
Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Microcell Channel Models for Multi-Hop Relaying
(2GHz & 5GHz)
Jerry Wang, Dr. Eustace Tameh, Prof. Andrew Nix

- Work performed in the ROMANTIK project is presented that provides an analytical study of peer-to-peer radio channels in an urban micro-cellular environment.
- The work focuses on the 2.1GHz (UMTS) and 5.2GHz (Hiperlan/2 and 802.11a/e) bands and makes use of a detailed three-dimensional ray-tracing tool. Existing models are inappropriate for low mounted transmitters such as those used in multi-hop communications at interested frequency band.
- Propagation analysis reveals that the standard deviation of the shadowing and the rms delay spread are a function of the separation distance between the transmitter and receiver.
- Path loss is seen to increase with lower terminal heights, as is the probability of line-of-sight.

Multi-Hop Models for Urban Environment

- A 3D Ray Tracing model previously developed and validated at the University of Bristol is used to predict power as well as time, frequency and spatial dispersion in the radio channel.
- Simulations are based on a 1.4km x 1.4km map database (terrain, building, foliage and ground cover data) of central Bristol. The urban environment is typical of a European city.
- 26 different transmitter sites were used, a total of 9,003 x 26 channel data are generated for each of the BS-MS, BS-RN, RN-RN, RN-MS and MS-MS link.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>BS height</th>
<th>RN height</th>
<th>MS height</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS-MS</td>
<td>12 m</td>
<td>15 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>BS-RN</td>
<td>12 m</td>
<td>15 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>RN-RN</td>
<td>12 m</td>
<td>15 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>RN-MS</td>
<td>12 m</td>
<td>15 m</td>
<td>1.5 m</td>
</tr>
<tr>
<td>MS-MS</td>
<td>12 m</td>
<td>15 m</td>
<td>1.5 m</td>
</tr>
</tbody>
</table>

2G

LOS and NLOS – A Key Concept

- LOS Probability versus Distance
 - For low mounted transmitters the probability of LOS falls off quickly with distance and this is critical to the radio channel
 - Path Loss parameters and other channel characters, e.g. DS and AS, depend on whether the location is LOS or NLOS – this probability is distance dependent

LOS Probability versus Distance

- In NLOS conditions, shadowing can be characterized by a lognormal distribution (a normal distribution in dB)
- The shadowing standard deviation tends to increase as the distance increase
- The dependent distance shadowing various could be modeled using following function:

$$\text{STD}(d) = S \cdot (1 - e^{-d/d_0})$$

- The RMS DS is seen to increase with increasing separation distance for both LOS and NLOS, particularly for short distance
- And higher antenna elevations result in higher RMS DS
- The median RMS AS remains similar for all distance separations.
- It has been found that the median RMS AS for LOS conditions is much smaller than the NLOS cases, and the higher frequency has lower RMS AS values.