_3\)OD) \(\delta \) 178.1 (C-6), 175.2 (C-5), 172.6 (C=O), 145.6 (C arom.), 136.1 (C arom.), 129.3 (q, \(J = 32.4 \), C-10) 128.2 (CH arom.), 127.9 (CH arom.), 127.3 (CH arom.), 126.1 (CH arom.), 124.9 (q, \(J = 3.82 \), C-CF\(_3\)), 73.5 (C-9), 61.1 (C-1), 52.7 (C-3), 49.2 (C-4), 47.6 (C-8), 42.2 (N-CH\(_2\)), 38.4 (C-7), 29.0 (C-2), 21.6 (C-11); HRMS (ESI\(^+\)) 473.1686 [M + H]\(^+\) requires 473.1643, 495.1506 [M + Na]\(^+\) (C\(_{25}\)H\(_{24}\)F\(_3\)N\(_2\)O\(_4\) requires 473.1643, C\(_{25}\)H\(_{23}\)F\(_3\)N\(_2\)NaO\(_4\) requires 495.1502).

22j - (±)-N-((3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-(3,5-dimethoxyphenyl)-1,3-dioxooctahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Prepared according to the general procedure A using 16b and 3,5-dimethoxybenzaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 1.5 h reaction time. Product purified by column chromatography (25% ethyl acetate/petroleum ether) to give the required
product 22j (66 mg, 24%) as an orange solid. IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3309, 2938, 1769, 1701, 1664, 1597; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.46 – 7.38 (m, 2H, CH arom.), 7.36 – 7.26 (m, 3H, CH arom.), 6.59 (d, \(J = 2.5, 2H, H-11 \)), 6.40 (t, \(J = 2.5, 1H, H-13 \)), 5.48 (s, 1H, N-H), 4.78 (m, 1H, H-9), 4.71 (d, \(J = 14.1, 1H, PhCH_2 \)), 4.67 (d, \(J = 14.1, 1H, PhCH_2 \)), 4.10 – 3.98 (m, 2H, H-1), 3.82 (s, 6H, -OCH\(_3\)), 3.44 (m, 1H, H-4), 3.31 – 3.26 (m, 2H, H-7 and H-8), 2.56 (dt, \(J = 14.6, 4.6, 1H, H-2 \)), 2.15 (m, 1H, H-2), 1.88 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 177.1 (C-6), 174.3 (C-5), 170.6 (C-O), 161.0 (C-12), 142.7 (C-10), 136.1 (C arom.), 128.9 (CH arom.), 128.6 (CH arom.), 127.9 (CH arom.), 103.4 (C-11), 100.1 (C-13), 74.4 (C-9), 60.9 (C-1), 55.5 (-OCH\(_3\)), 52.7 (C-3), 48.8 (C-4), 47.6 (C-8), 42.9 (PhCH\(_2\)), 38.8 (C-7), 30.6 (C-2), 23.6 (CH\(_3\)); HRMS (ESI\(^+\)) 487.1837 [M + Na\(^+\)] (C\(_{29}\)H\(_{29}\)N\(_2\)NaO\(_6\) requires 487.1840).

22k – (±)-N-(3aS,3bS,4S,7aR,7bS)-2-Benzyl-4-cyclohexyl-1,3-dioxoocahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-ylacetamide

Prepared according to the general procedure A using 16b and cyclohexanecarboxaldehyde (1.2 equiv.) and acetonitrile solvent at room temperature and 30 min reaction time. Product purified by column chromatography (50% ethyl acetate/petroleum ether) to give the required product 22k (105 mg, 44%) as a white solid; m.p. 147-149 °C (from ethyl acetate) IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3304, 2924, 2853, 1769, 1702, 1658; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.43 – 7.36 (m, 2H, CH arom.), 7.33 – 7.24 (m, 3H, CH arom.), 5.39 (s, 1H, N-H), 4.69 (d, \(J = 14.0, 1H, PhCH_2 \)), 4.64 (d, \(J = 14.0, 1H, PhCH_2 \)), 3.90 – 3.83 (m, 2H, H-1), 3.35 (d, \(J = 6.5, 1H, H-4 \)), 3.25 (t, \(J = 8.0, 1H, H-9 \)), 2.92 (dd, \(J = 6.5, 5.1, 1H, H-7 \)), 2.70 (dd, \(J = 8.0, 5.1, 1H, H-8 \)), 2.51 (dt, \(J = 15.1, 4.0, 1H, H-2 \)), 2.01 (m, 1H, H-2), 1.82 (s, 3H, CH\(_3\)), 1.95 – 1.60 (m, 6H, CH\(_2\)), 1.37 (m, 1H, H-10), 1.27 – 1.11 (m, 2H, CH\(_2\)), 1.03 – 0.81 (m, 2H, CH\(_2\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 177.2 (C-6), 174.4 (C-5), 170.4 (C-O), 136.1 (C arom.), 128.9 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 78.5 (C-9), 61.3 (C-1), 52.8 (C-3), 48.8 (C-4), 46.5 (C-8), 42.8 (PhCH\(_2\)), 42.6 (C-10), 39.1 (C-7), 29.6 (C-2), 29.4 (CH\(_3\)), 28.1 (CH\(_2\)), 26.5 (CH\(_2\)), 25.9 (CH\(_2\)), 25.7 (CH\(_2\)), 23.6 (CH\(_3\)); HRMS (ESI\(^+\)) 411.2272 [M + H\(^+\)] 433.2102 [M + Na\(^+\)] (C\(_{24}\)H\(_{31}\)N\(_2\)O\(_4\) requires 411.2278, C\(_{24}\)H\(_{30}\)N\(_2\)NaO\(_4\) requires 433.2098).
29a – (±)-N-((3aS,3bS,4S,7aR,7bS)-2-Methyl-1,3-dioxo-4-phenethylotahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Prepared according to the general procedure A using 16c and hydrocinnamaldehyde (1.2 equiv.), acetonitrile solvent at room temperature and 2 h reaction time. Product purified by column chromatography (50-75% ethyl acetate/petroleum ether) to give the required product 29a (280 mg, 95%) as a white solid; m.p. (methanol) 128-130 °C; IR ν_{max}/cm⁻¹ 2929, 1769, 1696; 1H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 2H, CH arom.), 7.16 – 7.09 (m, 3H, CH arom.), 5.55 (s, 1H, NH), 3.85 – 3.79 (m, 2H, H-1), 3.54 (ddd, J 8.5, 6.6, 5.1, 1H, H-9), 3.20 (d, J 6.4, 0.8, 1H, H-4), 2.94 (s, 3H, N-CH₃), 2.91 (dd, J 6.6, 5.5, 1H, H-8), 2.86 (dd, J 6.4, 5.5, 1H, H-7), 2.76 – 2.56 (m, 2H, H-10), 2.27 (dt, J 13.5, 3.4, 1H, H-2), 1.99 (m, 1H, H-2), 1.87 (s, 3H, CH₃), 1.87 – 1.65 (m, 2H, H-11); ¹³C NMR (101 MHz, CDCl₃) δ 177.9 (C=O), 175.2 (C=O), 170.7 (C=O), 141.4 (C arom.), 128.5 (CH arom.), 128.4 (CH arom.), 126.0 (CH arom.), 72.8 (C-9), 59.7 (C-1), 52.0 (C-3), 49.2 (C-4), 46.9 (C-8), 38.4 (C-7), 35.8 (C-11), 31.5 (C-2), 31.4 (C-10), 25.4 (N-CH₃), 23.8 (CH₃); HRMS (ESI⁺) 357.1819 [M + H]⁺ 379.1645 [M + Na]⁺ (C₂₀H₂₆N₂O₄ requires 357.1809, C₂₀H₂₆N₂O₄ requires 379.1628).

29b – (±)-N-((3aS,3bS,4S,7aR,7bS)-2-methyl-1,3-dioxo-4-phenethylotahydropyrano[3',4':3,4]cyclobuta[1,2-c]pyrrol-7a(1H)-yl)acetamide

Following general procedure A, the reaction was conducted with 16c and benzaldehyde dimethyl acetal. The product was purified by column chromatography (70% ethyl acetate/petroleum ether) to give 29b (0.12 g, 43%) as a yellow solid; m.p. (methanol) 186-188 °C; IR ν_{max}/cm⁻¹ 3253, 3067, 2849, 1776, 1698, 1554; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.17 (m, 5H, CH arom.), 5.56 (s, 1H, NH), 4.84 (d, J 6.0, 1H, H-9), 4.08 – 3.93 (m, 2H, H-1), 3.67 (t, J 6.0, 1H, H-8), 3.37 (d, J 7.0, 1H, H-4), 3.22 (dd, J 7.0, 6.0, 1H, H-7), 3.00 (s, 3H, H-10), 2.34 (dt, J 14.7, 4.5, 1H, H-2), 2.15 (ddd, J 14.7, 9.8, 6.5, 1H, H-2), 1.92 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 177.7 (C-6), 175.2 (C-5), 170.9 (C=O), 140.3 (C arom.), 128.6 (CH
30a \((\pm)-N\left\{(3aS,3bS,4S,7aR,7bS)-1,3\text{-dioxo-4-phenyloctahydropyrano[3',4':3,4]cyclobuta-}[1,2-c]\text{pyrrol}-7a(1H)-yl\right\}\text{acetamide}

Following general procedure A, the reaction was conducted with 16a and hydrocinnamaldehyde. The product was recrystallised from acetonitrile to give 30a (0.13 g, 42%) as a colourless solid; m.p. (acetonitrile) 231 – 232 °C; IR \(v_{\text{max/cm}}\) 3295, 3026, 3943, 3776, 1758, 1706; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 11.12 (s, 1H, NH), 7.84 (s, 1H, NHAc), 7.36 – 7.06 (m, 5H, CH arom.), 3.77 – 3.61 (m, 2H, H-1), 3.56 (m, 1H, H-9), 3.19 (s, 1H, H-4), 2.88 – 2.76 (m, 2H, H-7 & H-8), 2.70 – 2.55 (m, 2H, H-11), 2.42 (m, 1H, H-2), 1.99 (ddd, J 14.3, 11.7, 6.9, 1H, H-2), 1.73 (s, 3H, CH\(_3\)), 1.72 – 1.52 (m, 2H, H-10); \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)) \(\delta\) 180.4 (C-6), 176.8 (C-5), 170.2 (C=O), 142.3 (C arom.), 128.7 (CH arom.), 126.2 (CH arom.), 71.9 (C-9), 59.9 (C-1), 51.8 (C-3), 51.1 (C-4), 47.0 (C-8), 36.7 (C-10), 31.3 (C-11), 29.5 (C-2), 23.6 (CH\(_3\)); HRMS (ESI\(^+\)) 365.1486 [M + Na\(^+\)] (C\(_{19}\)H\(_{22}\)N\(_2\)NaO\(_4\) requires 365.1472).

30b \((\pm)-N\left\{(3aS,3bS,4S,7aR,7bS)-1,3\text{-dioxo-4-phenyloctahydropyrano[3',4':3,4]cyclobuta[1,2-c]-pyrrol-7a(1H)-yl\right\}\text{acetamide}

Following general procedure A, the reaction was conducted with 16a and benzaldehyde. The product was recrystallised from acetonitrile to give 30b (76.5 mg, 27%) as a colourless solid; m.p. (acetonitrile) 261-263 °C; IR \(v_{\text{max/cm}}\) 3237, 1759, 1708; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 11.1 (s, 1H, NH), 7.94 (s, 1H, NHAc), 7.48 – 7.19 (m, 5H, CH arom.), 4.77 (d, J 8.6, 1H, H-9), 3.96 (m, 1H, H-1), 3.86 (ddd, J 11.7, 10.3, 5.2, 1H, H-1), 3.31 (ddd, J 6.6, 0.9, 1H, H-4), 3.24 (ddd, J 8.6, 5.2, 1H, H-8), 3.16 (ddd, J 6.6, 5.2, 1H, H-7), 2.54 (m, 1H, H-2), 2.24 (ddd, J 14.4, 11.7, 7.0, 1H, H-2), 1.77 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)) \(\delta\) 179.5 (C-6), 176.3 (C-5), 169.8 (C=O), 141.4 (C arom.), 128.1 (CH arom.), 127.3 (CH arom.), 125.9 (CH arom.).
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

arom.), 73.4 (C-9), 60.9 (C-1), 52.1 (C-3), 50.7 (C-4), 47.5 (C-8), 39.6 (C-7) 28.5 (C-2), 23.2 (CH3); HRMS (ESI+): 315.1335 [M + H]+ 337.1155 [M + Na]+ (C17H18N2O4 requires 315.1339, C17H18F2Na4O4 requires 337.1159).

31a – (3aS,3bS,4R,7bS)-2-benzyl-4-phenethyl-3b,4,6,7b-tetrahydropyrano[3′,4′:3,4]cyclobuta-[1,2-c]pyrrole-1,3(2H,3aH)-dione

Prepared according to the general procedure A using 16b and hydrocinnamaldehyde (1.2 equiv.) and DCM solvent at room temperature and 24 h reaction time. Purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 31a (0.09 g, 50%) as a white solid; m.p. (methanol) 123-124 °C; IR νmax/cm−1 3027, 1771, 1703; 1H NMR (400 MHz, CDCl3) δ 7.45–7.19 (m, 10H, C arom.), 5.76 (tt, J 3.0, 1.5, 1H, H-2), 4.73 (s, 2H, N-C2H5), 4.44 (dt, d, J 16.9, 3.0, 1.5, 1H, H-1), 4.27 (tt, J 16.9, 3.0, 1.5, 1H, H-1), 3.95 (ddt, J 15.5, 7.4, 5.6, 1H, H-9), 3.87–3.76 (m, 3H, H-8 & H-11), 1.92 (m, 2H, H-10); 13C NMR (101 MHz, CDCl3) δ 176.7 (C-6), 174.2 (C-5), 141.4 (C arom.), 135.7 (C arom.), 130.9 (C-3), 128.8 (CH arom.), 128.7 (CH arom.), 128.5 (CH arom.), 128.5 (CH arom.), 128.0 (CH arom.), 126.0 (CH arom.), 119.2 (C-2), 75.2 (C-9), 66.7 (C-1), 51.4 (C-7), 50.6 (C-4), 42.8 (N-CH2), 42.7 (C-8), 35.3 (C-10), 30.9 (C-11); HRMS (ESI+) 374.1761 [M + H]+ 396.1580 [M + Na]+ (C24H24NO3 requires 374.1751, C24H23NNaO3 requires 396.1570).

57 – (±)-N-(3aS,3bS,4S,7aR,7bS)-2-benzyl-1,3-dioxo-4-phenyloctahydropyrano[3′,4′:3,4]cyclobuta-[1,2-c]pyrrol-7a(1H)-yl)benzamide

Prepared according to the general procedure A using 16b and benzaldehyde (1.2 equiv.) and benzonitrile solvent at room temperature and 30 min reaction time. Purified by column chromatography (40% ethyl acetate/petroleum ether) to give the product 57 (0.12 g, 53%) as a white solid; m.p. (methanol) 195-196 °C; IR νmax/cm−1 3347, 1769, 1698, 1663; 1H NMR (400
MHz, CDCl₃) δ 7.61 – 7.13 (m, 15H, CH arom.), 6.16 (s, 1H, NH), 4.86 (d, J 6.5, 1H, H-9), 4.65 (s, 2H, CH₂Ph), 4.06 – 3.98 (m, 2H, H-1), 3.43 (d, J 6.5, 1H, H-4), 3.35 (dd, J 6.5, 5.3, 1H, H-8), 3.26 (dd, J 6.5, 5.3, 1H, H-7), 2.65 (dt, J 14.8, 4.5, 1H, H-2), 2.21 (ddd, J 14.6, 9.5, 7.2, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃) δ 177.1 (C-6), 174.4 (C-5), 167.9 (C-10), 140.1 (C arom.), 136.0 (C arom.), 134.2 (C arom.), 131.7 (CH arom.), 128.9 (CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 127.9 (CH arom.), 127.0 (CH arom.), 125.7 (CH arom.), 74.7 (C-9) 61.0 (C-1), 53.0 (C-3), 48.8 (C-4), 47.6 (C-8), 42.9 (CH₂Ph), 38.9 (C-7), 30.7 (C-2); HRMS (ESI⁺) 467.1947 [M + H]⁺ 489.1779 [M + Na]⁺ (C₉H₂₇N₂O₄ requires 467.1965, C₂₉H₃₆N₂NaO₄ requires 489.1785).

Following general procedure A, the reaction was conducted with 40 and benzaldehyde. The product was purified by column chromatography (5% methanol/DCM) to give 41 (161 mg, 78%) as a colourless oil; IR v max/cm⁻¹ 3454 (br), 1633, 1538, 1242, 1027; ¹H NMR (400 MHz, CD₃OD) δ 7.38 – 7.24 (m, 5H, CH arom.), 4.71 (d, J 8.2, 1H, H-9), 4.15 (ddd, J 10.5, 7.2, 1.9, 1H, H-1), 4.05 (ddd, J 11.7, 10.5, 5.6, 1H, H-1), 3.40 – 3.08 (m, 6H, H-5,6,4 & 7), 2.87 (m, 1H, H-8), 2.34 (ddd, J 14.6, 11.5, 7.3, 1H, H-2), 2.21 (ddt, J 14.6, 5.6, 1.7, 1H, H-2), 2.07 (s, 3H, CH₃); ¹³C NMR (126 MHz, CD₃OD) δ 173.1 (C=O), 141.2 (C arom.), 128.2 (CH arom.), 127.4 (CH arom.), 125.7 (CH arom.), 75.0 (C-9), 61.3 (C-1), 51.3 (C-3), 50.5 (C-5/6), 47.5 (C-4), 47.2 (C-8), 46.8 (C-5/6), 37.2 (C-7), 29.0 (C-2), 21.6 (CH₃); HRMS (ESI⁺) 287.1755 [M + H]⁺ (C₁₇H₂₆N₂O₂ requires 287.1754).
4.2.3. Fluoride Prins Reactions

39a - (±)-(3aS,3bS,4S,7aR,7bS)-2-benzyl-7a-fluoro-4-phenylhexahydropyrano[3',4';3,4]cyclobuta-[1,2-c]pyrrole-1,3(2H,3aH)-dione

Following general procedure B, the reaction was conducted with 16b and benzaldehyde dimethyl acetal. The product was purified by column chromatography (40% ethyl acetate/petroleum ether) to give the pure product 39a (0.15 g, 71%) as a yellow solid; m.p. (ethyl acetate) 137-141 °C; IR ν_{max}/cm$^{-1}$ 2964, 2893, 1776, 1699; 1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.15 (m, 10H, CH$_2$ aromatic), 4.63 (d, J 14.2, 1H, PhCH$_2$), 4.58 (d, J 14.2, 1H, PhCH$_2$), 4.51 (dd, J 6.7, 1.9, 1H, H-9), 3.98 (dddt, J 11.9, 6.0, 1.9, 1H, H-1), 3.65 (ddd, J 11.9, 7.3, 5.4, 1H, H-1), 3.50 (ddd, J 8.8, 6.3, 1.2, 1H, H-4), 2.96 (ddd, J 6.3, 3.7, 2.4, 1H, H-7), 2.83 (ddd, J 6.3, 4.7, 2.1, 1H, H-8), 2.16 – 2.02 (m, 2H, H-2); 1C NMR (101 MHz, CDCl$_3$) δ 176.6 (C-6), 172.4 (d, 3J$_{CF}$ 5.8, C-5), 139.3 (C aromatic), 135.5 (C aromatic), 128.8 (CH aromatic), 128.7 (CH aromatic), 128.0 (CH aromatic), 126.4 (CH aromatic), 91.6 (d, 1J$_{CF}$ 220.6, C-3), 78.8 (d, 3J$_{CF}$ 3.2, C-9), 61.3 (d, 3J$_{CF}$ 6.3, C-1), 48.2 (d, 2J$_{CF}$ 22.1, C-8), 47.9 (d, 2J$_{CF}$ 23.8, C-4), 43.0 (CH$_2$Ph), 38.3 (d, 3J$_{CF}$ 5.0, C-7), 31.7 (d, 2J$_{CF}$ 22.3, C-2). HRMS (ESI$^+$) 366.1514 [M + H]$^+$; 388.1335 [M + Na$^+$].

39b - (±)-(3aS,3bS,4S,7aR,7bS)-2-benzyl-7a-fluoro-4-phenethylhexahydropyrano[3',4';3,4]cyclobuta-[1,2-c]pyrrole-1,3(2H,3aH)-dione

Following general procedure B, the reaction was conducted with 16b and hydrocinnamaldehyde dimethyl acetal. The product was purified by column chromatography to give 39b (65.5 mg, 29%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 2935, 2860, 1771, 1700, 1495; 1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.08 (m, 10H, CH$_2$ aromatic), 4.73 (d, J 14.2, 1H, PhCH$_2$), 4.67 (d, J 14.2, 1H, PhCH$_2$), 4.08 (dddt, J 11.7, 6.0, 2.1, 1H, H-1), 3.58 (ddd, J 11.7, 7.4, 6.0, 1H, H-1), 3.46 (ddd, J 9.9, 6.4, 1.2, 1H, H-4), 3.34 (ddd, J 9.8, 7.9, 4.0, 1.7, 1H, H-9), 2.85 – 2.65 (m, 3H, H-7 & H-10), 2.40 (ddd, J 19.7, 7.9, 3.2, 1.2, 1H, H-8), 2.10 (t, J 6.0, 1H, H-2), 2.05 (m, 2H, H-3).
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Following general procedure B, the reaction was conducted with 16b and 3,3-diethoxy-1-propyne. The product was purified by column chromatography (25% ethyl acetate/petroleum ether) to give the pure product 39c (56.6 mg, 31%, d.r. 2:1) as a yellow oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3270, 2930, 1774, 1698; Major diastereomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.44 – 7.29 (m, 5H, CH arom.), 4.73 (s, 2H, PhCH\(_2\)), 4.55 (dd, \(J = 4.4, 2.2, 1H, H-9 \)), 3.99 (ddd, \(J = 12.0, 5.8, 3.9, 1H, H-1 \)), 3.62 (dd, \(J = 12.0, 10.5, 3.9, 1H, H-1 \)), 3.41 (ddd, \(J = 6.3, 3.3, 1.2, 1H, H-4 \)), 3.25 (dd, \(J = 6.3, 3.3, 1H, H-7 \)), 2.71 (m, 1H, H-8), 2.69 (d, \(J = 2.2, 1H, H-11 \)), 2.30 (ddt, \(J = 23.1, 15.3, 3.9, 1H, H-2 \)), 2.12 (m, 1H, H-2); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 176.6 (C-6), 171.9 (d, \(J = 3.0, C-5 \)), 135.5 (C arom.), 128.7 (CH arom.), 128.6 (CH arom.), 128.1 (CH arom.), 87.3 (d, \(J = 232.0, C-3 \)), 78.3 (d, \(J = 1.6, C-10 \)), 76.0 (C-11), 64.3 (d, \(J = 1.8, C-9 \)), 62.5 (d, \(J = 1.8, C-1 \)), 48.8 (d, \(J = 22.8, C-4 \)), 48.2 (d, \(J = 23.1, C-8 \)), 42.9 (PhCH\(_2\)), 33.2 (d, \(J = 22.8, C-2 \)), 33.1 (d, \(J = 11.03, C-7 \)); Minor diastereomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.44 – 7.29 (m, 5H, CH arom.), 4.75 – 4.67 (m, 3H, H-9 & PhCH\(_2\)), 4.17 (m, 1H, H-1), 3.83 (dt, \(J = 11.9, 5.9, 1H, H-1 \)), 3.45 (ddd, \(J = 6.2, 4.6, 1.2, 1H, H-4 \)), 3.03 (ddd, \(J = 6.2, 5.4, 3.3, 1H, H-7 \)), 2.78 (m, 1H, H-8), 2.58 (d, \(J = 2.4, 1H, H-11 \)), 2.48 (ddt, \(J = 20.6, 15.0, 5.9, 1H, H-2 \)), 2.15 (m, 1H, H-2); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 176.8 (C-6), 172.0 (d, \(J = 4.1, C-5 \)), 135.4 (C arom.), 128.7 (CH arom.), 128.6 (CH arom.), 128.1 (CH arom.), 87.7 (d, \(J = 230.3, C-3 \)), 80.0 (C-10), 75.7 (C-11), 64.1 (C-9), 58.3 (d, \(J = 4.2, C-1 \)), 49.2 (d, \(J = 22.7, C-8 \)), 48.1 (d, \(J = 23.2, C-4 \)), 42.9 (PhCH\(_2\)), 35.4 (d, \(J = 9.5, C-7 \)), 32.0 (d, \(J = 22.3, C-2 \)); HRMS (ESI\(^+\)) 314.1191 [M + H\(^+\)] 336.1014 [M + Na\(^+\)] (C\(_{16}\)H\(_{17}\)FNO\(_3\) requires 314.1187, C\(_{18}\)H\(_{16}\)FNNaO\(_3\) requires 336.1006).
Following general procedure B, the reaction was conducted with 16b and 4-pentenal. The product was purified by column chromatography to give 39d (150 mg, 75%) as colourless oil; IR ν_{max}/cm^{-1} 2936 (w), 1774 (w), 1704, 1392 (w), 1169; 1H NMR (500 MHz, CDCl$_3$) δ 7.41–7.22 (m, 5H, CH arom.), 5.79 (ddt, J 16.9, 10.2, 6.6, 1H, H-12), 5.14–4.91 (m, 2H, H-13), 4.73 (d, J 14.2, 1H, PhCH$_2$), 4.67 (d, J 14.2, 1H, PhCH$_2$), 4.05 (dtd, J 11.7, 5.7, 2.1, 1H, H-1), 3.58 (ddd, J 11.7, 8.2, 4.9, 1H, H-1), 3.51 (ddd, J 10.0, 6.5, 1.2, 1H, H-4), 3.41 (tdd, J 7.7, 5.0, 1.8, 1H, H-9), 2.80 (ddd, J 6.5, 3.3, 2.2, 1H, H-7), 2.38 (ddddd, J 19.8, 7.7, 3.3, 1.2, 1H, H-8), 2.25–2.05 (m, 4H, H-2 & H-11), 1.84–1.55 (m, 2H, H-10); 13C NMR (126 MHz, CDCl$_3$) δ 176.7 (C-6), 172.5 (d, J 6.4, C-5), 137.5 (C-12), 135.5 (C arom.), 128.6 (CH arom.), 128.0 (CH arom.), 115.5 (C-13), 92.4 (d, J 217.6, C-3), 77.5 (d, J 3.4, C-9), 61.9 (d, J 6.9, C-1), 47.9 (d, J 21.7, C-8), 47.6 (d, J 24.0, C-4), 43.0 (PhCH$_2$), 38.7 (d, J 3.5, C-7), 33.9 (C-10), 31.6 (d, J 22.3, C-2), 29.3 (C-11); HRMS (ESI$^+$) 366.1476 [M + Na]$^+$ (C$_{20}$H$_{22}$FNNaO$_3$ requires 366.1476).

Following general procedure B, the reaction was conducted with 16b and para-chlorobenzaldehyde dimethyl acetal. The product was purified by recrystallisation from methanol to give 39e (85 mg, 37%) as colourless crystals; m.p. (methanol) 125-126 °C; IR ν_{max}/cm^{-1} 1767, 1696, 1493; 1H NMR (500 MHz, CDCl$_3$) δ 7.48–7.20 (m, 9H, CH arom.), 4.76 (d, J 14.2, 1H, PhCH$_2$), 4.71 (d, J 14.2, 1H, PhCH$_2$), 4.62 (dd, J 6.7, 1.8, 1H, H-9), 4.10 (dd, J 11.9, 6.1, 1.8, 1H, H-1), 3.80 (ddd, J 11.9, 7.4, 5.2, 1H, H-1), 3.63 (ddd, J 8.2, 6.5, 1.2, 1H, H-4), 3.08 (ddd, J 6.5, 3.8, 2.6, 1H, H-7), 2.88 (ddddd, J 18.9, 6.7, 3.8, 1.2, 1H, H-8), 2.31–2.11
(m, 2H, H-2); 13C NMR (126 MHz, CDCl$_3$) δ 176.5 (C-6), 172.2 (d, J 5.7, C-5), 137.8 (C-10), 135.4 (C arom.), 134.2 (C-13), 128.9 (CH arom.), 128.7 (CH arom.), 128.7 (CH arom.), 128.1 (CH arom.), 127.7 (C-11), 91.2 (d, J 221.5, C-3), 61.2 (d, J 6.0, C-1), 48.2 (d, J 22.3, C-8), 47.9 (d, J 23.9, C-4), 43.0 (PhCH$_2$), 38.2 (d, J 5.3, C-7), 31.6 (d, J 22.5, C-2); HRMS (ESI$^+$) 400.1093 [M + H]$^+$ 422.0918 [M + Na]$^+$ (C$_{22}$H$_{20}$ClFNO$_3$ requires 400.11, C$_{22}$H$_{19}$ClFNNaO$_3$ requires 422.0930).

39f – (±)-((3aS,3bS,4S,7aR,7bS)-2-benzyl-7a-fluoro-4-propylhexahydropyrano[3',4':3,4]cyclobuta-[1,2-c]pyrrole-1,3(2H,3aH)-dione

Following general procedure B, the reaction was conducted with 16b and butyraldehyde diethyl acetal. The product was purified by column chromatography (20% ethyl acetate/petroleum ether) and then recrystallised from ethanol to give 39f as colourless crystals (139 mg, 72%); m.p. 103-104 °C (from ethanol); IR ν_{max}cm$^{-1}$ 2959, 2933, 2872, 1774, 1699; 1H NMR (500 MHz, CDCl$_3$) δ 7.44 – 7.19 (m, 5H, CH arom.), 4.76 (d, J 14.2, 1H, PhCH$_2$), 4.70 (d, J 14.2, 1H, PhCH$_2$), 4.08 (dtd, J 11.7, 5.6, 2.1, 1H, H-1), 3.60 (ddd, J 11.7, 8.3, 4.9, 1H, H-1), 3.54 (ddd, J 10.0, 6.4, 1.2, 1H, H-4), 3.42 (tdd, J 7.6, 4.9, 1.9, 1H, H-9), 2.81 (ddd, J 6.4, 3.2, 2.2, 1H, H-7), 2.40 (ddddd, J 19.8, 7.6, 3.2, 1.2, 1H, H-8), 2.17 – 2.00 (m, 2H, H-2), 1.71 – 1.63 (m, 1H, H-11), 1.60 – 1.35 (m, 3H, H-11 & H-10), 0.96 (t, J 7.2, 3H, H-12); 13C NMR (126 MHz, CDCl$_3$) δ 176.8 (C-6), 172.5 (d, J 6.5, C-5), 135.5 (C arom.), 128.6 (CH arom.), 128.6 (CH arom.), 128.0 (CH arom.), 92.5 (d, J 217.3, C-3), 78.2 (d, J 3.4, C-9), 61.9 (d, J 7.0, C-1), 48.0 (d, J 21.6, C-8), 47.6 (d, J 24.0, C-4), 43.0 (PhCH$_2$), 38.9 (d, J 3.5, C-7), 37.0 (C-10), 31.7 (d, J 22.2, C-2), 18.6 (C-11), 14.0 (C-12); HRMS (ESI$^+$) 354.1493 [M + Na]$^+$ (C$_{19}$H$_{22}$FNNaO$_3$ requires 354.1476).

39g – (±)-3-((3aS,3bS,4S,7aR,7bS)-2-benzyl-7a-fluoro-1,3-dioxodecahydropyranono[3',4':3,4]cyclobuta[1,2-c]pyrrol-4-yl)propanenitrile
Following general procedure B, the reaction was conducted with 16b and 3-cyanopropionaldehyde diethylacetal. The product was purified by column chromatography (80% ethyl acetate/petroleum ether) to give the pure product 39g (86.4 mg, 43%) as a colourless oil; IR ν_max/cm⁻¹ 2933, 2866, 2246, 1775, 1700; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.14 (m, 5H, CH arom.), 4.74 (d, J 14.3, 1H, PhCH₂), 4.67 (d, J 14.3, 1H, PhCH₂), 4.06 (ddt, J 11.8, 5.9, 1.9, 1H, H-1), 3.67 (ddd, J 11.8, 8.0, 4.8, 1H, H-1), 3.61 – 3.49 (m, 2H, H-9 & H-4), 2.85 (dt, J 6.1, 3.0, 1H, H-7), 2.63 – 2.41 (m, 2H, H-11), 2.36 (ddddd, J 19.4, 8.0, 3.0, 1.2, 1H, H-8), 2.22 – 2.00 (m, 2H, H-2), 1.98 – 1.77 (m, 2H, H-10); ¹³C NMR (101 MHz, CDCl₃) δ 176.4 (C-6), 172.2 (d, 3J_CF 6.2, C-5), 135.4 (C arom.), 128.7 (CH arom.), 128.5 (CH arom.), 128.0 (CH arom.), 119.1 (C-12), 91.9 (d, 1J_CF 218.6, C-3), 75.6 (d, 3J_CF 3.5, C-9), 62.1 (d, 3J_CF 6.4, C-1), 47.7 (d, 2J_CF 24.0, C-4), 47.4 (d, 2J_CF 22.3, C-8), 43.0 (PhCH₂), 38.4 (d, 3J_CF 3.7, C-7), 31.2 (d, 2J_CF 22.4, C-2), 30.0 (C-10), 13.6 (C-11); HRMS (ESI⁺) 365.1286 [M + Na⁺] (C₁₉H₁₈FN₂NaO₃ requires 365.1272).

4.2.4. Aza–Prins–Ritter Reactions

38a – (±)-N-[(3aS,3bR,4S,7aR,7bS)-2-benzyl-1,3-dioxo-4-phenyl-5-tosyldecahydro-7aH-pyrrolo-[3′,4′:3,4]cyclobuta[1,2-c]pyridin-7-yl]acetamide

Following general procedure C, the reaction was conducted with 34 and benzaldehyde. The product was purified by column chromatography (50% ethyl acetate/petroleum ether) to give 38a (148 mg, 68%) as a colourless solid; m.p. (methanol) 184-185 °C; IR ν_max/cm⁻¹ 3356, 1679, 1696, 1668, 1339, 1158; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.69 (m, 2H, CH arom.), 7.49 – 7.20 (m, 12H, CH arom.), 6.00 (s, 1H, NH), 5.53 (d, J 5.5, 1H, H-9), 4.59 (d, J 14.1, 1H, PhCH₂), 4.50 (d, J 14.1, 1H, PhCH₂), 4.11 (dt, J 15.4, 3.9, 1H, H-1), 3.45 (ddd, J 15.4, 13.4, 1.8, 1H, H-1), 3.12 (t, J 6.7, 1H, H-7), 3.01 (dd, J 6.7, 1.1, 1H, H-4), 2.81 (dd, J 6.7, 5.5, 1H, H-8), 2.44 (s, 3H, CH₃), 1.86 (td, J 13.4, 3.9, 1H, H-2), 1.78 (s, 3H, CH₃), 1.53 (m, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃) δ 175.7 (C-6), 175.6 (C-5), 168.8 (C=O), 143.6 (C arom.), 140.6 (C arom.), 136.0 (C arom.), 135.4 (C arom.), 129.6(CH arom.), 128.6 (CH arom.), 128.5 (CH arom.), 128.1 (CH arom.), 127.9 (CH arom.), 127.5 (CH arom.), 126.2 (CH arom.), 58.3 (C-9), 52.4 (C-3), 48.8 (C-8), 43.8 (C-4), 42.7 (PhCH₂), 40.8 (C-1), 37.2 (C-7), 34.8 (C-12), 28.3 (C-13), 23.8 (C-14), 22.3 (C-15), 19.8 (C-16), 18.4 (C-17), 15.7 (C-18), 13.9 (C-19), 9.2 (C-20), 6.6 (C-21), 6.4 (C-22), 6.0 (C-23), 4.4 (C-24), 2.8 (C-25), 2.7 (C-26), 2.6 (C-27), 2.1 (C-28), 1.5 (C-29), 1.3 (C-30), 0.8 (C-31).
32.6 (C-2), 23.2 (CH₃), 21.6 (CH₃); HRMS (ESI⁺) 580.1850 [M + Na]+ (C₃₉H₃₁N₃NaO₅S requires 580.1877).

38b – (±)-N-((3aS,3bR,4S,7aR,7bS)-2-benzyl-1,3-dioxo-4-phenethyl-5-toslydecahydro-7aH-pyrrolo-[3',4';3,4]cyclobuta[1,2-c]pyridin-7a-yl)acetamide

Following general procedure C, the reaction was conducted with 34 and hydrocinnamaldehyde. Column chromatography (25% ethyl acetate/petroleum ether) gave the product 38b (0.14 g, 83%, d.r. 5:1) as a white solid (NMR data for the major diastereomer); m.p. (ethanol) 109-110 °C; IR 𝜈max/cm⁻¹ 3362, 2927, 1770, 1702; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J 8.2, 2H, C₆H₇ arom.), 7.44 – 7.05 (m, 12H, C₆H₇ arom.), 5.84 (s, 1H, NH), 4.72 (d, J 14.1, 1H, PhCH₂), 4.67 (d, J 14.1, 1H, PhCH₂), 4.18 (ddd, J 9.8, 5.9, 2.7, 1H, H-9), 3.76 (dt, J 15.1, 4.4, 1H, H-1), 3.28 (m, 1H, H-1), 3.22 (dd, J 6.8, 5.9, 1H, H-7), 3.03 (d, J 6.8, 1H, H-4), 2.83 (t, J 5.9, 1H, H-8), 2.56 – 2.45 (m, 3H, H-10 and H-11), 2.00 (m, 1H, H-10), 1.75 (m, 1H, H-2), 1.69 (s, 3H, CH₃), 1.53 (ddd, J 13.8, 4.9, 2.5, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃) δ 177.0 (C-6), 175.6 (C-5), 168.8 (C=O), 143.5 (C arom.), 141.4 (C arom.), 136.3 (C arom.), 135.5 (C arom.), 129.7 (CH arom.), 128.7 (CH arom.), 128.7 (CH arom.), 128.5 (CH arom.), 128.3 (CH arom.), 127.6 (CH arom.), 125.9 (CH arom.), 54.8 (C-9), 52.3 (C-3), 45.5 (C-8), 44.7 (C-4), 42.8 (PhCH₂), 40.7 (C-1), 37.3 (C-7), 36.4 (C-10), 32.6 (C-2), 32.0 (C-11), 23.2 (CH₃), 21.5 (CH₃); HRMS (ESI⁺) 586.2368 [M + H]+ 608.2188 [M + Na]+ (C₃₉H₃₁N₃NaO₅S requires 586.2370, C₃₉H₃₅N₃NaO₅S requires 608.2190).

38c – (±)-N-((3aS,3bR,4S,7aR,7bS)-2-benzyl-4-cyclopropyl-1,3-dioxo-5-toslydecahydro-7aH-pyrrolo-[3',4';3,4]cyclobuta[1,2-c]pyridin-7a-yl)acetamide

Following general procedure C, the reaction was conducted with 34 and cyclopropanecarboxaldehyde. The product was purified by column chromatography (60% ethyl acetate/petroleum ether) to give 38c (87.6 mg, 24%) as a colourless oil; IR 𝜈max/cm⁻¹ 3355,
Following general procedure C, the reaction was conducted with \textit{34} and butyraldehyde. The product was purified by column chromatography (40-60% ethyl acetate/petroleum ether) to give \textit{38d} as a colourless oil (284 mg, 78\%, d.r. 4:1); IR \textit{\nu}_{\text{max}}/\text{cm}^{-1} 2966, 1702, 1393; \textbf{\textit{1H NMR}} (400 MHz, CDCl$_3$) \textit{\delta} 7.75 – 7.72 (m, 2H, \textit{CH} arom.), 7.37 – 7.23 (m, 7H, \textit{CH} arom.), 5.82 (s, 1H, \textit{NH}), 4.70 (d, \textit{J} 14.1, 1H, PhCH$_2$), 4.63 (d, \textit{J} 14.1, 1H, PhCH$_2$), 4.13 (dd, \textit{J} 9.7, 5.8, 3.8, 1H, \textit{H}-9), 3.75 (dd, \textit{J} 15.0, 5.4, 4.4, 1H, \textit{H}-1), 3.28 (dd, \textit{J} 15.0, 10.9, 2.9, 1H, \textit{H}-1), 3.19 (ttdd \textit{J} 6.8, 5.8, 1H, \textit{H}-7), 3.04 (dd, \textit{J} 6.8, 1.1, 1H, \textit{H}-4), 2.77 (t, \textit{J} 5.8, 1H, \textit{H}-8), 2.40 (s, 3H, ArCH$_3$), 2.16 (ddd, \textit{J} 13.6, 10.1, 6.8, 3.8, 1H, \textit{H}-10), 1.83 (ddd, \textit{J} 13.9, 10.9, 4.3, 1H, \textit{H}-2), 1.69 (s, 3H, \textit{CH}_3), 1.66 (m, 1H, \textit{H}-10), 1.55 (m, 1H, \textit{H}-2), 1.30 – 1.19 (m, 2H, \textit{H}-11), 0.95 – 0.88 (m, 3H, \textit{H}-12); \textbf{\textit{13C NMR}} (101 MHz, CDCl$_3$) \textit{\delta} 177.0 (\textit{C}-6), 175.6 (\textit{C}-5), 168.9 (\textit{C}–\textit{O}), 143.5 (\textit{C} arom.), 136.7 (\textit{C} arom.), 135.5 (\textit{C} arom.), 129.7 (\textit{CH} arom.), 128.7 (\textit{CH} arom.), 128.5 (\textit{CH} arom.), 128.2 (\textit{CH} arom.), 127.5 (\textit{CH} arom.), 54.7 (\textit{C}-9), 52.3 (\textit{C}-3), 45.8 (\textit{C}-8), 44.9 (\textit{C}-4), 42.8 (PhCH$_2$), 40.7 (\textit{C}-1), 37.2 (\textit{C}-7), 36.0 (\textit{C}-10), 32.6 (\textit{C}-2), 23.2 (\textit{CH}_3), 21.5 (\textit{CH}_3), 19.0 (\textit{C}-11), 13.8 (\textit{C}-12); \textbf{HRMS} (ESI$^+$) 524.2200 [\textit{M + H}]$^+$ 546.2023 [\textit{M + Na}]$^+$ (C$_{28}$H$_{33}$N$_3$O$_5$S requires 524.2214, C$_{28}$H$_{33}$N$_3$NaO$_5$S requires 546.2033).
Following general procedure C, the reaction was conducted with 34 and para-nitrobenzaldehyde. The product was purified by column chromatography (40-60% ethyl acetate/petroleum ether) to give 38e (237 mg, 56%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 2969, 1705, 1519, 1346, 1065; 1H NMR (400 MHz, DMSO-d_6) δ 8.26 – 8.20 (m, 2H, C$_2$H arom.), 7.77 – 7.73 (m, 2H, C$_2$H arom.), 7.66 (d, J 8.4, 2H, C$_2$H arom.), 7.47 – 7.43 (m, 2H, C$_2$H arom.), 7.29 – 7.18 (m, 3H, C$_2$H arom.), 7.14 – 7.07 (m, 2H, C$_2$H arom.), 5.07 (d, J 4.9, 1H, H-9), 4.35 (d, J 15.5, 1H, PhCH$_2$), 4.30 (d, J 15.5, 1H, PhCH$_2$), 3.87 (dt, J 15.0, 3.5, 1H, H-1), 3.61 (dd, J 15.0, 13.5, 1H, H-1), 3.38 (m, 1H, H-4), 3.28 – 3.23 (m, 2H, H-7 & H-8), 2.42 (s, 3H, C$_2$H$_3$) 1.95 (m, 1H, H-2), 1.67 (s, 3H, C$_2$H$_3$), 1.15 (td, J 13.5, 3.5, 1H, H-2); 13C NMR (101 MHz, DMSO-d_6) δ 177.1 (C-6), 175.4 (C-5), 170.5 (C=O), 150.4 (C arom.), 146.8 (C arom.), 144.3 (C arom.), 136.6 (C arom.), 135.3 (C arom.), 130.5 (C$_2$H arom.), 128.8 (C$_2$H arom.), 128.3 (C$_2$H arom.), 127.8 (C$_2$H arom.), 127.7 (C$_2$H arom.), 123.8 (C$_2$H arom.), 56.9 (C-9), 53.1 (C-3), 46.1 (C-4), 45.8 (C-8), 42.2 (PhCH$_2$), 36.0 (C-7), 33.0 (C-2), 23.4 (CH$_3$), 21.5 (CH$_3$); HRMS (ESI$^+$) 625.1720 [M + Na$^+$] (C$_{31}$H$_{30}$N$_4$O$_7$S requires 625.1727).

Following general procedure C, the reaction was conducted with 34 and 4-(trifluoromethyl)benzaldehyde. The product was purified by column chromatography (40-60% ethyl acetate/petroleum ether) to give 38f (134 mg, 31%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 3343, 1776, 1699, 1667, 1323, 1159; 1H NMR (400 MHz, DMSO-d_6) δ 7.71 (m, 4H,
13C NMR (101 MHz, DMSO-d$_6$) δ 177.1 (C-6), 175.5 (C-5), 170.5 (C=O), 147.0 (C arom.), 144.2 (C arom.), 136.7 (C arom.), 135.5 (C arom.), 130.4 (CH arom.), 128.8 (CH arom.), 128.0 (CH arom.), 127.8 (C arom.), 125.4 (CH arom.), 57.0 (C-9), 53.1 (C-3), 46.3 (C-4), 45.8 (C-8), 42.2 (PhCH$_2$), 36.2 (C-7), 33.1 (C-2), 23.4 (CH$_3$), 21.5 (CH$_3$); HRMS (ESI$^+$) 626.1906 [M + H]$^+$, 648.1739 [M + Na]$^+$ (C$_{32}$H$_{31}$F$_3$N$_3$O$_5$S requires 626.1931, C$_{33}$H$_{30}$F$_3$N$_3$NaO$_5$S requires 648.1750).

Following general procedure C, the reaction was conducted with 34 and 4-pentenal. The product was purified by column chromatography (50% ethyl acetate/petroleum ether) to give 38g (126 mg, 60%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 3355 (w), 2254 (w), 1770 (w), 1698, 1668, 1338, 1157; 1H NMR (CDCl$_3$, 400 MHz) δ 7.76 – 7.71 (m, 2H, CH arom.), 7.36 – 7.26 (m, 7H, CH arom.), 5.86 (s, 1H, NH), 5.79 (ddt, J 17.0, 10.1, 6.9, 1H, H-12), 5.03 – 4.90 (m, 2H, H-13), 4.70 (d, 1H, J 14.0, PhCH$_2$), 4.65 (d, 1H, J 14.0, PhCH$_2$), 4.16 (ddd, J 9.6, 5.5, 3.7, 1H, H-9), 3.75 (ddd, J 15.1, 5.1, 4.2, 1H, H-1), 3.27 (ddd, J 15.1, 11.3, 2.7, 1H, H-1), 3.19 (t, J 6.7, 1H, H-7), 3.04 (dd, J 6.7, 1.1, 1H, H-4), 2.78 (ddd, J 6.7, 5.5, 1.0, 1H, H-8), 2.41 (s, 3H, CH$_3$), 2.32 (ddd, J 13.3, 9.6, 7.0, 3.7, 1H, H-10), 2.08 – 1.88 (m, 2H, H-11), 1.81 – 1.63 (m, 2H, H-2 & H-10), 1.69 (s, 3H, CH$_3$), 1.55 (m, 1H, H-2); 13C NMR (101 MHz, CDCl$_3$) δ 176.9 (C-6), 175.6 (C-5), 168.9 (C=O), 143.5 (C arom.), 137.4 (C-12), 136.5(C arom.), 135.5 (C arom.), 129.7 (CH arom.), 128.7 (CH arom.), 128.5 (CH arom.), 128.2 (CH arom.), 127.6 (CH arom.), 115.4 (C-13), 54.4 (C-9), 52.3 (C-3), 45.4 (C-8), 44.8 (C-4), 42.7 (PhCH$_2$), 40.7 (C-1), 37.2 (C-7), 33.3 (C-10), 32.6 (C-2), 29.1 (C-11), 23.1 (CH$_3$), 21.5 (CH$_3$); HRMS (ESI$^+$) 558.2020 [M + Na]$^+$ (C$_{20}$H$_{33}$N$_3$NaO$_5$S requires 558.2033).
4.3. Design of Experiments

General Procedure for DoE Experiments:

Reactions were carried out in an Integrity10 with temperature set to 25 °C and stirring at 800 rpm. Amounts were varied based on the design (Table 11). Benzaldehyde and triflic acid were dissolved in acetonitrile (2 mL) and then a solution of 1 in acetonitrile was added dropwise at the required rate. After stirring for 5 min, a sample of the reaction mixture (250 µL) was taken, concentrated, and redissolved in CD$_3$CN. A known amount of TCNB was added as a standard to calculate yield. The remaining reaction mixture was worked up following General Procedure A.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St Order</td>
<td>Run Order</td>
<td>Benzaldehyde charge / equiv.</td>
<td>Triflic acid excess w.r.t. benzaldehyde / equiv.</td>
<td>Addition rate of 16b / equiv. min$^{-1}$</td>
<td>22b (%)</td>
<td>16b (%)</td>
<td>24 (%)</td>
<td>28 (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1.20</td>
<td>0.10</td>
<td>0.04</td>
<td>76</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5.00</td>
<td>0.10</td>
<td>0.04</td>
<td>51</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1.20</td>
<td>1.00</td>
<td>0.04</td>
<td>73</td>
<td>5</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5.00</td>
<td>1.00</td>
<td>0.04</td>
<td>48</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.20</td>
<td>0.10</td>
<td>0.71</td>
<td>73</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>5.00</td>
<td>0.10</td>
<td>0.76</td>
<td>21</td>
<td>15</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.20</td>
<td>1.00</td>
<td>0.79</td>
<td>72</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>5.00</td>
<td>1.00</td>
<td>0.74</td>
<td>27</td>
<td>8</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>3.10</td>
<td>0.55</td>
<td>0.41</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>3.10</td>
<td>0.55</td>
<td>0.42</td>
<td>20</td>
<td>12</td>
<td>0</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>3.10</td>
<td>0.55</td>
<td>0.42</td>
<td>34</td>
<td>23</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1.02</td>
<td>-0.90</td>
<td>0.73</td>
<td>7</td>
<td>72</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.20</td>
<td>-0.90</td>
<td>0.76</td>
<td>17</td>
<td>64</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1.02</td>
<td>0.00</td>
<td>0.76</td>
<td>79</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1.20</td>
<td>0.00</td>
<td>0.73</td>
<td>73</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.72</td>
<td>37</td>
<td>34</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.77</td>
<td>36</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.74</td>
<td>43</td>
<td>29</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.76</td>
<td>35</td>
<td>12</td>
<td>21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1.02</td>
<td>-0.90</td>
<td>0.4</td>
<td>8</td>
<td>34</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>1.20</td>
<td>-0.90</td>
<td>0.04</td>
<td>27</td>
<td>40</td>
<td>27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1.02</td>
<td>0.00</td>
<td>0.04</td>
<td>69</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1.20</td>
<td>0.00</td>
<td>0.04</td>
<td>59</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.40</td>
<td>41</td>
<td>5</td>
<td>23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>1.11</td>
<td>-0.45</td>
<td>0.40</td>
<td>45</td>
<td>18</td>
<td>18</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
4.4. Experimental Procedures for Chapter 3

103 – (±)-Dimethyl 4-(but-3-en-1-yl)-1-((tert-butyldimethylsilyl)oxy)cyclohex-2-ene-2,4-dicarboxylate

105 (100 mg, 0.30 mmol) was added to a solution of LDA (0.30 mmol) in THF (2 mL) at -78 °C and stirred for 30 min forming a bright red solution. 4-Bromo-1-butene (34 µL, 0.30 mmol) was then added dropwise and the solution stirred at -78 °C for 30 min before warming to room temperature. After 4.5 h, the solution was quenched with ice cold water (1.0 mL) and hydrochloric acid (1.0 M, 1.0 mL) and extracted with diethyl ether (3 × 5 mL). The combined organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (3% ethyl acetate/petroleum ether) to give the pure product 103 (40 mg, 35%) as a colourless oil; IR ν_{max}/cm$^{-1}$: 2951, 2930, 1857, 1726, 1694, 1661, 1639; 1H NMR (400 MHz, CDCl$_3$) δ 5.75 (ddt, J 16.9, 10.0, 6.5, 1H, H-9), 4.99 (dq, J 16.9, 2.0, 1H, H-10), 4.94 (ddt, J 10.0, 2.0, 1.2, 1H, H-9), 3.69 (s, 3H, -OCH$_3$), 3.65 (s, 3H, -OCH$_3$), 2.92 (d, J 16.9, 1H, H-3), 2.41 – 1.90 (m, 5H, H-3,5,8,7), 1.73 – 1.53 (m, 4H, H-5,6,7), 0.93 (s, 9H, -OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 0.15 (s, 3H, -OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 0.13 (s, 3H, -OSi(CH$_3$)$_2$C(CH$_3$)$_3$); 13C NMR (101 MHz, CDCl$_3$) δ 176.1 (C=O), 167.6 (C=O), 158.5 (C-1), 137.9 (C-9), 114.8 (C-10), 107.0 (C-2), 51.8 (-OCH$_3$), 51.0 (-OCH$_3$), 44.7 (C-4), 37.8 (C-6), 33.3 (C-3), 29.7 (C-7), 29.7 (C-5), 28.7 (C-8), 25.7 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 18.3 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$), -3.9 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$); HRMS (ESI$^+$) 405.2081 [M + Na]$^+$ (C$_{20}$H$_{34}$NaO$_5$Si requires 405.2068).

104a – (±)-Dimethyl-1-hydroxycyclohex-2-ene-2,4-dicarboxylate

Diisopropylamine (10.6 mL, 7.66 g, 75.7 mmol) was added to THF (40 mL) under a nitrogen atmosphere and cooled to 0 °C. n-Butyllithium (2.5 M in hexanes, 31.8 mL, 79.5 mmol,) was added dropwise and stirred for 1.5 h before cooling to -78 °C. Methyl acetate (6.0 mL, 5.60 g, 75.7 mmol) was added and the solution stirred for 45 min at -78 °C. A solution of methyl
acylate (14.3 mL, 13.7 g, 158.9 mmol) in THF (10 mL) was added dropwise and the resulting solution stirred at -78 °C. After 1.5 h the reaction was quenched with saturated ammonium chloride solution (20 mL) and extracted with ethyl acetate (3 × 150 mL). The combined organic layers were washed with brine, dried with magnesium sulfate, filtered, and the solvent removed under reduced pressure to yield the crude product as a pale-yellow oil. The product was purified by column chromatography (5-10% ethyl acetate/petroleum ether) to give the pure product 104a (2.73 g, 17%) as a colourless oil; 1H NMR (400 MHz, CDCl3) δ 12.13 (s, 1H, -OH), 3.75 (s, 3H, -OC2H5), 3.69 (s, 3H, -OC2H5), 2.59 – 2.43 (m, 2H, H-5 & H-4), 2.40 – 2.36 (m, 3H, H-5 & H-6), 2.06 (m, 1H, H-3), 1.79 (m, 1H, H-3); 13C NMR (101 MHz, CDCl3) δ 175.0 (C=O), 172.5 (C=O), 171.1 (C-1), 96.1 (C-2), 51.8 (-OC2H5), 51.49 (-OC2H5), 39.0 (C-4), 28.1 (C-6), 24.8 (C-5), 24.1 (C-3); HRMS (ESI+) 215.0922 [M + H]+, 237.0745 [M + Na]+ (C10H15O5 requires 215.0914, C10H14NaO5 requires 218.0788). Data in accordance with literature.158

104b – (±)-Diethyl-1-hydroxycyclohex-2-ene-2,4-dicarboxylate

Diisopropylamine (14.0 mL, 10.1 g, 100 mmol) was added to THF (65 mL) under a nitrogen atmosphere and cooled to 0 °C. n-Butyllithium (2.5 M in hexanes, 42 mL, 105 mmol) was added dropwise and stirred for 1.5 h before cooling to -78 °C. Ethyl acetate (9.8 mL, 8.8 g, 100 mmol) was added and the solution stirred for 45 min at -78 °C. A solution of ethyl acrylate (22.4 mL, 21.0 g, 210 mmol) in THF (20 mL) was added dropwise and the resulting solution stirred at -78 °C. After 1.5 h the reaction was quenched with saturated ammonium chloride solution (30 mL) and extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with brine, dried with magnesium sulfate, filtered and the solvent removed under reduced pressure to yield the crude product as a colourless oil. The product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give a 1:1 mixture of keto/enol tautomers of the product 104b as a colourless oil (77%, 18.6 g); 1H NMR (400 MHz, CDCl3) δ 12.17 (s, 1H, O H), 4.15 (q, J 7.1, 2H, CH2CH2), 4.09 (q, J 7.1, 2H, CH2CH2), 2.56 – 2.42 (m, 2H, H-3 & H-4), 2.37 – 2.26 (m, 3H, H-3 & H-6), 1.99 (m, 1H, H-5), 1.73 (m, 1H, H-5), 1.24 (t, J 7.1, 3H, CH2CH2), 1.20 (t, J 7.1, 3H, CH2CH2); 13C NMR (101 MHz, CDCl3) δ 174.7 (C=O), 172.3 (C=O), 171.0 (C-1), 96.3 (C-2), 60.6 (CH2CH2), 60.4 (CH2CH2), 39.3 (C-4), 28.2 (C-6), 24.8 (C-3), 24.3 (C-5), 14.3 (CH2CH2), 14.2 (CH2CH2); HRMS (ESI+) 243.1231 [M + H]+
265.1055 [M + Na] (C_{12}H_{19}O_5 requires 243.1227, C_{12}H_{18}NaO_5 requires 265.1046). Data in accordance with literature.

105 – (±)-Dimethyl 1-((tert-butyldimethylsilyl)oxy)cyclohex-2-ene-2,4-dicarboxylate

A solution of 104a (1.86 g, 8.53 mmol) in THF (10 mL) was added dropwise to a cooled suspension of sodium hydride (60% dispersion in mineral oil, 0.51 g, 12.8 mmol) at 0 °C. After 1 h, tert-butyldimethylsilylchloride (1.9 g, 12.8 mmol) was added at 0 °C and the solution then warmed to room temperature and stirred for 23 h. After this time, the reaction was quenched with saturated sodium hydrogen carbonate solution (5 mL) and extracted with diethyl ether (3 × 20 mL). The combined organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give the product 105 (1.6 g, 58%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2953, 2857, 1734, 1660, 1619; \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 3.69 (s, 3H, -OC(CH\(_3\))\(_3\)), 3.68 (s, 3H, -OC(CH\(_3\))\(_3\)), 2.67 (m, 1H, H-3), 2.53 – 2.49 (m, 2H, H-4 & H-3), 2.28 – 2.24 (m, 2H, H-6), 1.99 (m, 1H, H-5), 1.79 (m, 1H, H-5), 0.94 (s, 9H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 0.16 (s, 3H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 0.16 (s, 3H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)); \(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta \) 175.1 (C-1), 167.6 (C=O), 158.5 (C=O), 107.1 (C-2), 51.8 (O-CH\(_3\)), 51.1 (O-CH\(_3\)), 38.9 (C-4), 31.2 (C-6), 27.8 (C-5), 25.7 (−OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 24.9 (C-3), 18.3 (−OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), -3.8 (−OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)); HRMS (ESI\(^+\)) 351.1611 [M + Na]\(^+\) (C\(_{16}\)H\(_{28}\)NaO\(_5\)Si requires 351.1598).

109 – (±)-(6R,7R)-Ethyl 6-(1-methyl-2,5-dioxopyrrolidin-3-yl)-1-oxocyclohexane-6-carboxylate

Ethyl 2-oxocyclohexanecarboxylate (1.8 mL, 1.9 g, 11.25 mmol) and N-methylmaleimide (0.83 g, 7.5 mmol) were dissolved in degassed acetonitrile (150 mL) and irradiated (125 W, medium pressure Hg lamp). After 2 h the solvent was removed under reduced pressure to give a milky white oil. The crude product was purified by column chromatography (20-50% ethyl acetate/petroleum ether) to give the pure product 109 (0.67 g, 33%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2942, 2867, 1776, 1726, 1694; \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 4.40 – 4.20 (m,
2H, -OCH₂CH₃), 3.17 (dd, J 9.4, 5.9, 1H, H-7), 2.99 (s, 3H, H-10), 2.85 (m, 1H, H-2), 2.76 (dd, J 17.8, 9.4, 1H, H-8), 2.49 – 2.45 (m, 2H, H-2 & H-5), 2.31 (dd, J 17.8, 5.9, 1H, H-8), 2.06 (m, 1H, H-3), 1.81 (m, 1H, H-4), 1.68 – 1.64 (m, 3H, H-3, H-4 & H-5), 1.31 (t, J 7.2, 3H, -OCH₂CH₃);

13C NMR (101 MHz, CDCl₃) δ 206.8 (C-1), 177.4 (C-11), 175.7 (C-9), 171.2 (C=O), 62.7 (C-6), 62.2 (-OCH₂CH₃), 44.4 (C-7), 40.7 (C-2), 35.9 (C-5), 32.4 (C-8), 26.5 (C-3), 24.8 (C-10), 21.6 (C-4), 14.0 (-OCH₂CH₃); HRMS (ESI⁺) 282.1340 [M + H]⁺, 304.1161 [M + Na]⁺ (C₁₄H₂₀NO₅ requires 282.1336, C₁₄H₁₉NNaO₅ requires 304.1155).

112 – 8,8-Dimethyl-3,4,5,6-tetrahydro-4H-benzo[d][1,3]dioxin-2-one

Ethyl 2-oxocyclohexanecarboxylate (2.00 mL, 2.13 g, 12.5 mmol) was added to a solution of sodium hydroxide (1.0 M, 20 mL) at 0 °C resulting in the formation of a white precipitate. After 18 h, the resulting clear orange solution was washed with diethyl ether (3 × 20 mL) and the aqueous layer acidified with hydrochloric acid at 0 °C and stirred to form a pale-yellow slurry. Filtration afforded the carboxylic acid as a white solid. 2-Oxocyclohexanecarboxylic acid (0.57 g, 4.0 mmol) was dissolved in acetone (0.6 mL) and acetic anhydride (0.8 mL) and cooled to -5 °C. Concentrated sulphuric acid (0.05 mL) was added dropwise and the solution stirred at 0 °C for 4.5 h. After this time the reaction was quenched with saturated sodium hydrogen carbonate solution (2 mL) and then extracted with diethyl ether (3 × 10 mL), dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to yield the dioxeneone 112 (0.51 g, 24%) as a pale yellow oil; 1H NMR (400 MHz, CDCl₃) δ 2.30 (tt, J 6.0, 1.9, 2H, H-3/6), 2.19 (tt, J 6.2, 1.9, 2H, H-6/3), 1.79 – 1.63 (m, 4H, H-4 & H-5), 1.67 (s, 6H, H-9); 13C NMR (101 MHz, CDCl₃) δ 164.9 (C-1), 162.2 (C-7), 105.2 (C-8), 102.3 (C-2), 27.5 (C-3/6), 25.1 (C-9), 22.0 (C-4/5), 21.7 (C-4/5), 21.2 (C-3/6). HRMS (ESI⁺) 183.1014 [M + H]⁺ (C₁₀H₁₅O₃ requires 183.1016). Data in accordance with literature.
Dioxenone 112 (0.27 g, 1.5 mmol) and cyclohexene (0.15 mL, 0.12 g, 1.5 mmol) were dissolved in degassed acetonitrile (150 mL) and irradiated (125 W, medium pressure Hg lamp). After 1 h, no reaction progression was observed so a further 9 equivalents (1.3 mL) of cyclohexene was added. After 2 h, the reaction was complete, and the solvent removed under reduced pressure. The resulting yellow oil was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the pure product 113 (0.325 g, 82%) as a white solid which was recrystallised from methanol to give colourless cubic crystals; 1H NMR (400 MHz, CDCl$_3$) δ 2.67 (m, 1H, CH$_2$), 2.19 (m, 1H, CH$_2$), 1.92 – 1.66 (m, 7H, CH$_2$), 1.65 (s, 3H, CH$_3$), 1.62 (s, 3H, CH$_3$), 1.58 – 1.00 (m, 9H, CH$_2$); HRMS (ESI$^+$) 287.1629 [M + Na]$^+$ (C$_{16}$H$_{24}$NaO$_3$ requires 287.1618).

114 – (±)-10-Oxododecahydrobenzo[8]annulene-5-carboxylic acid

113 (250 mg, 0.95 mmol) was dissolved in methanol (9.0 mL) and water (1.0 mL). pTSA (18 mg, 0.095 mmol) added and the reaction mixture was heated at reflux for 6 h. After cooling to room temperature, the organic solvent was removed under reduced pressure and the resulting aqueous phase extracted with diethyl ether (3 × 10 mL), the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the crude product 114 (0.167 g, 78%) as a white solid. 1H NMR (500 MHz, CDCl$_3$) δ 2.62 – 0.95 (m, 19H, CH$_2$); 13C NMR (126 MHz, CDCl$_3$) δ 219.9 (C=O), 181.8 (C=O), 54.6 (CH), 50.5 (CH), 40.3 (CH$_2$), 32.0 (CH), 30.0 (CH$_2$), 27.5 (CH$_2$), 26.6 (CH$_2$), 25.9 (CH$_2$), 25.5 (CH$_2$), 24.9 (CH$_2$), 24.8 (CH$_2$); HRMS (ESI$^+$) 247.1317 [M + Na]$^+$ (C$_{13}$H$_{20}$NaO$_3$ requires 247.1305).
119a – (±)-8-(But-3-en-1-yl)-2,2-dimethyl-5,6,7,8-tetrahydro-4H-benzo[d][1,3]dioxin-4-one

\[\text{120a} \]

120a (0.9 g, 4.0 mmol) was added dropwise to a solution of sodium hydroxide (1.0 M, 10 mL) at 0 °C. The resulting suspension was allowed to warm to room temperature overnight. After 18 h the resulting yellow solution was washed with diethyl ether (3 × 10 mL) and the aqueous layer acidified with hydrochloric acid (3.0 M) at 0 °C forming a cream precipitate which was isolated by filtration. The resulting solid (0.29 g, 1.5 mmol) was dissolved in acetone (0.45 mL) and acetic anhydride (0.31 mL, 0.33 g, 3.25 mmol) and cooled to -5 °C. Concentrated sulfuric acid (0.02 mL, 0.37 mmol) was added dropwise and the resulting solution stirred at 0 °C for 4 h. The reaction was quenched with sodium hydrogen carbonate (2 mL), extracted with diethyl ether (3 × 5 mL) and the organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (5 % ethyl acetate/petroleum ether) to give the pure product 119a (0.15 g, 16%) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2939, 2858, 1725, 1643; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.76 (ddt, \(J = 17.1, 10.2, 6.6, \) 1H, \(H-2 \)), 5.01 (dq, \(J = 17.1, 2.0, 1H, H-1a \)), 4.96 (dq, \(J = 10.2, 2.0, 1H, H-1A \)), 2.26 – 2.23 (m, 3H, H-5 & H-12), 2.14 (m, 1H, H-3), 2.04 (m, 1H, H-3), 1.78 – 1.73 (m, 2H, H-4 & H-14), 1.68 (m, 1H, H-13), 1.62 (s, 3H, H-8/9), 1.61 (s, 3H, H-8/9), 1.54 – 1.50 (m, 2H, H-13 & H-14), 1.38 (ddt, \(J = 13.5, 9.3, 5.3, 1H, H-4 \)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 167.0 (C-6), 162.2 (C-10), 137.7 (C-2), 115.1 (C-1), 105.0 (C-7), 102.5 (C-11), 36.3 (C-5), 31.2 (C-3), 30.4 (C-4), 26.7 (C-14), 25.4 (C-8/9), 24.8 (C-8/9), 21.6 (C-12), 19.5 (C-13); HRMS (ESI\(^+\)) 237.1490 [M + H\(^+\)], 259.1308 [M + Na\(^+\)] (C\(_{14}\)H\(_{21}\)O\(_3\) requires 237.1485, C\(_{14}\)H\(_{20}\)NaO\(_3\) requires 259.1305).

119a – (±)-2-Methoxybenzyl 6-(but-3-en-1-yl)-1-hydroxycyclohex-2-ene-2-carboxylate

120a (1.00 g, 4.76 mmol) and \(p \)-methoxybenzyl alcohol (1.77 mL, 1.97 g, 14.3 mmol) were dissolved in dry toluene (20 mL) and heated at reflux with a Dean-Stark trap for removal of
methanol. After 48 h, the solvent was removed under reduced pressure to give an orange oil. The crude product was purified by column chromatography (5-10% diethyl ether/petroleum ether) to give the pure product S2 (1.10 g, 73%) as a colourless oil; Data in accordance with previous procedure. IR v_max/cm⁻¹ 2936, 2862, 1742, 1712, 1642, 1611, 1514; ¹H NMR (400 MHz, CDCl₃) δ 12.35 (s, 1H, OH), 7.32 – 7.27 (m, 2H, H-13), 6.92 – 6.86 (m, 2H, H-14), 5.77 (m, 1H, H-9), 5.13 (d, J 1.4, 2H, H-11), 6.02 – 5.96 (m, 2H, H-10), 3.80 (s, 3H, H-16), 3.41 (m, 1H, H-2'), 2.55 – 1.22 (m, 10H, H-3,4,5,7 & 8); ¹³C NMR (101 MHz, CDCl₃) δ 207.1 (C-1'), 175.0 (C-1), 159.6 (C-15), 138.4 (C-9), 129.8 (C-13), 128.2 (C-12), 114.8 (C-10), 113.9 (C-14), 97.7 (C-2), 65.6 (C-11), 56.2 (C-2'), 55.2 (C-16), 37.9 (C-6), 31.2 (C-7), 31.0 (C-8), 27.0 (C-3/4/5), 22.8 (C-3/4/5), 20.0 (C-3/4/5); HRMS (ESI⁺) 339.1580 [M + Na⁺] (C₁₉H₂₄NaO₄ requires 339.1567).

S2 (1.18 g, 3.73 mmol) was dissolved in dry acetone (15.0 mL) and cooled to -78 °C. TFAA (4.90 g, 23.3 mmol, 3.24 mL) was added dropwise, followed by acetic anhydride (2.71 g, 26.6 mmol, 2.51 mL) and TFA (15.0 mL) before stirring at -78 °C for 2.5 h and then at room temperature for 16 h. The reaction mixture was added dropwise to saturated sodium hydrogen carbonate (ca. 50 mL) and solid sodium hydrogen carbonate added until neutral. The aqueous solution was extracted with ethyl acetate (3 × 50 mL), washed with brine (100 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give 119a (0.35 g, 40%) as a colourless oil. Analytical data provided on page 145.

119b – (±)-5-(But-3-en-1-yl)-12,12-dimethyl-3,4,5,6-tetrahydro-4H-benzodioxin-2-one

121 (0.90 g, 4.30 mmol) and p-methoxybenzyl alcohol (1.77 g, 12.8 mmol) were dissolved in toluene (25 mL) and heated at reflux with a Dean-Stark trap. After 18 h, the reaction was cooled to room temperature and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give S3 (1.00 g, 74%) as a colourless oil. Isolated as a 2:3 mixture of keto/enol tautomers, NMR data given for major enol tautomer. IR v_max/cm⁻¹ 2922, 2853, 1656, 1616, 1275, 1214; ¹H NMR (400 MHz, CDCl₃) δ 12.15 (s, 1H, OH), 7.37 – 7.28 (m, 2H, CH arom.), 6.91 (dd, J 8.8, 3.1, 2H, CH
Purified by column chromatography to give the cooled to room temperature and the solvent removed under reduced pressure. The product was added to toluene (5 mL) and heated at reflux with a Dean-Stark trap. After 65 h, the reaction was cooled to room temperature and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give 119b (0.30 g, 42%) as a colourless oil; IR \(\nu \text{max/cm}^{-1} \) 3002, 2925, 2861, 1725, 1655, 1403; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) 5.82 (ddt, J 17.1, 10.1, 6.7, 1H, H-9), 5.05 (dd, J 17.1, 1.6, 1H, H-10), 5.00 (dd, J 10.1, 1.6, 1H, H-10), 2.45 (m, 1H, H-3), 2.31 (dd, J 18.3, 5.1, 1H, H-6), 2.23 (m, 1H, H-3), 2.17 – 2.09 (m, 2H, H-8), 1.94 – 1.86 (m, 2H, H-4 & H-6), 1.74 (m, 1H, H-5), 1.68 (s, 3H, H-13), 1.67 (s, 3H, H-13), 1.49 – 1.40 (m, 2H, H-7), 1.26 (m, 1H, H-4); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) 164.3 (C-11), 162.0 (C-1), 138.3 (C-9), 114.9 (C-10), 105.3 (C-12), 102.1 (C-2), 34.8 (C-7), 33.8 (C-6), 32.7 (C-5), 31.0 (C-8), 28.1 (C-4), 26.0 (C-13), 24.3 (C-13), 20.8 (C-3); HRMS (ESI\(^{+}\)) 259.1313 [M + Na\(^{+}\)] (C\(_{19}\)H\(_{24}\)NaO\(_{4}\) requires 259.1507).

\[S3 \] (1.00 g, 3.20 mmol) was dissolved in dry acetone (13.5 mL) and cooled to -78 °C. TFAA (4.16 g, 19.8 mmol, 2.75 mL) was added dropwise, followed by acetic anhydride (2.31 g, 22.6 mmol, 2.14 mL) and TFA (13.5 mL) before stirring at -78 °C for 2.5 h and then at room temperature for 16 h. The reaction mixture was added dropwise to saturated sodium hydrogen carbonate (ca. 50 mL) and solid sodium hydrogen carbonate added until neutral. The aqueous solution was extracted with ethyl acetate (3 × 50 mL), washed with brine (100 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give 119b (0.30 g, 42%) as a colourless oil; IR \(\nu \text{max/cm}^{-1} \) 3002, 2925, 2861, 1725, 1655, 1403; \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) 5.82 (ddt, J 17.1, 10.1, 6.7, 1H, H-9), 5.05 (dd, J 17.1, 1.6, 1H, H-10), 5.00 (dd, J 10.1, 1.6, 1H, H-10), 2.45 (m, 1H, H-3), 2.31 (dd, J 18.3, 5.1, 1H, H-6), 2.23 (m, 1H, H-3), 2.17 – 2.09 (m, 2H, H-8), 1.94 – 1.86 (m, 2H, H-4 & H-6), 1.74 (m, 1H, H-5), 1.68 (s, 3H, H-13), 1.67 (s, 3H, H-13), 1.49 – 1.40 (m, 2H, H-7), 1.26 (m, 1H, H-4); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) 164.3 (C-11), 162.0 (C-1), 138.3 (C-9), 114.9 (C-10), 105.3 (C-12), 102.1 (C-2), 34.8 (C-7), 33.8 (C-6), 32.7 (C-5), 31.0 (C-8), 28.1 (C-4), 26.0 (C-13), 24.3 (C-13), 20.8 (C-3); HRMS (ESI\(^{+}\)) 259.1313 [M + Na\(^{+}\)] (C\(_{19}\)H\(_{24}\)NaO\(_{4}\) requires 259.1507).

\[119d \] – (\(\pm \))-3-(But-3-en-1-yl)-12,12-dimethyl-3,4,5,6-tetrahydro-4H-benzodioxin-2-one

\[133 \] (150 mg, 0.71 mmol) and \(p \)-methoxybenzyl alcohol (296 mg, 2.14 mmol) were dissolved in toluene (5 mL) and heated at reflux with a Dean-Stark trap. After 65 h, the reaction was cooled to room temperature and the solvent removed under reduced pressure. The product was purified by column chromatography to give the \(p \)-methoxybenzyl ester \[134 \] (83 mg, 37%) as a
colourless oil. 134 (80 mg, 0.26 mmol) was then dissolved in dry acetone (1.5 mL) and cooled to -78 °C. TFAA (0.34 g, 1.64 mmol, 0.23 mL), TFA (1.5 mL) and acetic anhydride (0.19 g, 1.87 mmol, 0.18 mL) were added dropwise and the reaction stirred at -78 °C for 4 h before warming to room temperature overnight. After 16 h, the reaction mixture was added dropwise to saturated sodium hydrogen carbonate solution (10 mL) and solid sodium hydrogen carbonate was added until neutral. The aqueous solution was extracted with ethyl acetate (3 × 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give 119d (23 mg, 37%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 2929, 1722, 1511, 1247; 1H NMR (400 MHz, CDCl$_3$) δ 5.77 (ddt, J 17.0, 10.2, 6.6, 1H, H-9), 4.96 (dq, J 17.1, 1.7, 1H, H-10), 4.88 (dq, J 10.2, 1.7, 1H, H-10), 2.56 (m, 1H, H-3), 2.17 – 2.06 (m, 4H, H-6 & H-8), 1.81 – 1.74 (m, 2H, H-5 & H-7), 1.58 (s, 3H, H-13), 1.58 (s, 3H, H-13), 1.59 – 1.51 (m, 3H, H-5 & H-4), 1.28 (dt, J 14.8, 9.8, 5.1, 1H, H-7); 13C NMR (101 MHz, CDCl$_3$) 165.2 (C-1), 161.4 (C-11), 138.7 (C-9), 114.5 (C-10), 106.8 (C-2), 104.8 (C-12), 33.1 (C-7), 31.6 (C-8), 31.1 (C-3), 27.7 (C-6), 26.5 (C-13), 26.2 (C-4), 23.6 (C-13), 18.3 (C-5); HRMS (ESI$^+$) 237.1484 [M + H]$^+$ (C$_{14}$H$_{21}$O$_3$ requires 237.1485).

S4 — Methyl 2-oxocyclohexane-1-carboxylate

\[
\begin{array}{c}
\text{NaH, DMC} \\
\text{THF, } \Lambda
\end{array}
\rightarrow
\begin{array}{c}
\text{CO}_2\text{Me}
\end{array}
\]

S4

Sodium hydride (60% dispersion in mineral oil, 10 g, 250 mmol) and dimethyl carbonate (16.8 mL, 18.0 g, 200 mmol) were dissolved in THF (70 mL) and heated at reflux. A solution of cyclohexanone (8.24 mL, 7.8 g, 80 mmol) in THF (20 mL) was added dropwise over 1 h and then stirred at reflux for a further 1 h. The reaction was cooled to 0 °C and quenched with acetic acid (3.0 mL, 50 mL), poured into brine (100 mL) and extracted with DCM (3 × 75 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the pure product S4 as a colourless oil (12.5 g, quant.); 1H NMR (400 MHz, CDCl$_3$) δ 12.15 (s, 1H, -OH), 3.74 (s, 3H, -OC$_2$H$_5$), 2.46 – 2.15 (m, 4H, C$_2$H$_4$), 1.83 – 1.58 (m, 4H, C$_2$H$_4$). Data in accordance with literature.209
120a – (±)-Methyl 3-(but-3-en-1-yl)-2-oxocyclohexane-1-carboxylate

A suspension of sodium hydride (60% dispersion in mineral oil, 2.56 g, 64.0 mmol) in dry THF (100 mL) was cooled to 0 °C. A solution of methyl 2-oxocyclohexane-1-carboxylate S2 (5.0 g, 32.0 mmol) in dry THF (10 mL) was added dropwise over 10 min and then stirred at 0 °C for 1 h. A solution of n-butyllithium (2.5 M in hexanes, 20.5 mL) was added dropwise and stirred at 0 °C for 45 min before adding a solution of 4-bromobut-1-ene (2.13 mL, 2.84 g, 32.0 mmol) in dry THF (7 mL). The reaction mixture was stirred at 0 °C for a further 2 h before warming to room temperature. After 18 h, the reaction was quenched with water (50 mL), extracted with DCM (3 × 50 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give a yellow oil. The crude product was purified by column chromatography (2% ethyl acetate/petroleum ether) to give a 1:1 mixture of the keto/enol tautomers of 120a (1.16 g, 17%) as a colourless oil; IR ʋ max/cm⁻¹ 2938, 2865, 1747, 1713, 1653, 1612; ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 0.5H, O-H), 5.78 (ddt, J 17.0, 10.2, 6.6, 1H, H-9), 6.00 – 5.96 (m, 2H, H-10), 3.74 (s, 3H, -OC₂H₃), 3.40 – 3.37 (m, 0.5H, H-2'), 2.33 (dq, J 11.9, 5.9, 1H, H-6), 2.26 – 1.20 (m, 10H, H-3,4,5,7 & 8); ¹³C NMR (101 MHz, CDCl₃) δ 207.2 (C-1'), 174.8 (C-1), 138.2 (C-9), 114.9 (C-10), 97.6 (C-2'), 51.9 (C₆H₃), 34.2 (CH₂), 31.2 (CH₂), 27.0 (CH₂), 24.1 (CH₂), 20.0 (CH₂); HRMS (ESI⁺) 211.1332 [M + H]⁺, 233.1150 [M + Na]⁺ (C₁₂H₁₉O₃ requires 211.1329, C₁₂H₁₈NaO₃ requires 233.1148).

120b – (±)-Ethyl 3-(but-3-en-1-yl)-2-oxocyclohexane-1-carboxylate

A solution of ethyl 2-oxocyclohexane-1-carboxylate (1.00 g, 5.88 mmol) in THF (2.0 mL) was added to a suspension of sodium hydride (60% dispersion in mineral oil, 0.47 g, 11.75 mmol) in THF (20 mL) at 0 °C. After 15 min, a solution of n-butyllithium (2.5 M in hexanes, 3.76 mL, 9.40 mmol) was added dropwise and stirred at 0 °C for 1 h. A solution of 1-bromobut-4-ene (0.59 mL, 0.79 g, 5.88 mmol) in THF (1.0 mL) was added dropwise and stirred at 0 °C
for 2 h before warming to room temperature. After 18 h at room temperature, the reaction was quenched with water (10 mL) and the solvent removed under reduced pressure. Saturated aqueous ammonium chloride solution (10 mL) was added and the product extracted with ethyl acetate (3 × 30 mL). The combined organic extracts were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give a 1:1 mixture of the keto/enol tautomers of the product 120b (0.92 g, 70%) as a yellow oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2927, 2857, 1744, 1714, 1642, 1617; \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 12.42 (s, 0.5H, O\(\text{H} \)), 5.78 (m, 1H, H-9), 5.08 – 4.90 (m, 2H, H-10), 4.19 (q, \(J \) 7.2, 1H, CH\(_2\)CH\(_3\)), 3.37 (m, 0.5H, H-2'), 2.33 (m, 1H, H-6), 2.29 – 1.34 (m, 10H, H-3,4,5,7 & 8), 1.29 (t, \(J \) 7.2, 2H, CH\(_2\)CH\(_3\)); \(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta \) 207.3 (C-1'), 174.6 (C-1), 138.2 (C-9), 114.9 (C-10), 97.7 (C-2), 60.4 (CH\(_2\)CH\(_3\)), 57.9 (C-2'), 37.9 (C-6), 34.2 (CH\(_3\)), 31.2 (CH\(_3\)), 27.1 (CH\(_3\)), 24.1 (CH\(_3\)), 20.0 (CH\(_3\)), 14.2 (CH\(_2\)CH\(_3\)); HRMS (ESI\(^+\)) 225.1496 [M + H\(^+\)], (C\(_{13}\)H\(_{21}\)O\(_3\)) requires 225.1485.

121 – (±)-3-(But-3-en-1-yl)cyclohexan-1-one

Copper iodide (25 mg, 0.25 mmol) was added to a solution of freshly prepared butenylmagnesium bromide (10.0 mmol) in THF (25 mL) at 0 °C. After 40 min a solution of cyclohexanone (0.48 mL, 0.48 g, 5.00 mmol) in THF (20 mL) was added dropwise over 15 min and then the reaction mixture slowly warmed to room temperature. After 5 h, the reaction mixture was poured into saturated aqueous ammonium chloride solution (50 mL) and the organics extracted with DCM (3 × 75 mL) and the organic layers washed with brine, dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give the pure product 121; (0.78 g, quant.) as a colourless oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 2925, 2851, 1712, 1640; \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \) 5.77 (ddt, \(J \) 16.9, 10.2, 6.7, 1H, H-9), 5.00 – 4.95 (m, 2H, H-10), 2.42 (m, 1H, H-2), 2.34 (m, 1H, H-6), 2.25 (m, 1H, H-6), 2.10 – 1.96 (m, 4H, H-2,5 & 8), 1.89 (m, 1H, H-4), 1.78 (m, 1H, H-3), 1.64 (m, 1H, H-5), 1.42 – 1.36 (m, 3H, H-4 & 7); \(^{13}\text{C NMR} \) (101 MHz, CDCl\(_3\)) \(\delta \) 211.8 (C-1), 138.2 (C-9), 114.8 (C-10), 48.0 (C-2), 41.5 (C-6), 38.4 (C-3), 35.7 (C-7), 31.2 (C-4), 30.8 (C-8), 25.2 (C-5); HRMS (ESI\(^+\)) 175.1099 [M + Na\(^+\)], 327.2294 [2M + Na\(^+\)] (C\(_{10}\)H\(_{16}\)NaO requires 175.1093, C\(_{20}\)H\(_{32}\)NaO\(_2\) requires 327.2300).
Sodium hydride (60% dispersion in mineral oil, 0.63 g, 15.9 mmol) and dimethyl carbonate (1.07 mL, 1.15 g, 12.8 mmol) were dissolved in THF (10.0 mL) and heated at reflux. A solution of 121 (0.78 g, 5.10 mmol) in THF (5.0 mL) was added dropwise over 20 min and then stirred at reflux for a further 6.5 h. The reaction was cooled to 0 °C and quenched with acetic acid (3.0 M, 2 mL), poured into brine (10 mL), and extracted with DCM (3 × 10 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give a 1:1 mixture of the keto/enol tautomers of 122 as a colourless oil (0.91 g, 84%); \(\text{IR} \ \nu_{\text{max}}/\text{cm}^{-1} \ 3675, 2924, 1711, 1659, 1619; \) \(^{1}H \text{ NMR} \) (400 MHz, CDCl\(_3\)) \(\delta \ 12.10 \) (s, 0.5H, OH), 5.80 (ddt, \(J \ 16.9, 10.0, 6.6, 1\)H, H-9), 5.02 – 4.98 (m, 2H, H-10), 3.74 (s, 3H, -OCH\(_3\)), 3.35 (m, 0.5H, H-2') 2.36 – 2.32 (m, 2H, H-4 & H-6), 2.12 – 2.06 (m, 3H, H-8 & H-4), 1.95 (m, 1H, H-6), 1.78 (ddddd, J 13.1, 5.2, 3.2, 1.7, 1H, H-3), 1.67 (dtd, J 9.2, 6.2, 3.4, 1H, H-5), 1.42 – 1.38 (m, 2H, H-7), 1.18 (dtd, J 13.1, 10.8, 5.5, 1H, H-3); \(^{13}C \text{ NMR} \) (101 MHz, CDCl\(_3\)) \(\delta \ 205.5 \) (C-1'), 171.5 (C-1), 138.5 (C-9), 114.6 (C-10), 97.4 (C-2), 57.1 (C-2'), 51.3 (-OCH\(_3\)), 35.3 (C-6), 35.0 (C-7), 32.6 (C-5), 31.0 (C-8), 28.5 (C-3), 21.9 (C-4); \(\text{HRMS} \) (ESI\(^{+}\)) 211.1332 [M + H\(^{+}\)], 233.1159 [M + Na\(^{+}\)] (C\(_{12}\)H\(_{19}\)O\(_{3}\) requires 211.1329, C\(_{12}\)H\(_{18}\)NaO\(_{3}\) requires 233.1148).

\[122 \rightarrow (\pm)-5\{\text{But-3-en-1-yl}\}-1\-\text{oxocyclohexane-2-carboxylate} \]

Dimethyl carbonate (1.15 g, 12.8 mmol) and sodium hydride (60% dispersion in mineral oil, 0.63 g, 15.9 mmol) added to THF (10 mL) and heated at reflux. After 15 min a solution of 121 (0.78 g, 5.10 mmol) in THF (5 mL) was added dropwise. After 5 h at reflux, the reaction mixture was cooled to room temperature and cautiously quenched with acetic acid (3.0 M, 2 mL) and then water (10 mL). The solution was poured into brine (10 mL) then extracted with DCM (3 × 10 mL), and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give a 1:1 mixture of keto/enol...
tautomers 122 (0.90 g, 84%) as a colourless oil (data given for the keto tautomer); IR ν_{max}/cm⁻¹ 3676, 2953, 2925, 1716, 1664, 1623, 1442, 1218; ¹H NMR (400 MHz, CDCl₃) δ 12.10 (s, 0.5H, OH), 5.80 (ddt, J = 16.9, 10.0, 6.6, 1H, H-9), 5.05 – 4.96 (m, 2H, H-10), 3.74 (s, 3H, OCH₃), 3.35 (m, 0.5H, H-2'), 2.39 – 2.29 (m, 2H, H-4 & H-6), 2.15 – 2.07 (m, 3H, H-8 & H-4), 1.95 (m, 1H, H-6), 1.78 (dddd, J = 13.1, 5.2, 3.2, 1.7, 1H, H-3), 1.67 (dt overd, J = 9.2, 6.2, 3.4, 1H, H-5), 1.45 – 1.35 (m, 2H, H-7), 1.18 (dtd, J = 13.1, 10.8, 5.5, 1H, H-3); ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (C-1), 138.5 (C-9), 114.6 (C-10), 57.1 (C-2), 51.3 (-OCH₃), 35.3 (C-6), 35.0 (C-7), 32.6 (C-5), 31.0 (C-8), 28.5 (C-3), 21.9 (C-4); HRMS (ESI⁺) 233.1147 [M + Na]⁺ (C₁₂H₁₈NaO₃ requires 233.1148).

SS – (±)-8-(But-3-en-1-yl)-1,4-dioxaspiro[4.5]decan-8-ol

A freshly prepared solution of butenylmagnesiumbromide (1.2 equiv.) in THF (5 mL) was added dropwise to a solution of 1,4-cyclohexanedione monoethylene acetal (0.81 g, 5.2 mmol) in dry THF (7.5 mL) at 0 °C. The resulting solution was allowed to warm slowly to room temperature overnight. After 18 h, the reaction was quenched with saturated ammonium chloride solution (5 mL), extracted with diethyl ether (3 × 10 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give an orange oil. The crude product was purified by column chromatography (20-50% ethyl acetate/petroleum ether) to give the pure product SS (0.22 g, 20%) as a colourless oil; IR ν_{max}/cm⁻¹ 3478, 2930, 1712, 1640; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (ddt, J = 16.8, 10.2, 6.6, 1H, H-2), 5.08 – 4.91 (m, 2H, H-1), 4.00 – 3.87 (m, 4H, 2 × H-9), 2.21 – 2.10 (m, 2H, H-3), 1.94 – 1.80 (m, 2H, CH₂), 1.69 – 1.50 (m, 8H, 4 × CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 139.0 (C-2), 114.5 (C-1), 108.8 (C-8), 70.5 (C-5), 64.2 (C-9), 41.5 (C-4), 34.7 (C-6/7), 30.5 (C-6/7), 27.8 (C-3); HRMS (ESI⁺) 235.1308 [M + Na]⁺ (C₁₂H₂₀NaO₃ requires 235.1305).
123 – (±)-5-(But-3-en-1-yl)-1-hydroxy cyclohexan-8-one

\[
\begin{align*}
&\text{S5 (0.20 g, 0.94 mmol) was stirred in hydrochloric acid (2.0 M, 10 mL) and THF (10 mL) at room temperature for 18 h. After removal of the solvent under reduced pressure, the remaining aqueous phase was extracted with diethyl ether (3 \times 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give 123 (0.12 g, 78\%) as a yellow oil; IR } \nu_{\text{max}}/\text{cm}^{-1} 3434, 3073, 2933, 2855, 1704, 1640; \text{1H NMR} (400 MHz, CDCl}_3 \delta 5.87 \text{ (ddt, } J_{17.1, 10.2, 6.6, 1H, H-2}, 5.08 \text{ (dq, } J_{17.1, 1.5, 1H, H-1A}, 5.00 \text{ (dq, } J_{10.2, 1.5, 1H, H-1B}, 2.73 \text{ – 2.69 (m, 2H, H-6/7}, 2.25 \text{ – 2.20 (m, 4H, H-3& H-6/7}, 1.98 \text{ (ddt, } J_{14.6, 6.4, 3.2, 2H, H-6/7}, 1.80 \text{ (td, } J_{13.6, 5.2, 2H, H-6/7}, 1.69 \text{ – 1.65 (m, 2H, H-4); 13C NMR} (101 MHz, CDCl}_3 \delta 212.0 \text{ (C-8}, 138.5 \text{ (C-2}, 115.1 \text{ (C-1}, 70.3 \text{ (C-5}, 41.4 \text{ (C-4}, 36.9 \text{ (C-6}, 36.9 \text{ (C-7}, 28.0 \text{ (C-3); HRMS (ESI+) 151.1112 [M + H – H2O]+, 191.1045 [M + Na]+ (C10H15O requires 151.1117, C10H16NaO2 requires 191.1043).}
\end{align*}
\]

S6 – (±)-Ethyl 4-(but-3-en-1-yl)-1-ethoxy-3-oxocyclohex-2-ene-4-carboxylate

\[
\begin{align*}
&\text{128 (1.0 g, 4.2 mmol) and } \rho \text{TSA (0.13 g, 0.67 mmol) were stirred in ethanol (10 mL) at room temperature for 16 h. The reaction was quenched with saturated sodium hydrogen carbonate solution (5 mL), extracted with TBME (3 \times 10 mL) and the combined organics dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (0-20% ethyl acetate/petroleum ether) to give S6 (0.75 g, 67\%) as a colourless oil; IR } \nu_{\text{max}}/\text{cm}^{-1} 2932, 1980, 1726, 1663, 1608, 1187; \text{1H NMR} (500 MHz, CDCl}_3 \delta 5.81 \text{ (ddt, } J_{16.5, 8.2, 4.9, 1H, H-9}, 5.35 \text{ (s, 1H, H-2}, 5.03 \text{ (d, } J_{16.5, 1H, H-10}, 4.95 \text{ (d, } J_{8.2, 1H, H-10}, 4.17 \text{ (q, J 7.1, 2H, -OCH2CH3}, 3.90 \text{ (q, J 7.1, 2H, -OCH2CH3}, 2.62 \text{ (ddd, } J_{17.9, 9.5, 5.1, 1H, H-6} 2.45 \text{ (dt, } J_{14.0, 5.1, 1H, H-5}, 2.36 \text{ (dt, } J_{17.9, 5.1, 1H, H-6}, 2.12 \text{ – 1.99 (m, 3H, H-8 & H-7}, 1.93 \text{ (ddd, } J_{14.0, 9.5, 5.1, 1H, H-5}, 1.83 \text{ (m, 1H, H-7}, 1.36 \text{ (t, J 7.1, 3H, -OCH2CH3}, 1.24 \text{ (t, J 7.1, 3H, -OCH2CH3); 13C NMR} (126
154 MHz, CDCl₃) 195.4 (C3), 176.2 (C1), 171.4 (C=O), 137.8 (C9), 114.5 (C10), 101.7 (C2), 64.1 (OCH₂CH₃), 60.9 (OCH₂CH₃), 55.4 (C4), 32.8 (C7), 28.6 (C8), 28.1 (C5), 26.2 (C6), 13.8 (OCH₂CH₃), 13.8 (OCH₂CH₃); HRMS (ESI⁺) 267.1589 [M+H]⁺ (C₁₅H₂₃O₄ requires 267.1591).

125 – (±)-4-(But-3-en-1-yl)-1-ethoxycyclohex-2-en-1-one

A solution of lithium aluminium hydride in THF (1.0 M, 5.2 mL) was added to a solution of 125 (1.0 g, 5.15 mmol) in THF (10 mL) at 0 °C. After addition was complete the reaction mixture was stirred at room temperature for 16 h. The reaction was quenched by the slow addition of water at 0 °C and stirred for 30 min before adding hydrochloric acid (1.0 M, 10 mL) and extracting with diethyl ether (3 × 20 mL). The combined organic layers were dried over
magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the crude product as a colourless oil. The product was purified by column chromatography (5-10% ethyl acetate/petroleum ether to give 126 (0.61 g, 79%) as a colourless oil; IR ʋmax/cm⁻¹ 2924 (w), 1734 (w), 1678 (s), 1453, 1113; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (ddd, J 10.2, 2.8, 0.8, 1H, H-3), 5.99 (ddd, J 10.2, 2.8, 1.4, 1H, H-2), 5.83 (ddt, J 17.0, 10.2, 6.6, 1H, H-9), 5.08 (dq, J 17.0, 1.6, 1H, H-10), 5.03 (dq, J 10.2, 1.6, 1H, H-10), 5.21 (ddddd, J 16.9, 5.2, 4.3, 0.8, 1H, H-6), 2.45 (m, 1H, H-4), 2.37 (ddd, J 16.9, 12.3, 4.9, 1H, H-6), 2.23 – 2.10 (m, 3H, H-5 & H-8), 1.77 – 1.47 (m, 3H, H-5 & H-7); ¹³C NMR (101 MHz, CDCl₃) δ 199.9 (C-1), 154.8 (C-3), 137.8 (C-9), 129.1 (C-3), 115.4 (C-10), 36.9 (C-4), 35.4 (C-4), 33.7 (C-7), 31.0 (C-8), 28.5 (C-5); HRMS (ESI⁺) 151.1112 [M+H]⁺ (C₁₀H₁₅O requires 151.1117).

127 – (±)-Ethyl 2-acetylhex-5-enoate

Ethyl acetoacetate (0.98 mL, 1.0 g, 7.68 mmol) was added dropwise to a solution of sodium ethoxide (2.37 mL, 3.0 M in ethanol) and stirred at room temperature for 1 h. 1-Bromobut-4-ene (0.74 mL, 0.99 g, 7.31 mmol) was added and the solution heated at reflux for 16 h. The reaction was cooled to room temperature and ethyl acetate (20 mL) added, then washed with hydrochloric acid (20 mL, 0.5 M) and brine (20 mL). The organic layer was dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the product 127 (0.95 g, 67%) as a yellow oil; ¹H-NMR (400 MHz, CDCl₃) δ 5.76 (ddt, J 17.0, 10.2, 6.6, 1H, H-5), 5.09 – 4.99 (m, 2H, H-6), 4.20 (q, J 7.1, 2H, -OCH₂CH₃), 3.45 (t, J 7.2, 1H, H-2), 2.23 (s, 3H, H-2'), 2.12 – 2.05 (m, 2H, H-4), 1.99 – 1.92 (m, 2H, H-3), 1.28 (t, J 7.1, 3H, -OCH₂CH₃); HRMS (ESI⁺) 185.1176 [M+H]⁺ (C₁₀H₁₇O₃ requires 185.1172). Data in accordance with literature.²¹⁰

128 – (±)-Ethyl 4-(but-3-en-1-yl)-1,3-dioxocyclohexane-4-carboxylate

Ethyl acetoacetate (4.9 mL, 5.0 g, 38.4 mmol) was added dropwise to a solution of sodium ethoxide (14.1 mL, 3.0 M in ethanol) at room temperature. After 1 h, 1-bromobut-4-ene was
added and the solution was heated at reflux for 5 h. A further portion of sodium ethoxide (14.1 mL, 3.0 M in ethanol) was added and stirred for 15 min before ethyl acrylate (4.4 mL, 40.3 mmol) was added and the solution left at reflux for 16 h. The reaction mixture was cooled to room temperature and the solvent removed under reduced pressure. The resulting residue was re-dissolved in water (20 mL) and extracted with TBME (3 × 20 mL). The aqueous layer was acidified with hydrochloric acid (2 M) and re-extracted with TBME (3 × 20 mL). The combined organics were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (0-10% ethyl acetate/petroleum ether) to give the product 128 (5.17 g, 57%) as a colourless oil, found to be a 1:0.9 mixture of keto/enol tautomers as a solution in CDCl3. Data given for the major ketone tautomer; IR νmax/cm−1 2979 (br), 1726, 1596, 1190; 1H NMR (400 MHz, CDCl3) δ 5.72 (m, 1H, H-9), 4.99 – 4.92 (m, 2H, H-10), 4.18 (q, J7.1, 2H, -OCH2CH3), 3.60 (dd, J17.0, 0.7, 1H, H-2), 3.33 (dd, J17.0, 1.6, 1H, H-2), 2.58 – 2.50 (m, 2H, H-6), 2.45 (ddd, J14.3, 5.8, 3.6, 1H, H-5), 2.09 (m, 1H, H-7), 2.05 – 1.94 (m, 2H, H-7 & H-8), 1.78 (m, 1H, H-8), 1.66 (ddd, J14.3, 12.0, 5.9, 1H, H-5), 1.22 (t, J7.1, 3H, -OCH2CH3); 13C NMR (101 MHz, CDCl3) δ 203.1 (C-1), 199.6 (C-3), 170.8 (C=O), 137.3 (C-9), 115.4 (C-10), 62.1 (OCH2CH3), 59.3 (C-4), 57.5 (C-2), 37.5 (C-6), 33.2 (C-8), 28.6 (C-7), 27.3 (C-5), 14.1 (OCH2CH3); HRMS (ESI+) 239.1280 [M+H]+ (C13H19O4 requires 239.1278).

132a – (±)-Methyl-3-(but-3-en-1-yl)-1-oxocyclohexane-2-carboxylate

Magnesium (0.19 g, 7.8 mmol) was heated for 15 min under vacuum with a single crystal of iodine. THF (5.0 mL) was added before a solution of 1-bromobut-4-ene (0.63 mL, 0.84 g, 6.24 mmol) in THF (2.5 mL) was added dropwise causing an exothermic reaction. After 30 min, the Grignard solution was added dropwise to a solution of copper iodide (1.1 g, 5.72 mmol) in THF (12.5 mL) at -78 °C. The suspension was stirred at -78 °C for 1 h before adding a solution of cyclohexenone (0.50 mL, 0.50 g, 5.2 mmol) in THF (5.0 mL) at -78 °C via cannula causing the solution to turn bright yellow. After 1 h, the solution was warmed to 0 °C for ca. 20 min and then cooled to -78 °C. Methyl chloroformate (0.44 mL, 0.54 g, 5.72 mmol) was added dropwise before allowing the solution to slowly warm to room temperature. After 18 h, the solution was diluted with DCM (40 mL) and then quenched with saturated ammonium chloride.
solution (30 mL). The product was extracted with DCM (3 × 75 mL) and the organic layers washed with brine, dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (5% ethyl acetate/petroleum ether) to give a 1:1 mixture of keto-enol tautomers of 132a (0.15 g, 14%) as a colourless oil; IR, \(\nu_{\text{max}}/\text{cm}^{-1} \) 2927, 2855, 1759, 1718, 1651, 1266; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 12.34 (s, 1H, O\(\text{H} \)), 5.82 (m, 2H, H-9), 5.05 – 4.98 (m, 4H, H-10), 3.82 (s, 3H, CH\(_3\)), 3.78 (s, 3H, CH\(_3\)), 2.55 (m, 1H, H-3), 2.27 (m, 1H, H-3), 3.16 (dd, J 10.9, 1.1, 1H, H-2) 2.38 – 1.16 (m, 20H, CH\(_2\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 205.9 (C\(_1\)), 192.2 (C\(_2\)), 162.0 (C\(_4\)), 109.0 (C\(_5\)), 102.6 (C\(_6\)), 35.3 (C\(_8\)), 32.9 (C\(_9\)), 31.8 (C\(_10\)), 29.3 (C\(_11\)), 28.7 (C\(_12\)), 26.5 (C\(_13\)), 25.2 (C\(_14\)), 21.4 (C\(_15\)), 17.0 (C\(_16\)), \(\text{HRMS (ESI)}^+ \text{ requires 211.1333} \) [M + H\(^+\)], 233.1160 [M + Na\(^+\)] (C\(_2\)\(_3\)H\(_10\)O\(_3\) requires 211.1329, C\(_2\)\(_3\)H\(_18\)NaO\(_3\) requires 233.1148).

132b – (\(\pm\))-Ethyl 2-(but-3-en-1-yl)-6-oxocyclohexane-1-carboxylate

1-Bromobut-4-ene (0.27 g, 2.0 mmol, 0.2 mL) was dissolved in THF (1 mL) and added dropwise to a suspension of magnesium (58 mg, 2.4 mmol) in THF (1 mL) at room temperature. After 40 min, the solution was diluted with further THF (20 mL) and cooled to 0 °C. Copper iodide (5 mg, 0.05 mmol) was added, and the reaction stirred at 0 °C for 1 h. A solution of cyclohex-2-en-1-one (96 mg, 1.0 mmol) in THF (1 mL) was added dropwise at 0 °C. After stirring for 3 h at 0 °C a solution of ethyl cyanoformate (0.11 g, 1.1 mmol, 0.11 mL) in THF (1.0 mL) was added dropwise and stirred at 0 °C for a further 1 h. The reaction was quenched with saturated ammonium chloride solution (6 mL), extracted with DCM (3 × 20 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give 132b (0.15 g, 69%) as a 3:1 mixture of the keto-enol tautomers (NMR data given for the major keto-tautomer); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.70 (m, 1H, H-9), 4.99 – 4.86 (m, 2H, H-10), 4.21 – 4.16 (m, 2H, -OCH\(_2\)CH\(_3\)), 3.05 (dd, J 10.8, 1.1, 1H, H-2), 2.42 (m, 1H, H-6), 2.24 – 2.18 (m, 2H, H-3 & H-6), 2.08 (m, 1H, H-8), 2.05 – 1.93 (m, 3H, H-8, H-4 & H-5), 1.63 (m, 1H, H-5), 1.39 – 1.31 (m, 3H, H-7, H-4), 1.21 (t, J 7.2, -OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 206.1 (C\(_1\)), 169.8 (C\(_11\)), 137.9 (C\(_9\)), 115.0 (C\(_10\)), 63.7 (C\(_2\)), 60.9 (-OCH\(_2\)CH\(_3\)), 41.1 (C\(_6\)), 40.5 (C\(_3\)), 34.0 (C\(_7\)), 30.7 (C\(_8\)), 28.7 (C\(_4\)), 24.6 (C-5), 14.2
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

(-OCH₂CH₃); IR ʋₘₐₓ/cm⁻¹ 2982, 2936, 2857, 1742, 1713, 1641; HRMS (ESI⁺) 225.1484 [M + H]⁺ 247.1303 [M + Na]⁺ (C₁₃H₂₁O₃ requires 225.1485, C₁₃H₂₀NaO₃ requires 247.1305).

135 – (±)-(1R,2S,6S,8S)-1-hydroxyoctahydrocyclobuta[cd]indene-6(1H)-carboxylic acid

A solution of 119a (0.12 g, 0.51 mmol) was dissolved in 10% acetone/acetonitrile (150 mL) and irradiated with a 125 W medium pressure UV lamp. After 5 h the solvent was removed under reduced pressure and the product purified by column chromatography (5% ethyl acetate/petroleum ether) to give 135 (62 mg, 62%) as a colourless solid; IR ʋₘₐₓ/cm⁻¹ 13446 (br), 2954 (w), 2256 (w), 1717 (s), 1424, 1371; ¹H NMR (500 MHz, CDCl₃) δ 2.70 (m, 1H, H-8), 2.27 (ddt, J 11.0, 7.0, 3.0, 1H, H-2), 2.01 (dd, J 12.5, 9.5, 1H, H-7), 1.91 – 1.56 (m, 10H, H-3,4,5,9 & 10), 1.52 (dd, J 12.5, 8.0 1H, H-7); ¹³C NMR (126 MHz, CDCl₃) δ 183.6 (C-11), 79.7 (C-1), 50.0 (C-6), 46.1 (C-8), 44.5 (C-2), 29.3 (C-9), 28.9 (C-10), 27.4 (C-5), 23.9 (C-3), 22.6 (C-7), 16.0 (C-4); HRMS (ESI⁺) 195.1025 [M - H]⁻ (C₁₁H₁₅O₃ requires 195.1027).

136 – (±)-(4aS,5aS,8R,9aR)-2,2-dimethylhexahydro-4H-4a,8-ethanobenzo[1,4]cyclobuta[1,2d][1,3]-dioxin-4-one*

119b (0.27 g, 1.14 mmol) was dissolved in 10% acetone/acetonitrile (150 mL) and irradiated with a 125 W medium pressure mercury lamp. After 5.5 h, the solvent was removed under reduced pressure and the product purified by column chromatography (20-50% ethyl acetate/petroleum ether) to give 136 (0.15 g, 55%) as a colourless solid; IR ʋₘₐₓ/cm⁻¹ 2939, 2865, 1732, 1294; ¹H NMR (500 MHz, CDCl₃) δ 2.48 – 2.41 (m, 2H, H-9 & H-10), 2.38 (m, 1H, H-5), 2.37 (m, 1H, H-10), 2.19 – 2.09 (m, 2H, CH₂), 2.04 – 1.85 (m, 4H, 2x CH₂), 1.81 – 1.65 (m, 2H, CH₂), 1.64 (s, 3H, CH₃), 1.63 (s, 3H, CH₃), 1.62 – 1.47 (m, 2H, CH₂); ¹³C NMR (126 MHz, CDCl₃) 175.6 (C-11), 105.4 (C-12), 75.3 (C-1), 38.9 (C-2), 36.9 (C-9), 29.8 (C-13), 29.4 (C-6), 29.0 (C-13), 28.9 (CH₂), 28.7 (C-10), 28.3 (CH₂), 27.9 (CH₂), 24.5 (C-5), 22.9 (CH₂); HRMS (ESI⁺) 259.1299 [M + Na]⁺ (C₁₄H₂₀NaO₃ requires 259.1305).
136 (0.15 g, 0.63 mmol) was added to a solution of potassium hydroxide in methanol (2.0 M, 10 mL) at room temperature. After 16 h the mixture was diluted with water (5 mL) and acidified with hydrochloric acid (3 M). The aqueous solution was extracted with ethyl acetate (3 × 5 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the product 138 (41 mg, 33%) as an orange oil; IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 3055, 2937, 2916, 2643, 1727, 1699; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \): 7.32 (m, 5H, H arom), 7.18 (m, 5H, H arom), 4.48 (s, 2H, –CH\(_2\)-), 4.18 (m, 4H, –CH\(_2\)-), 4.05 (m, 4H, –CH\(_2\)-), 3.58 (m, 4H, –CH\(_2\)-), 2.50 (m, 5H, H arom), 1.62 (m, 5H, H arom), 1.57 (m, 5H, H arom); \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \): 159.2 (C=O), 144.7 (C-2), 128.5 (CH arom), 127.8 (CH arom), 127.6 (CH arom), 121.5 (C-2), 72.8 (PhCH\(_2\)), 68.7 (C-4), 60.4 (-OCH\(_2\)CH\(_3\)), 14.3 (-OCH\(_2\)CH\(_3\)); HRMS (ESI\(^+\)) \(m/z \): 219.0981 [M + Na]\(^+\) (C\(_{13}\)H\(_{16}\)NaO\(_3\) requires 219.0992). Data in accordance with literature.211

\[138 \rightarrow (\pm)-1\{(2S,7R)\}Oxobicyclo[4.2.2]decan-4-carboxylic \text{ acid} \]

Ethyl but-2-ynoate (5.00 g, 44.6 mmol, 5.20 mL), phenylmethanol (4.80 g, 44.6 mmol, 4.60 mL), triphenyl phosphine (0.58 g, 2.23 mmol) and acetic acid (0.54 g, 8.90 mmol, 0.50 mL) were dissolved in toluene (50 mL) and heated to 90 °C. After 24 h, the reaction mixture was cooled to room temperature and the solvent removed under reduced pressure. The product was purified by column chromatography (5% diethyl ether/petroleum ether) to give 143 (7.38 g, 75%) as a colourless oil as well as the cis-isomer (0.56 g, 5%); IR \(\nu_{\text{max}}/\text{cm}^{-1} \): 2990, 2853, 1716, 1659; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 7.32 – 7.18 (m, 5H, CH arom), 6.90 (dt, J 15.7, 4.3, 1H, H-3), 6.05 (dt, J 15.7, 2.0, 1H, H-2), 4.48 (s, 2H, PhCH\(_2\)), 4.18 – 4.05 (m, 4H, -OCH\(_2\)CH\(_3\) & H-4), 1.21 (t, J 7.1, 3H, -OCH\(_2\)CH\(_3\)); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \): 166.3 (C-1), 144.2 (C-3), 137.8 (C arom), 128.5 (CH arom), 127.8 (CH arom), 127.6 (CH arom), 121.5 (C-2), 72.8 (PhCH\(_2\)), 68.7 (C-4), 60.4 (-OCH\(_2\)CH\(_3\)), 14.3 (-OCH\(_2\)CH\(_3\)); HRMS (ESI\(^+\)) \(m/z \): 243.1000 [M + Na]\(^+\) (C\(_{13}\)H\(_{16}\)NaO\(_3\) requires 243.0992). Data in accordance with literature.211
155 – (±)-Ethyl 1-((benzyloxy)methyl)-3,5-dioxocyclohexane-6-carboxylate

Sodium metal (1.41 g, 61.3 mmol) was added to dry ethanol (90 mL) and stirred at room temperature for 2 h. Ethyl acetoacetate (7.12 mL, 55.9 mmol) and 143 (12.9 g, 58.7 mmol) were added dropwise and the mixture heated at reflux. After 48 h, the reaction was cooled to room temperature and the solvent removed under reduced pressure. The resulting red residue was dissolved in water (100 mL) and washed with diethyl ether (100 mL). The aqueous layer was acidified with hydrochloric acid (3.0 M) and then extracted with ethyl acetate (3 × 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by recrystallisation from diethyl ether to give 155 (12.0 g, 70%) as a colourless solid (found to be a 1:0.75 mixture of enol/keto tautomers in CDCl₃ labelled (a) and (b) respectively); m.p. (diethyl ether) 82 – 83 °C; IR \(\nu_{\text{max}} / \text{cm}^{-1} \) 2926, 2857, 1734, 1650, 1606, 1211; \(^1\)H NMR (500 MHz, CDCl₃) 9.66 (s, 1H, O-H), 7.45 – 7.21 (m, 8H, CH arom.), 7.22 (d, J 7.0, 2H, CH arom.), 5.52 (s, 1H, H-4a), 4.51 (d, J 12.0, 1H, PhCH₂a), 4.48 (d, J 12.0, 1H, PhCH₂a), 4.43 (d, J 12.0, 1H, PhCH₂b), 4.40 (d, J 12.0, 1H, PhCH₂b), 4.30 – 4.11 (m, 4H, -OCH₂CH₃), 3.63 (dt, J 4.3, 1.4, 1H, H-6b), 3.57 – 3.47 (m, 2H, H-4b & H-7b), 3.46 – 3.42 (m, 3H, H-7a & H-6a), 3.36 (dt, J 18.0, 1.7, 1H, H-4b), 2.91 – 2.71 (m, 3H, H-2b,1a & 1b), 2.63 (ddt, J 15.8, 4.6, 1.6, 1H, H-2b), 2.60 – 2.45 (m, 2H, H-2a), 1.30 (t, J 7.1, 3H, CH₃), 1.25 (t, J 7.1, 3H, CH₃); \(^{13}\)C NMR (126 MHz, CDCl₃) 202.7 (C-3b), 198.8 (C-5b), 190.7 (C-5a), 185.1 (C-3a), 170.6 (C=O), 168.8 (C=O), 137.9 (C arom.), 137.0 (C arom.), 128.5 (CH arom.), 128.4 (CH arom.), 127.9 (CH arom.), 127.8 (CH arom.), 127.7 (CH arom.), 127.6 (CH arom.), 104.0 (C-4a), 73.6 (PhCH₂), 73.3 (PhCH₂), 72.6 (C-7b), 71.2 (C-7a), 62.1 (-OCH₂CH₃), 61.5 (-OCH₂CH₃), 58.5 (C-6b), 56.7 (C-4b), 53.3 (C-6a), 41.3 (C-2b), 36.9 (C-1a), 35.1 (C-1b), 32.4 (C-2a), 14.1 (-OCH₂CH₃); HRMS (ESI⁺) 305.1386 [M + H]⁺ 327.1201 [M + Na]⁺ (C₁₇H₂₁O₅ requires 305.1384, C₁₇H₂₀NaO₅ requires 327.1203).

156 – (±)-Ethyl 5-((benzyloxy)methyl)-1-chloro-3-oxocyclohex-3-ene-4-carboxylate
155 (0.5 g, 1.64 mmol) was dissolved in dry chloroform (5 mL) and cooled to 0 °C. Phosphorus trichloride (0.45 g, 3.3 mmol, 0.29 mL) was added dropwise and the reaction mixture stirred at 0 °C for 1 h. A further portion of phosphorus trichloride (0.2 mL) was then added dropwise and the solution warmed to room temperature and stirred for 16 h. The solvent was then removed under reduced pressure and the product purified by column chromatography (10% ethyl acetate/petroleum ether) to give 156 (0.33 g, 63%) as a colourless oil found to be a 1:0.26 mixture of keto/enol tautomers. Data given for the major ketone tautomer; IR νmax/cm\(^{-1}\) 2861, 1736, 1676, 1615; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.30 – 7.19 (m, 5H, CH arom.), 6.17 (m, 1H, H-2), 4.43 (d, J 11.5, 1H, PhCH\(_2\)), 4.38 (d, J 11.5, 1H, PhCH\(_2\)), 4.12 (q, J 7.1, 2H, -OCH\(_2\)CH\(_3\)), 3.41 – 3.31 (m, 3H, H-4 & H-7), 2.83 – 2.67 (m, 3H, H-5 & H-6), 1.18 (t, J 7.1, 3H, -OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 191.7 (C-3), 169.1 (C=O), 157.9 (C-1), 137.7 (C arom.), 128.5 (CH arom.), 127.9 (CH arom.), 127.7 (CH arom.), 127.1 (CH arom.), 73.4 (PhCH\(_2\)), 70.5 (C-7), 61.4 (-OCH\(_2\)CH\(_3\)), 55.1 (C-4), 37.7 (C-5), 36.0 (C-6), 14.2 (-OCH\(_2\)CH\(_3\)); HRMS (ESI\(^+\)) 323.1044 [M + H]\(^+\) 345.0863 [M + Na]\(^+\) (C\(_{17}\)H\(_{20}\)O\(_4\)Cl requires 323.1045, C\(_{17}\)H\(_{19}\)NaO\(_4\)Cl requires 345.0864).

159 and 160 – (±)-Ethyl (1R,6S)-6-((benzyloxy)methyl)-4-chloro-2-oxo-1-(3-oxobutyl)cyclohex-3-ene-1-carboxylate* and (±)-ethyl (1S,5R,6S,9S)-9-((benzyloxy)methyl)-4-chloro-6-hydroxy-6-methyl-2-oxobicyclo[3.3.1]non-3-ene-1-carboxylate*

156 (53 mg, 0.16 mmol) and methyl vinyl ketone (27 µL, 0.33 mmol) were dissolved in methanol and triethylamine (5.0 mg, 7.0 µL, 0.05 mmol) added. The reaction mixture was heated to 60 °C for 5 h then cooled to room temperature and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (5-20% ethyl acetate/petroleum ether) to give 159 (17.8 mg, 28%) as a colourless oil and 160 (13.1 mg, 21%) as a colourless oil; 159: IR νmax/cm\(^{-1}\) 2922 (w), 1717, 1670, 1621; \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 7.38 – 7.27 (m, 5H, CH arom.), 6.26 (t, J 1.5, 1H, H-2), 4.47 (s, 2H, PhCH\(_2\)), 4.12 – 3.96 (m, 2H, -OCH\(_2\)CH\(_3\)), 3.69 (dd, J 10.0, 4.0, 1H, H-11), 3.53 (dd, J 10.0, 7.5, 1H, H-11), 2.88 (dd, J 8.0, 1.5, 2H, H-6), 2.52 – 2.39 (m, 2H, H-5 & H-7), 2.35 (ddd, J 12.0, 10.0, 5.0, 2H, H-8), 2.09 (s, 3H, H-10), 2.06 (m, 1H, H-7), 1.15 (t, J 7.0, 3H, -OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 207.4 (C-9), 193.1 (C-3), 169.7 (C=O), 157.9 (C-1), 137.7 (C arom.), 128.5 (CH arom.),
127.9 (CH arom.), 127.8 (CH arom.), 127.8 (CH arom.), 73.4 (PhCH₂), 69.4 (C-11), 61.7 (-OCH₂CH₃), 57.2 (C-4), 40.2 (C-5), 38.4 (C-8), 35.9 (C-6), 29.9 (C-10), 24.8 (C-7), 14.0 (-OCH₂CH₃);
HRMS (ESI⁺) 393.1467 [M + H]⁺ (C₂₁H₂₆O₅Cl requires 393.1463). 160: IR νmax/cm⁻¹ 3498 (br), 2934 (w), 1732, 1674, 1605; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 5H, CH arom.), 6.32 (s, 1H, H-2), 4.42 (d, J 11.9, 1H, PhCH₂), 4.36 (d, J 11.9, 1H, PhCH₂), 4.05 (q, J 7.1, 2H, -OCH₂CH₃), 3.48 (dd, J 9.8, 5.9, 1H, H-11), 3.42 (dd, J 9.8, 8.9, 1H, H-11), 3.11 (ddd, J 8.9, 5.9, 2.6, 1H, H-5), 2.96 (d, J 2.6, 1H, H-6), 2.32 (td, J 13.5, 6.8, 1H, H-7), 1.75 (ddd, J 13.5, 4.4, 2.7, 1H, H-7), 1.58 – 1.46 (m, 2H, H-8), 1.34 (s, 3H, H-10), 1.12 (t, J 7.1, 3H, -OCH₂CH₃);
¹³C NMR (101 MHz, CDCl₃) δ 194.3 (C=O), 170.8 (C=O), 156.8 (C-1), 137.9 (C arom.), 130.4 (C-2), 128.4 (CH arom.), 127.8 (CH arom.), 127.7 (C arom.), 73.3 (PhCH₂), 69.6 (C-9), 68.8 (C-11), 61.3 (-OCH₂CH₃), 56.1 (C-4), 53.6 (C-6), 42.6 (C-5), 31.3 (C-8), 30.2 (C-10), 28.9 (C-7), 14.0 (-OCH₂CH₃); HRMS (ESI⁺) 393.1465 [M + H]⁺ (C₂₁H₂₆O₅Cl requires 393.1463).

161 – 1-(Benzylxylo)but-3-en-2-one

CDI (0.54 g, 3.3 mmol) was added to a solution of 2-(benzylxylo)acetic acid (0.43 mL, 3.00 mmol) in DCM (10 mL) at room temperature. After 1 h, N,O-dimethylhydroxylamine (0.32 g, 0.3 mmol) was added and the reaction stirred for a further 6.5 h. The reaction was quenched with aqueous hydrochloric acid (1.0 mL, 10 mL) and stirred for 10 min. The aqueous layer was extracted with DCM (3 × 10 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (50% ethyl acetate/petroleum ether) to give 162 (0.27 g, 43%) as a colourless oil which was used immediately in the next step. 162 (0.27 g, 1.3 mmol) was dissolved in diethyl ether (6.0 mL) and cooled to 0 °C. Vinyl magnesium bromide (1.0 mL in THF, 3.20 mL, 3.20 mmol) was added dropwise and the reaction mixture stirred at 0 °C for 30 min before warming to room temperature. After a further 1.5 h, the solution was cooled to 0 °C and acetone (0.65 mL) added, followed by hydrochloric acid (3.0 mL, 2 mL) and then the aqueous phase extracted with diethyl ether (3 × 5 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography to give the product 161 (85 mg, 37%) as a colourless oil; IR νmax/cm⁻¹ 2923 (w), 2861 (w), 1736, 1677,1615 (w); ¹H NMR (400 MHz, CDCl₃) δ 7.29
- 7.42 (m, 5H, CH arom.), 6.58 (dd, J 17.6, 10.7, 1H, H-2), 6.37 (dd, J 17.6, 1.3, 1H, H-1), 5.85 (dd, J 10.7, 1.3, 1H, H-1), 4.65 (s, 2H, H-4), 4.30 (s, 2H, PhCH₂); HRMS (ESI+) 199.0729 [M+Na][₁] 215.0475 [M+K][₁] (C₁₁H₁₂O₂Na requires 199.0735, C₁₁H₁₂O₂K requires 215.0474). Data in accordance with literature.²¹²

163 – (±)-Ethyl (15,5R,6R,9S)-6,9-bis((benzyloxy)methyl)-4-chloro-6-hydroxy-2-oxobicyclo[3.3.1]non-3-ene-1-carboxylate*

156 (0.10 g, 0.31 mmol) and 161 (60 mg, 0.34 mmol) were dissolved in methanol (2 mL) and triethylamine (13 µL, 0.09 mmol) added before heating to 60 °C. After 7 h, the solvent was removed under reduced pressure and the product purified by column chromatography (10% ethyl acetate/petroleum ether) to give 163 (52.2 mg, 34%) as a colourless oil; IR νₘ₉₉/cm⁻¹ 3493 (br, w), 1936, 1865, 1731 (s), 1673 (s), 1604; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.14 (m, 10H, CH arom.), 6.31 (s, 1H, OCH₂), 4.03 (q, J 7.1, 2H, -OCH₂CH₃), 3.53 – 3.36 (m, 3H, H-10 & H-11), 3.31 – 3.21 (m, 2H, H-6 & H-10), 3.10 (ddd, J 9.0, 6.0, 2.5, 1H, H-5), 2.36 (ddd, J 14.5, 13.5, 5.0, 1H, H-7), 1.74 (ddd, J 13.5, 5.0, 2.1, 1H, H-7), 1.58 (ddd, J 14.5, 5.0, 2.1, 1H, H-8), 1.35 (td, J 14.5, 5.0, 1H, H-8), 1.10 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 194.3 (C-3), 170.7 (C=O), 156.4 (C-1), 138.0 (C arom.), 137.5 (C arom.), 131.0 (C-2), 128.5 (CH arom.), 128.4 (CH arom.), 128.0 (CH arom.), 128.0 (CH arom.), 127.7 (CH arom.), 127.7 (CH arom.), 75.5 (C-10), 73.4 (PhCH₂), 73.2 (PhCH₂), 70.8 (C-9), 68.8 (C-11), 61.3 (-OCH₂CH₃), 56.6 (C-4), 49.3 (C-6), 42.4 (C-5), 27.9 (C-7), 26.7 (C-8), 14.0 (-OCH₂CH₃); HRMS (ESI+) 499.1875 [M + H][₁] (C₂₉H₃₂ClO₆ requires 499.1882).

165 – (±)-Ethyl 5-((benzyloxy)methyl)-1-isoproxy-3-oxocyclohex-2-ene-4-carboxylate

155 (6.79 g, 22.3 mmol) and p-toluenesulfonic acid (0.68 g, 3.57 mmol) was dissolved in isopropanol (68 mL) and stirred at room temperature. After 48 h the solvent was removed
under reduced pressure and the resulting oil purified by column chromatography (10-20% ethyl acetate/petroleum ether) to give the product 165 (4.72 g, 61%) as a yellow oil. IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3675, 2980, 2901, 1736, 1654, 1601; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.39 – 7.26 (m, 5H, CH arom.), 5.37 (s, 1H, H-2), 4.54 – 4.38 (m, 3H, PhCH\(_2\) & H-8), 4.20 (q, \(J \) 7.1, 2H, -OCH\(_2\)CH\(_3\)), 3.46 – 3.40 (m, 2H, H-7), 3.36 (d, \(J \) 11.2, 1H, H-4), 2.78 (m, 1H, H-5), 2.50 (d, \(J \) 7.6, 2H, H-6), 1.36 (d, \(J \) 6.1, 3H, H-9), 1.26 (t, \(J \) 7.1, 3H, -OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 194.0 (C-3), 175.7 (C-1), 170.3 (C-O), 138.0 (C arom.), 128.4 (CH arom.), 127.7 (CH arom.), 127.5 (CH arom.), 101.9 (C-2), 73.3 (PhCH\(_2\)), 71.5 (C-8), 71.3 (C-7), 61.1 (-OCH\(_2\)CH\(_3\)), 55.5 (C-4), 36.7 (C-5), 31.6 (C-6), 21.5 (C-9), 14.2 (-OCH\(_2\)CH\(_3\)); HREIMS (ESI\(^+\)) 347.1861 [M+H]\(^+\) 369.1681 [M+Na]\(^+\) (C\(_{20}\)H\(_{27}\)O\(_3\) requires 347.1853, C\(_{20}\)H\(_{26}\)NaO\(_5\) requires 369.1672).

166 – (±)-Ethyl-(4\(\varepsilon\),5\(\varepsilon\))-5-((benzoxyl)methyl)-4-(prop-2-ene-1-yl)-1-isopropoxy-3-oxocyclohex-2-ene-4-carboxylate

165 (30 mg, 0.087 mmol) was dissolved in anhydrous THF (1.00 mL) and sodium hydride (60% dispersion in mineral oil, 5.2 mg, 0.13 mmol) added in one portion. After 10 min allylbromide (11 µL, 0.13 mmol) was added and the resulting solution stirred at room temperature for a further 24 h before addition of saturated aqueous NaHCO\(_3\) (2 mL). The resulting phases were separated, and the aqueous phase was extracted with diethyl ether (3 × 5 mL). The combined organic phases were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to afford the product 166 (24.8 mg, 72%, d.r. > 20:1) as a colourless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.42 – 7.22 (m, 5H, CH arom.), 5.54 (dtd, \(J \) 17.5, 9.7, 4.9, 1H, H-9), 5.43 (d, \(J \) 1.6, 1H, H-2), 5.14 – 4.99 (m, 2H, H\(_{2h}\)), 4.45 (s, 2H, PhCH\(_2\)), 4.45 (m, 1H, -CH(CH\(_3\)\(_2\)), 4.12 – 3.94 (m, 2H, -OCH\(_2\)CH\(_3\)), 3.64 (dd, \(J \) 9.5, 3.3, 1H, H-7), 3.42 (dd, \(J \) 9.6, 7.4, 1H, H-7), 3.19 (dddt, \(J \) 14.3, 5.0, 1.7, 1H, H-8), 2.72 (dddd, \(J \) 18.3, 12.9, 1.5, 1H, H-6), 2.62 – 2.42 (m, 3H, H-5,6,8), 1.30 (d, \(J \) 6.1, 3H, -CH(CH\(_3\)\(_2\))), 1.30 (d, \(J \) 6.1, 3H, -CH(CH\(_3\)\(_2\))), 1.14 (t, \(J \) 7.1, 3H, -OCH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 195.4 (C-3), 176.5 (C-1), 170.8 (C-O), 138.2 (C arom.), 133.6 (C-9), 128.5 (CH arom.), 127.8 (CH arom.), 127.7 (CH arom.), 119.2 (C-10), 102.9 (C-2), 73.3 (PhCH\(_2\)), 71.3 (-CH(CH\(_3\)\(_2\))), 69.6 (C-7), 61.3 (-OCH\(_2\)CH\(_3\)), 57.2 (C-4), 37.5 (C-5), 35.8 (C-8), 31.1 (C-6), 21.7 (-CH(CH\(_3\)\(_2\))), 21.4

167 – (±)-Ethyl-(4S,5S)-5-[(benzyloxy)methyl]-4-(but-3-ene-1-yl)-1-isopropoxy-3-oxocyclohex-2-ene-4-carboxylate

165 (4.32 g, 12.5 mmol) was dissolved in anhydrous DMF (5 mL) and added to a suspension of sodium hydride (60% dispersion in mineral oil, 0.75 g, 18.7 mmol) in DMF (45 mL) at room temperature. After 30 min, 4-bromobut-1-ene (1.9 mL, 18.7 mmol) was added and the solution heated to 100 °C. After 20 h, the reaction was cooled to room temperature and quenched by addition of water (10 mL) and aqueous hydrochloric acid (1.0 M, 10 mL) and the solution extracted with diethyl ether (3 × 20 mL). The combined organic phases were washed with water (5 × 20 mL), dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (20% ethyl acetate/petroleum ether) to give 167 (2.41 g, 48%, d.r. > 20:1) as a colourless oil; IR ν max/cm⁻¹ 2979, 2925, 1728, 1650, 1604, 1205; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.26 (m, 5H, CH arom.), 5.78 (dd, J 15.9, 12.9, 6.3, 4.4, 1H, H-10), 5.42 (s, 1H, H-2), 5.00 (m, 1H, H-11), 4.93 (m, 1H, H-11), 4.54 – 4.41 (m, 3H, PhCH₂ & CH(CH₃)₂), 4.11 – 3.97 (m, 2H, -OCH₂CH₃), 3.67 (dd, J 9.5, 3.5, 1H, H-7), 3.47 (dd, J 9.5, 7.9, 1H, H-7), 2.70 – 2.50 (m, 3H, H₂-6 & H-5), 2.43 (m, 1H, H-8), 1.98 (m, 1H, H-9), 1.91 – 1.81 (m, 2H, H-8 & H-9), 1.30 (d, J 6.1, 3H, -CH(CH₃)₂), 1.29 (d, J 6.1, 3H, -CH(CH₃)₂), 1.14 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 195.4 (C-3), 175.9 (C-1), 171.0 (C=O), 138.1 (C-10), 138.1 (C arom.), 128.4 (CH arom.), 127.7 (CH arom.), 114.8 (C-11), 103.0 (C-2), 73.3 (PhCH₂), 71.2 (-CH(CH₃)₂), 70.0 (C-7), 61.1 (-OCH₂CH₃), 57.7 (C-4), 37.6 (C-5), 31.1 (C-6), 30.2 (C-8), 28.4 (C-9), 21.6 (-CH(CH₃)₂), 21.4 (-CH(CH₃)₂), 14.0 (-OCH₂CH₃); HRMS (ESI⁺) 401.2326 [M+H]⁺ 423.2149 [M+Na]⁺ (C₂₄H₂₃O₅ requires 401.2323, C₂₄H₂₂NaO₅ requires 423.2142).
166 – (±)-(4R,5S)-5-((benzyloxy)methyl)-4-(but-3-en-1-yl)-4-(hydroxymethyl)cyclohex-2-en-1-one

167 (0.14 g, 0.35 mmol) was dissolved in dry THF (1.0 mL) and cooled to 0 °C. Lithium aluminium hydride (1.0 M in THF, 0.37 mL) was added dropwise and the solution slowly allowed to warm to room temperature. After 6 h, the reaction was cautiously quenched with water (1.0 mL) followed by aqueous hydrochloric acid (1.0 M, 1.0 mL). The aqueous mixture was extracted with diethyl ether (3 × 5 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (20% ethyl acetate/petroleum ether) to give the 168 (9%, 9.2 mg) as a colourless oil; IR νmax/cm⁻¹ 3380, 2923, 1640, 1453, 1096, 1068, 1027, 909, 736, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H, C₆H₅ arom.), 6.56 (d, J 10.2, 1H, H-3), 6.04 (d, J 10.2, 1H, H-2), 5.80 (ddt, J 16.7, 10.2, 6.5, 1H, H-10), 5.09 – 4.92 (m, 2H, H-11), 4.60 (d, J 11.7, 1H, PhCH₂), 4.52 (d, J 11.7, 1H, PhCH₂), 3.77 (dd, J 10.2, 2.4, 1H, H-12), 3.60 (m, 1H, H-7), 3.53 – 3.41 (m, 2H, H-7 & H-12), 2.81 (dd, J 17.1, 12.0, 1H, H-6), 2.45 – 2.29 (m, 2H, H-6 & H-5), 2.11 – 1.96 (m, 2H, H-9), 1.83 (m, 1H, H-8), 1.65 (m, 1H, H-8), 1.60 (s, 1H, OγH); ¹³C NMR (101 MHz, CDCl₃) δ 199.4 (C-1), 154.9 (C-3), 138.0 (C-10), 136.7 (C arom.), 130.0 (C-2), 128.7 (C arom.), 128.3 (C arom.), 127.9 (C arom.), 115.1 (C-11), 73.9 (PhCH₂), 69.6 (C-12), 64.5 (C-7), 44.5 (C-4), 39.2 (C-5), 38.1 (C-6), 33.8 (C-8), 28.1 (C-9); HRMS (ESI⁺) 303.1945 [M+H]+ 325.1767 [M+Na]+ (C₁₉H₂₇O₃ requires 303.1955, C₁₉H₂₆NaO₃ requires 3250.1774).

171 – (±)-Ethyl-(4R,5S)-5-((benzyloxy)methyl)-4-(but-3-en-1-yl)-1-oxocyclohex-2-ene-4-carboxylate

167 (1.39 g, 3.47 mmol) was dissolved in methanol (55 mL) and sodium borohydride (0.39 g, 10.42 mmol) and cerium (III) chloride heptahydrate (1.94 g, 5.21 mmol) added before heating the reaction mixture at reflux. After 16 h, the reaction was quenched with aqueous hydrochloric acid (3.0 M, 20 mL) and then extracted with ethyl acetate (3 × 50 mL). The combined organic
layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (20% diethyl ether/petroleum ether) to give the product 171 (0.43 g, 36%) as a colourless oil; IR ν\text{max}/cm^{-1} 3684, 3674, 2987, 2971, 2900, 1728, 1682, 1075, 1056; ^1H NMR (400 MHz, CDCl₃) δ 7.40 – 7.24 (m, 5H, CH arom.), 7.06 (dd, J 10.4, 1.0, 1H, H-3), 6.07 (d, J 10.4, 1H, H-2), 5.79 (m, 1H, H-10), 5.10 – 4.96 (m, 2H, H-11), 4.44 (s, 2H, PhCH₂), 4.20 – 4.00 (m, 2H, -OCH₂CH₃), 3.50 (m, 1H, H-12), 3.40 (dd, J 9.6, 7.1, 1H, H-12), 2.71 (dd, J 5.7, 2.6, 2H, H-2,6), 2.64 (m, 1H, H-5), 2.16 – 1.92 (m, 4H, H₂-8 & H₂-9), 1.22 (t, J 7.1, 3H, -OCH₂CH₃); ^13C NMR (101 MHz, CDCl₃) δ 197.9 (C-1), 172.3 (C-7), 150.0 (C-3), 137.9 (C arom.), 137.3 (C-10), 129.3 (C-2), 128.4 (CH arom.), 127.7 (CH arom.), 127.6 (CH arom.), 115.5 (C-11), 73.3 (PhCH₂), 70.1 (C-12), 61.3 (-OCH₂CH₃), 49.6 (C-4), 41.9 (C-5), 37.6 (C-8), 37.3 (C-6), 28.9 (C-9), 14.1 (-OCH₂CH₃); HRMS (ESI⁺) 343.1896 [M+H]⁺ 365.1717 [M+Na]⁺ (C₂₁H₂₇O₄ requires 343.1904, C₂₁H₂₆NaO₄ requires 365.1723)

172 – (4R,5S)-5-((benzyloxy)methyl)-4-(but-3-en-1-yl)-1-hydroxy-1-pentylcyclohex-2-ene-4-carboxylate

Copper iodide (14.4 mg, 0.15 mmol) was added to a solution of pentylmagnesium bromide (2.0 M in diethyl ether, 0.16 mL, 0.32 mmol) in diethyl ether (1.0 mL) at 0 °C. After 1 h, the solution was warmed to room temperature and a solution of 171 (50 mg, 0.15 mmol) in diethyl ether (1.0 mL) was added dropwise. After 5 h, ethyl cyanoformate (30 µL, 0.32 mmol) was added dropwise and the reaction mixture stirred at room temperature for 17 h. The reaction was then quenched by addition of water (2 mL) and extracted with diethyl ether (2 × 5 mL). The combined organics were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give only the 1,2-addition product 172 (59%, 36 mg) as a colourless oil; ^1H NMR (400 MHz, CDCl₃) δ 5.86 (d, J 10.3, 1H, H-3), 5.83 – 5.67 (m, 2H, H-2 & H-10), 5.04 – 4.92 (m, 2H, H-11), 4.45 (s, 2H, PhCH₂), 4.15 – 3.99 (m, 2H, -OCH₂CH₃), 3.58 (dd, J 9.5, 4.1, 1H, H-7), 3.51 (dd, J 9.5, 6.8, 1H, H-7), 2.20 – 1.97 (m, 3H, H-5,6,9), 1.97 – 1.80 (m, 2H, H-8 & H-9), 1.74 (ddd, J 13.0, 11.9, 5.2, 1H, H-8), 1.55 – 1.23 (m, 8H, H-12,13,14,15), 1.19 (t, J 7.1, 3H, -OCH₂CH₃), 0.88 (t, J 6.9, 3H, H-16); ^13C NMR (101 MHz, CDCl₃) δ 174.1 (C=O),
138.1 (C-10), 137.8 (C arom.), 134.2 (C3), 128.9 (C-2), 128.4 (CH arom.), 127.7 (CH arom.), 127.6 (CH arom.), 114.8 (C-11), 73.3 (PhCH2), 71.4 (C7), 68.9 (C1), 60.7 (-OCH2CH3), 48.8 (C-4), 41.9 (C-12), 39.5 (C5), 38.2 (C-8), 35.7 (C6), 32.4 (CH2), 28.9 (C9), 23.1 (CH2), 22.7 (CH2), 14.2 (-OCH2CH3), 14.0 (C16); \textbf{HRMS} (ESI+) 397.2747 [M+H-H2O]+ 437.2642 [M+Na]+ (C$_{26}$H$_{37}$O$_{3}$ requires 397.2737, C$_{26}$H$_{38}$NaO$_{4}$ requires 437.2662).

173 – (t)-Diethyl (3R,4R,5S)-5-((benzyl/oxy)methyl)-4-(but-3-en-1-yl)-1-hydroxy-3-pentylcyclohex-2-ene-2,4-dicarboxylate

Pentylmagnesium bromide (2.0 M in diethyl ether, 1.16 mL, 2.31 mmol) was added dropwise to a solution of copper bromide dimethylsulfide complex (0.238 g, 1.16 mmol) in diethyl ether (13.5 mL) at -20 °C. The solution was slowly warmed to -10 °C over around 30 min before cooling to -78 °C. 171 (180 mg, 0.53 mmol) in a solution of diethyl ether (3.5 mL) was added dropwise and the solution allowed to warm to -45 °C over 2 h. After this time, the reaction mixture was cooled to -78 °C and ethyl cyanoformate (0.45 mL, 4.86 mmol) was added and stirred for 2 h. The reaction mixture was then warmed to 0 °C, stirred for 30 min and then quenched with aqueous saturated sodium hydrogen carbonate solution (5 mL) and stirred for 1.5 h. The aqueous solution was extracted with diethyl ether (3 × 10 mL) and the combined organics dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (20% diethyl ether/petroleum ether) to give the product 173 (0.119 g, 46%) as a colourless oil; \textbf{IR} ν_{max}/cm$^{-1}$ 2957, 2931, 2870, 1720, 1642, 1264, 1218, 1072; \textbf{1H NMR} (400 MHz, CDCl3) δ 12.34 (s, 1H, OH), 7.38 - 7.26 (m, 5H, CH arom.), 5.77 (ddt, J 16.8, 10.2, 6.6, 1H, H-10), 5.06 - 4.92 (m, 2H, H-11), 4.58 - 4.45 (m, 2H, PhCH2), 4.34 - 3.97 (m, 4H, -OCH2CH3), 3.95 (m, 1H, H-7), 3.76 (dd, J 9.0, 8.3, 1H, H-7), 3.15 (dd, J 10.1, 3.1, 1H, H-3), 2.70 (dd, J 18.1, 5.8, 1H, H-6), 2.40 - 2.21 (m, 2H, H-6 & H-5), 2.13 - 1.93 (m, 2H, H-9), 1.81 (ddd, J 14.1, 11.7, 5.0, 1H, H-8), 1.62 (m, 1H, H-8), 1.47 (m, 1H, H-12), 1.32 (t, J 7.1, 3H, -OCH2CH3), 1.29 - 1.24 (m, 7H, H-12 & H-13,14,15), 1.12 (t, J 7.1, 3H, -OCH2CH3), 0.87 (t, J 6.9, 3H, H-16); \textbf{13C NMR} (101 MHz, CDCl3) δ 174.8 (C=O), 172.6 (C=O), 171.7 (C-1), 138.5 (C arom.), 138.1 (C-10), 128.5 (CH arom.), 127.8 (CH arom.), 127.7 (CH arom.), 114.9 (C-11), 103.1 (C-1), 73.4 (PhCH2), 72.3 (C-7), 60.4 (-OCH2CH3), 60.2 (-OCH2CH3), 51.6 (C-4), 37.6 (C-5), 36.6 (C-3), 34.2 (C-8), 32.8
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

174 – (±)-Ethyl (3R,4R,5S)-5-((acetyl)methyl)-4-(but-3-en-1-yl)-13,13-dimethyl-1-oxo-3-pentyltetrahydro-4H-benzodioxine-4-carboxylate

171 (28 mg, 58 μmol) and p-methoxybenzyl alcohol (43 μL, 0.35 mmol) were dissolved in toluene (3 mL) and heated at reflux with Dean-Stark apparatus. After 48 h, the solution was cooled to room temperature and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (10% ethyl acetate/petroleum ether) to give S6 (47 mg) which was immediately used in the next step. S6 (5.0 mg, 86 μmol) was dissolved in dry acetone (0.35 mL) and cooled to 0 °C. TFAA (75 μL, 0.54 mmol) was added dropwise followed by acetic anhydride (58 μL, 0.62 mmol) and TFA (0.35 mL). The solution was slowly allowed to warm to room temperature and stirred for 24 h. The reaction was quenched with saturated aqueous sodium hydrogen carbonate (2 mL) then solid sodium hydrogen carbonate added until neutralised. The aqueous solution was extracted with ethyl acetate (3 × 5 mL) and the organics dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 174 (89%, 3.8 mg) as a colourless oil; IR, νmax/cm⁻¹ 3394, 2971, 1703, 1655, 1249, 1038; ¹H NMR (500 MHz, CDCl₃) δ 5.79 (ddt, J 17.0, 10.1, 6.4, 1H, H-10), 5.05 (dq, J 17.0, 1.6, 1H, H-11), 5.00 (dq, J 10.1, 1.6, 1H, H-11), 4.66 (dd, J 11.0, 4.2, 1H, H-7), 4.40 (dd, J 11.0, 8.9, 1H, H-7), 4.16 (dd, J 10.7, 7.1, 1H, -OCH₂CH₃), 4.07 (dq, J 10.7, 7.1, 1H, -OCH₂CH₃), 3.34 (dd, J 10.7, 3.2, 1H, H-3), 2.47 (dd, J 18.5, 6.3, 1H, H-6), 2.39 (m, 1H, H-5), 2.28 (dd, J 18.5, 10.4, 1H, H-6), 2.14 – 2.06 (m, 2H, H-9), 2.09 (s, 3H, -COCH₃), 1.92 (m, 1H, H-8), 1.70 (m, 1H, H-8), 1.69 (s, 3H, H-14), 1.65 (s, 3H, H-14), 1.56 (m, 1H, CH₂), 1.49 – 1.18 (m, 7H, CH₂), 1.21 (t, J 7.1, 3H, OCH₂CH₃), 0.90 (t, J 7.1, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 174.0 (C=O), 170.9 (C=O), 163.2 (C-1), 161.2 (C-12), 137.6 (C-10), 115.1 (C-11), 107.6 (C-2), 105.1 (C-13), 65.8 (C-7), 60.8 (-OCH₂CH₃), 51.6 (C-4), 36.6 (C-5), 35.4 (C-3), 33.5 (C-8), 32.4 (CH₂), 32.1 (CH₂), 30.4 (C-6), 28.6 (C-9), 27.4 (CH₂), 26.9 (C-14), 23.4 (C-14), 22.5 (CH₂), 21.0...
Monoethyl itaconate (1.00 g, 6.32 mmol) was dissolved in THF (50 mL) and cooled to 0 °C. Sodium borohydride (1.20 g, 31.6 mmol) was added in portions over 10 min and stirred at 0 °C for 30 min. Water (11.7 mL) was added dropwise over 5 min and the solution warmed to 40 °C. After 20 h, the reaction was cooled to room temperature and hydrochloric acid (3.0 M, 10 mL) added. The solution was extracted with ethyl acetate (3 × 50 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting white solid was purified by column chromatography (50:49:1 ethyl acetate/petroleum ether/acetic acid) to give 4-hydroxy-2-methylenebutanoic acid (0.24 g, 33%) which was carried through to the subsequent step. Methyl iodide (0.12 mL, 1.85 mmol) was added to a solution of 4-hydroxy-2-methylenebutanoic acid (215 mg, 1.85 mmol) and potassium carbonate (0.51 g, 3.70 mmol) in DMF (1.9 mL) at room temperature. After stirring for 2 h, the reaction was quenched by addition of water (3 mL), extracted with ethyl acetate (3 × 5 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was dissolved in anhydrous DCM and triphenyl phosphine (0.73 g, 2.78 mmol), imidazole (63 mg, 0.93 mmol) and iodine (1.41 g, 5.55 mmol) added. After 3 h at room temperature, sodium thiosulfate (5 mL) was added and the solution stirred for ca. 20 min. The solution was washed with further sodium thiosulfate (3 × 10 mL) and the organic layer dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 189 as a colourless oil (120 mg, 27%); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.27 (d, \(J = 1.1\) Hz, H-5), 5.63 (d, \(J = 1.1\) Hz, H-5), 3.73 (s, 3H, CH\(_3\)), 3.28 (t, \(J = 7.3\) Hz, H-4); 2.82 (t, \(J = 7.3\) Hz, H-3). Due to its instability, 189 was carried through to the subsequent step without pursuing full characterisation.
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

\(\text{165} \quad \text{(120 mg, 0.35 mmol)}\) was added to a suspension of sodium hydride (60% dispersion in mineral oil, 14 mg, 0.35 mmol) in DMF (2 mL) and allowed to stir at room temperature for 30 min. A solution of \(\text{189} \quad \text{(100 mg, 0.42 mmol)}\) in DMF (0.5 mL) was added and the solution heated to 100 °C for 17 h before cooling to room temperature. The reaction was quenched by addition of water (2 mL) followed by aqueous hydrochloric acid (3.0 M, 2 mL). The solution was extracted with diethyl ether (3 × 5 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (10% ethyl acetate/petroleum ether) to give cyclopropane \(\text{191} \quad \text{(69.5 mg, 44%)}\) as the major product; IR \(\nu_{\text{max}} / \text{cm}^{-1} \) 3660, 2980, 1722, 1646, 1605, 1205, 748; \(^1\text{H NMR} \quad \text{(400 MHz, CDCl}_3\text{)} \delta \) 7.38 – 7.27 (m, 5H, \(\text{C}_\text{H arom.}\)), 5.44 (s, 1H, \(\text{H}_2\)), 4.53 – 4.40 (m, 3H, \(\text{-OC}_2\text{H}_5\text{Ph}\)), 4.08 – 3.91 (m, 2H, \(\text{-OC}_2\text{H}_3\text{CH}_3\)), 3.80 (dd, \(J = 9.0, 2.8, 1H, \text{H}_7\)), 3.57 (s, 3H, \(\text{-OC}_2\text{H}_3\)), 3.39 (dd, \(J = 9.0, 7.4, 1H, \text{H}_7\)), 3.10 (d, \(J = 15.5, 1H, \text{H}_8\)), 2.72 (m, 1H, \(\text{H}_6\)), 2.62 – 2.47 (m, 2H, \(\text{H}_5, \text{H}_6\)), 2.38 (d, \(J = 15.5, 1H, \text{H}_8\)), 1.31 (app. t, \(J = 6.3, 6H, \text{-OCH}(\text{CH}_3)_2\)), 1.26 (m, 1H, \(\text{H}_{10}\)), 1.10 (t, \(J = 7.1, 3H, \text{-OCH}_2\text{CH}_3\)), 1.06 (dd, \(J = 7.5, 2.3, 1H, \text{H}_{10}\)), 0.89 – 0.79 (m, 2H, \(\text{H}_{10}\)); \(^{13}\text{C NMR} \quad \text{(101 MHz, CDCl}_3\text{)} \delta \) 196.9 (\(\text{C}_3\)), 176.1 (\(\text{C}_1\)), 175.7 (\(\text{C}_12\)), 170.8 (\(\text{C}_11\)), 138.3 (\(\text{C}_\text{arom.}\)), 128.4 (\(\text{CH}_\text{arom.}\)), 127.7 (\(\text{CH}_\text{arom.}\)), 103.0 (\(\text{C}_2\)), 73.4 (\(\text{OCH}_2\text{Ph}\)), 71.2 (\(\text{-OCH}(\text{CH}_3)_2\)), 70.6 (\(\text{C}_7\)), 61.3 (\(\text{-OCH}_2\text{CH}_3\)), 57.7 (\(\text{C}_4\)), 52.0 (\(\text{OCH}_3\)), 38.0 (\(\text{C}_5\)), 34.2 (\(\text{C}_8\)), 31.1 (\(\text{C}_6\)), 21.6 (\(\text{-OCH}(\text{CH}_3)_2\)), 21.4 (\(\text{-OCH}(\text{CH}_3)_2\)), 20.8 (\(\text{C}_9\)), 20.1 (\(\text{C}_{10}\)), 14.0 (\(\text{-OCH}_2\text{CH}_3\)), 13.1 (\(\text{C}_{10}\)); \(\text{HRMS (ESI)} \quad 459.2364 \ [\text{M+H}^+]^+ \), 481.2201 \ [\text{M+Na}^+]^+ \) (\(\text{C}_{26}\text{H}_{35}\text{O}_7\) requires 459.2377, \(\text{C}_{26}\text{H}_{34}\text{NaO}_7\) requires 481.2197).
193 – tert-Butyl(4-iodo-2-methylenetoxy)dimethylsilane

196 (1.99 g, 9.2 mmol) was dissolved in anhydrous THF (80 mL) and cooled to 0 °C. Imidazole (1.57 g, 23.0 mmol) and triphenyl phosphine (2.89 g, 11.0 mmol) were added followed by addition of iodine (3.03 g, 12.0 mmol) in portions. The resulting brown solution was warmed to room temperature and stirred for 1 h. The mixture was diluted with hexane (80 mL), filtered through celite and the filtrate concentrated under reduced pressure to give an orange oil which was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 193 (2.5 g, 83%) as a colourless oil; IR ν_{max}/cm⁻¹ 3674, 2955, 2958, 2900, 2856, 1080, 836; ¹H NMR (400 MHz, CDCl₃) δ 5.15 (dq, J_{1.6, 0.8}, 1H), 4.95 – 4.91 (m, 1H), 4.12 (d, J_{1.5}, 2H), 3.29 (t, J 7.6, 2H), 2.65 (dd, J 8.4, 7.4, 1.1, 2H), 0.94 (s, 9H), 0.10 (s, 6H); Data in accordance with literature.192

195 – 2-Methylenebutane-1,4-diol

Dimethyl itaconate 194 (1.79 g, 11.3 mmol) was dissolved in THF (75 mL) and cooled to -78 °C. Diisobutylaluminium hydride (1.0 M in hexanes, 50 mL) was added dropwise over 1 h and then the reaction stirred at -78 °C for 1 h before warming to room temperature. After 16 h, the reaction was cooled to 0 °C and quenched with water (20 mL) then a saturated aqueous solution of Rochelle salt (100 mL) and stirred for 1 h. The organics were extracted with ethyl acetate (3 × 100 mL), dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (75% ethyl acetate/petroleum ether) to give the product 195 (0.86 g, 74%) as a colourless oil; IR ν_{max}/cm⁻¹ 3306 (br), 2888, 1652 (w), 1436, 1017; ¹H NMR (400 MHz, CDCl₃) δ 5.10 (s, 1H, H-5), 4.96 (s, 1H, H-5), 4.08 (s, 2H, H-1), 3.74 (t, J 6.0, 2H, H-4), 3.05 (s, 2H, -OH), 2.36 (t, J 6.0, 2H, H-3); Data in accordance with literature.213

196 – 3-(((tert-Butyldimethylsilyl)oxy)methyl)but-3-en-1-ol

172
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

tert-Butyldimethylsilylchloride (0.59 g, 3.93 mmol) was added to a solution of imidazole (0.28 g, 4.10 mmol), dimethylaminopyridine (22 mg, 0.18 mmol) and 2-methylenenbutane-1,4-diol (0.36 g, 3.57 mmol) in DCM (15 mL) and DMF (15 mL) at -78 °C. After 1 h, the reaction was warmed to room temperature and stirred for a further 45 min. The reaction was quenched by addition of saturated aqueous ammonium chloride solution (20 mL), extracted with DCM (3 × 20 mL) and the combined aqueous layers washed with water (3 × 20 mL). The organics were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 196 (0.23 g, 30%) as a colourless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 5.12 \text{ (app. q, J } 1.5, 1\text{H, H-4)}, 4.94 \text{ (m, 1H, H-4), 4.10 (t, J } 1.1, 2\text{H, H-5)}, 3.72 \text{ (app. q, J } 6.0, 2\text{H, H-1)}, 2.34 \text{ (td, J } 6.0, 1.5, 2\text{H, H-2}), 0.91 \text{ (s, 9H, -OSi(CH}_3)_2C(CH}_3)_3), 0.09 \text{ (s, 6H, -OSi(CH}_3)_2C(CH}_3)_3); \text{ MS (ESI\(^+\)) 217.2 [M+H]\(^+\) 239.1 [M+Na]\(^+\) (C\(_{11}\)H\(_{25}\)O\(_2\)Si requires 217.2, C\(_{11}\)H\(_{24}\)NaO\(_2\)Si requires 239.1). Data in accordance with literature.\(^{192}\)

196 \text{ – 3-(((tert-Butyldimethylsilyl)oxy)methyl)but-3-en-1-ol}

\[
\text{\begin{array}{c}
\text{HO} \\
\text{CO} \\
\text{CO} \\
\text{Et}
\end{array}} \quad \text{\begin{array}{c}
i) \text{Cl(CO}_2\text{Et, NEt}_3, \text{THF, 0 °C}} \\
\text{b) NaBH}_4, \text{H}_2\text{O} \\
\text{ii) TBSCI, DMAP, imidazole, DCM, DMF} \\
\text{iii) DIBAL-H, THF, -78 °C}
\end{array}} \quad \text{\begin{array}{c}
\text{TBSO} \\
\text{CH}_3 \\
\text{OH} \\
\text{HO}
\end{array}}
\]

A solution of ethyl chloroformate (1.5 mL, 15.8 mmol) in THF (5 mL) was added to a solution of monoethyl itaconate (2.5 g, 15.8 mmol) and triethylamine (2.2 mL) in THF (15 mL) at 0 °C. After 1 h, the resulting suspension was filtered and added dropwise to a solution of sodium borohydride (1.08 g, 28.5 mmol) in water (7.5 mL) over 30 min. After a further 2 h the reaction was quenched by addition of hydrochloric acid (3.0 M, 15 mL) and extracted with diethyl ether (3 × 10 mL). The combined organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (40% diethyl ether/petroleum ether) to give a colourless oil (0.84 g) found to be an inseparable mixture of the ethyl 3-(hydroxymethyl)but-3-en-1-enoate (63%) and the saturated alcohol (37%). The mixture was carried through subsequent steps without further purification.

Ethyl 3-(hydroxymethyl)but-3-en-1-enoate (1.44 g, 10.0 mmol) was dissolved in anhydrous DMF (50 mL) and imidazole (1.64 g, 24.0 mmol) and tert-butyldimethylsilyl chloride (1.81 g, 12.0 mmol) added at room temperature. The resulting solution was stirred for 16 h before partitioning between diethyl ether and water. The organic layer was washed with water (5 × 50 mL), dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure.
to give ethyl 3-(((tert-butylimethyldimethylsilyloxy)methyl)but-3-enoate (2.53 g, 98%, 1:0.6 unsaturated:saturated)

Ethyl 3-(((tert-butylimethyldimethylsilyloxy)methyl)but-3-enoate (2.85 g) was dissolved in anhydrous DCM (100 mL) and cooled to -15 °C. A solution of diisobutylaluminium hydride (1.0 M in hexanes, 23.2 mL) was added dropwise over 30 min and the resulting solution stirred for a further 1 h. Water (0.9 mL) was added, followed by aqueous sodium hydroxide solution (2.0 M, 1.5 mL) and then water (2 mL). The solution was warmed to room temperature and stirred for 15 min. Magnesium sulfate was added and the suspension stirred for a further 15 min before the suspension was filtered and the solvent removed under reduced pressure to give a 1:0.6 mixture of 196 and S7 (1.99 g, 83%) as a colourless oil; IR νmax/cm⁻¹ 3523, 2954, 2929, 2886, 2857, 1253, 1095, 833, 734

1H NMR (400 MHz, CDCl₃) δ 5.10 (q, J 1.6, 1H), 4.92 (dt, J 1.9, 0.9, 1H), 4.08 (t, J 1.0, 2H), 3.70 (t, J 6.1, 2H), 2.32 (td, J 6.1, 1.2, 2H), 0.90 (s, 9H), 0.07 (s, 6H). Data in accordance with literature.¹⁰²

200 – (±)-Ethyl (1R,2S,4S,5S,10S)-5-((benzyloxy)methyl)-1-isopropoxy-3-oxotricyclo[4.2.2.0¹,2]-decane-4-carboxylate

¹⁶⁷ (1.0 g, 2.50 mmol) was dissolved in 10% acetone in acetonitrile (150 mL) and irradiated using a 125 W Hg medium pressure UV lamp. After 7.5 h, irradiation was stopped and the solvent removed under reduced pressure. The resulting oil was purified by column chromatography to the product 200 (1.0 g, quant.) as colourless crystals (recrystallised from methanol); IR νmax/cm⁻¹ 2974, 1734, 1702, 1605, 1109, 731; ¹³C NMR (101 MHz, CDCl₃) δ 211.6 (C-3), 171.0 (C-12), 138.1 (C arom.), 128.4 (CH arom.), 127.6 (CH arom.), 78.7 (C-1), 73.1 (PhCH₂), 72.5 (C-7), 65.7 (CH(CH₃)₂), 60.7 (OCH₂CH₃), 59.5 (C-4),
52.7 (C-2), 41.5 (C-11), 38.5 (C-5), 37.4 (C-8), 35.9 (C-6), 27.3 (C-10), 24.6 (-CH(CH₃)₂), 23.7 (C-9), 14.1 (-OCH₂CH₃); HRMS (ESI⁺) 423.2152 [M+Na⁺]⁺ (C₂₄H₃₂NaO₅ requires 423.2142).

201 – (±)-Ethyl (45,55,85)-4-(benzyloxy)methyl)-2,6-dioxobicyclo[4.2.2]decane-5-carboxylate

200 (54.5 mg, 0.14 mmol) was dissolved in THF (2 mL) and 2% aqueous hydrochloric acid (0.5 mL) and heated to 80 °C. After 90 min, the reaction was diluted with water (2 mL) and extracted with DCM (3 x 3 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the pure product 201 (47 mg, 96%) as a colourless solid; m.p. (ethanol) 116–117 °C; IR νmax/cm⁻¹ 2931, 1733, 1240, 1209; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.27 (m, 5H, C₅H arom.), 4.52 (s, 2H, PhCH₂), 4.16–4.06 (m, 2H, -OCH₂CH₃), 3.71 (dd, J 9.8, 3.0, 1H, H-9), 3.34 (t, J 9.8, 1H, H-9), 2.97 (dd, J 11.6, 5.2, 1H, H-3), 2.77 (m, 1H, H-4), 2.73–2.66 (m, 3H, H-3,7,8), 2.59 (dd, J 14.1, 4.1, 1.9, 1H, H-1), 2.53–2.42 (m, 2H, H-1,7), 2.41–2.30 (m, 2H, H-11,12), 2.21–2.12 (m, 2H, H-11,12), 1.18 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 210.7 (C-2), 207.5 (C-6), 172.4 (C-10), 138.7 (C arom.), 128.2 (CH arom.), 127.7 (CH arom.), 73.0 (PhCH₂), 69.4 (C-9), 61.5 (-OCH₂CH₃), 59.3 (C-5), 52.9 (C-1), 44.5 (C-7), 44.1 (C-4), 40.1 (C-3), 30.7 (C-11), 28.2 (C-8), 24.8 (C-12), 13.9 (-OCH₂CH₃); HRMS (ESI⁺) 381.1677 [M+Na⁺]⁺ (C₂₁H₂₆NaO₅ requires 381.1672).

202 – (±)-Ethyl (45,55,85)-6-acetoxy-4-(acetoxymethyl)-2-oxobicyclo[4.2.2]deca-7-ene-5-carboxylate

200 (243 mg, 0.61 mmol) was dissolved in acetic anhydride (1.5 mL) and boron trifluoride diethyl etherate (78 µL, 0.61 mmol) added dropwise. After 10 min, the reaction was quenched with water (2.0 mL) and extracted with DCM (3 x 5 mL). The organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was dissolved by column chromatography (35% ethyl acetate/petroleum ether) to give the diacetate 202 (85 mg, 40%) as a colourless oil; IR νmax/cm⁻¹ 2978, 2937, 1769, 1731, 1696, 1227, 1206; ¹H NMR (400 MHz, CDCl₃) δ 6.11 (d, J 7.9, 1H, H-7), 4.24 (dd, J 11.0, 3.2, 1H, H-9), 4.19–4.04
(m, 2H, -OCH$_2$CH$_3$), 3.82 (dd, J 11.0, 9.3, 1H, H-9), 2.85 (m, 1H, H-8), 2.72 – 2.47 (m, 5H, H-1,3,4), 2.14 (m, 1H, H-12), 2.07 (s, 3H, -CH$_3$), 2.01 (s, 3H, -CH$_3$), 1.97 – 1.70 (m, 3H, H-11,12), 1.20 (t, J 7.1, 3H, -OCH$_2$CH$_3$); 13C NMR (101 MHz, CDCl$_3$) δ 212.8 (C-2), 172.4 (C-10), 170.8 (C=O), 167.9 (C=O), 144.1 (C-6), 122.1 (C-7), 65.5 (C-9), 61.3 (-OCH$_2$CH$_3$), 52.4 (C-3), 49.9 (C-5), 44.8 (C-4), 42.2 (C-1), 33.9 (C-12), 30.7 (C-8), 25.7 (C-11), 21.5 (CH$_3$), 21.0 (CH$_3$), 14.1 (-OCH$_2$CH$_3$); HRMS (ESI$^+$) 375.1418 [M+Na$^+$] (C$_{18}$H$_{24}$NaO$_7$ requires 375.1414).

204 – (t)-Ethyl (4SR,5SR,8RS)-4-[(benzyl oxy)methyl]-8-(((tert-butyldimethylsilyl)oxy)methyl)-2,6-dioxobicyclo[4.2.2]decane-5-carboxylate

221 (1.0 g, 0.77 mmol) was dissolved in acetonitrile (150 mL) and irradiated with UV light. After 3 h the solvent was removed under reduced pressure to give 229 (1.0 g, quant.). 229 was found to be unstable to column chromatography so was subjected to ring opening immediately.

229 (0.70 g, 1.28 mmol) was dissolved in chloroform (10.0 mL) and pTSA (0.24 g, 1.28 mmol) added. The reaction mixture was stirred at room temperature for 20 minutes before adding water (5 mL). The organics were extracted with dichloromethane (3 x 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give 204 (0.45 g, 68%) as a colourless oil; IR ν_{max}/cm$^{-1}$ 3674, 2987, 2955, 2928, 2900, 2857, 1737, 1714, 1075; 1H NMR (500 MHz, CDCl$_3$) δ 7.40 – 7.26 (m, 5H, CH arom.), 4.56 (s, 2H, -OCH$_2$Ph), 4.20 – 4.07 (m, 2H, -OCH$_2$CH$_3$), 3.74 (dd, J 9.8, 2.9, 1H, H-9), 3.41 (t, J 9.8, 1H, H-9), 3.30 (d, J 9.4, 1H, H-13), 3.27 (d, J 9.4, 1H, H-13) 3.03 (dd, J 11.7, 5.5, 1H, H-3), 2.79 (ddt, J 9.8, 5.5, 2.9, 1H, H-4), 2.73 (dd, J 11.7, 5.5, 1H, H-3), 2.60 (dd, J 16.8, 2.0, 1H, H-7), 2.46 – 2.26 (m, 4H, H-1,7,12), 2.24 – 2.04 (m, 3H, H-11,12), 1.21 (t, J 7.1, 3H, -OCH$_2$CH$_3$), 0.92 (s, 9H, -OSiC(CH$_3$)$_3$(CH$_3$)$_2$), 0.07 (s, 6H, -OSiC(CH$_3$)$_3$(CH$_2$)$_2$); 13C NMR (126 MHz, CDCl$_3$) δ 210.0 (C-2), 207.9 (C-6), 172.4 (C-10), 138.7 (C'arom.), 128.3 (CH arom.), 127.7 (CH arom.), 127.4 (CH arom.), 73.0 (-OCH$_2$Ph), 72.6 (C-13), 69.4 (C-9), 61.5 (-OCH$_2$CH$_3$), 58.9 (C-5), 55.6 (C-1), 46.9 (C-7), 43.8 (C-4), 39.9 (C-3), 38.5 (C-8), 31.2 (C-12), 27.5 (C-11), 25.8 (-OSi(C$(CH_3)_3$(CH$_2$)$_2$), 18.3 (-OSi(C$(CH_3)_3$(CH$_3$)$_2$), 13.9 (-OCH$_2$CH$_3$), -5.5 (-OSi(C$(CH_3)_3$(CH$_3$)$_2$); HRMS (ESI$^+$) 525.2640 [M+Na$^+$] (C$_{28}$H$_{46}$NaO$_8$Si requires 525.2643).
(±)-Diethyl-(4S,5S,8S)4-((benzyloxy)methyl)-6-hydroxy-2-oxobicyclo[4.2.2]dec-7-ene-5,7-dicarboxylate

209

201 (100 mg, 0.30 mmol) was dissolved in anhydrous THF (1 mL) and cooled to -78 °C. Lithium hexamethyldisilazane (0.30 mL, 1.0 M in THF, 0.30 mmol) was added dropwise and the solution stirred for 15 min at -78 °C. Magnesium chloride (30 mg, 0.32 mmol) was added and the solution stirred for a further 40 min. Ethyl cyanoformate (34 µL, 0.36 mmol) was added and the solution warmed to room temperature. After 18 h, the reaction was quenched with water (2 mL) followed by aqueous hydrochloric acid (2 mL, 3.0 M) and the solution extracted with diethyl ether (3 × 5 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography to give 209 (7.9 mg, 6%) as a colourless oil; IR νmax/cm⁻¹ 3675, 2977, 2928, 2900, 1734, 1696, 1647, 1229; ¹H NMR (400 MHz, CDCl₃) δ 12.51 (s, 1H, OH), 7.39 – 7.27 (m, 5H, CH arom.), 4.55 (d, J 11.9, 1H, -OCH₂Ph), 4.46 (d, J 11.9, 1H, -OCH₂Ph), 4.29 (m, 2H, -OCH₂CH₃), 4.18 (m, 2H, -OCH₂CH₃), 3.91 (dd, J 9.7, 2.8, 1H, H-9), 3.27 (t, J 9.7, 1H, H-9), 3.25 (m, 1H, H-8), 2.93 (ddd, J 11.5, 4.8, 1.0, 1H, H-3), 2.73 (m, 1H, H-4), 2.67 (dd, J 13.6, 4.2, 1H, H-1), 2.57 (dd, J 13.6, 4.2, 1H, H-1), 2.38 (dd, J 11.5, 10.6, 1H, H-3), 2.12 (m, 1H, H-12), 1.95 – 1.78 (m, 3H, H-11,12), 1.34 (t, J 7.1, 3H, -OCH₂CH₅), 1.23 (t, J 7.1, 3H, -OCH₂CH₅); ¹³C NMR (126 MHz, CDCl₃) δ 213.8 (C-2), 172.1 (C=O), 171.1 (C=O), 169.4 (C-6), 138.6 (C arom.), 128.3 (CH arom.), 127.5 (CH arom.), 127.4 (CH arom.), 103.9 (C-7), 72.7 (-OCH₂Ph), 71.7 (C-9), 61.2 (-OCH₂CH₃), 61.1 (-OCH₂CH₃), 52.1 (C-1), 51.7 (C-5), 45.6 (C-4), 42.9 (C-3), 33.6 (C-12), 29.3 (C-8), 26.6 (C-11), 14.3 (-OCH₂CH₃), 14.0 (-OCH₂CH₃); HRMS (ESI⁺) 453.1889 [M+Na]⁺ (C₂₄H₃₆NaO₇ requires 453.1884).
214 and 215 – (±)-Ethyl (45,55,85)-4-((benzylxy)methyl)-2-hydroxy-2-methyl-6-oxabicyclo[4.2.2]-
decane-5-carboxylate and (±)-ethyl (15,75)-5-((benzylxy)methyl)-7-methyl-9-oxo-8-oxabicyclo-
[5.3.1]undecane-4-carboxylate

![Chemical structures](image)

Methyllithium (87 µL, 1.6 M in diethyl ether, 0.14 mmol) was added dropwise to 201 (50
mg, 0.14 mmol) in THF (0.5 mL) and diethyl ether (1.0 mL) at -78 °C and then the solution
allowed to slowly warm to room temperature. After 17 h, the reaction was quenched with
saturated ammonium chloride solution (3 mL) and extracted with diethyl ether (3 x 5 mL).
The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent
removed under reduced pressure. The product was purified by column chromatography (50%
ethyl acetate/petroleum ether) to give 214 (32 mg, 61%) and 215 (16 mg, 31%) both as
colourless oils; 214: IR νmax/cm⁻¹ 3675 (br), 2988, 2901, 1726 (w), 1066, 1056; ¹H NMR. (400
MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H, CH arom.), 4.52 – 4.44 (m, 2H, -OCH₂Ph), 4.18 – 4.03 (m,
2H, -OCH₂CH₃), 3.73 (dd, J 9.5, 2.8, 1H, H-9), 3.15 (t, J 9.5, 1H, H-9), 2.82 (ddd, J 15.3, 9.4,
8.2, 1H, H-11), 2.64 (m, 1H, H-4), 2.57 – 2.44 (m, 2H, H-7,8), 2.36 – 2.28 (m, 2H, H-3,7), 2.19
– 2.06 (m, 2H, H-11,12), 1.96 (dd, J 15.4, 6.0, 1H, H-1), 1.84 (m, 1H, H-12), 1.62 (dd, J 15.4,
2.6, 1H, H-1), 1.45 (dd, J 15.7, 11.0, 1H, H-3), 1.26 (s, 3H, H-13), 1.20 (t, J 7.1, 3H, -OCH₂CH₃);
¹³C NMR (126 MHz, CDCl₃) δ 210.3 (C-6), 173.1 (C-10), 138.6 (C arom.), 128.3 (CH arom.),
127.7 (CH arom.), 127.5 (CH arom.), 72.9 (-OCH₂Ph), 72.8 (C-9), 71.4 (C-2), 60.9 (-OCH₂CH₃),
58.9 (C-5), 48.0 (C-1), 46.6 (C-7), 43.6 (C-4), 40.4 (C-3), 37.0 (C-1'), 31.8 (C-11), 30.1 (C-8),
23.2 (C-12), 13.9 (-OCH₂CH₃); HRMS (ESI⁺) 397.2001 [M+Na⁺] (C₂₂H₂₂O₅Na requires
397.1985). 215: IR νmax/cm⁻¹ 3675 (br), 2972, 2901, 1728, 1394, 1251, 1057, 1066; ¹H NMR. (400
MHz, CDCl₃) δ 7.36 – 7.23 (m, 5H, CH arom.), 4.46 (d, J 12.0, 1H, PhCH₂), 4.42 (d, J 12.0,
1H, PhCH₂), 4.07 (q, J 7.0, 2H, -OCH₂CH₃), 4.06 (q, J 7.0, 2H, -OCH₂CH₃), 3.30 – 3.18 (m,
2H, H-13), 2.65 (d, J 18.1, 7.6, 1H, H-10), 2.42 – 2.27 (m, 2H, H-10 & H-4), 2.27 – 2.19 (m,
2H, H-1 & H-11), 2.07 – 1.88 (m, 4H, H-2,3,5,6), 1.84 (m, 1H, H-6), 1.76 – 1.62 (m, 2H, H-3 &
H-11), 1.55 (m, 1H, H-2), 1.40 (s, 3H, H-12), 1.21 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (126
MHz, CDCl₃) δ 175.8 (C=O), 171.1 (C-9), 138.1 (C arom.), 128.3 (CH arom.), 127.6 (CH
arom.), 127.5 (CH arom.), 84.0 (C-7), 74.5 (C-13), 73.2 (PhCH₂), 60.5 (-OCH₂CH₃), 49.1 (C-4),
42.1 (C-6), 37.1 (C-5), 35.5 (C-10), 32.1 (C-11), 30.1 (C-2), 30.0 (C-12), 28.5 (C-1), 27.8 (C-3), 14.2 (-OCH₂CH₃); HRMS (ESI⁺) 397.1982 [M+Na]⁺ (C₂₂H₂₅NaO₅ requires 397.1985).

217 – (±)-Ethyl (4₅,5₅,8₆,2₆)-4-((benzyloxy)methyl)-2-methyl-6-oxobicyclo[4.2.2]dec-1-ene-5-carboxylate

214 (10 mg, 26 µmol) and pTSA (1.0 mg, 6 µmol) was heated to 110 °C in deuterated toluene (0.5 mL). After 3 h, ¹H-NMR showed full conversion to 217; IR νmax/cm⁻¹ 2969, 2927, 1779, 1730; ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.21 (m, 5H, CH arom.), 5.48 (d, J 7.0, 1H, H-1), 4.56 (d, J 11.7, 1H, -OCH₂Ph), 4.44 (d, J 11.8, 1H, -OCH₂Ph), 4.16 – 4.07 (m, 2H, -OCH₂CH₃), 3.72 (ddd, J 9.7, 3.1, 1.5, 1H, H-9), 3.12 (t, J 9.8, 1H, H-9), 2.84 (ddt, J 8.0, 7.0, 4.0, 1H, H-8), 2.80 – 2.71 (m, 2H, H-3,4), 2.57 (dd, J 15.1, 4.0, 1H, H-7), 2.43 – 2.33 (m, 3H, H-3,7,12), 2.29 – 2.00 (m, 3H, H-2,11 & H-12), 1.67 (s, 3H, H-1'), 1.20 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 209.8 (C-6), 173.5 (C-10), 138.8 (C arom.), 135.0 (C-2), 128.8 (C-1), 128.3 (CH arom.), 127.7 (CH arom.), 127.4 (CH arom.), 72.8 (-OCH₂Ph), 69.8 (C-9), 61.3 (-OCH₂CH₃), 60.2 (C-5), 45.9 (C-7), 43.7 (C-4), 31.4 (C-8), 29.4 (C-1'), 28.9 (C-12), 28.5 (C-3), 22.7 (C-11), 14.0 (-OCH₂CH₃); HRMS (ESI⁺) 357.2064 [M+H]⁺ 379.1881 [M+Na]⁺ (C₂₂H₂₅O₄ requires 357.2060, C₂₂H₂₅NaO₄ requires 379.1880).

221 – (±)-Ethyl (4₅,5₅,5₆,2₆)-4-((benzyloxy)methyl)-4-3-((tert-butyl(dimethyl)silyl)oxy)methyl)but-3-en-1-yl)-1-isopropoxy-3-oxocyclohex-2-ene-4-carboxylate

Cesium carbonate (8.05 g, 24.7 mmol) was added to a solution of 165 (4.28 g, 12.4 mmol) in dry acetonitrile (17 mL) at room temperature. After 1.5 h, 193 (2.24 g, 6.8 mmol) was added and the reaction mixture was heated to 55 °C. After 0.5 h a further portion of 193 (3.88 g, 11.7 mmol) was added and left at 55 °C. After a further 20 h, a final portion of 193 (0.72 g, 2.2 mmol) was added and the solution stirred for 16 h at 55 °C. The reaction mixture was cooled to room temperature and filtered by gravity filtration then the solvent removed under reduced pressure. The product was purified by column chromatography (10% ethyl acetate/petroleum
ether) to give 221 (3.96 g, 59% (91% BRSM), d.r. > 20:1) as a pale yellow oil; IR ν_{max}/cm$^{-1}$ 3674, 2987, 2971, 2925, 2900, 1730, 1651, 1607, 1075, 1056; 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.26 (m, 5H, CH arom.), 5.42 (s, 1H, H-2), 5.04 (q, J 1.8, 1H, H-11), 4.85 (q, J 1.5, 1H, H-11), 4.53 – 4.42 (m, 3H, -OCH(CH$_3$)$_2$ & -OCH$_2$Ph), 4.14 – 3.98 (m, 4H, H-12 & -OCH$_2$CH$_3$), 3.67 (dd, J 9.5, 3.4, 1H, H-7), 3.47 (dd, J 9.5, 7.9, 1H, H-7), 2.73 – 2.39 (m, 4H, H-5,6,8), 2.03 – 1.89 (m, 2H, H-8 & H-9), 1.71 (m, 1H, H-9), 1.31 (d, J 6.1, 3H, -OCH(CH$_3$)$_2$), 1.30 (d, J 6.1, 3H, -OCH(CH$_3$)$_2$), 1.14 (t, J 7.1, 3H, -OCH$_2$CH$_3$), 0.90 (s, 9H, -OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 0.06 (s, 6H, -OSi(CH$_3$)$_2$Bu); 13C NMR (101 MHz, CDCl$_3$) δ 195.5 (C-3), 176.0 (C-1), 171.1 (C=O), 148.2 (C-10), 138.1 (C arom.), 128.5 (CH arom.), 127.8 (CH arom.), 127.7 (CH arom.), 108.8 (C-11), 103.1 (C-2), 73.4 (OCH$_2$Ph), 71.3 (-OCH(CH$_3$)$_2$), 70.1 (C-7), 65.8 (C-12), 61.2 (-OCH$_2$CH$_3$), 57.8 (C-4), 37.7 (C-5), 31.1 (C-6), 29.6 (C-8), 27.2 (C-9), 26.0 (-OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 21.6 (-OCH(CH$_3$)$_2$), 21.5 (-OCH$_2$CH$_3$), 18.5 (-OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 14.1 (-OCH$_2$CH$_3$), -5.3 (-OSi(CH$_3$)$_2$Bu); HRMS (ESI$^+$) 545.3291 [M+H$^+$] 567.3095 [M+Na$^+$] (C$_{31}$H$_{49}$O$_7$Si requires 545.3220, C$_{31}$H$_{48}$NaO$_7$Si requires 567.3112).

225 - 4-Bromo-2-methylenebutoxy-tert-butyl-dimethylsilane

![Molecular Weight: 279.2930]

Carbon tetrabromide (1.61 g, 4.85 mmol) and triphenylphosphine (1.02 g, 3.88 mmol) were added to a solution of 196 (0.70 g, 3.23 mmol) in anhydrous DCM (21.0 mL) at room temperature. After 5 min, reaction completion was confirmed by TLC and the reaction mixture poured into a solution of saturated sodium hydrogen carbonate (20 mL) and then extracted with DCM (3 x 20 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The crude product was filtered through a silica plug eluting with 10% diethyl ether/hexane to give the pure product 225 as a colourless oil (0.90 g, >99%); IR ν_{max}/cm$^{-1}$ 2995, 2929, 2886, 2856, 1252, 1083, 833, 774; 1H NMR (400 MHz, CDCl$_3$) δ 5.12 (m, 1H, H-1’), 4.91 (m, 1H, H-1’), 4.14 – 4.06 (m, 2H, H-1), 3.49 (t, J 7.5, 2H, H-4), 2.61 (tdd, J 7.5, 1.3, 0.6, 2H, H-3), 0.91 (s, 9H, -OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 0.07 (s, 6H, -OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 13C NMR (101 MHz, CDCl$_3$) δ 145.7 (C-2), 111.7 (C-1’), 65.8 (C-1), 36.4 (C-3), 31.1 (C-4), 26.0 (-OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), 18.4 (-OSi(CH$_3$)$_2$(C(CH$_3$)$_3$), -5.3 (-OSi(CH$_3$)$_2$(C(CH$_3$)$_3$); MS (ESI$^+$) 279.1 [M+H$^+$] 301.1 [M+Na$^+$] (C$_{11}$H$_{24}$OBr79Si requires 279.1, C$_{11}$H$_{23}$OBr79Si requires 301.1).
226 and 227 - Ethyl 2-((benzylxoy)methyl)-6-hydroxy-4-isopropoxybenzoate and ethyl 2-((benzylxoy)methyl)-6-(2-(hydroxymethyl)allyloxy)-4-isopropoxybenzoate

A solution of 165 (0.23 g, 0.65 mmol) in DMF (2.0 mL) was added to a suspension of sodium hydride (60% dispersion in mineral oil, 52 mg, 1.3 mmol) in DMF (3.0 mL) at room temperature and stirred for 10 min. A solution of 225 (0.20 g, 0.72 mmol) in DMF (2.0 mL) was added dropwise and stirred at room temperature for 2 h before heating to 100 °C for 24 h. The reaction was quenched with saturated ammonium chloride solution (10 mL) then extracted with diethyl ether (3 × 10 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (20% ethyl acetate/petroleum ether) to give 226 (65 mg, 29%) and 227 (37 mg, 13%) along with returned starting material 165 (45 mg, 20%).

226: IR νmax/cm⁻¹ 2979, 2929, 1651, 1616, 1578; ¹H NMR (400 MHz, CDCl₃) δ 11.70 (s, 1H, -OH), 7.41 – 7.27 (m, 5H, CH arom.), 6.82 (dt, J 2.7, 1.0, 1H, H-3), 6.37 (d, J 2.7, 1H, H-5), 4.80 (t, J 1.0, 2H, H-7), 4.64 (s, 2H, -OCH₂Ph), 4.59 (h, J 6.1, 1H, -OCH(CH₃)₂), 4.35 (q, J 7.2, 2H, -OCH₂CH₃), 1.36 – 1.33 (m, 9H, -OCH(CH₃)₂, -OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 171.0 (C-8), 165.4 (C-6), 163.1 (C-4), 143.5 (C-2), 138.3 (C arom.), 131.3 (CH arom.), 128.4 (CH arom.), 127.6 (CH arom.), 108.2 (C-3), 102.9 (C-1) 100.9 (C-5), 72.8 (-OCH₂Ph), 71.1 (C-7), 70.0 (-OCH(CH₃)₂), 61.3 (-OCH₂CH₃), 21.9 (-OCH(CH₃)₂), 14.2 (-OCH₂CH₃); HRMS (ESI⁻) 345.1692 [M+H]- 367.1521 [M+Na]+ (C₂₅H₂₅O₅ requires 345.1697, C₂₅H₂₄NaO₅ requires 367.1516); 227: IR νmax/cm⁻¹ 3444, 2979, 2933, 1722, 1603, 1269, 1161, 1105; ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H, CH arom.), 6.58 (d, J 2.2, 1H, H-3), 6.39 (d, J 2.2, 1H, H-5), 5.10 (s, 1H, H-10), 4.96 (s, 1H, H-10), 4.57 (s, 2H, PhCH₂), 4.50 (s, 2H, H-12), 4.43 (h, J 6.1, 1H, -OCH(CH₃)₂), 4.27 (q, J 7.1, 2H, -OCH₂CH₃), 4.13 (s, 2H, H-11), 4.10 (t, J 6.2, 2H, H-7), 2.57 (t, J 6.2, 2H, H-8), 1.61 (s, 1H, O,H), 1.33 (d, J 6.1, 6H, -OCH(CH₃)₂), 1.29 (t, J 7.1, 3H, -OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 167.7 (C-O), 160.0 (C-4), 157.7 (C-6), 146.1 (C-9), 139.2 (C-2), 138.1 (C arom.), 128.4 (CH arom.), 127.8 (CH arom.), 127.6 (CH arom.), 115.1 (C-1), 112.4 (C-10), 106.5 (C-3), 100.5 (C-5), 72.3 (PhCH₂), 71.1 (-OCH(CH₃)₂), 70.1 (C-12), 68.1 (C-7), 66.1 (C-11), 61.1 (-OCH₂CH₃), 32.8 (C-8), 22.0 (-OCH(CH₃)₂), 14.2 (-OCH₂CH₃); HRMS (ESI⁻) 451.2105 [M+Na]+ (C₂₅H₂₅NaO₆ requires 451.2091).
165 (0.50 g, 1.44 mmol) was dissolved in acetonitrile (1.0 mL) and cesium carbonate (0.94 g, 2.88 mmol) added. After 45 min, a solution of 225 (0.60 g, 2.16 mmol) in acetonitrile (1.0 mL) was added and the solution heated to 60 °C. After 65 h, the resulting suspension was filtered by gravity filtration and the filtrate concentrated under reduced pressure. The product was purified by column chromatography (10 % ethyl acetate/petroleum ether) to give the desired product 221 (85 mg, 11%) recovered starting material 165 (150 mg, 30%) and 228 (39 mg, 5%).

IR ν max/cm⁻¹ 2929, 2856, 1721, 1654, 1602, 1099; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H, CH arom.), 6.58 (d, J 2.2, 1H, H-3), 6.38 (d, J 2.2, 1H, H-5), 5.12 (d, J 1.9, 1H, H-10), 4.92 (d, J 1.9, 1H, H-10), 4.57 (s, 2H, H-12); 13C NMR (126 MHz, CDCl₃) δ 167.7 (C=O), 159.9 (C-4), 157.7 (C-6), 144.9 (C-9), 139.0 (C arom.), 138.2 (C-2), 128.3 (CH arom.), 127.7 (CH arom.), 115.5 (C-1), 111.0 (C-10), 106.4 (C-3), 100.5 (C-5), 72.3 (PhCH₂), 70.0 (C-12), 67.6 (C-7), 66.1 (C-11), 60.9 (OCH₂CH₃), 32.4 (C-8), 25.9 (OCH₂CH₃), 22.0 (OCH₂CH₃), 18.4 (OCH₂CH₃), 14.2 (OCH₂CH₃), -5.4 (OCH₂CH₃); HRMS (ESI⁺) 565.2941 [M+Na]⁺ (C₃₁H₄₆NaO₆Si requires 565.2956).

Data for desired product 221 has been provided in a previous procedure.
230 and 231 – (±)-Ethyl (25,45,55,8R)-4-((benzyloxy)methyl)-8-(((tert-butyldimethylsilyl)oxy)methyl)-2-hydroxy-2-methyl-6-oxobicyclo[4.2.2]decane-5-carboxylate and (±)-Ethyl (25,45,55,8R)-4-((benzyloxy)methyl)-8-(((tert-butyldimethylsilyl)oxy)methyl)-6-hydroxy-2-methylhexahydro-2H-2,8-methanochromene-5(5H)-carboxylate

204 (33.4 mg, 0.066 mmol) was dissolved in THF (0.5 mL) and cooled to -78 °C. Methyl lithium (41 µL, 1.6 M in diethyl ether, 0.066 mmol) was added and the solution slowly warmed to 0 °C over 5 h. The reaction was then quenched with saturated aqueous ammonium chloride solution (3 mL) and extracted with diethyl ether (3 × 5 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (20% ethyl acetate/petroleum ether) to give 230 (5.5 mg, 18%) as a colourless oil and 231 (3.9 mg, 13%) also as a colourless oil. 230:

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3675 (w), 3477 (br), 2953, 2928, 1736, 1709, 1077; \(^{1}H \) \(\text{NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 7.40 – 7.28 (m, 5H, CH arom.), 4.51 – 4.44 (m, 2H, -OCH\(_2\)Ph), 4.16 – 4.04 (m, 2H, -OCH\(_2\)CH\(_3\)), 3.74 (ddd, J 9.6, 3.0, 1.3, 1H, H-9), 3.24 – 3.12 (m, 3H, H-9,11), 2.69 (m, 1H, H-4), 2.61 (m, 1H, H-13), 2.50 (d, J 17.2, 1H, H-7), 2.30 – 2.04 (m, 4H, H-3,7,12,13), 1.82 – 1.59 (m, 3H, H-1,3,12), 1.37 (m, 1H, H-1), 1.24 (s, 3H, H-1'), 1.22 – 1.17 (m, 3H, -OCH\(_2\)CH\(_3\)), 0.89 (s, 9H, -OSi(CH\(_3\))\(_3\)C(CH\(_3\))\(_3\)), 0.04 (s, 6H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)); \(^{13}C \) \(\text{NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \) 210.8 (C-6), 173.0 (C-10), 138.6 (C arom.), 128.3 (CH arom.), 127.7 (CH arom.), 127.5 (CH arom.), 127.4 (C-11), 72.8 (-OCH\(_2\)Ph), 72.0 (C-9), 71.5 (C-2), 61.0 (-OCH\(_2\)CH\(_3\)), 58.7 (C-5), 49.8 (C-1), 49.2 (C-7), 42.8 (C-4), 39.9 (C-3), 38.7 (C-8), 37.0 (C-1'), 31.2 (C-13), 25.9 (-OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 24.6 (C-12), 18.3 (-OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 13.9 (-OCH\(_2\)CH\(_3\)), -5.5 (-OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)); \(\text{HRMS} \) (ESI\(^+\)) 541.2952 [M+Na\(^+\)] (C\(_{28}\)H\(_{42}\)NaO\(_8\)Si requires 541.2956); 231:

IR \(\nu_{\text{max}}/\text{cm}^{-1} \) 3669 (w), 3403 (br), 2928, 1732, 1694, 1251, 1101; \(^{1}H \) \(\text{NMR} \) (500 MHz, CDCl\(_3\)) \(\delta \) 7.40 – 7.28 (m, 5H, CH arom.), 4.47 (d, J 11.8, 1H, -OCH\(_2\)Ph), 4.42 (d, J 11.8, 1H, -OCH\(_2\)Ph), 4.10 (dq, J 10.8, 7.1, 1H, -OCH\(_2\)CH\(_3\)), 3.99 (dq, J 10.8, 7.2, 1H, -OCH\(_2\)CH\(_3\)), 3.72 (dd, J 9.4, 7.1, 1H, H-9), 3.66 (dd, J 9.4, 5.0, 1H, H-9), 3.19 (s, 2H, H-11), 2.17 (m, 1H, H-3), 2.07 (dt, J 14.8, 7.4, 1H, H-3), 2.03 – 1.90 (m, 3H, H-3,13), 1.83 – 1.72 (m, 2H, H-7,12), 1.67 (m, 1H, H-12), 1.36 – 1.07 (m, 3H, H-1,7), 1.25 (s, 3H, H-1'), 1.18 (t, J 7.2, 3H, -OCH\(_2\)CH\(_3\)), 0.88 (s, 9H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)), 0.01 (s, 6H, -OSi(CH\(_3\))\(_2\)C(CH\(_3\))\(_3\)); \(^{13}C \) \(\text{NMR} \) (126 MHz, CDCl\(_3\)) \(\delta \) 178.3

183
(C-10), 138.5 (C arom.), 128.3 (CH arom.), 127.9 (CH arom.), 127.5 (CH arom.), 96.0 (C-6), 74.5 (C-9), 73.0 (-OCH$_2$Ph), 72.6 (C-11), 71.6 (C-2), 61.4 (-OCH$_2$CH$_3$), 49.6 (C-5), 46.4 (C-1), 43.4 (C-4), 40.1 (C-7), 36.3 (C-8), 34.5 (C-1'), 34.1 (C-3), 32.9 (C-13), 28.2 (C-12), 25.9 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 18.3 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 13.8 (-OCH$_2$CH$_3$), -5.5 (-OSi(CH$_3$)$_2$C(CH$_3$)$_3$); HRMS (ESI$^+$) 541.2952 [M+Na]$^+$ (C$_{29}$H$_{46}$NaO$_6$Si requires 541.2956).

235 and 236 – (±)-Ethyl (4S,5S,8R)-4-((benzylxy)methyl)-8-(((tert-butyldimethylsilyl)oxy)methyl)2-methylen-6-oxobicyclo[4.2.2]decane-5-carboxylate and (±)-Ethyl (Z)-4-(benzylxy)-2-(2-((tert-butyldimethylsilyl)oxy)methyl)-3,5-dioxocyclohexyl)ethyl)but-2-enoate

Potassium tert-butoxide (0.11 g, 0.95 mmol) was added to a suspension of methyltriphenylphosphonium bromide (0.40 g, 1.11 mmol) in toluene (7.0 mL) and warmed to 40 °C. After 1 h, the resulting thick yellow solution was cooled to room temperature and diluted with THF (7.0 mL) and then added to a solution of 204 (0.20 g 0.40 mmol) in toluene (7.0 mL) at 0 °C. The reaction was stirred at 0 °C for 1 h and then at room temperature for 30 min before quenching with saturated aqueous sodium chloride (10 mL). The solution was extracted with diethyl ether (3 x 10 mL) and the combined organic extracts dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was purified by column chromatography (10% ethyl acetate/petroleum ether) to give the product 235 (0.12 g, 61%) as a colourless solid and 236 (30 mg, 15%) as a colourless oil. 235: m.p. (ethyl acetate) 76-77 °C; IR ν_{max}/cm$^{-1}$ 3675, 2987, 2901, 1066; 1H NMR (500 MHz, CDCl$_3$) δ 7.41 – 7.28 (m, 5H, CH arom.), 4.91 (s, 1H, H-1’), 4.59 (d, J 12.0, 1H, -OCH$_2$Ph), 4.57 (s, 1H, H-1’), 4.45 (d, J 12.0, 1H, -OCH$_2$Ph), 4.19 – 4.04 (m, 2H, -OCH$_2$CH$_3$), 3.65 (dd, J 9.9, 2.5, 1H, H-9), 3.48 (t, J 9.9, 1H, H-9), 3.26 (d, J 9.4, 1H, H-11), 3.20 (d, J 9.4, 1H, H-11), 2.80 (dd, J 14.0, 2.5, 1H, H-3), 2.66 (dddd, J 9.9, 5.6, 2.9, 2.5, 1H, H-4), 2.46 (dd, J 16.6, 2.0, 1H, H-7), 2.32 (dd, J 14.0, 5.6, 1H, H-3), 2.22 (dddd, J 14.7, 10.9, 9.5, 1H, H-13), 2.19 – 2.08 (m, 3H, H-1,7,13), 2.08 – 2.00 (m, 2H, H-1,12), 1.84 (dttd, J 14.5, 9.5, 2.0, 1H, H-12), 1.19 (t, J 7.1, 3H, -OCH$_2$CH$_3$), 0.89 (s, 9H, -OSi(CH$_3$)$_2$C(CH$_3$)$_3$), 0.05 (s, 6H, -OSi(CH$_3$)$_2$C(CH$_3$)$_3$); 13C NMR (126 MHz, CDCl$_3$) δ 209.8 (C-6), 173.5 (C-10), 141.4 (C-2), 138.8 (C arom.), 128.3 (CH arom.), 127.8 (CH arom.), 127.4 (CH arom.), 120.2 (C-1’), 72.7 (-OCH$_2$Ph), 72.3 (C-11), 68.7 (C-9), 61.2 (-OCH$_2$CH$_3$), 184
58.9 (C5), 46.6 (C7), 44.0 (C4), 39.1 (C8), 31.2 (C3), 31.0 (C13), 27.4 (C12), 25.9 (-OSi(CH3)2C(CH3)3), 18.3 (-OSi(CH3)2C(CH3)3), 13.9 (-OCH2CH3), -5.5 (-OSi(CH3)2C(CH3)3);

HRMS (ESI+) 501.3047 [M+H]+ 523.2854 [M+Na]+ (C29H45O5Si requires 501.3031, C29H44NaO5Si requires 523.2850). 236: IR νmax/cm−1 3675, 2956, 2928, 2901, 1709, 1075; 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.27 (m, 5H, CH arom.), 6.16 (tt, J 4.8, 1.2, 1H, H-8), 4.53 (s, 2H, H-11), 4.46 (dt, J 4.8, 1.2, 2H, H-9), 4.18 (q, J 7.2, 2H, -OCH2CH3), 3.48 (s, 2H, H-11), 3.28 (dt, J 18.0, 1.9, 1H, H-1), 3.19 (dt, J 18.0, 0.9, 1H, H-1), 2.55 (dd, J 15.5, 0.9, 1H, H-3), 2.46 (d, J 15.5, 2H, H-3), 2.30 – 2.18 (m, 2H, H-6), 1.48 – 1.39 (m, 2H, H-5), 1.28 (t, J 7.1, 3H, -OCH2CH3), 0.83 (s, 9H, -OSi(CH3)2C(CH3)3), 0.00 (s, 6H, -OSi(CH3)2C(CH3)3); 13C NMR (126 MHz, CDCl3) δ 203.1 (C1), 166.5 (C-10), 142.4 (C8), 137.9 (C arom.), 130.8 (C7), 128.5 (CH arom.), 127.8 (CH arom.), 127.8 (CH arom.), 72.9 (-OCH2Ph), 71.4 (C-11), 68.9 (C9), 60.7 (-OCH2CH3), 56.5 (C1), 48.9 (C3), 40.4 (C4), 37.3 (C5), 27.8 (C6), 25.9 (-OSi(CH3)2C(CH3)3), 18.5 (-OSi(CH3)2C(CH3)3), 14.3 (-OCH2CH3), -6.1 (-OSi(CH3)2C(CH3)3);

4-epi-167 – (±)-Ethyl (4S,5R)-5-((benzyloxy)methyl)-4-(but-3-en-1-yl)-1-isopropoxy-3-oxocyclohex-2-ene-4-carboxylate

A solution of 238 (0.34 g, 1.03 mmol) in THF (1 mL) was added to a freshly prepared solution of LDA (1.55 mmol) in THF (5 mL) at -78 °C. After 2 h, ethyl cyanoformate (0.14 mL, 1.55 mmol) was added dropwise over 5 min and the reaction warmed to room temperature. After 16 h, the reaction was quenched with water (2 mL) then aqueous hydrochloric acid (3.0 M, 2 mL) and left to stir for 30 min. The organics were extracted with diethyl ether (3 × 10 mL) and the combined organic layers dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (20% ethyl acetate/petroleum ether) to give the product 4-epi-167 (0.20 g, 48%) as a colourless oil; IR νmax/cm−1 2979, 2933, 2867, 1732, 1650, 1603, 1209, 1186, 1103; 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.22 (m, 5H, CH arom.), 5.77 (ddt, J 16.6, 10.1, 6.2, 1H, H-10), 5.32 (d, J 1.0, 1H, H-2), 5.04 – 4.86 (m, 2H, H-11), 4.49 – 4.36 (m, 3H, CH2Ph & CH(CH3)2), 4.19 – 4.10 (m,
The product was purified by column chromatography (20% ethyl acetate/petroleum ether) to give [5-epi-200 (95 mg, 50%) as a colourless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.36 – 7.25 (m, 5H, CH arom.), 4.47 (d, \(J\) 12.1, 1H, PhCH\(_2\)), 4.43 (d, \(J\) 12.1, 1H, PhCH\(_2\)), 4.16 (q, \(J\) 7.1, 2H, -OCH\(_2\)CH\(_3\)), 3.65 (h, \(J\) 6.2, 1H, -CH(CH\(_3\))\(_2\)), 3.49 (d, \(J\) 5.1, 1H, H-7), 3.48 (d, \(J\) 6.6, 1H, H-7), 2.96 (d, \(J\) 10.0, 1H, H-2), 2.94 – 2.79 (m, 2H, H-5 \& H-10), 2.64 – 2.53 (m, 2H, H-6 \& H-11), 2.48 – 2.35 (m, 2H, H-6 \& H-8), 2.20 (dd, \(J\) 16.1, 11.7 1H, H-8), 1.93 (dd, \(J\) 12.3, 2.6, 1H, H-11), 1.81 – 1.61 (m, 2H, H-9), 1.21 (t, \(J\) 7.1, 3H, -OCH\(_2\)CH\(_3\)), 1.14 (t, \(J\) 6.2, 6H, -CH(CH\(_3\))\(_2\)); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 211.1 (C3), 171.9 (C12), 138.2 (C arom.), 128.4 (C arom.), 127.7 (C arom.), 127.5 (C arom.), 79.0 (C1), 73.2 (PhCH\(_2\)), 71.9 (C7), 66.4 (CH(CH\(_3\))\(_2\)), 61.3 (-OCH\(_2\)CH\(_3\)), 59.8 (C4), 52.2 (C2), 41.8 (C5), 37.8 (C8), 31.1 (C10), 27.7 (C6), 25.3 (C9), 24.8 (-CH(CH\(_3\))\(_2\)), 24.7 (-CH(CH\(_3\))\(_2\)), 14.1 (-OCH\(_2\)CH\(_3\)); HRMS (ESI\(^+\)) 423.2153 [M+Na\(^+\)] \((C_{21}H_{32}NaO_5\) requires 423.2142).
4-epi-201 – (±)-Ethyl-(4R,5S,8S)-4-((benzyl oxy)methyl)-2,6-dioxobicyclo[4.2.2]decane-5-carboxylate

\[
\text{5-epi-200 (35 mg, 0.087 mmol) was dissolved in THF (0.6 mL) and aqueous hydrochloric acid (2%, 0.3 mL) and heated at reflux. After 1.5 h, the reaction was quenched with water and the solution extracted with DCM (3 \times 5 \text{ mL}). The combined organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure to give the product 4-epi-201 (23 mg, 75%) as a colourless oil; IR } \nu_{\text{max}} / \text{cm}^{-1} 2976, 2937, 2900, 1739, 1709, 1696, 749; ^1H \text{ NMR (500 MHz, CDCl}_3) \delta 7.35 - 7.26 (m, 5H, CH arom.), 4.55 (d, J 12.2, 1H, -OCH}_2Ph), 4.52 (d, J 12.2, 1H, -OCH}_2Ph); ^13C \text{ NMR (126 MHz, CDCl}_3) \delta 212.0 (C-2), 208.8 (C-6), 170.9 (C-10), 138.3 (C arom.), 128.3 (CH arom.), 127.6 (CH arom.), 127.5 (CH arom.), 73.0 (-OCH}_2Ph), 69.4 (C-9), 61.7 (-OCH}_2CH}_3), 60.8 (C-5), 52.5 (C-1), 44.3 (C-7), 42.6 (C-4), 41.1 (C-3), 28.0 (C-8), 24.4 (C-11), 23.1 (C-12), 14.1 (-OCH}_2CH}_3); \text{HRMS (ESI}^+ \text{) 381.1668 [M+Na}^+] (C_{21}H_{26}NaO}_5 \text{ requires 381.1672).}
\]

4-epi-202 – (±)-Ethyl (4R,5S,8S)-6-acetoxy-4-(acetoxymethyl)-2-oxobicyclo[4.2.2]dec-7-ene-5-carboxylate

\[
\text{5-epi-200 (35 mg, 0.080 mmol) was dissolved in acetic anhydride (0.5 mL) and boron trifluoride diethyl etherate (10 \muL, 0.080 mmol) added dropwise. After 10 min, the reaction was quenched with water (1 mL) and extracted with DCM (3 \times 5 \text{ mL}). The organic layers were dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The product was dissolved by column chromatography (35% ethyl acetate/petroleum ether) to give the diacetate 4-epi-202 (11 mg, 36%) as a colourless oil; IR } \nu_{\text{max}} / \text{cm}^{-1} 2981, 2937, 1763, 1733, 1691, 1213, 1199; ^1H \text{ NMR (400 MHz, CDCl}_3) \delta 6.15 (d, J 8.1, 1H, H-7), 4.27 - 4.04 (m, 4H, H-9 & -OCH}_2CH}_3), 3.21 (dd, J 11.8, 5.7, 1H, H-3), 2.84 (m, 1H, H-8), 2.77 (m, 1H, H-9).}
\]
H-4, 2.71 (dd, J 13.6, 3.4, 1H, H-1), 2.57 (dd, J 13.6, 4.9, 1H, H-1), 2.40 (ddd, J 11.8, 3.3, 1.2, 1H, H-3), 2.35 (m, 1H, H-12), 2.10 (s, 3H, CH_3), 2.06 (s, 3H, CH_3), 1.84 (m, 1H, H-11), 1.71 – 1.51 (m, 3H, H-11,12); 13C NMR (126 MHz, CDCl$_3$) δ 213.2 (C-2), 172.6 (C-10), 170.8 (C-6), 168.8 (C-5), 146.7 (C-6), 121.1 (C-7), 62.4 (C-9), 61.7 (-OCH$_2$CH$_3$), 51.4 (C-1), 51.1 (C-5), 40.2 (C-3), 39.4 (C-4), 30.7 (C-8), 25.1 (C-11), 24.7 (C-12), 21.0 (CH$_3$), 20.9 (CH$_3$), 14.0 (-OCH$_2$CH$_3$); HRMS (ESI$^+$) 375.1426 [M+Na]$^+$ (C$_{18}$H$_{24}$NaO$_7$ requires 375.1414).

238 – (±)-5-((Benzyloxy)methyl)-4-(but-3-en-1-yl)-1-isopropoxycyclohex-6-en-5-one

167 (0.77 g, 1.92 mmol) and lithium chloride (0.20 g, 4.81 mmol) were dissolved in DMSO (5 mL) and heated to 200 °C. After 4 h, the reaction mixture was cooled to room temperature and diluted with DCM (10 mL). The organics were extracted with DCM (3 × 10 mL) and the combined organic layers washed with water (3 × 25 mL), dried over magnesium sulfate, filtered, and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography to give the product 238 (0.38 g, 60%, d.r. 3:1) as a colourless oil; IR ν_{max}/cm$^{-1}$ 2979, 2927, 1650, 1604, 1382, 1212, 1106, 905, 732; 1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.22 (m, 5H, CH arom.), 5.75 (ddt, J 16.8, 10.0, 6.6, 1H, H-10), 5.20 (d, J 3.4, 1H, H-6), 5.02 – 4.86 (m, 2H, H-11), 4.47 (d, J 12.1, 1H, PhCH$_2$), 4.41 (d, J 12.1, 1H, PhCH$_2$), 4.35 (h, J 6.1, 1H, -CH$(CH_3)_2$), 3.39 (d, J 5.9, 2H, H-7), 2.50 (dd, J 17.9, 5.0, 1H, H-2), 2.40 (dd, J 17.9, 5.7, 1H, H-2), 2.30 – 2.18 (m, 2H, H-3,4), 2.10 – 1.98 (m, 2H, H-9), 1.80 – 1.57 (m, 2H, H-8), 1.23 (d, J 6.1, 3H, -CH$(CH_3)_2$), 1.22 (d, J 6.1, 3H, -CH$(CH_3)_2$); 13C NMR (101 MHz, CDCl$_3$) δ 201.2 (C-5), 174.0 (C-1), 138.4 (C arom.), 128.5 (CH arom.), 127.8 (CH arom.), 127.6 (CH arom.), 114.9 (C-11), 101.9 (C-6), 73.3 (PhCH$_2$), 71.7 (C-7), 71.0 (-CH$(CH_3)_2$), 46.8 (C-4), 36.8 (C-3), 31.0 (C-9), 30.3 (C-2), 28.2 (C-8), 21.6 (-CH$(CH_3)_2$); HRMS (ESI$^+$) 351.1944 [M+Na]$^+$ (C$_{21}$H$_{28}$NaO$_3$ requires 351.1931).
4.5. Computational Modelling

Conformational searches were carried out using Spartan using the MMFF forcefield extracting a selection of the lowest energy conformers. Geometries were then fully optimised in Gaussian09 using the B3LYP functional and the 6-31+G(d) basis set as implemented in Gaussian. Frequencies at the same level of theory were calculated for all geometries, both to confirm them as ground states and to obtain Gibbs free energy corrections with default settings, i.e. at 298.15 K. In some cases calculations were repeated with a continuum dielectric model of solvation.186,214–218

4.5.1. Raw Data for Chapter 2

Key energy differences have been summarised in the table below. Generally, moving to Gibbs Free energy values gave an overall increase in energy in all intermediates relative to A due to entropic factors. Solvation led to a stabilisation of all cationic intermediates. Despite the changes in relative energies, the effect on the energy difference between intermediates II and III was only small and all cases showed a preference for the reaction intermediate (III) in line with our experimental data. For clarity, we have focussed on the relative potential energies in the gas phase here.

Table 12 - Differences between the two possible modes of attack (i.e. intermediates II and III are shown in the table below).

<table>
<thead>
<tr>
<th></th>
<th>Gas phase</th>
<th>Solvated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential</td>
<td>Gibbs Free</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
<td>Energy</td>
</tr>
<tr>
<td>$\Delta E_{\text{III}-E_I}$</td>
<td>-3.75</td>
<td>4.98</td>
</tr>
<tr>
<td>$\Delta E_{\text{II}-E_I}$</td>
<td>10.53</td>
<td>19.14</td>
</tr>
<tr>
<td>$\Delta E_{\text{III}-E_{II}}$</td>
<td>-14.27</td>
<td>-14.16</td>
</tr>
</tbody>
</table>
4.5.1.1. Cartesian Coordinates

Table 12 - I

<table>
<thead>
<tr>
<th></th>
<th>Gas phase:</th>
<th></th>
<th></th>
<th></th>
<th>Solvated (acetonitrile):</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential energy / a.u. = -992.9407</td>
<td>Free energy / a.u. = -992.6745</td>
<td>Potential energy / a.u. = -993.0235</td>
<td>Free energy / a.u. = -992.7571</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.50457563</td>
<td>-1.35421502</td>
<td>-2.62057027</td>
<td>-1.64967319</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.54370853</td>
<td>-1.17338976</td>
<td>-1.64967319</td>
<td>-1.42039329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.00857799</td>
<td>-0.02222173</td>
<td>-1.42039329</td>
<td>-1.42039329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.14409432</td>
<td>1.04649804</td>
<td>-0.53030543</td>
<td>-1.39764355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.94506939</td>
<td>0.27321672</td>
<td>-1.39764355</td>
<td>-1.39764355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.86406718</td>
<td>-1.15907911</td>
<td>-1.94212867</td>
<td>-1.94212867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.73723332</td>
<td>2.33625772</td>
<td>-1.13612703</td>
<td>-1.13612703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.82367089</td>
<td>1.51305889</td>
<td>-1.64905700</td>
<td>-1.64905700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.33121455</td>
<td>3.42473228</td>
<td>-0.24929682</td>
<td>-0.24929682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-2.74820808</td>
<td>3.05894202</td>
<td>0.04599448</td>
<td>0.04599448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.85218192</td>
<td>1.67109844</td>
<td>-0.51352496</td>
<td>-0.51352496</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-2.61956437</td>
<td>-2.83040021</td>
<td>0.54397505</td>
<td>0.54397505</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3.51187780</td>
<td>-3.52314138</td>
<td>0.65251519</td>
<td>0.65251519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.61574301</td>
<td>-4.38357630</td>
<td>0.84496841</td>
<td>0.84496841</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-3.63870137</td>
<td>0.77519801</td>
<td>-0.10208776</td>
<td>-0.10208776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-0.72044537</td>
<td>4.44334854</td>
<td>0.17664369</td>
<td>0.17664369</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.14018514</td>
<td>0.15828301</td>
<td>-0.38949414</td>
<td>-0.38949414</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.64084252</td>
<td>1.43947430</td>
<td>-0.11977211</td>
<td>-0.11977211</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.67272006</td>
<td>1.60061797</td>
<td>0.82669677</td>
<td>0.82669677</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.19765982</td>
<td>0.48345335</td>
<td>1.48587443</td>
<td>1.48587443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.69662993</td>
<td>-0.79292840</td>
<td>1.21050310</td>
<td>1.21050310</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.66881711</td>
<td>-0.95775307</td>
<td>0.27318175</td>
<td>0.27318175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.57404416</td>
<td>0.82818648</td>
<td>0.23350304</td>
<td>0.23350304</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.56246317</td>
<td>-2.34281315</td>
<td>-3.02837540</td>
<td>-3.02837540</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.62462984</td>
<td>-0.63574266</td>
<td>-3.40809980</td>
<td>-3.40809980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.61467408</td>
<td>0.83101698</td>
<td>-1.93698216</td>
<td>-1.93698216</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.97020277</td>
<td>-1.85971069</td>
<td>-1.13918907</td>
<td>-1.13918907</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.64742642</td>
<td>-1.31822295</td>
<td>-2.65296000</td>
<td>-2.65296000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.05048217</td>
<td>2.75759773</td>
<td>-1.83967223</td>
<td>-1.83967223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.28636294</td>
<td>1.70295858</td>
<td>-2.59763737</td>
<td>-2.59763737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.95578029</td>
<td>3.11771051</td>
<td>1.02235715</td>
<td>1.02235715</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.42469185</td>
<td>-5.32473025</td>
<td>0.35649767</td>
<td>0.35649767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-4.75366517</td>
<td>-4.54044514</td>
<td>1.88680623</td>
<td>1.88680623</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.50546223</td>
<td>-3.93930067</td>
<td>0.43133193</td>
<td>0.43133193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.23772748</td>
<td>2.29208466</td>
<td>-0.61796932</td>
<td>-0.61796932</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.05828445</td>
<td>2.57427344</td>
<td>1.03895778</td>
<td>1.03895778</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.98459788</td>
<td>0.60779828</td>
<td>2.20074412</td>
<td>2.20074412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.10029890</td>
<td>-1.64299016</td>
<td>1.71773946</td>
<td>1.71773946</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.28534106</td>
<td>-1.93668453</td>
<td>0.06194388</td>
<td>0.06194388</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12 - II

Gas phase:
Potential energy / a.u. = -992.9179
Free energy / a.u. = -992.6519
Solvated (acetonitrile):
Potential energy / a.u. = -993.0079
Free energy / a.u. = -992.7405

C 0.888109 -1.800420 -2.088932
O -0.442603 -1.446519 -1.721982
C -0.687390 -1.094998 -0.345713
C 0.255794 0.088463 -0.115043
C 1.739578 -0.270323 -0.366638
C 1.952908 -0.700593 -1.816287
C 0.686183 0.969225 1.111834
C 2.106312 1.001000 0.464955
C 0.185692 2.409936 1.049439
N 1.053349 3.072180 0.160091
C 2.119560 2.324756 -0.321083
N 2.144007 -1.393019 0.487438
C 2.548963 -2.253494 1.136908
C 3.045587 -3.345745 1.952621
C 2.914377 2.646272 -1.171203
O -0.760220 2.904089 1.605100
C -2.148193 0.762263 -0.163806
C -2.787816 -1.094407 1.035556
C -4.121187 -0.742481 1.244782
C -4.826024 -0.062904 0.250324
C -4.194352 0.262654 -0.951974
C -2.858927 -0.080574 -1.159580
N 0.006010 0.787398 -0.920687
C 0.845736 -2.015411 -3.158908
H 1.182358 -2.372915 -1.578732
H -0.420916 -1.939597 0.311382
H 1.788152 0.175957 -2.449048
H 2.961047 -1.076775 -2.020936
H 0.573947 0.525673 2.101627
H 3.003027 0.941059 1.087785
H 0.886106 4.026943 -0.142291
H 4.090427 -3.550598 1.693509
H 2.981327 -3.071193 3.011437
H 2.442097 -4.242317 1.771623
H -2.246986 -1.636808 1.808915
H -4.609944 -1.006423 2.177921
H -5.866042 0.206524 0.408684
H -4.743548 0.782003 -1.731833
H -2.375504 0.154615 -2.102637
Table 12 - III

Gas phase:
Potential energy / a.u. = -992.93471
Free energy / a.u. = -992.6824

Solvated (acetonitrile):
Potential energy / a.u. = -992.9347
Free energy / a.u. = -992.6824

<table>
<thead>
<tr>
<th>Element</th>
<th>Potential Energy (a.u.)</th>
<th>Free Energy (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.142360</td>
<td>-1.285359</td>
</tr>
<tr>
<td>O</td>
<td>1.298920</td>
<td>-1.127159</td>
</tr>
<tr>
<td>C</td>
<td>1.296378</td>
<td>0.073573</td>
</tr>
<tr>
<td>C</td>
<td>-0.066198</td>
<td>0.283442</td>
</tr>
<tr>
<td>C</td>
<td>-1.200557</td>
<td>-0.797084</td>
</tr>
<tr>
<td>C</td>
<td>-1.011181</td>
<td>-1.755421</td>
</tr>
<tr>
<td>C</td>
<td>-1.060591</td>
<td>1.363614</td>
</tr>
<tr>
<td>C</td>
<td>-2.223518</td>
<td>0.367314</td>
</tr>
<tr>
<td>C</td>
<td>-1.356785</td>
<td>2.508342</td>
</tr>
<tr>
<td>N</td>
<td>-2.464947</td>
<td>2.093569</td>
</tr>
<tr>
<td>C</td>
<td>-2.956465</td>
<td>0.839887</td>
</tr>
<tr>
<td>N</td>
<td>-1.512806</td>
<td>-1.576360</td>
</tr>
<tr>
<td>C</td>
<td>-1.944166</td>
<td>-2.078764</td>
</tr>
<tr>
<td>C</td>
<td>-2.498182</td>
<td>-2.699765</td>
</tr>
<tr>
<td>O</td>
<td>-3.780856</td>
<td>0.208985</td>
</tr>
<tr>
<td>O</td>
<td>-0.756680</td>
<td>3.542153</td>
</tr>
<tr>
<td>C</td>
<td>2.466241</td>
<td>0.066923</td>
</tr>
<tr>
<td>C</td>
<td>2.838199</td>
<td>1.272064</td>
</tr>
<tr>
<td>C</td>
<td>3.888524</td>
<td>1.300463</td>
</tr>
<tr>
<td>C</td>
<td>4.580068</td>
<td>0.125931</td>
</tr>
<tr>
<td>C</td>
<td>4.215473</td>
<td>-1.073321</td>
</tr>
<tr>
<td>C</td>
<td>3.159519</td>
<td>-1.106852</td>
</tr>
<tr>
<td>H</td>
<td>0.121114</td>
<td>0.447919</td>
</tr>
<tr>
<td>H</td>
<td>0.368145</td>
<td>-2.053750</td>
</tr>
<tr>
<td>H</td>
<td>-0.098615</td>
<td>-0.357059</td>
</tr>
<tr>
<td>H</td>
<td>1.410145</td>
<td>0.925469</td>
</tr>
<tr>
<td>H</td>
<td>-0.741088</td>
<td>-2.746666</td>
</tr>
<tr>
<td>H</td>
<td>-1.952123</td>
<td>-1.852530</td>
</tr>
<tr>
<td>H</td>
<td>-0.817235</td>
<td>1.723732</td>
</tr>
<tr>
<td>H</td>
<td>-2.936745</td>
<td>0.211811</td>
</tr>
<tr>
<td>H</td>
<td>-2.823859</td>
<td>2.645899</td>
</tr>
<tr>
<td>H</td>
<td>-2.766506</td>
<td>-3.739508</td>
</tr>
<tr>
<td>H</td>
<td>-1.766713</td>
<td>-2.670763</td>
</tr>
<tr>
<td>H</td>
<td>-3.395804</td>
<td>-2.137523</td>
</tr>
<tr>
<td>H</td>
<td>2.311971</td>
<td>2.193641</td>
</tr>
<tr>
<td>H</td>
<td>4.174727</td>
<td>2.240347</td>
</tr>
<tr>
<td>H</td>
<td>5.405088</td>
<td>0.149051</td>
</tr>
<tr>
<td>H</td>
<td>4.758239</td>
<td>-1.986802</td>
</tr>
<tr>
<td>H</td>
<td>2.887760</td>
<td>-2.035475</td>
</tr>
</tbody>
</table>
4.5.2. Raw Data for Chapter 3

Gas phase:
Potential energy / a.u. = -960.699954302
Free energy / a.u. = -960.390916

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.58309</td>
<td>0.99648</td>
<td>-0.09149</td>
</tr>
<tr>
<td>C</td>
<td>-0.84640</td>
<td>0.46099</td>
<td>-0.15408</td>
</tr>
<tr>
<td>C</td>
<td>-1.14208</td>
<td>-0.85864</td>
<td>-0.01629</td>
</tr>
<tr>
<td>C</td>
<td>-0.13182</td>
<td>-1.95411</td>
<td>0.11564</td>
</tr>
<tr>
<td>C</td>
<td>1.26941</td>
<td>-1.48612</td>
<td>-0.32610</td>
</tr>
<tr>
<td>C</td>
<td>1.59560</td>
<td>-0.10809</td>
<td>0.36594</td>
</tr>
<tr>
<td>O</td>
<td>-2.43828</td>
<td>-1.34585</td>
<td>-0.03623</td>
</tr>
<tr>
<td>C</td>
<td>1.38105</td>
<td>-1.44314</td>
<td>-1.86406</td>
</tr>
<tr>
<td>C</td>
<td>1.59418</td>
<td>-0.29761</td>
<td>1.90849</td>
</tr>
<tr>
<td>C</td>
<td>-1.91372</td>
<td>1.37532</td>
<td>-0.57803</td>
</tr>
<tr>
<td>O</td>
<td>-3.22419</td>
<td>0.85033</td>
<td>-0.58765</td>
</tr>
<tr>
<td>C</td>
<td>-3.52095</td>
<td>-0.36100</td>
<td>0.17033</td>
</tr>
<tr>
<td>C</td>
<td>-4.76584</td>
<td>-0.96512</td>
<td>-0.44395</td>
</tr>
<tr>
<td>C</td>
<td>-3.63645</td>
<td>-0.04124</td>
<td>1.65777</td>
</tr>
<tr>
<td>O</td>
<td>-1.76093</td>
<td>2.51923</td>
<td>-1.01128</td>
</tr>
<tr>
<td>C</td>
<td>3.00214</td>
<td>0.30133</td>
<td>-0.07264</td>
</tr>
<tr>
<td>O</td>
<td>3.30435</td>
<td>1.24185</td>
<td>-0.81531</td>
</tr>
<tr>
<td>O</td>
<td>3.95890</td>
<td>-0.54727</td>
<td>0.44338</td>
</tr>
<tr>
<td>C</td>
<td>5.35530</td>
<td>-0.27310</td>
<td>0.07110</td>
</tr>
<tr>
<td>C</td>
<td>0.68053</td>
<td>2.27416</td>
<td>0.78032</td>
</tr>
<tr>
<td>H</td>
<td>0.87239</td>
<td>1.30000</td>
<td>-1.10611</td>
</tr>
<tr>
<td>H</td>
<td>-0.12151</td>
<td>-2.32095</td>
<td>1.15110</td>
</tr>
<tr>
<td>H</td>
<td>-0.46515</td>
<td>-2.79975</td>
<td>-0.49937</td>
</tr>
<tr>
<td>H</td>
<td>2.00609</td>
<td>-2.20719</td>
<td>0.04736</td>
</tr>
<tr>
<td>H</td>
<td>1.22922</td>
<td>-2.44707</td>
<td>-2.27713</td>
</tr>
<tr>
<td>H</td>
<td>0.63053</td>
<td>-0.78224</td>
<td>-2.31005</td>
</tr>
<tr>
<td>H</td>
<td>2.17961</td>
<td>-1.17846</td>
<td>2.18429</td>
</tr>
<tr>
<td>H</td>
<td>-4.59262</td>
<td>-1.15741</td>
<td>-1.50467</td>
</tr>
<tr>
<td>H</td>
<td>-5.01150</td>
<td>-1.90526</td>
<td>0.05720</td>
</tr>
<tr>
<td>H</td>
<td>-5.60306</td>
<td>-0.27025</td>
<td>-0.34080</td>
</tr>
<tr>
<td>H</td>
<td>-3.89358</td>
<td>-0.94705</td>
<td>2.21383</td>
</tr>
<tr>
<td>H</td>
<td>-2.69794</td>
<td>0.35988</td>
<td>2.04968</td>
</tr>
<tr>
<td>H</td>
<td>-4.42109</td>
<td>0.70506</td>
<td>1.80785</td>
</tr>
<tr>
<td>H</td>
<td>5.47599</td>
<td>-0.33595</td>
<td>-1.01250</td>
</tr>
<tr>
<td>H</td>
<td>5.64571</td>
<td>0.72425</td>
<td>0.40776</td>
</tr>
<tr>
<td>H</td>
<td>0.31196</td>
<td>2.10140</td>
<td>1.79741</td>
</tr>
<tr>
<td>H</td>
<td>0.57308</td>
<td>-0.41733</td>
<td>2.28290</td>
</tr>
<tr>
<td>H</td>
<td>1.71936</td>
<td>2.61294</td>
<td>0.83511</td>
</tr>
<tr>
<td>H</td>
<td>0.08620</td>
<td>3.07105</td>
<td>0.33117</td>
</tr>
<tr>
<td>H</td>
<td>2.03231</td>
<td>0.56563</td>
<td>2.41621</td>
</tr>
<tr>
<td>H</td>
<td>2.36683</td>
<td>-1.09499</td>
<td>-2.18941</td>
</tr>
<tr>
<td>H</td>
<td>5.93392</td>
<td>-1.04328</td>
<td>0.57715</td>
</tr>
</tbody>
</table>
Gas phase:
Potential energy / a.u. = -960.702955909
Free energy / a.u. = -960.393960

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.71760</td>
<td>-0.39269</td>
<td>1.27674</td>
</tr>
<tr>
<td>C</td>
<td>0.60120</td>
<td>-0.25195</td>
<td>0.53294</td>
</tr>
<tr>
<td>C</td>
<td>0.85228</td>
<td>0.78343</td>
<td>-0.30908</td>
</tr>
<tr>
<td>C</td>
<td>-0.13412</td>
<td>1.84298</td>
<td>-0.68096</td>
</tr>
<tr>
<td>C</td>
<td>-1.40930</td>
<td>1.82206</td>
<td>0.19422</td>
</tr>
<tr>
<td>C</td>
<td>-1.86996</td>
<td>0.36130</td>
<td>0.51145</td>
</tr>
<tr>
<td>O</td>
<td>2.05935</td>
<td>0.92679</td>
<td>-0.97033</td>
</tr>
<tr>
<td>C</td>
<td>-2.48890</td>
<td>2.73161</td>
<td>-0.42426</td>
</tr>
<tr>
<td>C</td>
<td>-3.17118</td>
<td>0.35732</td>
<td>1.35840</td>
</tr>
<tr>
<td>C</td>
<td>1.58126</td>
<td>-1.32557</td>
<td>0.68357</td>
</tr>
<tr>
<td>O</td>
<td>2.78871</td>
<td>-1.17251</td>
<td>-0.02930</td>
</tr>
<tr>
<td>C</td>
<td>3.21255</td>
<td>0.16468</td>
<td>-0.44315</td>
</tr>
<tr>
<td>C</td>
<td>4.16444</td>
<td>-0.02153</td>
<td>-1.60532</td>
</tr>
<tr>
<td>C</td>
<td>3.79824</td>
<td>0.91582</td>
<td>0.74857</td>
</tr>
<tr>
<td>O</td>
<td>1.40989</td>
<td>-2.37174</td>
<td>1.31448</td>
</tr>
<tr>
<td>C</td>
<td>-2.16536</td>
<td>-0.41527</td>
<td>-0.77825</td>
</tr>
<tr>
<td>O</td>
<td>-2.13415</td>
<td>0.01982</td>
<td>-1.93753</td>
</tr>
<tr>
<td>O</td>
<td>-2.52068</td>
<td>-1.71666</td>
<td>-0.51215</td>
</tr>
<tr>
<td>C</td>
<td>-2.82442</td>
<td>-2.57677</td>
<td>-1.66663</td>
</tr>
<tr>
<td>C</td>
<td>-0.55323</td>
<td>0.02589</td>
<td>2.75767</td>
</tr>
<tr>
<td>H</td>
<td>-0.97612</td>
<td>-1.45649</td>
<td>1.27580</td>
</tr>
<tr>
<td>H</td>
<td>0.35491</td>
<td>2.82331</td>
<td>-0.61097</td>
</tr>
<tr>
<td>H</td>
<td>-0.40607</td>
<td>1.70072</td>
<td>-1.73471</td>
</tr>
<tr>
<td>H</td>
<td>-1.14393</td>
<td>2.25083</td>
<td>1.17159</td>
</tr>
<tr>
<td>H</td>
<td>-2.07357</td>
<td>3.73047</td>
<td>-0.60639</td>
</tr>
<tr>
<td>H</td>
<td>-2.83956</td>
<td>2.33092</td>
<td>-1.37927</td>
</tr>
<tr>
<td>H</td>
<td>-4.03078</td>
<td>0.68461</td>
<td>0.76570</td>
</tr>
<tr>
<td>H</td>
<td>3.66170</td>
<td>-0.56885</td>
<td>-2.40520</td>
</tr>
<tr>
<td>H</td>
<td>4.48658</td>
<td>0.95232</td>
<td>-1.98361</td>
</tr>
<tr>
<td>H</td>
<td>5.03847</td>
<td>-0.59084</td>
<td>-1.27905</td>
</tr>
<tr>
<td>H</td>
<td>4.15139</td>
<td>1.90064</td>
<td>0.43061</td>
</tr>
<tr>
<td>H</td>
<td>3.05054</td>
<td>1.04714</td>
<td>1.53596</td>
</tr>
<tr>
<td>H</td>
<td>4.63782</td>
<td>0.34845</td>
<td>1.15883</td>
</tr>
<tr>
<td>H</td>
<td>-3.67511</td>
<td>-2.17518</td>
<td>-2.22117</td>
</tr>
<tr>
<td>H</td>
<td>-1.95684</td>
<td>-2.63707</td>
<td>-2.32663</td>
</tr>
<tr>
<td>H</td>
<td>-0.32326</td>
<td>1.09246</td>
<td>2.86313</td>
</tr>
<tr>
<td>H</td>
<td>-3.07251</td>
<td>1.03576</td>
<td>2.21130</td>
</tr>
<tr>
<td>H</td>
<td>-1.45087</td>
<td>-0.19606</td>
<td>3.34261</td>
</tr>
<tr>
<td>H</td>
<td>0.27326</td>
<td>-0.54328</td>
<td>3.19517</td>
</tr>
<tr>
<td>H</td>
<td>-3.38207</td>
<td>-0.64897</td>
<td>1.72946</td>
</tr>
<tr>
<td>H</td>
<td>-3.34734</td>
<td>2.85308</td>
<td>0.24360</td>
</tr>
<tr>
<td>H</td>
<td>-3.05697</td>
<td>-3.54729</td>
<td>-1.23371</td>
</tr>
</tbody>
</table>
Gas phase:
Potential energy / a.u. = -960.687877421
Free energy / a.u. = -960.377091
Gas phase:

Potential energy / a.u. = -928.338716987
Free energy / a.u. = -928.063949
Gas phase:
Potential energy / a.u. = -928.335511997
Free energy / a.u. = -928.060032

C -0.77295 -2.31236 1.08555
C -0.82927 -0.80487 1.07061
C -0.81656 -0.09362 -0.31512
C 0.53330 0.67475 -0.60772
C 1.64803 -0.23804 -1.17270
C 2.24980 -1.17780 -0.12516
C 1.61857 -2.29853 0.31748
C 0.22246 -2.81418 -0.00030
C -0.38394 -2.47533 -1.39081
C -1.15890 -1.12265 -1.44705
O 3.41400 -0.72524 0.39012
O -0.90345 -0.12342 2.10768
C 1.02418 1.46205 0.62614
C -1.94465 0.94922 -0.26537
O -1.83628 2.16884 -0.48727
O -3.14714 0.36770 0.04586
C -4.30708 1.26137 0.18998
O -2.31187 2.16884 0.36631
C -2.19383 3.42135 -0.37065
H -0.47393 -2.62977 2.08830
H -1.78819 -2.70240 0.89796
H -0.26421 1.40324 -1.38496
H -1.27190 -0.76452 -2.05110
H -2.46020 0.39975 -1.54073
H -2.13022 -2.84856 1.10564
H -0.25503 -3.91032 0.07362
H -1.10033 -3.26734 -1.64577
H -0.40091 -2.52191 -2.15045
H -2.22992 -1.33096 -1.36634
H -1.00997 -0.63451 -2.41835
H -0.29298 2.20604 0.95003
H -1.25049 0.79822 1.45910
H -5.13594 0.60068 0.43485
H -4.48898 1.79615 -0.74440
H -4.12410 1.97813 0.99285
H -3.18924 3.86875 -0.39213
H -1.49797 4.09292 0.14249
H -1.84462 3.24454 -1.39287
Li 3.70686 0.94855 0.66380
208c

Gas phase:
Potential energy / a.u. = -928.298983146
Free energy / a.u. = -928.027105

...
Gas phase:
Potential energy / a.u. = -885.444957325
Free energy / a.u. = -885.136356
Gas phase:
Potential energy / a.u. = -885.435942701
Free energy / a.u. = -885.129300

C 0.53839 -1.60388 1.71099
C -0.53874 -0.64786 1.24498
C -0.64623 -0.30843 -0.25197
C 0.34213 0.87189 -0.54495
C 1.83116 0.58137 -0.63335
C 2.66954 -0.45603 -0.42413
C 2.46573 -1.90843 0.00811
C 1.15107 -2.47655 0.59440
C 0.07906 -2.78255 -0.46814
O -1.27654 -0.07655 2.06678
C 0.13619 2.07863 0.40341
C -2.08512 0.14092 -0.52578
O -2.44981 1.21384 -1.01453
O -2.96774 -0.86411 -0.21486
C -4.39801 -0.56718 -0.38106
O 0.79486 3.21276 -0.22716
O 0.66167 4.44342 0.52164
H 1.31292 -1.01102 2.21859
H 0.04085 1.24964 -1.53371
H 2.32404 1.50470 -0.93347
H 3.24793 -2.09745 0.76108
H 2.75024 -2.54485 -0.84747
H 1.43761 -3.43393 1.05189
H -0.79680 -3.22899 0.02404
H 0.45760 -3.52485 -1.18236
H -0.92885 2.29210 0.53626
H 0.58468 1.89002 1.38947
H -4.90645 -1.48764 -0.10153
H -4.61068 -0.29536 -1.41709
H -4.68355 0.25488 0.27833
H 1.12344 4.36191 1.51673
H -0.39364 4.72583 0.64314
H 1.17870 5.21111 -0.05618
C -0.34331 -1.51572 -1.21878
H 0.44925 -1.21267 -1.90931
H -1.22901 -1.73266 -1.82271
H 0.07856 -2.22771 2.48765
C 4.15583 -0.20474 -0.66815
H 4.73905 -0.35011 0.25235
H 4.55919 -0.90918 -1.40972
H 4.34251 0.80949 -1.03105
Gas phase:
Potential energy / a.u. = -885.438115285
Free energy / a.u. = -885.129259
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

cis-237

Gas phase:
Potential energy / a.u. = -1032.24475007
Free energy / a.u. = -1031.989466
trans-237

Gas phase:
Potential energy / a.u. = -1032.27541322
Free energy / a.u. = -1032.020616

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.22853</td>
<td>0.46395</td>
<td>-0.65202</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.01857</td>
<td>1.29878</td>
<td>-0.23102</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.10909</td>
<td>0.36746</td>
<td>0.39453</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.75629</td>
<td>-0.64554</td>
<td>-0.60593</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.31161</td>
<td>-2.12218</td>
<td>-0.63771</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.09972</td>
<td>-2.37297</td>
<td>-1.19656</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.29821</td>
<td>-2.15466</td>
<td>-0.24985</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.59627</td>
<td>-0.71706</td>
<td>0.29544</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.98596</td>
<td>-0.45765</td>
<td>1.70372</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.54903</td>
<td>-0.29968</td>
<td>1.70185</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.30160</td>
<td>1.23228</td>
<td>0.82698</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-3.51365</td>
<td>0.62634</td>
<td>0.42596</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3.25368</td>
<td>-0.54159</td>
<td>-0.33433</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-2.29163</td>
<td>2.27161</td>
<td>1.46206</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-4.15327</td>
<td>-1.28045</td>
<td>-0.68852</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-1.62662</td>
<td>-0.24994</td>
<td>-1.62478</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.51864</td>
<td>2.17456</td>
<td>-1.39640</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.11358</td>
<td>-0.58696</td>
<td>0.46362</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>3.55793</td>
<td>0.64180</td>
<td>-0.08689</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.48588</td>
<td>1.32726</td>
<td>-0.70788</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>3.88880</td>
<td>-1.35940</td>
<td>0.99605</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.64489</td>
<td>2.43542</td>
<td>-1.18794</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.06655</td>
<td>0.09198</td>
<td>-1.67258</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.27761</td>
<td>1.90402</td>
<td>0.57726</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.03779</td>
<td>-2.64040</td>
<td>-1.27527</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.41071</td>
<td>-2.57974</td>
<td>0.35418</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.15068</td>
<td>-3.42524</td>
<td>-1.50607</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.23249</td>
<td>-1.79428</td>
<td>-2.12195</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.19795</td>
<td>-2.82254</td>
<td>0.61497</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.18993</td>
<td>-2.50472</td>
<td>-0.78455</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.28401</td>
<td>-1.26992</td>
<td>2.37490</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.43488</td>
<td>0.45850</td>
<td>2.10908</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.03783</td>
<td>-1.26476</td>
<td>1.86010</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.81902</td>
<td>0.32853</td>
<td>2.55754</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.35413</td>
<td>2.80839</td>
<td>-1.08390</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.28897</td>
<td>2.82915</td>
<td>-1.73324</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.83933</td>
<td>1.57606</td>
<td>-2.25815</td>
<td></td>
</tr>
</tbody>
</table>
4.6. X-Ray Crystallography

X-ray diffraction experiments on 24, 38a, 39e, and 57 were carried out at 100(2) K on a Bruker APEX II diffractometer using Mo-K\textsubscript{2} radiation (λ = 0.71073 Å). Intensities were integrated in SAINT219 and absorption corrections based on equivalent reflections were applied using SADABS.220 Structure 57 was solved using ShelXS,221 39e was solved using Superflip222,223 and both 24 and 38a were solved using ShelXT224 all of the structures were refined by full matrix least squares against F^2 in ShelXL221,224 using Olex2.225 All non-hydrogen atoms were refined anisotropically. While all hydrogen atoms were located geometrically and refined using a riding model, apart from the N-H protons in 57 and 38a which were located in the difference map and refined freely. In the case of 57, the structure was refined as a two-component twin giving a refined twin scale fraction of 0.4712(12). In 38a one of the methanol solvent molecules was found to have disorder in the position of the oxygen, the occupancies were refined with the sum of the two sites set to equal 1. Restraints and constraints were applied to maintain sensible thermal and geometric parameters. Crystal structure and refinement data are given in Table 1. Crystallographic data for compounds 24, 38a, 39e, and 57 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1897232-1897235. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk].
Table 13 – Crystal data and structure refinement for 24, 38a, 39e, and 57

<table>
<thead>
<tr>
<th></th>
<th>24</th>
<th>38a</th>
<th>39e</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{22}H_{21}NO_{4}</td>
<td>C_{32}H_{37}N_{3}O_{6.5}S</td>
<td>C_{22}H_{19}ClFNO_{3}</td>
<td>C_{29}H_{20}N_{2}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>363.40</td>
<td>605.71</td>
<td>399.83</td>
<td>466.52</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>orthorhombic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/n</td>
<td>P-1</td>
<td>P2_12_12_1</td>
<td>P2_1/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>12.1811(2)</td>
<td>11.5641(3)</td>
<td>6.7377(3)</td>
<td>12.8112(7)</td>
</tr>
<tr>
<td>b/Å</td>
<td>5.97140(10)</td>
<td>14.4286(4)</td>
<td>9.7118(4)</td>
<td>11.0276(6)</td>
</tr>
<tr>
<td>c/Å</td>
<td>24.6196(4)</td>
<td>18.7388(5)</td>
<td>29.7329(13)</td>
<td>16.7741(12)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
<td>81.9854(14)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>91.9220(10)</td>
<td>89.0809(14)</td>
<td>90</td>
<td>91.898(4)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
<td>83.9594(14)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>31789.78(5)</td>
<td>3078.91(14)</td>
<td>1945.58(15)</td>
<td>2368.5(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ρ_{calc}/g/cm³</td>
<td>1.349</td>
<td>1.307</td>
<td>1.365</td>
<td>1.308</td>
</tr>
<tr>
<td>μ/mm⁻¹</td>
<td>0.093</td>
<td>0.156</td>
<td>0.229</td>
<td>0.088</td>
</tr>
<tr>
<td>F(000)</td>
<td>768.0</td>
<td>1284.0</td>
<td>832.0</td>
<td>984.0</td>
</tr>
<tr>
<td>Crystal size/mm³</td>
<td>0.512 × 0.338 × 0.283</td>
<td>0.438 × 0.328 × 0.305</td>
<td>0.375 × 0.361 × 0.072</td>
<td>0.359 × 0.198 × 0.13</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71073)</td>
<td>MoKα (λ = 0.71073)</td>
<td>MoKα (λ = 0.71073)</td>
<td>MoKα (λ = 0.71073)</td>
</tr>
<tr>
<td>2θ range for data collection/°</td>
<td>3.682 to 55.896</td>
<td>3.36 to 55.94</td>
<td>2.74 to 54.37</td>
<td>3.18 to 52.84</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-16 ≤ h ≤ 16, -6 ≤ k ≤ 7, -32 ≤ l ≤ 32</td>
<td>-11 ≤ h ≤ 15, -19 ≤ k ≤ 19, -23 ≤ l ≤ 24</td>
<td>-8 ≤ h ≤ 8, -12 ≤ k ≤ 11, -38 ≤ l ≤ 38</td>
<td>-16 ≤ h ≤ 16, 0 ≤ k ≤ 13, 0 ≤ l ≤ 21</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>15153</td>
<td>57146</td>
<td>32309</td>
<td>4984</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>4282/0/244</td>
<td>14790/1/798</td>
<td>4315/0/253</td>
<td>4984/0/321</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.022</td>
<td>1.030</td>
<td>1.097</td>
<td>1.046</td>
</tr>
<tr>
<td>Final R indexes [I>2σ(I)]</td>
<td>R₁ = 0.0376, wR₂ = 0.0882</td>
<td>R₁ = 0.0466, wR₂ = 0.1068</td>
<td>R₁ = 0.0449, wR₂ = 0.1026</td>
<td>R₁ = 0.0534, wR₂ = 0.0955</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.0476, wR₂ = 0.0937</td>
<td>R₁ = 0.0715, wR₂ = 0.1193</td>
<td>R₁ = 0.0505, wR₂ = 0.1054</td>
<td>R₁ = 0.0901, wR₂ = 0.1086</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.30/-0.21</td>
<td>0.42/-0.48</td>
<td>0.39/-0.29</td>
<td>0.32/-0.27</td>
</tr>
</tbody>
</table>
Chapter 5: References
5. References

Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

208

Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

Chapter 6: Appendix
6. Appendix

6.1. Selected Spectra

[Image of spectra]
216
Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products
[2+2]-Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

229
2. Photocycloaddition Reactions in the Synthesis of Novel Scaffolds and Natural Products

- 209.78
- 173.50
- 141.40
- 128.82
- 128.30
- 127.82
- 127.44
- 120.20
- 72.69
- 72.30
- 68.73
- 61.17
- 58.94
- 46.38
- 43.95
- 39.13
- 31.20
- 31.04
- 27.35
- 25.86
- 18.27
- 13.93
- 5.47

- 4.98
- 1.05
- 1.04
- 2.14
- 3.45
- 8.98
- 6.59
- 4.91
- 4.90
- 4.90
- 4.60
- 4.57
- 4.56
- 4.47
- 4.44
- 4.12
- 4.11
- 4.10
- 3.67
- 3.66
- 3.66
- 3.65
- 3.64
- 3.64
- 3.48
- 3.25
- 3.21
- 2.81
- 2.79
- 2.78
- 2.67
- 2.67
- 2.60
- 2.48
- 2.48
- 2.05
- 2.04
- 1.19
- 1.17
- 0.89
- 0.05
- 0.04
Sequential Photochemical and Prins Reactions for the Diastereoselective Synthesis of Tricyclic Scaffolds

Bethan L. Donnelly, Luke D. Elliott, Christine L. Willis, and Kevin I. Booker-Milburn*

Abstract: Cyclobutene alcohols undergo Prins cyclisations to generate single diastereomers of novel tricyclic heterocycles with five contiguous stereocentres. The reaction times are significantly shorter (ca. 15 min) than with traditional alkene substrates. Stereoselectiveaza-Prins cyclisations of cyclobutene amine derivatives give fused aza-heterocyclic scaffolds. Computational studies provide insight into the observed stereocontrol. The modular approach is flexible, enabling the introduction of a variety of functional groups (including amides, nitriles, alkynes, and arenes) into the sp²-rich heterocyclic scaffolds.

There is debate within medicinal chemistry that sp²-rich structures are underrepresented in drug discovery, and new methods for the synthesis of easily diversifiable, sp²-rich scaffolds are desirable. Multicomponent reactions offer an elegant solution where simple starting materials can be used to quickly generate molecular complexity. Synthesis of novel fused cyclobutane ring systems in this way would access new areas of chemical space, whilst retaining some of the conformational restriction often associated with successful drug molecules. Similar cyclobutane fused ring systems have previously been shown to have potential as biosisosteres for common building blocks in drug discovery.

The Prins cyclisation of an oxocarbenium ion generated in situ, for example, from the acid-mediated reaction of a homoallylic alcohol and an aldehyde, is a powerful method for the synthesis of functionalized tetrahydropyrans. It has been used to good effect in the synthesis of natural products, such as bryostatin, (+)-dactylocidin, and (-)-blepharocalyxin D, however, to the best of our knowledge, cyclobutene alcohols have not been reported as substrates in Prins cyclizations. This may reflect, in part, limited approaches for the synthesis of 2-cyclobutenylethanol and its derivatives compared to other substituted cyclobutenes.

Recently, our group developed an efficient photochemical synthesis of bicyclic cyclobutene alcohols I on multigram scales. We envisaged that such compounds would undergo Prins cyclization via intermediates II and III to generate sp²-rich polyheterocycles IV possessing several sites available for further library diversification (Scheme 1).

Herein, we report the results of studies leading to the selective synthesis of 6,4,5-tricyclic scaffolds with five contiguous stereocentres, decorated with a range of useful further functionality.

Succinimide was synthesized by the [2+2] cycloaddition of maleimide with homopropargyl alcohol. The imide can be subsequently N-benzyl- or methylated, or alternatively, the photochemical reaction can be performed directly with N-methyl- or N-benzyl maleimide. All routes can be carried out on a large scale with the aid of flow photochemistry (Scheme 2a).

Initial investigations were based on tandem Prins–Ritter reaction conditions first reported by Willis and co-workers for the synthesis of 4-amidotetrahydropyran [14]. Yadav and co-workers have used similar conditions for the formation of 4-amidopiperidine derivatives [15] and a Sakurai–Prins–Ritter reaction to prepare 2,6-disubstituted tetrahydropyran has also been developed [16]. Thus I was treated with benzaldehyde and trifluoromethanesulfonic (triflic) acid in acetonitrile at room temperature. After 30 min, the starting material had been completely consumed. Amide 4a was isolated as a single diastereomer with creation of three new stereocentres (Scheme 2b). Substituting triflic acid for other protic acids (HCl, H₂SO₄, AcOH) or Lewis acids (BF₃, InCl₃) returned only starting material in all cases. The reaction conditions employing triflic acid were optimized for temperature (0°C), concentration (0.2 M), and equivalents of aldehyde (1.2 equiv) and acid (1.5 equiv) with unusually short reaction times (10–60 min).

Further studies revealed acetate 9 and ketone 10 (Scheme 2b) as side products of the reaction. The formation of 9 can be accounted for by reaction of the alcohol with protonated acetoniitrite, followed by hydrolysis upon workup. The structure of 10 was confirmed by X-ray crystallography (Scheme 2e). Compound 4a was re-subjected to the reaction
conditions and found to be stable, confirming that 10 is formed during the reaction. The mechanism likely involves a Grob-like fragmentation of the central cyclobutane ring (Scheme 2c) by two possible mechanisms. Carbocation III (Scheme 1) could be trapped by water, followed by a retroaldol reaction (pathway A, Scheme 2c). Alternatively, fragmentation of the Ritter intermediate (pathway B, Scheme 2c) could lead to 10. The reaction was repeated with benzaldehyde dimethyl acetal in order to prevent formation of water on condensation with the alcohol 1. In this case, the acetimidate 11 was isolated through trituration of the crude reaction mixture, which during purification by column chromatography hydrolyzed to a 1:1 mixture of the desired product 4a and the fragmented ketone 10 (Scheme 2d). Isolation of the acetimidate 11 is in accord with pathway B of the proposed mechanism.

The scope of the reaction of 1 with a series of aldehydes was explored (Scheme 3a). Substituted benzaldehydes, cyclic and acyclic aliphatic aldehydes with a range of steric bulk, and unsaturated aldehydes gave the corresponding product as a single diasteromer in almost all cases. Aldehydes with longer aliphatic chains tended to give the highest yield; electron-donating/withdrawing arenes did not show a clear trend.

Prins cyclisations of the maleimides 2 and 3 were also investigated under the optimized reaction conditions. Although a 95% yield was achieved for the reaction of 2.
with dihydrocinnamaldehyde to give 5a, the analogous reaction with benzaldehyde gave 5b in only 43% yield. Reactions with 3 gave 6a and 6b in significantly lower yields (42% and 27%, respectively). Use of ketone electrophiles (acetonitrile and cyclohexanone) gave no reaction.

Other nitrile-based solvents could also be incorporated, for example, 1 was reacted with benzaldehyde in benzonitrile, giving tricyclic amide 7 as a single diastereomer (by NMR analysis). The structure was confirmed by X-ray crystallography (Scheme 3a). Use of five equivalents of acetonitrile in dichloromethane gave the eliminated product 8. Alkene 8 can also be formed by conducting the reaction in dichloromethane.

As imide functionality is implicated in the formation of 10, 1 was reduced with LiAlH₄ to amine 12 (Scheme 3b). Prins cyclisation of cyclobutene alcohol 12 with benzaldehyde gave the anticipated tricyclic product 13 in 78% yield, with no ketonic side product detected, also demonstrating the tolerance of the reaction to free amines.

As well as the Prins–Ritter reaction, it was found that 1 reacts with a series of ketals in a reaction catalyzed by HBF₄ in dichloromethane to yield products with a tertiary fluoride moiety (Scheme 4). The analogous reaction with aldehydes leads to the predominant formation of ketone 10, likely because of liberation of water. Various substituted acetals were all converted into the desired tricyclic products 9a–9g. As with the Prins–Ritter reaction, the stereocentrality was found to be excellent in all cases (X-ray crystallography of 9g).

As well as tricyclic tetrahydropyranyl fused rings, the corresponding piperezines were prepared by aza-Prins cyclisation (Scheme 5). Protected homoallylic amine 14 was prepared from 1 under Mitsunobu conditions. Addition of triflic acid to 14 promoted in situ deprotection of the carbamate protecting group, with subsequent addition of aldehyde yielding tricyclic products 15a–g. X-ray crystallography confirmed the major diastereomer 15a as having a different stereochemistry at C9 to the oxo-Prins reaction, likely because of steric interactions caused by the nitrogen protecting group in the iminium transition state. This aza-Prins sequence is notable for the stereoselective and rapid generation of tricyclic systems containing three orthogonally protected nitrogen atoms.

Density functional theory (DFT) calculations (B3LYP/6–31+G(d), see the Supporting Information for details) were undertaken to explain the C3 and C8 stereochemistry (Scheme 6). The difference in stereochemistry at C9 between oxo- and aza-Prins cyclizations has been previously rationalized. By considering the optimized geometries for the intermediates A, B, and C, conformational searches and
energy minimization showed that the lowest-energy conformation of A required the oxocarbenium ion to be positioned on the opposite face to the maleimide, thus avoiding steric clash (Scheme 6).

Facially selective cyclization accounts for the observed stereochemistry at C8. By modelling the intermediates for nucleophilic attack from both the top (B) and bottom (C) face, the stereochemistry at C3 can also be explained. Approach of the nucleophile from the bottom face (intermediate B) was found to be 14.2 kcal mol\(^{-1}\) higher in energy relative to the alternative mode of attack (C). This is strongly supportive of the cis relationship of C3 and C8 as observed experimentally (Scheme 6).

In conclusion, a novel application of the Prins reaction has allowed a facile synthesis of complex tricyclic sp\(^3\)-rich scaffolds in two steps. To the best of our knowledge, this is the first reported study of cyclobutenes in Prins cyclisations. Reaction times are significantly shorter (ca. 15 min) than with traditional alkene substrates. The reaction is diastereoselective, giving products with up to five contiguous stereocentres. The modular nature of this reaction allows for the incorporation of groups for further derivatization through the use of different aldehydes. Use of reaction conditions that alter the nucleophile incorporated led to the installation of both amide and fluoride quaternary centres. Finally, an azo-Prins cyclization gave tricyclic heterocyclic scaffolds containing three orthogonally protected nitrogen atoms.

Acknowledgements

We thank the EPSRC (EP/L015366/1 and EP/P013341/1), AstraZeneca, the University of Bristol, and the Bristol Chemical Synthesis Centre for Doctoral Training for funding. Dr Natalie Foy and the Centre for Computational Chemistry are thanked for their advice and computational resources.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cyclobutene · fluorination · photochemistry · Prins cyclization · Ritter reaction

How to cite: Angew. Chem. Int. Ed. 2019, 58, 9095–9098
Angew. Chem. 2019, 131, 9193–9196

[22] CCDC 1897232, 1897233, 1897234, and 1897235 (7, 9g, 10, 15a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Manuscript received: March 21, 2019
Accepted manuscript online: April 29, 2019
Version of record online: May 24, 2019