https://doi.org/10.1109/TCE.2002.1037071

Peer reviewed version

Link to published version (if available):
10.1109/TCE.2002.1037071

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
SCENARIO DRIVEN EVALUATION AND INTERFERENCE MITIGATION PROPOSALS FOR BLUETOOTH AND HIGH DATA RATE BLUETOOTH ENABLED CONSUMER ELECTRONIC DEVICES

A. K. Arumugam, A. R. Nix, P. N. Fletcher, S. M. D. Armour and B. S. Lee
University of Bristol, Centre for Communications Research, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom

ABSTRACT

Previous research has focussed on residential coverage and achievable data rates using the Bluetooth Personal Area Network (PAN) standard. To meet the bit rate needs of future consumer electronics devices, this led to the proposed use of M-PSK modulation schemes as likely candidates for high data rate extensions to Bluetooth. This paper investigates the effects of interference occurring between high data rate time-bounded and non-time bounded Bluetooth enabled consumer electronic devices. Frequency hopping selection kernels for both the 79-hop and the 23-hop systems in Bluetooth were implemented in software. Using this model, collision statistics were obtained between a wanted Bluetooth user (in a piconet) and interferers (other Bluetooth users in different piconets) operating under typical scenarios that were constructed within the test environment. These scenarios featured piconets operating in an office environment in both synchronous and asynchronous modes as well as with typical up and downlink loading factors. A detailed link level physical layer simulation was used to obtain packet error rate performance based on the collision statistics obtained. Finally, a state-of-the-art indoor space-time propagation modelling tool was used to analyse the data throughput performance capabilities for Bluetooth data medium (DM) and data high (DH) rate packets. Results highlight a clear need to mitigate interference by employing synchronous communication in future Bluetooth evolution networks.

I. INTRODUCTION

Bluetooth is a point-to-point universal radio interface for ubiquitous connectivity in the area of Personal Area Networks (PAN). The technology currently operates in the unlicensed 2.45GHz ISM band and utilises frequency hopping with terminals cycling through 79 1MHz hop channels (or 23 1MHz hop channels in Japan, France and Spain) at 1600 hops/s [1]. One of the drawbacks with the current standard is its restricted bit-rate of 1Mb/s. Although this may seem adequate for low bit rate applications such as data modems, cordless telephones and low bit rate videophones, it is insufficient to support high bit rate VCR/TV quality digital video (2-12Mb/s).

Previous research [2] has shown that high data rates can be achieved by employing coherent M-PSK modulation schemes in future Bluetooth evolutions instead of the current GFSK scheme.

Although the findings show great scope for future high data rate Bluetooth enabled consumer electronic devices, the data throughput performance of these devices may still be limited due to the interference present in the 2.45GHz band. The coexistence between various wireless local area network (LAN) standards, such as those based on the IEEE 802.11b and Home RF, pose a huge problem. The majority of research interest has so far focussed on the impact of Bluetooth on Wireless LANs and vice-versa [3-8]. However, given the impending avalanche of Bluetooth enabled consumer electronic devices in the market, there is great concern voiced over the interference between Bluetooth enabled devices themselves.

The fundamental issue with Bluetooth piconets operating within the same environment is that they are not time synchronised to each other and thus, a collision will occur in both time and frequency. As a result, data transmissions on unwanted piconets can interfere with the data transmissions on a wanted piconet. Consequently, the requirement to retransmit packets will increase, thus reducing the overall data throughput. The frequency collisions will obviously depend on the proximity of piconets within the environment and the transmit power levels (1mW for ranges up to 10m and 100mW for ranges up to 100m). This paper investigates a scenario driven environment which allows a realistic projection of the behaviour of Bluetooth piconets.

Section II outlines the Bluetooth frequency hopping kernel implemented in software. This is shown in Figure 1. In Section III, the Bluetooth communication structure is explained. In Section IV, software simulated frequency collision statistics for both synchronous and asynchronous cases are presented. Section V outlines the development of an indoor propagation modelling tool and presents the resulting data throughput graphs. Section VI summarises the results and discusses vital points for proposals that will help to mitigate interference between high data rate Bluetooth enable devices.
II. BLUETOOTH FREQUENCY HOPPING KERNEL

Two frequency-hopping model kernels were implemented following the 79-hop and 23-hop Bluetooth pattern used in the connection state [9]. The kernel structure is shown in Figure 1 and signals A to F, X, Y1 and Y2 are defined in Table 1. The choice of frequencies consists of two parts, i.e. selecting a sequence (indicated by the white boxes) and mapping this to the hop sequence (indicated by the shaded grey box). In the 79-hop Bluetooth pattern, the selection scheme chooses a segment of 32 hops spanning over 64MHz. Likewise, in the 23-hop Bluetooth pattern, the selection scheme chooses a segment of 16 hops spanning over 23MHz. Once a segment of hops is chosen, the hop frequencies are visited once in a random order. In both cases, a different segment of hops is chosen everytime.

![Block diagram showing the hop selection kernel for the 79-hop and 23-hop system](image)

Figure 1: Block diagram showing the hop selection kernel for the 79-hop and 23-hop system

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Connection State (79-hop system)</th>
<th>No. of Bits</th>
<th>Connection State (23-hop system)</th>
<th>No. of Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CLK_{5,2}</td>
<td>5</td>
<td>CLK_{5,2}</td>
<td>4</td>
</tr>
<tr>
<td>Y1</td>
<td>CLK_{1}</td>
<td>1</td>
<td>CLK_{1}</td>
<td>1</td>
</tr>
<tr>
<td>Y2</td>
<td>32 x CLK_{1}</td>
<td>1</td>
<td>16 x CLK_{1}</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>BD_ADDR_{27-32} XOR CLK_{0-3}</td>
<td>5</td>
<td>BD_ADDR_{27-32} XOR CLK_{0-3}</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>BD_ADDR_{32-19}</td>
<td>4</td>
<td>BD_ADDR_{22-19}</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>BD_ADDR_{18.4.20} XOR CLK_{10-16}</td>
<td>5</td>
<td>BD_ADDR_{18.4.20} XOR CLK_{10-16}</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>BD_ADDR_{16-10} XOR CLK_{15-7}</td>
<td>9</td>
<td>BD_ADDR_{16-10} XOR CLK_{15-7}</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>BD_ADDR_{15.10.5.3.1}</td>
<td>7</td>
<td>BD_ADDR_{15.10.5.3.1}</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>16 x CLK_{0-1} mod 79</td>
<td>7</td>
<td>8 x CLK_{14} mod 23</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1: Device addresses and clock information of the master used for input into the frequency hop kernel

In Bluetooth, each transceiver is allocated a unique 48-bit Bluetooth device address (BD_ADDR). The BD_ADDR is divided into 3 fields as shown in Figure 2. In the connection state, the BD_ADDR of the master (24 bits of the lower address part, LAP and the 4 least significant bits of the upper address part, UAP) as well as the master clock's (CLK) 27 most significant bits, MSB is used in the hop selection kernel.

The first addition operation adds a constant to the phase and applies a modulo 32 or a modulo 16 operation. The 4 least significant bits of this output is XOR-ed with signal B, whereas the most significant bit is ignored. The permutation or switching operation consists of 7 stages of butterfly operations that are implement with multiplexers. The butterfly operations can be visualised as a wave matrix where the output of the first stage influences the subsequent stage and so on until the final stage is reached. Each stage of the butterfly operation consists of two control signals, resulting in a total of 14 control signals (5 provided by the XOR operation between signals C and Y1 and 9 provided by signal D). The output from the first XOR operation is used to trigger the first stage of the butterfly operation.

The second addition operation only adds a constant to the output of the permutation and applies a modulo 79 or a modulo 23 operation. This ensures that the 16-hop or 32-hop segment chosen is mapped differently on the hop frequencies. The output of the address adds a register bank containing synthesiser code words corresponding to either 79 or 23 hop frequencies. The upper half of the register bank stores the even hop frequencies and the lower half stores the odd hop frequencies. This ensures that each 32-hop segment spans over 80% of the available 79MHz band and the 16-hop segment spans over the entire 23MHz band. As a result, the desired frequency spreading over a short time interval is attained.

III. BLUETOOTH COMMUNICATION STRUCTURE

The Bluetooth communication structure is based on an ad-hoc network. A group of Bluetooth units sharing the same channel is known as a piconet. Each piconet contains a master and up to seven active slaves. All Bluetooth units within a piconet hop using the same hop pattern defined by the BD_ADDR and CLK of the master. Since each piconet contains a master with a unique BD_ADDR and a different CLK, the hop pattern varies from one piconet to another.

In the current Bluetooth system, a slotted channel is used for transmission with each slot spanning 625μs. User data is transmitted through packets — nominally covering a single time slot, but can be extended to up to five time slots. In single time slot packet transmission, the duty cycle is 366μs. The rest of the time (259μs) is used for...
In Bluetooth, six symmetric asynchronous data link (ACL) packets are defined. These include three medium data rate packets (DM 1, 3, and 5) and three high data rate packets (DH 1, 3, and 5). Section V explains more about the ACL packet types used in this investigation (DM1 and DH5).

Although piconets in the current Bluetooth standard are not synchronised, this study investigates both synchronous and asynchronous cases. Synchronous transmission as implied here means that all the piconets are time synchronised with each other. The investigation begins by calculating the number of frequency collisions that occur in the downlink direction between a single wanted piconet and up to 4 unwanted piconets/interferers when they are in the connection state (i.e., during user data transmission). In this study, downlink is defined as transmission from master to slave and uplink is defined as transmission from slave to master. Downlink transmissions occupy even numbered time slots whereas uplink transmissions occupy odd numbered time slots.

Figure 3 shows the test environment containing 5 piconets (1 wanted piconet and 4 interferers). In the synchronous case, the downlink hop frequency of the wanted piconet at time slot \(N \) is compared to the downlink hop frequency of the interferer at time slot \(N \). In the asynchronous case however, the downlink hop frequency of the wanted piconet at time slot \(N \) is compared to the downlink and uplink hop frequencies of each interferer at time slot \(N \) and \(N-1 \) respectively. If the hop frequency is the same when compared, this indicates that a collision has occurred at that particular instant. This was performed over an average of 1000 hop patterns for every piconet, each derived from a different `BD_ADDR` and `CLK`. Each hop pattern spans 10000 time slots.

Table 2 lists the devices selected for transmission in each piconet and their relative distance from the receiver of the wanted piconet.

Table 2: Transmitter and receiver in each piconet and their relative distance from the receiver of the wanted piconet

Table 2 shows the number of downlink frequency collisions in synchronous and asynchronous systems for both 79 and 23-hop systems using DM1 and DH5 packets.
Figures 4(a) and (b): Frequency collision statistics for 79-hop system in synchronous and asynchronous cases using DM1 and DHS.

Figures 4(c) and (d): Frequency collision statistics for 23-hop system in synchronous and asynchronous cases using DM1 and DHS.
Table 3: Summary of downlink frequency collision statistics at 100% average uplink and downlink loading factors

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>No. of UWP</th>
<th>79-Hop System</th>
<th>23-Hop System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sync (%)</td>
<td>Async (%)</td>
<td>Sync (%)</td>
</tr>
<tr>
<td>DM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
<td>2.6</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>5.3</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>7.8</td>
<td>13.3</td>
</tr>
<tr>
<td>4</td>
<td>5.1</td>
<td>10.1</td>
<td>17.4</td>
</tr>
<tr>
<td>DH5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.1</td>
<td>4.2</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
<td>8.5</td>
<td>14.5</td>
</tr>
<tr>
<td>3</td>
<td>6.4</td>
<td>12.7</td>
<td>22.0</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>16.8</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table 3 records results when the uplink and downlink loading factors of the interfering piconets is 100%. Immediate observations confirm that the number of frequency collisions is reduced by 50% in synchronous systems. In the 23-hop system, the frequency collisions are approximately 3.43 times greater than that for the 79-hop system. This is because only 23 out of the 79 hop channels are available. The collision statistics are very similar for 2 interferers (Sync) and 1 interferer (Async) as well as for 4 interferers (Sync) and 2 interferers (Async). This is due to the fact that in asynchronous systems, the wanted piconets downlink hop frequencies are compared with both the uplink and downlink hop frequencies of the interfering piconets. Statistically this yields the same results in the synchronous case for twice the number of interferers. The slight discrepancies in the graphs are due to the simulation being performed over limited number of realisations. Thus, assuming the average uplink and downlink loading factors are the same in both cases, synchronous collision statistics in the presence of Y interferers can be predicted using the information obtained from the asynchronous collision statistics in the presence of Y/2 interferers and vice versa.

V. Bluetooth Modem, Indoor Propagation Model and Data Throughput

Frequency collision statistics obtained from the aforementioned investigation were used to analyse the average data throughput that can be achieved within the test environment. The first stage of developing this involved simulating a standard Bluetooth modem in software. This is shown in Figure 5.

The packet header for all ACL packets in Bluetooth is protected by a simple 1/3 rate repetition code and decoded using a maximal polling method. The payload header and payload of all medium data (DM) rate packets are protected by an additional forward error correcting mechanism (a 2/3 rate shortened (15, 10) Hamming binary block code). Decoding at the receiver is performed using the single error correcting decoding algorithm using a predefined parity check matrix [10]. The payload header and payload of all high data high (DH) rate packets are not protected by any forward error correcting mechanism in order to optimise the data throughput.

Three PSK modulation schemes, BPSK, QPSK and 8-PSK were implemented, thus producing a maximum data rate of 1, 2 and 3Mb/s respectively. Coherent detection at the receiver was used as opposed to differential detection. Although this type of detection is far more complex and involves expensive radio design (requiring automatic gain and phase control in addition to linear up and down conversion and power amplification) in practice, the advantages of being able to exploit greater bandwidth efficiency and improved radio sensitivity make this form of detection a more attractive option.

A state-of-the-art indoor space-time propagation model [11] based on ray launching [12-14] is used to predict the complex temporal and spatial characteristics of the radio channel for the test environment concerned. Figure (6)
Table 5: Data throughputs for various E_b/N_0 values for DM1 and DHS packets in synchronous and asynchronous modes

<table>
<thead>
<tr>
<th>Interferer Type</th>
<th>Mode</th>
<th>N_0 (dB)</th>
<th>79-hop</th>
<th>23-hop</th>
<th>79-hop</th>
<th>23-hop</th>
<th>79-hop</th>
<th>23-hop</th>
<th>79-hop</th>
<th>23-hop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>UWP</td>
<td>UWP</td>
<td>1</td>
<td>UWP</td>
<td>1</td>
<td>UWP</td>
<td>1</td>
<td>UWP</td>
</tr>
<tr>
<td>Synch</td>
<td>15</td>
<td>100</td>
<td>97</td>
<td>96</td>
<td>83</td>
<td>200</td>
<td>190</td>
<td>193</td>
<td>166</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>108</td>
<td>105</td>
<td>106</td>
<td>91</td>
<td>214</td>
<td>205</td>
<td>208</td>
<td>180</td>
<td>320</td>
</tr>
<tr>
<td>Asyn</td>
<td>15</td>
<td>98</td>
<td>92</td>
<td>93</td>
<td>66</td>
<td>213</td>
<td>182</td>
<td>188</td>
<td>131</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>103</td>
<td>99</td>
<td>103</td>
<td>75</td>
<td>213</td>
<td>198</td>
<td>206</td>
<td>150</td>
<td>318</td>
</tr>
<tr>
<td>No Interferen</td>
<td>15</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synch</td>
<td>15</td>
<td>570</td>
<td>540</td>
<td>580</td>
<td>430</td>
<td>1130</td>
<td>1050</td>
<td>1080</td>
<td>820</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>700</td>
<td>660</td>
<td>670</td>
<td>520</td>
<td>1410</td>
<td>1320</td>
<td>1340</td>
<td>1040</td>
<td>2090</td>
</tr>
<tr>
<td>Asyn</td>
<td>15</td>
<td>560</td>
<td>500</td>
<td>510</td>
<td>240</td>
<td>110</td>
<td>970</td>
<td>1000</td>
<td>490</td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>670</td>
<td>600</td>
<td>635</td>
<td>330</td>
<td>1380</td>
<td>1210</td>
<td>1230</td>
<td>650</td>
<td>2050</td>
</tr>
<tr>
<td>No Interferen</td>
<td>15</td>
<td>394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1155</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1435</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$DT = (1 - PER) \times \log_2 M \times DR$

where M is the constellation size (2 for BPSK, 4 for QPSK and 8 for 8-PSK) and DR is the data rate for DM1 and DHS (as specified in the Bluetooth standard). Hence, the maximum symmetric data rates for the DM1 and asymmetric data rate for the DHS packets using different modulation schemes are listed in Table 4.

<table>
<thead>
<tr>
<th>ACL Packet</th>
<th>Maximum Data Throughput (kbits/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPSK</td>
</tr>
<tr>
<td>DM1</td>
<td>108.8</td>
</tr>
<tr>
<td>DHS</td>
<td>733.2</td>
</tr>
</tbody>
</table>

Table 4: Maximum data throughputs for DM1 and DHS packets

Figures 7(a)-(d) show the average data throughput curves for medium and high data rate packets for synchronous and asynchronous transmissions. The plots display results for both 79 and 23-hop systems. The data throughput curve specifies the maximum data rate achievable at the receiver of the wanted piconet in the presence of 1-4 interferers in the test environment using BPSK, QPSK and 8-PSK modulation schemes.

VI. RESULTS AND DISCUSSION

Table 5 summarises the maximum achievable data rates in the presence of 1 and 4 unwanted piconets (UWP)/interferers as well as when no interferers are present. These results have been summarised for two E_b/N_0 values; 15dB when the performance is noise limited and 30dB when the performance is interference limited. The results are compared to the data rates achievable when no interferers are present. For example, at 15dB using DHS packet in asynchronous transmission with BPSK, the data throughput is 500kb/s and 240kb/s rather than the maximum achievable 718kb/s and 594kb/s for the 79-hop and 23-hop systems respectively. From observations, it can be seen that at low E_b/N_0 values, the data throughput achieved using DM1 packet is not severely affected for the 79 and 23-hop systems for the synchronous and asynchronous cases in the presence of low number of
Figure 7(a) and (b): Data throughput plots for DMI and DH5 packets respectively in the presence of 1 interferer.

Figure 7(c) and (d): Data throughput plots for DMI and DH5 packets respectively in the presence of 4 interferers.
interferers. However in the presence of high number of interferers, the impact is greater especially for the 23-hop system. This can be explained by the fact that in the 79-hop system, the percentage of achievable data rates is higher since greater bandwidth is available for transmission.

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Average percentage improvement achieved in data throughput by employing synchronous transmission instead of asynchronous transmission (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPSK</td>
</tr>
<tr>
<td>79-hop</td>
<td>2.50</td>
</tr>
<tr>
<td>23-hop</td>
<td>2.53</td>
</tr>
<tr>
<td>4 interferers</td>
<td>8.28</td>
</tr>
<tr>
<td>79-hop</td>
<td>5.35</td>
</tr>
<tr>
<td>23-hop</td>
<td>17.74</td>
</tr>
<tr>
<td>4 interferers</td>
<td>8.03</td>
</tr>
<tr>
<td>79-hop</td>
<td>28.25</td>
</tr>
<tr>
<td>23-hop</td>
<td>8.28</td>
</tr>
</tbody>
</table>

Table 6: Average percentage improvement in data throughput when synchronous system is employed in the presence of 4 interferers in the environment

Table 6 shows the average percentage improvement in data throughput when the transmission scheme changes from asynchronous to synchronous. These figures were obtained from Table 5 where the average increase in performance was calculated over the specified E_b/N_0 values. It can be seen that in the presence of 1 interferer, employing synchronous transmission in the 79-hop system only improves the performance marginally (between 1% and 2.52%) for both types of packets. However, these figures increase to between 2.53% and 8.28% in the 23-hop system for both types of packets. In the presence of 4 interferers, the improvement in data throughput performance for both types of packets is only between 4% and 8.4% for the 79-hop system and between 15% and 30% for the 23-hop system.

These results show that the degradation is more significant for multi-slot packet transmission in Bluetooth. This is expected since the entire packet spanning 3 or 5 time slots will be retransmitted if it is corrupted. As a result, the data throughput of the system is reduced. The degradation is far more severe for the 23-hop system and as such by deploying synchronous transmission, a significant improvement in performance is obtained. This is especially prominent when a large number of interferers are present.

Figures 8(a) and (b) show the percentage data rate achievable in the presence of 4 interferers in the environment. The plots were obtained by using the data throughput results shown in Figures 7(c) and (d) and comparing it relative to the maximum achievable data rate for each packet type and for each modulation scheme. The percentage of data throughput achievable reduces with higher level modulation schemes. This is because for
higher level modulation schemes, the number of bits per symbol increases. This effectively means that the symbols are closer together on a constellation diagram (i.e. the Euclidean distance is reduced for a given average energy per symbol). Consequently, the symbols are more prone to noise thus resulting in a higher number of corrupted symbols. This in turn reduces the maximum data throughput achievable. From Figures 8(a) and (b), it can be seen that in the 23-hop system, only 68% and 45% data throughput is achievable at an E_s/N_o value of 30dB for DM1 and DH5 packets respectively using asynchronous transmission. However, this increases to 83% and 72% respectively if synchronous transmission is employed. Likewise, in the 79-hop system, at an E_s/N_o value of 30dB, 90% and 83% data throughput is achievable for DM1 and DH5 packets respectively using asynchronous transmission. These figures increase to 95% and 91% when synchronous transmission is used. In the presence of more interferers, these figures will decrease thus limiting the system performance.

VII. CONCLUSIONS AND FUTURE WORK

The frequency collision statistics indicate that the performance degradation obtained in Bluetooth is linearly dependent on the available bandwidth. From the results and data analysis presented, it can be concluded that although the collision statistics may seem high, the impact it has on the data throughput is not as catastrophic as expected. This can be used to predict the performance of high data rate time-bounded and non-time bounded Bluetooth enabled consumer electronic devices in a typical office environment. In real time applications packet reliability is important since packet retransmissions are not practical. Hence it is vital that the data throughput is at an acceptable level such that the quality of performance is not degraded.

It can be seen that although asynchronous transmission may not have a serious impact on the data throughput for the 79-hop system, in the presence of a large number of interferers, the performance is unreliable for time-bounded Bluetooth enabled applications. In the 23-hop system, the use of asynchronous transmission is certainly not favourable altogether for time-bounded high quality cordless digital applications such as digital video and TV. In such scenarios, synchronous transmission using DH5 packets are strongly recommended. In addition, increasing the operating bandwidth by a factor of 2-4 times will enable optimum usable TV/VCR data rates to be achieved in practice.

The performance of non-time bounded Bluetooth enabled consumer electronic applications are promising even in the presence of large number of interferers for both the 79-hop and 23-hop sequence. A vast majority of non-time bounded applications such as good quality audio streaming over the internet as well as web browsing, cordless telephones (DECT), videophones, modems and personal digital assistants (PDAs) are therefore feasible in practise. Although this is still also possible in asynchronous systems, the trade-off between quality and performance is far more attractive in synchronous transmission.

The results suggest that high data rate Bluetooth enabled applications are good in handling self interference. These encouraging results however do not apply when high data rate Bluetooth enabled devices are working in the presence of other consumer electronics devices using various wireless LAN standards such as those based on the IEEE 802.11b and Home RF standard. This is because of the fast frequency hopping scheme in Bluetooth which hops over the entire allocated bandwidth over which it operates. One possible way of improving the performance in these types of scenarios would be to employ some form of 'intelligent' hopping mechanism which will enable both types of devices to coexist in harmony within the same environment.

The effects of frequency collisions depend largely on the proximity of piconets within the environment as well as the transmit power levels. Although the transmit power level in this investigation was limited to 1mW (0dBm), in practise this can be increased up to 100mW in order to achieve greater data throughput and also for transmission ranges greater than 10m. However, the disadvantage of doing this is that neighbouring Bluetooth piconets or other wireless LAN products transmitting at lower power levels will be interfered by high powered transmissions operating within the environment. In addition, the location of piconets within the environment is a crucial factor since interferers lying in line of sight to the wanted piconet will have a greater impact than those lying in non-line of sight positions.

Given the use of ray-tracing, the results obtained are specific and depends on the geometry of the office environment considered. The thickness of the walls and ceilings as well as the material used to construct the indoor environment influences the performance of both synchronous and asynchronous systems.

From this investigation, it has been highlighted that synchronous transmission in high data rate Bluetooth enabled consumer electronic devices offer a more favourable system performance compared to the currently employed asynchronous transmission. Clearly in order for this to be possible, a suitable means for channel access and channel control is needed. Although this mode of operation does not completely combat interference present in the environment, it certainly helps to mitigate the effects of interference while maintaining reasonable data throughput
performances especially for good quality time-bounded applications. Fundamentally, since the available bandwidth is limited, it appears that higher bit rates are more readily achieved by increasing the operating bandwidth beyond 1MHz.

Future work involves employing synchronous transmission in high data rate Bluetooth systems and investigating the improvement in performance when suitable spatial and temporal interference mitigating techniques are applied. Synchronous transmission in Bluetooth is an attractive option since it enables space-time block codes to be deployed to suppress interferers. This technique does not require any explicit knowledge about the interferer and thus it does not require any channel estimation of the interferer [16]. The second technique for interference mitigation is the classical null-steering technique which trains the antennas using the LMS algorithm [17-18].

ACKNOWLEDGEMENTS

A.K. Arumugam wishes to thank the Overseas Research Scholarship (ORS), UK and QinetiQ Ltd. for the financial support provided in funding this work. A.K. Arumugam also wishes to thank the Institution of Electrical Engineers (IEE), UK for the financial support provided by the Robinson Research Fellowship fund. Dr. P.N. Fletcher is a Visiting Research Fellow from QinetiQ Ltd. at the University of Bristol.

REFERENCES

1. The complete guide to Bluetooth from TOSHIBA

16. Ayman F Naguib and Nambi Seshadri, “Combined Interference Cancellation and ML Decoding of Space Time Block Coding”, AT&T Labs Research, Building 103, Room C-288, 180 Park Avenue, Florham Park, NJ 07932, USA.

18. Arrays, Algorithms and Wireless Position Location
Selected Readings”, Reprinted from B. Widrow,
Antenna Systems”, Proceedings of the IEEE, Vol. 55,
No. 12, December 1967.

BIOGRAPHIES

Arun Kumar Arumugam
was born in Malaysia in 1977. He received his BEng degree in
Electronic and Communications Eng. in 1999 from the
University of Bristol. He is currently studying for a PhD at
the University of Bristol. He was awarded the Robinson
Research Fellowship by the Institution of Electrical Engineers (IEE) UK in November
2000. His research interests are in enhancements of the
Bluetooth technology and interference supression
techniques exploiting space-time block codes and antenna
diversity for Bluetooth enabled devices. He is a member of
the IEE and the IEEE.

Andrew Nix received his BEng and PhD degrees from the
University of Bristol in 1989 and 1993 respectively. He is
currently Professor of Wireless Communication Systems. His
main research interests include broadband wireless
communications, radiowave propagation modelling, cellular
network optimisation and advanced digital modulation /
reception techniques. He currently leads the propagation
modelling and wireless Local Area Network groups in the
Centre for Communications Research (CCR). He has
published in excess of 160 Journal and Conference papers
and is a member of the IEEE.

Paul Fletcher received MEng and PhD degrees from the
University of Newcastle-upon-Tyne (UK) in 1989 and 1993
respectively. He joined the low cost phased array antenna
group QinetiQ Ltd. (formerly DERA) in 1993. He is
currently a Visiting Research Fellow at the University of
Bristol (UK). His research interests encompass mutual coupling compensation
techniques, low sidelobe beamforming, adaptive
beamforming, space-time signal processing, MIMO and
spatial diversity techniques and iterative decoding. He has
published over 65 journal and conference papers and holds
four patents. He currently leads the space-time processing
activities of the array antenna group for next generation
wireless LAN and PANs within QinetiQ Ltd. He is a
member of the IEE and IEEE.

Simon Armour received his
BEng degree from the
University of Bath in 1996 and
his PhD degree from the
University of Bristol in 2001.
Following a period of post-
doctoral research in the area of
advanced Wireless LAN
technologies, he was appointed
to the position of Lecturer in
Software Radio at the University of Bristol in 2001. His
research interests include Software Radio, Wireless
LANs/PANs, Wireless Home Networks and Multicarrier
Modulation and he has published over 30 papers on these
subjects. He is a member of the IEE and IEEE.

Beng-Sin Lee was born in
Singapore in 1971. He received
a BEng in Electronic
Engineering in 1998 from the
University of Bristol. He is
currently studying for a PhD in
Electronic Engineering at the
University of Bristol. His main
research interests are in the area
of radio propagation, namely
site specific wireless channel
modelling in indoor and outdoor environments.