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Abstract. 
The de novo design of simplified porphyrin-binding helical bundles is a versatile approach for 
the construction of valuable biomolecular tools to both understand and enhance protein functions 
such as electron transfer, oxygen binding and catalysis. However, the methods utilised to design 
such proteins by packing hydrophobic side chains into a buried binding pocket for ligands such 
as heme have typically created highly flexible, molten globule-like structures, which are not 
amenable to structural determination, hindering precise engineering of subsequent designs. 
Here we report the crystal structure of a de novo two-heme binding “maquette” protein, 4D2, 
derived from the previously designed D2 peptide, offering new opportunities for computational 
design and re-engineering. The 4D2 structure was used as a basis to create a range of heme 
binding proteins which retain the architecture and stability of the initial crystal structure. A well-
structured single-heme binding variant was constructed by computational sequence redesign of 
the hydrophobic protein core, assessed by NMR, and utilised for experimental validation of 
computational redox prediction and design. The structure was also extended into a four-heme 
binding helical bundle resembling a molecular wire. Despite a molecular weight of only 24kDa, 
imaging by CryoEM illustrated a remarkable level of detail in this structure, indicating the 
positioning of both the secondary structure and the heme cofactors. The design and 
determination of atomic-level resolution in such de novo proteins is an invaluable resource for 
the continued development of novel and functional protein tools. 
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Introduction. 
Computational, de novo protein design has attained a level of sophistication where atomistic 
precision is almost routine1,2, and there now exist a multitude of examples demonstrating our 
command over these fundamental biomolecular building blocks3,4. Conversely, where 
oxidoreductase cofactors have been successfully incorporated into simplified protein 
scaffolds5,6,7, principally termed maquettes, there are limited examples where high-resolution 
structural information has been successfully obtained8,9,10. This shortfall hinders the downstream 
engineering of these robust and versatile scaffolds to incorporate substrate binding sites, tailor 
active site residues and fine tune cofactor biophysical properties in a predictable manner. 
Ultimately, such fine control of structure will lead to significant improvements in these proteins, 
aiding the expansion of their functional and catalytic repertoire, and enabling, for instance, 
imprinted regio- and stereoselectivity in de novo oxidoreductase enzymes.  
 
Despite the drive toward well-packed, native-like states in de novo proteins, it should be noted 
that certain heme-containing maquettes exhibit catalytic activities comparable to their natural 
counterparts while adopting conformationally dynamic structures more reminiscent of molten 
globules than well-folded native-like states11,12. In these cases, the dynamic nature of the protein 
may in fact enhance catalytic activity by lowering barriers to substrate entry and product exit, 
though the relationship between dynamics and catalysis in these simple proteins currently 
remains unclear11,13,14. Since these activities extend to industrially and biosynthetically valuable 
reactions12, it would be prudent to explore this relationship in greater depth and establish a 
framework of robust, engineerable de novo proteins to address these and other fundamentally 
important questions relating to biologically relevant phenomena, such as electron transfer. 
 
To this end, here we describe the design and construction of single and multi-heme proteins with 
well-defined structures and biophysical properties that can be predictably fine-tuned. Our 
strategy was based on the successful design and characterisation of the D2 peptide by the 
Degrado lab15, which self assembles into a diheme tetrahelical bundle. Following the addition of 
simple loops, we created a single chain variant with nanomolar heme affinity, 4D2, that we were 
able to crystalise, obtaining a high-resolution structure of the heme-bound maquette. This 
structure guided the subsequent computational design of a rigid monoheme maquette, and an 
extended tetraheme maquette. We obtained further structural insight into our designs using NMR 
spectroscopy and cryo-electron microscopy, the latter enabling heme-enhanced visualization of 
our 24 kDa tetraheme maquette which represents the current mass limit of the technique. This 
structural information and our confidence in the fidelity of the design process enabled the 
implementation of Monte Carlo Continuum Electrostatic Calculations16 to produce further 
maquettes with predictably altered redox potentials. Such fine-tuning of a fundamental 
biophysical property of the cofactor is central to heme protein engineering and the future 
construction of efficient oxidoreductases on our own terms. 
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Results. 
Conversion of the D2 peptide to an in vivo expressed single-chain protein. 
For a design process with higher precision than that used in the construction of the earlier 
maquettes, we selected the D2 peptide15 reported by Ghirlanda et al, as a starting point for 
further design. D2 was originally designed by parameterizing the transmembrane cytochrome b 
subunit of the cytochrome bc1 complex, using computational methods to define a sequence that 
would self-assemble into a soluble tetrahelical bundle with overall D2 symmetry in the presence 
of heme. The resulting peptide demonstrated high (but undefined) affinity for two heme Bs within 
the assembly, and relatively well-resolved 2D HSQC NMR spectra were observed in presence 
of the heme B cofactors. Despite these promising observations, no high-resolution structural 
information was obtained. We reasoned that the heme B binding affinity could be improved by 
creating a single chain tetrahelical bundle, potentially preorganising the heme binding sites and 
reducing the entropic cost of complex assembly in the unconnected D2:heme B assembly. Given 
the computational design of the heme binding sites and NMR data, it was also hoped that the 
single chain variant would retain the apparent singular, near-native structure of the original 
assembly.  
 
To achieve this single chain variant of D2, we designed a protein where four copies of the 25-
residue D2 peptide were linked together by three short loops: two TSN loops between helices 
1-2 and 3-4; and one GSVSP sequence at the central loop between helices 2-3. We also 
included a TEV (Tobacco Etch Virus N1A) protease-cleavable hexahistidine tag and V5 epitope 
at the N-terminus to enable purification by metal affinity chromatography and antibody detection 
respectively, resulting in a 112-amino acid four helix bundle after TEV-cleavage. Following 
creation of a synthetic gene and expression in T7 Express (NEB) E. coli from pET151 (Thermo), 
a vibrantly red cell pellet was obtained, indicating in vivo heme B binding (Fig. 1). Whilst 
cytoplasmic expression of the protein with or without supplementation with the heme precursor 
!-aminolevulinic acid17 can yield significant heme binding, the reliability of cofactor incorporation 
was increased considerably by periplasmic export, facilitated by cloning 4D2 into a modified 
pMal-p4x vector (pSHT) containing a cleavable, N-terminal signal sequence for periplasmic 
export, used previously for the expression of de novo c-type maquettes18. Low heme loaded 
cytoplasmic preparations can be recovered either through titration of hemin into purified protein, 
or through supplementation with excess hemin on cell lysis. Reconstitution of 4D2 with heme B 
results in protein with identical biophysical and spectroscopic properties to periplasmically-
expressed 4D2 or cytoplasmically-expressed 4D2 with a full heme complement. In addition, to 
facilitate heme B binding studies and to assess the biophysical characteristics of the apo-4D2, 
we were able to remove bound heme B using acid:2-butanone extraction, as previously 
described19. 
 
Heme-bound 4D2 exhibits UV/visible spectra typical of proteins binding heme B by bis-histidine 
ligation, with a distinctive Soret peak at 416 nm in the oxidized, ferric state5,20,21. We 
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subsequently used electrospray ionization mass spectrometry (ESI-MS) under aqueous, non-
denaturing conditions22 to confirm the protein mass and further examine heme binding. Under 
these soft ionization conditions, we principally observe the diheme 4D2 complex at the correct 
mass, with only with only a small proportion of monoheme- or apo-4D2 m/z peaks observed 
(Figure 1C). Conversely, the heme groups dissociate under the conditions of MALDI mass 
spectrometry, resulting solely in the detection of apo-4D2. Following titrations of hemin into apo-
4D2, we established tight heme B binding, with an observed dissociation constant (KD) of < 5 
nM, and with no evidence of negative cooperativity. Using circular dichroism, we also observe 
that heme binding dramatically increases the helicity and thermal stability of 4D2; apo-4D2 is 
fully unfolded at 37oC, while diheme 4D2 demonstrates only a small loss in helicity until the start 
of a more cooperative melting event above 80oC (Fig. 2). To determine the heme redox 
potentials, we used optically transparent thin layer (OTTLE) electrochemistry23, observing 
midpoint potentials of -182 mV and -115 mV, and, in notable contrast to the equivalent data 
obtained for diheme D2, there is no evidence of hysteresis in these redox titrations. Also, unlike 
the original D2 peptide complex15, the 2D H1-N15-HSQC spectra of diheme 4D2 exhibited only 
moderate signal dispersion (Supplementary Fig. 1), offering only minimal potential of peak or 
structural assignment by NMR. This could indicate that multiple protein conformations exist and 
possibly interconvert on the NMR timescale, or possibly that there exists another source of 
structural heterogeneity in diheme 4D2. 
 
Crystal Structure of a de novo Heme-Bound Maquette. 
Though the NMR indicated structural heterogeneity, we successfully obtained crystals of the 
diheme 4D2 from 96-well sitting drop screening plates, though crystal formation was slow, 
requiring 4 months for the appearance of the first crystals and 6 months to produce diffraction-
quality crystals. We were able to collect datasets at four wavelengths at the I03 beamline at 
Diamond light source, the fluorescence profile of the two iron atoms of the heme groups 
facilitating experimental phase determination by multi-wavelength anomalous dispersion 
(MAD)24. We subsequently determined the crystal structure to a resolution of 1.9 Å (Fig. 3), 
representing one of the first reported structures of a heme- or porphyrin-binding de novo protein. 
 
The solved crystal structure of 4D2 matches very well to the expected fold, with four helices 
arranged in an ordered coiled coil-like structure and the four histidine residues ligating each of 
the two heme cofactors across opposite helices. The identical helical regions fit the D2 symmetry 
of the original parameterized peptide design15. Each histidine is contacted by a threonine within 
an approximate hydrogen bonding distance, most likely forming the ‘keystone’ hydrogen bonding 
interactions in the original design. While the two shorter TSN loops on one side of helical bundle 
are resolved, the flexible GSVSP loop between helices two and three is not observed in this 
structure, suggesting a relatively disordered region around the adjacent protein termini. 
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Interestingly, there is evidence of disorder in the heme B orientations within the binding pockets, 
with extended density visible in positions 1, 2, 3 and 4 of the tetrapyrrole ring. We attribute this 
to the presence of two binding modes, related to each other by a 180o rotation of the asymmetric 
heme, placing the 2 and 4 vinyl groups in the apparent 1 and 3 methyl positions of the 
corresponding other orientation. This has been observed in other heme B binding proteins, 
including neuroglobin25 and several bacterioferritins26,27, where near equal occupancy of the two 
modes was observed. This may also explain the poor signal dispersion in the NMR; combined 
with the repetitive sequence of the four helices, the four possible combinations of heme 
orientations would certainly lead to significant peak broadening and relatively poor dispersion. 
So, while heterogeneity seems apparent from the NMR data, it may not be due to the global 
conformational dynamics of the protein, and the diheme 4D2 may possess more native like 
structure in solution than was initially presumed. The edge-to-edge distance between the heme 
cofactors is small (2.6 Å) and close to being within Van der Waals contact, facilitating rapid 
electron transfer between the heme groups28. 
 
Expansion and Redesign: Single and Multi-Heme Variants of 4D2. 
Following the successful determination of the 4D2 structure, we reasoned that the scaffold could 
provide a template for further heme protein design, enabling us to access single and multi-heme 
proteins with similar atomistic control. We initially designed a monoheme variant, m4D2, using 
Rosetta29 to remove one of the heme binding sites and repack the vacated binding pocket in the 
protein core. We selected the heme binding site adjacent to the termini and longer GSVSP loop 
for removal, and used a flexible backbone design protocol30 to mutate key positions in the core 
to an abbreviated library of hydrophobic amino acids. To minimize unnecessary and potentially 
destabilizing changes to the protein, we used SOCKET31 to identify key knobs-into-holes 
interactions, and avoided modification of the residues involved in these contacts. In total, we 
selected 11 residues for the redesign process, representing about 10% of the total protein, of 
which, 9 were mutated in the final sequence of m4D2. The flexible backbone protocol we 
employed utilized the Backrub method32 for backbone sampling, applying relatively small 
changes to the structure relative to the initial crystal structure. To achieve this, we adapted a 
Rosetta Script from Pollizi et. al. (2017)33, used for the design of a photoactive porphyrin-binding 
tetrahelical bundle. More aggressive backbone sampling methods such as the FastDesign 
mover30 or alternating rounds of sequence design (FixBB) and FastRelax were also tested 
(Supp. Info.), however although these methods converged to a lower overall Rosetta energy 
score, molecular dynamics simulations of the apo-m4D2 design suggested that these 
approaches caused significant disruption to the overall structure. 
 
Conversely, to facilitate the creation of nanoscale protein wires for long range electron transfer, 
we also designed an extended 4D2 variant, e4D2, capable of binding four heme B’s in a linear 
array. This required duplication of the diheme 4D2 unit, extending the protein along its helical 
axis. To ensure appropriate orientation of the heme-ligating histidine side chains into the core of 
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the protein, we separated equivalent histidine residues by 21 residues to fit approximately to 
three cycles of the helical heptad repeat observed in coiled-coil structures. We built each helix 
by repeating the sequence of the 25-residue 4D2 helix, removing two residues from each 
sequence at the junction between repeats, ensuring the correct histidine orientation. This 
resulted in the 46-residue e4D2 helix, for which we constructed a model using the ISAMBARD34 
design package. We extracted coiled-coiled parameters from the 4D2 crystal structure and used 
them to construct the extended helical structure. Finally, we selected the same set of loops from 
the initial 4D2 design to link the e4D2 helices, and then refined and minimized the model using 
Rosetta. 
 
Heme Binding, Helicity and Redox Potentiometry of m4D2 and e4D2. 
After cloning the mono- and tetraheme m4D2 and e4D2 into the same expression vector as 4D2, 
we cytoplasmically expressed the proteins in E. coli using the same method as for 4D2. Like 
4D2, m4D2 binds heme B in vivo and retains it through purification, resulting in a ferric UV/visible 
spectrum indistinguishable from 4D2 (Fig. 5A) and similarly high heme binding affinity (KD <3 
nM). In contrast, e4D2 does not bind a significant quantity of heme B in vivo under cytoplasmic 
expression, and we instead primarily purify apoprotein; however, apo-e4D2 readily binds 
exogenous heme B in vitro, exhibiting a similar ferric UV/visible spectrum to both 4D2 and m4D2. 
Analysis of heme-loaded e4D2 by size exclusion chromatography revealed the presence of 
aggregated, heme-containing protein, but also a significant quantity of heme-loaded e4D2 
eluting at a volume corresponding well to that of a monomeric 25 kDa protein. We found that the 
yield of monomeric, heme-loaded e4D2 can be improved by adding heme at 37oC, with marked 
suppression of aggregated or misfolded material relative to additions at 4 and 25oC (Figure 6F). 
Once separated, this monomeric, heme-bound e4D2 remains stable for several weeks (at 4oC), 
and further size exclusion chromatography indicated only monomeric e4D2 was present. Given 
the tendency of purified e4D2 to produce misfolded protein on the addition of heme B, 
quantification of the heme binding affinity is challenging; however, competition assays using apo 
horse heart myoglobin35 indicate that binding is tight and likely in the nanomolar range 
(Supplementary Fig. 2). To confirm the heme-binding stoichiometry of m4D2 and e4D2, we 
performed non-denaturing mass spectrometry on the two designs, revealing the intended 1:1 
and 4:1 heme-bound complexes of m4D2 and e4D2 respectively. 
 
We then used electrochemistry to provide an insight into the heme environment of these new 
4D2 variants (Fig. 5). e4D2 exhibits a broadly similar potentiometric titration to 4D2, with similar 
overall midpoint potential. While we initially attempted to fit the data to a Nernst function with 
four single electron redox changes, there were multiple solutions with equal statistical validity 
and potentials ranging from -120 mV to -195 mV. A possible route to disentangle the 
potentiometric data would involve selectively modifying or replacing hemes within e4D2 to 
perturb their individual midpoint potentials, but this is beyond the scope of the present study and 
future work will focus on achieving this selective modulation of heme potential in a chain of the 
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redox cofactors. For simplicity, we instead used a Nernst function representing two single 
electron redox events, and observed a slightly smaller separation between midpoint potentials 
than for 4D2 (-124 and -194 mV for e4D2). This indicates that the hemes are essentially paired 
in redox potential, with the outer and inner hemes experiencing differing electric field 
environments as a result of being in close proximity to one or two other hemes respectively. 
Conversely, m4D2 exhibited a significant positive shift in midpoint potential (Em = -118 mV) 
when compared to 4D2. This is consistent with the expected electric field effects of placing 
hemes in close proximity, as previously demonstrated in earlier iterations of the heme-containing 
maquettes20,36,37. 
 
We subsequently employed circular dichroism spectroscopy to probe m4D2 and e4D2 
secondary structure and thermal stability. We observed a predictably high degree in helicity for 
both the monoheme 4D2 and the tetraheme e4D2, and both exhibit excellent thermal stability 
with no evidence of significant helical unfolding up to 95oC. In contrast to 4D2 and e4D2, apo-
m4D2 also exhibits a relatively high degree of helicity and good thermal stability, with a 
cooperative melt transition starting at approximately 60oC. These observations are consistent 
with our design methodology and that previously implemented by Degrado et al 33; we designed 
m4D2 to contain a well folded core where the second heme binding site was removed, while 
allowing flexibility around the unoccupied, remaining heme site. 
 
NMR analysis of the single cofactor m4D2 2,4-DMDPIX complex. 
Unfortunately, we were unable to obtain diffraction-quality crystals of either holo-m4D2 or e4D2. 
However, NMR spectroscopy demonstrated that the monoheme m4D2, was well-structured, with 
good peak dispersion in the 2D H1N15-HSQC spectrum (Figure 7). Given the observation of 
alternative heme orientations in the crystal structure of 4D2, we reasoned that substitution of 
heme B for a symmetrical variant would eliminate such binding heterogeneity and improve NMR 
signal dispersion. We therefore selected the symmetric heme derivative, iron 2,4-dimethyl-
deuteroporphyrin (DMDPIX) for incorporation38, as it contains methyl groups in all 1-4 porphyrin 
positions. DMDPIX binds to m4D2 with slightly lower affinity than heme B (25 nM vs 3 nM 
respectively), most likely due to the removal of hydrophobic interactions between binding site 
residues and the vinyl groups of heme B. With DMDPIX bound to double isotopically labelled 
m4D2 (13C15N), we were able to obtain 3D NMR spectra that enabled the assignment of >90% 
of backbone and a large proportion of side chain atoms (Supplementary Table 2). While this 
data indicates that m4D2 adopts a singular native-like structure, we were unable to obtain 
sufficient long-range NOE interactions to enable full structural assignment, due to the 
paramagnetic influence of the symmetric heme. Given these data, we obtained a 2D H1N15-
HSQC spectrum of 4D2 with DMDPIX bound and observed a similar improvement in peak 
dispersion relative to heme B-bound 4D2, further highlighting the issue of heme binding site 
heterogeneity. We also obtained 2D NMR spectra of apo-m4D2, demonstrating reasonable peak 
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dispersion which further supports evidence of a well-packed core and relatively 
flexible/disordered heme binding site when vacant.  
 
Structural insights into the 25kDa e4D2 by cryoEM. 
We reasoned that the four heme irons in the tetraheme e4D2 might provide sufficient electron 
density to observe the protein using electron microscopy. To this end, we initially screened 
heme-bound e4D2 by negative stain transmission electron microscopy (TEM) and demonstrated 
evidence of the protein’s extended linear helical structure, with many particles fitting well to the 
approximate dimensions of 7.5 nm x 2 nm described by the constructed model. Given these 
TEM results, we then acquired cryo-electron micrographs of tetraheme e4D2. Initially, we 
collected a dataset of approximately 2000 high quality electron micrographs after optimizing 
grids for thin ice conditions. Whilst the protein is challenging to identify from cryoEM 
micrographs, particularly using auto-picking software, we obtained 2D class averages or 
particles which fit very well to the designed protein specification (Figure 8). These averages 
show remarkable detail for such a small protein, demonstrating four distinct ‘segments’ along 
the helical bundle which correspond to the positions of each heme B in addition to depicting four 
distinct helical structures from a top-view of the molecule through the helical axis. This provides 
the most substantial evidence that the molecule folds to the designed structure, forming an 
extended helical bundle with the four tightly packed heme groups positioned in the core of the 
protein. Preliminary 3D reconstructions of the model demonstrate the overall topology of the 
helical bundle at low resolution, and aid the pinpointing of the four heme iron atoms. These can 
be identified as four sites of strong electron density in the refined 3D model, with inter-heme 
distances that correlate well to the inter-heme distance observed in the 4D2 crystal structure 
and the molecular dynamics simulations of the e4D2 model. 
 
Redox engineering of m4D2. 
The ability to precisely specify and modulate the midpoint potentials of redox sites and cofactors 
within proteins would be an exceptionally valuable tool for protein engineers, and de novo 
designed bundles such as the D2 maquettes provide an invaluable framework for developing 
such a methodology. We therefore selected the monoheme m4D2 for heme redox potential 
modulation, as it is a simple scaffold with potential for manipulating the electrostatic environment 
of the heme. To enable the prediction of heme redox potentials in any planned m4D2 variants, 
we used Monte-Carlo continuum electrostatics (MCCE) calculations16 on static models of our 
proteins, the output providing relative shifts in potential between m4D2 and any altered variants. 
Furthermore, we initially attempted to both raise and lower the redox potential of the heme, thus 
establishing this workflow as a means for redox potential prediction and engineering in these 
proteins. 
 
Previous work with natural peroxidases39,40 has established that aspartate residues local to the 
proximal heme-ligating histidine play key roles in modulating the imidazolate character of the 
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histidine side chain, priming the heme for catalysis by maintenance of the correct histidine 
tautomeric state. This increase in local electronegativity results in a negative shift of the heme 
midpoint potential. For m4D2, we selected the two threonine residues involved in ‘keystone’ 
hydrogen bonding interactions with the proximal histidines for mutation to aspartate, and we 
constructed both single and double mutant variants (T76D & T18D/T76D). The MCCE 
calculations predicted shifts in Em of -27 mV for the single aspartate mutant, and -52 mV for the 
double aspartate mutant (Fig. 9). When we expressed and characterised these designs 
experimentally, shifts of -27 mV and -55 mV respectively were observed at pH 8.6, closely in 
agreement with the values predicted by the MCCE calculations.  
 
Future work will focus on more wholesale remodeling of m4D2 and the multi-heme 4D2 and 
e4D2 proteins to engineer greater changes in the electrostatic environments of these maquettes. 
These calculations can also be incorporated into a pipeline for directed modulation of the 
behavior of these simple proteins and help us to elucidate how the local protein environment 
impacts the behavior of the hemes within them. Significantly, we may be able to engineer 
directional midpoint gradients through multi-heme maquettes, with potential applications in 
electron transport through nanoscale protein-based wires. 
 
Discussion and Conclusions. 
We have attempted to address the deficiencies in high resolution design of de novo redox 
proteins by creating a framework of single and multi-heme proteins with apparently well-defined 
structural attributes. These offer much potential in exploring fundamental biophysical properties 
and functions of cofactors and natural oxidoreductases, such as electron transfer and possibly 
catalysis, while providing stable, robust scaffolds that could play a role in the modular assembly 
of functional nanoscale objects for energy capture and generation. A key feature in design is 
predictability; without this, atomistically precise protein design is not possible, and gaining 
complete and fine control of protein and cofactor properties relies on a potentially exhaustive, 
iterative design process with no guarantee of success. To this end, the structure of 4D2 matches 
well that of the predicted structure of D215, which is a testament to the computational methods 
originally used in the design of the self-assembling peptide. D2 was originally designed by 
parametrization of the transmembrane cytochrome b of the cytochrome bc1 complex, and the 
crystal structure of 4D2 reveals an excellent reproduction of diheme orientation and spacing in 
a robust, mutable and soluble protein.  
 
This scaffold also provides opportunities in the further design and engineering of such proteins. 
Removal of a heme binding site alongside compensatory redesign of the pocket to facilitate 
improved core packing, resulted in a monoheme protein that appears well-folded and retains 
attractive features from the original design. Since 4D2 was essentially cleaved into two separate 
halves for the production of m4D2, it is possible that such proteins can be designed in a modular 
process, where parts with differing biophysical attributes (e.g. redox potentials) can be combined 
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to dictate, for example, the direction of electron transfer along the helical axis, or to create multi-
cofactor proteins with specificity in each individual binding site. This is especially applicable to 
the larger tetraheme e4D2, where directionality could potentially be imparted onto the hemes to 
dictate electron transfer. 
 
By expanding the protein in this way, we were also able to push the current boundary of cryo-
EM41,42,43, principally facilitated by the electron-rich, heme-saturated core. While the data falls 
short of atomistic assignment, it does offer robust evidence of the global protein structure, which 
fits the dimensions of the small, but extended, helical bundle and the hemes located in the core. 
The assembly of the protein requires additional purification after heme loading, but production 
is reliable and the design highly stable, offering a scaffold for the design of properties such as 
directional electron transport through the 8 nm length of the protein.  Our design and modification 
of these derivatives demonstrates the adaptability of the initial 4D2 protein, offering a platform 
for structure-based design and modification from crystal structure to function. 
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Figure 1: The single chain polypeptide 4D2 can be fully assembled with heme by expression in E. coli, although 

heme binding is variable – all four growth conditions in the representative cell pellets pictured (A) are identical but 

were cultured from different colonies from the same transformation. The protein was expressed in all four cultures, 

but minimal heme incorporation is observed from one of the colonies (left). Reliability of heme binding in vivo was 

improved by expression with a periplasmic export tag in the pSHT vector (B) compared to cytoplasmic expression 

in pET151. Mass spectrometry (C) confirms the molecular weight of the apo protein by MALDI (12.63kDa) and the 

assembled two-heme bound holo protein by ESI-MS (13.87 kDa, m/z peaks correspond to Z=5, 2773.02, Z=6 

2208.10, Z=7 1980.85 and Z=8 1733.14). Binding titrations further demonstrate tight binding of heme in a 2:1 ratio.    
!
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Figure 2: (A) The characteristic absorbance spectra of ligated b-type heme shifts upon reduction from 416nm to 

429nm at the Soret peak alongside the expected splitting of the Q-bands. (B) Redox potentiometry measured using 

an OTTLE (optically transparent thin layer electrochemistry) cell demonstrated reversible reduction of the protein, 

fitted to a 2x1e- Nernst equation to determine the midpoint potential of the two sequential electron transfers. (C) 

Far-UV Circular dichroism spectroscopy indicated the helicity and thermostability of the holo protein, in comparison 

to a relatively unstructured and unstable apo-form. 

!

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.24.311514doi: bioRxiv preprint 



! ! !
!

! ! !
!

! !
!

Figure 3: 4D2 formed diffraction quality crystals but growth required up to six months of vapour drop diffusion, 

whilst the two heme-irons enabled experimental phasing by MAD using wavelengths determined by a fluorescence 

edge scan. The structure conforms to D2 symmetry around the ligated heme groups, connected by three loops, two 

of which are sufficiently rigid to be resolved by crystallography. One of the four potential hydrogen bonding 

interactions between the ligating histidine residues and a nearby “keystone” threonine has also been highlighted. 

Ambiguous electron density suggested that the heme groups likely bind in multiple orientations, lacking specificity 

to position the asymmetric vinyl groups. Two of the four potential orientations are illustrated, with the vinyl groups 

either opposing (blue) or adjacent (red) based on a flipping of the porphyrin ring. 
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