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Abstract - This paper presents the analysis of spa-
tial correlation in MIMO channels, calculated from data
measured in office environments at 5.2GHz. Results are
compared with those from channels generated using a
stochastic MIMO channel model and the effect of differ-
ent comparison metrics is shown. The suitability of the
stochastic model under different propagation conditions
is also investigated.
Keywords - MIMO propagation, channel measure-
ment, channel model, spatial correlation.

I. Introduction

Numerous MIMO channel measurement campaigns,
both narrowband and wideband, have been reported in
the literature, several of which have been used as the ba-
sis for the development and parameterisation of stochas-
tic MIMO channel models [1–3]. Of the parameters con-
sidered by these models, the most difficult to quantify is
that of spatial correlation between elements at the two
arrays. This is determined by both the propagation envi-
ronment and the array configuration, through the power-
angle distribution of multipath signals impinging on each
array and the element types and spacing. Although the
array architecture can be controlled, spatial correlation
amongst the elements of the array is a function of the
particular environment in which the arrays are located
and has been the subject of much research in single array
systems [4].

This paper presents the results of an investigation into
the spatial correlation experienced by the two arrays in a
narrowband MIMO system, based on wideband measure-
ments recorded in a modern building at 5.2GHz. Mea-
surement data is used to derive the spatial correlation
parameters for a stochastic channel model, the output of
which is compared with the measured channel responses.
The effect of different parameter extraction techniques
and their suitability under different propagation condi-
tions is illustrated. The analysis initially examines non-
line-of-sight (NLOS) channels, followed by some results
under line-of-sight (LOS) conditions.

II. Channel measurements

Wideband MIMO channel measurements have been
conducted using a Medav RUSK BRI channel sounder,

as described in [5]. The arrays employed during these
measurements were eight-element, vertically polarised,
uniform linear arrays at both the transmitter and re-
ceiver (see [5] for photographs). The transmit array com-
prised of monopole elements, half-wavelength spaced and
mounted on a horizontal rectangular groundplane, whilst
the receive array was a commercially built unit consisting
of cavity backed dipole elements, half-wavelength spaced
and mounted so as to provide a 120degree half-power
beamwidth.

The measurement campaign was conducted in a mod-
ern building, although the layout was a traditional office
corridor with individual offices to either side, as shown
by the floor plan in Figure 1. The receive array was lo-
cated at one end of the corridor, at a height of 1.9m,
and the transmitter was placed on a low trolley with the
array mounted at a height of 0.9m. For each office in
turn, the transmitter was slowly pulled across the centre
of the room (a distance of approximately 2m) whilst the
receiver recorded 2000 realisations of the 8 × 8 MIMO
channel. This procedure was repeated with the transmit
array having been rotated by 90degrees in azimuth. Fi-
nally, for those offices in which space permitted, a third
set of 2000 channel realisations was recorded with the
transmit array being moved and rotated in random di-
rections.

Each realisation of a narrowband MIMO channel con-
sists of the absolute transmission coefficients between all
transmit and receive elements, and is represented (at
frequency f) by the matrix Gf ∈ C

nR×nT , whose ele-
ments are denoted as gjk,f , for j ∈ [1, 2, . . . , nR] and
k ∈ [1, 2, . . . , nT ], where nR and nT are the number of
receive and transmit elements respectively. A normalised
channel matrix, Hf , can hence be obtained as

Hf =
Gf√

1
nRnTF

∑nR

j=1

∑nT

k=1

∑F
l=1 |gjk ,l |2

, (1)

where F is the number of discrete frequencies contained
in each wideband measurement. Note that during the
following analysis, even when subsets of the array ele-
ments are selected, each channel realisation is first nor-
malised as in (1) with nR, nT = 8 and F = 97, so as to
obtain the best estimate of the local mean path loss.
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Fig. 1. Measurement environment. X denotes locations of the transmitter from which measurements were recorded.

III. Stochastic MIMO channel model

The basic structure of the model presented here is com-
mon to several published stochastic MIMO models [1–3].
In this paper we only consider the narrowband case as
described below.

A narrowband MIMO channel in a quasi-static,
Rayleigh fading environment with no spatial correlation,
A ∈ C

nR×nT , can be generated by taking all elements
to be i.i.d. zero-mean unit-variance complex Gaussian
random variables.

In [1–3] it is proposed that the introduction of spatial
correlation is made easier if it can be assumed that cor-
relations amongst the elements of one array are indepen-
dent of the selected antenna element at the other array.
This assumption is justified by the reasoning that each
element within an array will illuminate the same scatter-
ers in the surrounding environment. The energy arriving
at the second array from each of the transmit elements
will therefore exhibit the same power-angle spectrum and
hence the same spatial correlation [1].

If the complex correlation coefficient between two ele-
ments at the receiver, j1 and j2, is represented by

ρRX
j1j2 = 〈gj1k, gj2k〉 , (2)

then the above assumption dictates that this value is in-
dependent of k. A matrix of these correlation coefficients
RRX ∈ C

nR×nR can then be constructed such that

RRX =




ρRX
11 ρRX

12 · · · ρRX
1nR

ρRX
21 ρRX

22 · · · ρRX
2nR

...
...

. . .
...

ρRX
nR1 ρRX

nR2 · · · ρRX
nRnR


 . (3)

Given a similar definition of ρTX
k1k2

and RTX ∈ C
nT×nT ,

and following suitable selection of all ρTX and ρRX, a
correlated channel matrix can be generated as [6]

Hsim = (RRX)1/2 A ((RTX)1/2)†, (4)

where (·)1/2 and (·)† denote the matrix square root and
conjugate transpose respectively.

Therefore, in order to use this model, the array cor-
relation matrices, RTX and RRX, have to be defined,
either arbitrarily or empirically. Given the aforemen-
tioned assumption that the spatial correlation at each
array is independent of the element selected at the other
array, it can be shown that the channel correlation ma-
trix, RH ∈ C

nRnT×nRnT , can be given by the Kronecker
product of the array correlation matrices [7],

RH = RTX ⊗ RRX, (5)

where ⊗ denotes the Kronecker product.
RH can be estimated from channel measurement data

as

(RH)pq =
〈
vec(Hf )p , vec(Hf )†q

〉
, p, q ∈ [1, 2, ...,nRnT ],

(6)
where vec(·) is the vector operator and p and q denote
the element index within a matrix or vector appropri-
ately. Therefore, employing the method described in [8],
RTX and RRX can be calculated using the rank one least
squares Kronecker factorisation of RH. This computes
the factors RTX and RRX to satisfy

min ||RH − RTX ⊗ RRX ||F , (7)

where || · ||F denotes the Frobenius norm. A metric for
the error resulting from this approximation can be found
by calculating

Ψ(X,Y) =
||X − Y||F

||X||F , (8)

where X and Y are RH and (RTX ⊗ RRX) respectively
[8].

The effect of the approximation resulting from (7) can
also be investigated by comparison between the channels
generated in (4) with those generated according to the
full correlation properties given by RH. The latter can
be achieved by redefining (4) as

vec(Hsim) = (RH)1/2vec(A). (9)

Herein, we refer to the two models, (4) and (9), as the
‘Kronecker’ model and the ‘RH’ model.
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Fig. 2. Capacity CCDFs for the channels measured in
one office and channels generated using the Kronecker
model with parameters derived from the measured data.
Results for array sizes from 2×2 to 8×8 are shown, with
nR = nT .

IV. Data analysis

We initially investigate the accuracy of the Kronecker
model by comparing it with measured data on an of-
fice by office basis, and for varying numbers of array
elements, from 2 × 2 to 8 × 8, with nR = nT . For
each office in turn, appropriately sized subsets of data
are selected from the normalised measured channel ma-
trices (transmit elements 1, ..., nT and receive elements
1, ..., nR). From this data, the array correlation matrices,
RTX and RRX, are estimated as described in Section III
and used to generate a set of stochastic channels. The
capacities of both sets of channels are then calculated as

C = log2

(
det

(
InR

+
ρ

nT
HH†

))
bits/s/Hz, (10)

where In is the n×n identity matrix, det(·) is the matrix
determinant, and ρ is the mean signal to noise ratio at
each receiver (in this paper ρ is kept constant at 20dB).
From this, the capacity complementary cumulative dis-
tribution functions (CCDFs) can be generated, as shown
by the example in Figure 2 for one of the offices.

Two metrics are used for the comparison between
modelled and measured data. Firstly, the difference be-
tween the Kronecker product of the approximated array
correlation matrices and the channel correlation matrix,
Ψ, is calculated, as in (8), in order to quantify the er-
ror in the Kronecker factorisation. Secondly, the perfor-
mance of the model (defined here as the closeness of the
modelled channels to the measured data) is assessed by
calculating, Φ, the root mean square (r.m.s.) difference
between the capacity CCDFs of the measured and sim-
ulated channels, normalised to the mean capacity of the
measured channels.

For each of the measurement locations (and TX array
orientations) shown in Figure 1, the measured and simu-
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Fig. 3. Mean difference between the Kronecker product
of the array correlation matrices and the channel corre-
lation matrix, for varying array sizes and orientations of
the TX array with respect to the office door.

lated capacity CCDFs have been generated as described
above and in each case, the two aforementioned metrics
calculated. Figure 3 shows how the first metric, Ψ, aver-
aged over all locations, varies with the number of array
elements and the array orientation. The variation in Ψ
can be regarded as an indication of the validity of the ini-
tial assumption made by the Kronecker model; that the
spatial correlation at each array is independent of the
element selected at the other array. This follows from
the use of the rank one approximation of (a permuted)
RH, employed in computing the solution to (7) [8]. If
the model’s assumption was exactly true, then the per-
muted matrix would be rank one, and hence RTX and
RRX could be found such that Ψ = 0. Conversely, if
Ψ �= 0, this implies that the permuted RH is not rank
one and hence the spatial correlation at each array is to
some extent dependent on the element selected at the
other array. The results in Figure 3 therefore suggest
that by collecting data with random array orientations,
a better fit with the model can be achieved.

Although the metric Ψ gives an indication of the er-
ror in representing the channel correlation matrix, RH,
as the Kronecker product of two array correlation ma-
trices, RTX and RRX, this is not necessarily a measure
of how well the model (employing the parameters RTX

and RRX) actually performs at simulating channels of a
similar nature to those from which the parameters were
taken. Consequently, the difference in the distributions
of channel capacities for the measured and simulated
channels has been calculated as the second metric.

The scatter plot in Figure 4 shows the joint distribu-
tion of Φ, expressed as a percentage, and Ψ. It can be
seen that the two metrics appear to vary independently
and hence, for the data analysed here, the variations in
Ψ due to the approximation in the Kronecker factorisa-
tion do not necessarily indicate how well the resultant
parameters, RTX and RRX, model the channel.



0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Percentage r.m.s. difference between capacity CCDFs

M
at

rix
 d

iff
er

en
ce

Parallel     
Perpendicular
Random       

Fig. 4. Comparison between the two metrics employed
for evaluating the channel models. Data is shown for the
three orientations of the TX array with respect to the
office door.

In order to further quantify the performance of the
Kronecker model, we compare it with the RH model.
Table 1 presents the mean and variance of Φ (calculated
over all locations) for both models and for each of the
TX array orientations. It also includes the results of the
same analysis having been conducted using power rather
than complex correlation for (2) and (6), as has also been
suggested [1]. Comparing the values in the table, it can
immediately be seen that both models employing com-
plex correlation parameters perform well for this data,
and much better than those based on power correlation.

Although the results in Table 1 look favourable for
the Kronecker model, it should be noted that the data
on which this investigation has been conducted so far has
all been from relatively ‘good’ NLOS situations, since in
order to provide a fair comparison between the TX ar-
ray orientations, only those offices in which data for all
three orientations was recorded have been considered so
far. It just happens that the propagation characteris-
tics in these locations were favourable for fitting to the
Kronecker model. Other locations are no so suitable,
as shown by the comparison between the two models in
Figure 5. Here, it can be seen that although the RH

model still performs well, with a close fit between the
measured and simulated capacities, the Kronecker model
is not suitable for array sizes larger than 2× 2. The rea-
son for this is that the spatial correlation at each array is
no longer independent from the element selected at the
other array, resulting in the key assumption of the Kro-
necker model no longer being valid. Conversely, the RH

model, which includes the full channel correlation prop-
erties, can still generate stochastic channels with similar
properties to those of the measured data.

A visual indication of the spatial correlation (for the
full 8 × 8 channel) in this particular location is given
in Figure 6. Here, the elements of RH have been rear-
ranged in order to give a more intuitive representation

Table 1
Statistics for, Φ, the percentage r.m.s. difference

between measured and simulated capacity CCDFs.

Complex Corr. Power Corr.
Data Model Mean Variance Mean Variance
Parallel Kron. 2.76 4.36 16.0 31.5
Parallel RH 3.27 4.51 16.5 36.4
Perp. Kron. 5.53 7.91 16.6 38.6
Perp. RH 2.91 2.77 17.7 40.9
Random Kron. 3.43 2.27 11.1 33.9
Random RH 3.59 5.78 14.0 40.9

than plotting RH directly. Each ‘square’ of 8 × 8 values
represents the magnitude of the complex correlation co-
efficient between one transmission coefficient, hjk, and
all others. These are arranged such that, for example,
the ‘top-left square’ displays the correlation between h11

and all other transmission coefficients, and the ‘top-right
square’ displays the correlation between h18 and all other
transmission coefficients. Thus it can be seen that there
is significant variation across the elements of each array.

In the particular case shown here, it is suggested that
the reason for this characteristic is that the close proxim-
ity of objects in this environment and the relative size of
the arrays with respect to the dimensions of the corridor
and office, allows some array elements to be shadowed
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(a) Kronecker model
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Fig. 5. Capacity CCDFs for the channels measured
in one office and channels generated using, (a) the Kro-
necker model, and (b) the RH model, each with param-
eters derived from the measured data.

Fig. 6. Magnitudes of the complex correlation coeffi-
cients between all elements of the channel matrix, H, for
one office location.
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Fig. 7. Magnitudes of the complex correlation coeffi-
cients between all elements of the channel matrix, H, for
data (a) measured in an empty room, and (b) simulated
in free space.

HGFE

DCBA

Fig. 8. Phase relationship between array elements for
a MIMO system in free space.

when others are not. This does not necessarily have to be
the case though, since similar analysis of other measured
channel data has indicated that this effect is particularly
prevalent under LOS conditions, or where a significant
dominant path exists.

Although a full examination of the LOS case is beyond
the scope of this paper, we introduce one particular char-
acteristic of spatial correlation in LOS conditions.

Figure 7a shows the spatial correlation evaluated from
data measured in a large empty room, where a direct,
LOS, path always existed between the transmit and re-
ceive arrays [5]. It can be seen that the correlation ex-
hibits a ‘diagonal’ pattern which should not be possible,
since spatial correlation at either the transmit or receive
array alone would result in ‘horizontal’ or ‘vertical’ re-
gions of high correlation respectively.

This effect can be replicated by channels simulated in
free space, as shown in Figure 7b. Here, given two uni-
form linear arrays sufficiently separated so that they are
in each others far field (Figure 8), the transmission coef-
ficients between A&E, B&F, C&G and D&H are equal, as
are those between A&F, B&G and C&H etc. Therefore,
when the complex correlation coefficients are calculated
(6), the correlations between A and {E,F,G} are the same
as those between B and {F,G,H}, leading to the diago-
nal appearance in Figure 7. Alternatively, if the power
channel correlation coefficients were calculated, the re-
lationship between the phase shifts across the arrays is

irrelevant and all coefficients would equal 1.
The consequence of this is that the Kronecker model

certainly cannot include this effect, since reality requires
the correlation coefficients to vary with array element. In
this case though, the RH model is also unsuitable since
although it will generate channels with the specified com-
plex correlation (as in Figure 7), the power correlation of
the resultant channels will be incorrect. Therefore, for
the example of the free space environment, the gener-
ated channel matrices are of much higher rank than the
expected near rank one.

V. Conclusions

This paper has investigated the performance of two
empirical stochastic MIMO channel models. The per-
formance of the models has been shown to be good un-
der NLOS propagation, although the Kronecker model
was shown to fail under conditions where the correla-
tion amongst the elements of one array was not indepen-
dent of the antenna element at the other array. Finally,
it was shown how situations in which array correlation
does vary with array element can occur in LOS condi-
tions, and how under these extreme circumstances, both
stochastic models, as presented here, are unsuitable.
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