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A Numerical Toolbox for Homoclinic Bifurcation AnalysisA.R. Champneys�, Yu.A. Kuznetsovy, and B. SandstedezAbstractThis paper presents extensions and improvements of recently developed algorithmsfor the numerical analysis of orbits homoclinic to equilibria in ODEs and describes theimplementation of these algorithms within the standard continuation package auto86.This leads to a kind of toolbox, called HomCont, for analysing homoclinic bifurcationseither as an aid to producing new theoretical results, or to understand dynamics arisingfrom applications. This toolbox allows the continuation of codimension-one homoclinicorbits to hyperbolic or non-hyperbolic equilibria as well as detection and continuationof higher-order homoclinic singularities in more parameters. All known codim 2 casesthat involve a unique homoclinic orbit are supported. Two speci�c example systemsfrom ecology and chemical kinetics are analysed in some detail, allowing the reader tounderstand how to use the the toolbox for themselves. In the process, new results arealso derived on these two particular models.1 IntroductionSince the pioneering works of L.P. Shil'nikov in the 1960's, much is now understood aboutcodimension-one bifurcations caused by the existence of an orbit homoclinic to an equilibriumin ODEs. However, in the course of application of these results to speci�c systems, one gen-erally would like to continue loci of such homoclinic orbits in two or more parameters, thusencountering various codimension-two degeneracies. These codimension-two bifurcations havereceived a lot attention recently both theoretically (e.g. Lukyanov (1982), Nozdrachova (1982),�Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR, UKyDynamical Systems Laboratory, Centrum voor Wiskunde en Informatica, P.O.Box 94079, 1090 GB Am-sterdam, The Netherlands & Institute of Mathematical Problems of Biology, Russian Academy of Sciences,Pushchino, Moscow Region, 142292 RussiazWeierstra�-Institut f�ur Angewandte Analysis and Stochastik, Mohrenstra�e 39, 10117 Berlin, Germany1



Turaev (1988), Belyakov & Shil'nikov (1990), Chow, Deng & Fiedler (1990), Kisaka, Kokubu& Oka (1993), Deng (1993), Homburg, Kokubu & Krupa (1994), Sandstede (1993)) and inapplications (see, for example, the recent proceedings Gaspard, Arn�eodo, Kapral & Sparrow(1993)). More complete reviews can be found in Fiedler (1992) and Champneys & Kuznetsov(1994), to which we also direct the reader for two-parameter bifurcation diagrams respective tothese codim 2 points.Application of these theoretical results to example systems has always been di�cult, typ-ically involving a large amount of numerical computation using ad hoc methods. The earlynumerical methods for locating homoclinic orbits relied on either continuation of a limit cycleto large period as it approaches a homoclinic orbit (Doedel & Kern�evez (1986)), or the use ofshooting, that is, the numerical integration of orbits in the stable and unstable manifolds ofthe equilibrium and the computation of a distance between them (see, for example, Kuznetsov(1983, 1990), Rodr��guez-Luis, Freire & Ponce (1990)). Both of these techniques can be extendedto continue homoclinic loci in two parameters.Boundary-value methods, which are free from instabilities of the mentioned methods due tothe strong divergence of trajectories near saddle-type equilibria, date back to Hassard (1980)and Miura (1982), and have been recently analysed and improved by Beyn (1990b, 1990a),Doedel & Friedman (1989), Friedman (1993), Friedman & Doedel (1991, 1993), Doedel, Fried-man & Monteiro (1993), Canale (1994), Schecter (1993, 1994) and Sandstede (1995b, 1995c)among others. Such methods truncate the homoclinic problem to a �nite time interval and im-pose certain boundary conditions at the end points of that interval. These methods, which havebeen derived in the more general context of heteroclinic orbits, have been successfully appliedto the continuation in two parameters of homoclinic orbits satisfying certain non-degeneracyconditions, i.e. orbits of codimension one.In Champneys & Kuznetsov (1994) an implementation in auto86 (Doedel & Kern�evez1986) was described of a version of Beyn's continuation algorithm based on projection bound-ary conditions. The main emphasis of that paper was the automatic accurate location of certaincodimension-two homoclinic singularities and their continuation in three or more parameters.This was achieved by constructing test functions which are monitored along codim 1 homo-clinic curves, the zeroes of which de�ne the relevant codim 2 points. Continuation in threeparameters is performed by appending one of these test functions to the continuation prob-lem. The codimension-two singularities treated include all known cases where there is a uniquehomoclinic orbit to a hyperbolic equilibrium. Test functions for certain global degeneracies,the so-called orbit- and inclination-
ip bifurcations, were derived for the �rst time for general2



n-dimensional systems. The latter of these involves the simultaneous solution of a nonlinearnormalised adjoint variational equation around the homoclinic orbit, in order to compute theorientation or twistedness of the homoclinic loop.Since then a number of improvements and extensions of the algorithms have been developed.A generalisation to treat codim 1 saddle-node homoclinic orbits was given in Bai & Champneys(1994). In Champneys, H�arterich & Sandstede (1995) this method was applied to the compu-tation of a new codim 2 homoclinic bifurcation which leads to the genesis of the less famous,but equally important, codim 1 \Shil'nikov phenomenon" where two homoclinic orbits existto the same non-hyperbolic equilibrium (Shil'nikov 1969). In the mean while, new improvedtest functions for inclination and orbit 
ips have been derived by Sandstede (1995c), which forthe inclination 
ip involve solving a modi�ed linear adjoint variational equation, and for whichnon-degeneracy and convergence were proved. In Sandstede (1995a), a method was presentedfor constructing systems exhibiting certain codim 2 homoclinic singularities, including the �rstexample we are aware of to be proved to exhibit an orbit 
ip bifurcation.The present paper collates these recent developments and describes their implementationinto HomCont1, a new uni�ed toolbox for numerical homoclinic bifurcation analysis as asupplement to the boundary-value continuation software auto86 (Doedel & Kern�evez 1986).Speci�cally, we describe an implementation of the projection boundary condition method appli-cable to both hyperbolic and saddle node homoclinic orbits, combining the algorithm describedin Champneys & Kuznetsov (1994) to an improved version of the algorithm in Bai & Champneys(1994). A more robust method is used for the computation of projection boundary conditions,based on Schur decomposition, that avoids the complications caused by multiple eigenvalues ofthe Jacobian matrix. The methods from (Sandstede 1995c) for computing orbit and inclina-tion 
ips are also described and implemented. In particular, this leads to a greatly simpli�edprocedure, compared with that in Champneys & Kuznetsov (1994), for generating initial datafor the continuation of solutions necessary for computing orientation. We also discuss somenew insights into the continuation through saddle-node degeneracies, showing that accuratelocation and switching between saddle and saddle-node homoclinic continuation is possible.More details on how to run HomCont can be found in the accompanying manual Champneys,Kuznetsov & Sandstede (1995).The outline of the rest of the paper is as follows. In section 2 we describe a uni�ed algorithmfor continuation of hyperbolic and non-hyperbolic homoclinic orbits, including computation of1available from the authors on request. 3



orientation where necessary. In particular, we list the test functions used for detection andcontinuation of all supported codim 2 points. For each test function we discuss its regularityas the truncation time interval T ! 1. Speci�c improvements on previous algorithms arehighlighted. Section 3 describes the implementation of these methods in HomCont as wellas the general strategy used for running the driver. Section 4 contains numerical results ontwo example systems: a planar system arising from ecological modelling and a three-variablesystem proposed as a phenomenological model of chemical kinetics. In each case we presenta detailed step-by-step analysis of homoclinic bifurcations for the purpose of illustrating theuse of the driver. Nonetheless the results presented are largely new including two unanalysedcodim 3 situations, namely a non-transverse and a critically twisted non-central saddle-nodehomoclinic orbit. Finally, in Section 5 we draw conclusions and indicate the directions of futurework.2 AlgorithmIn this section we brie
y summarize algorithms to continue codim 1 homoclinic orbits and todetect codim 2 singularities along their loci.2.1 Continuation of Codimension-One Homoclinic OrbitsConsider the following boundary-value problem on an in�nite intervalf(x�; �) = 0; (2.1)_x(t) = f(x(t); �); (2.2)x(t)! x� as t! �1: (2.3)Here f : Rn � Rp ! Rn is su�ciently smooth. If a pair fx�; x(�)g satis�es the problem (2.1){ (2.3) at some parameter value �, then x� is an equilibrium of (2.2) and x(t) is a homoclinicsolution to this equilibrium. Since any time shift of the solution x(t) is still a solution, acondition is required to �x the phase. Suppose that some initial guess ~x(t) for the solution isknown, then the following integral phase conditionZ 1�1 _~xT(t)[x(t)� ~x(t)]dt = 0 (2.4)is a necessary condition for a minimum of the L2-distance between x and ~x over time shifts(Doedel 1981). Depending on the equilibrium type, one may have to add extra conditions4



to (2.1){(2.4), to obtain a well-posed codim 1 problem, specifying, for example, a curve on atwo-parameter plane.The boundary-value problem (2.1){(2.4) de�ned on an in�nite time-interval can be approxi-mated by truncation to a �nite interval [�T;+T ], with suitable boundary conditions as follows(see Beyn (1990b, 1990a)). Suppose that A(x�; �) = (Dxf)(x�; �) has ns eigenvalues (countingmultiplicities) with negative real part, n0 eigenvalues with zero real part, and nu eigenvalueswith positive real part, so that ns + n0 + nu = n:In the hyperbolic case, n0 = 0, while if the equilibrium x� is a saddle-node, one has n0 = 1.Replace (2.3) by the projection boundary conditions:Ls(x�; �)(x(�T )� x�) = 0; (2.5)Lu(x�; �)(x(+T )� x�) = 0: (2.6)Here Ls(x�; �) is a (ns�n) matrix whose rows form a basis for the stable eigenspace of AT(x�; �).Accordingly, Lu(x�; �) is a (nu � n) matrix, such that its rows form a basis for the unstableeigenspace of AT(x�; �). The boundary conditions (2.5) and (2.6) place the solution at the twoend points in the center-unstable and center-stable eigenspaces of A(x�; �), respectively. Noticethat a homoclinic solution belongs asymptotically to these eigenspaces as t ! �1. Finally,take the phase condition of the truncated problem to beZ T�T _~xT(t)[x(t)� ~x(t)]dt = 0: (2.7)It is not di�cult to see that the truncated problem (2.1), (2.2), (2.6), and (2.7) is a formallywell-posed codim 1 problem, when x� is hyperbolic, since one has n boundary conditions (2.5)and (2.6) plus one integral constraint (2.7). Moreover, under certain regularity conditions (seeBeyn (1990b, 1990a)), the existence of a homoclinic solution to the original problem on thein�nite interval implies the existence of a solution to the truncated problem. Furthermore, asT !1, the solution to the truncated problem converges to that of the original one restrictedto an appropriate �nite interval. The rate of convergence is proved to be exponential for bothparameter values and solutions (Beyn 1990b, Schecter 1994, Sandstede 1995b).If x� is a saddle-node, (2.5) and (2.6) give only (n�1) boundary conditions. Thus, an extraequation is required, namely the one de�ning the saddle-node bifurcation, e.g.detA(x�; �) = 0: (2.8)5



Existence and convergence results are incomplete in this case. However, some theoretical argu-ments and numerical experiments (see Friedman (1993), Schecter(1993, 1994), Bai & Champ-neys (1994), Canale (1994), Sandstede (1995b)) suggest that the convergence is exponential inparameters, but that the error for the solutions behaves as 1=T 2, as T !1.Solutions to the resulting boundary-value problems can be continued using existing standardsoftware (see Section 3). In the continuation setting, the reference solution ~x(t) is merely thehomoclinic solution obtained at the previously found point on the curve.2.2 Test Functions for Codimension-Two BifurcationsCodimension-two homoclinic orbits are detected along branches of codim 1 homoclinics bylocating zeroes of certain test functions  i de�ned in general for an appropriate truncatedproblem. In the simplest cases, test functions are computable via eigenvalues of the equilibriumor their eigenvectors and from the homoclinic solution at the endpoints. In other cases one hasto enlarge the boundary-value problem and simultaneously solve variational equations withrelevant boundary conditions. Codim 2 singularities can then be continued by appending thetest function to the problem and activating one more parameter.A test function is said to be well-de�ned if, for all su�ciently large T > 0, it is a smoothfunction along the solution curve of the truncated problem and has a regular zero approachingthe critical parameter value as T ! 1. In fact, in all cases presented below, we have thestronger property that the limit of the test function exists and gives a regular test function forthe original problem on the in�nite interval also.To start with we denote the eigenvalues of A(x�; �) = Dxf(x�; �) with negative real part as�i; i = 1; 2; : : : ; ns;the eigenvalues with zero real part as
j; j = 1; 2; : : : ; n0;and the eigenvalues with positive real part as�k; k = 1; 2; : : : ; nu:We assume that the non-critical eigenvalues are ordered according toRe �ns � � � � � Re �1 < 0 < Re �1 � � � � � Re �nu : (2.9)The eigenvalues with zero real part are called central, while the stable (unstable) eigenvalueswith real part closest to zero are termed the leading stable (unstable) eigenvalues.6



2.2.1 Singularities detectable via eigenvaluesThe following test functions can be monitored along a homoclinic curve corresponding to ahyperbolic equilibrium to detect codim 2 singularities which were shown in Champneys &Kuznetsov (1994) to be well-de�ned for both the original and truncated problems.Resonant saddle:  1 = �1 + �1: (2.10)Double real stable leading eigenvalue: 2 = 8><>: (Ref�1g � Ref�2g)2; Imf�1g = 0;�(Imf�1g � Imf�2g)2; Imf�1g 6= 0: (2.11)Double real unstable leading eigenvalue: 3 = 8><>: (Ref�1g �Ref�2g)2; Imf�1g = 0;�(Imf�1g � Imf�2g)2; Imf�1g 6= 0: (2.12)Notice that the regularity of (2.11) and (2.12) follows from the fact that these expressionsrepresent the discriminant of the quadratic factor of the characteristic polynomial correspondingto this pair of eigenvalues.Neutral saddle, saddle-focus or bi-focus: 4 = Ref�1g+Ref�1g: (2.13)Neutrally-divergent saddle-focus 5 = Ref�1g+Ref�2g+Ref�1g; (2.14) 6 = Ref�1g+Ref�2g+Ref�1g: (2.15)Three leading eigenvalues  7 = Ref�1g � Ref�3g; (2.16) 8 = Ref�1g � Ref�3g: (2.17)In order to detect homoclinic orbits to non-hyperbolic equilibria while continuing a locusof hyperbolic homoclinics, the truncated problem should be formulated in such a way thatit can be continued through the degenerate point. To this end it is necessary to modify thelabelling (2.9) to label as �i the ns leftmost eigenvalues and as �i the nu rightmost eigenvaluesirrespective of their location with respect to the imaginary axis. This accordingly modi�es the7



H x�W s(x�) H(1) ~H(1) �1� x�x� �0 �10 : 0H(1) : ~H(1) :�2 W s(C) C
Figure 1: Continuation through a Shil'nikov-Hopf with n = 3. The homoclinic locus is denotedby H(1) and the point-to-periodic heteroclinic curve by ~H(1).meaning of the terms \stable" and \unstable" in the de�nition2 of the projection matrices Lu;s.With this modi�cation, we can simply de�ne the following test functions.Non-hyperbolic equilibria:  9 = Ref�1g; (2.18) 10 = Ref�1g: (2.19)A zero of  9;10 corresponds to either a fold or Hopf bifurcation3 of the continued equilibriumx�. In the �rst case the bifurcation is called a non-central saddle-node homoclinic bifurcation(see below), while the second one is usually referred to as a Shil'nikov-Hopf bifurcation. Gener-ically these singularities are end points of a locus of homoclinic orbits to hyperbolic equilibria.However, there exist continuous extensions of the solution curves of the truncated boundary-value problem (2.1), (2.2), (2.5){(2.7) through both singularities. This fact was pointed out forthe Shil'nikov-Hopf case in Champneys & Kuznetsov (1994), where it was noted that beyondthe codim 2 point, there exists a solution curve ~H(1) approximating a heteroclinic connection�1 between x� and the limit cycle C appearing via the Hopf bifurcation. See Figure 1 for anillustration in three dimensions.2In HomCont the user speci�es in advance the numbers nu and ns to be used throughout a particularcontinuation.3We do not consider pitchfork or transcritical bifurcations here, as these are of a higher codimension forgeneric dynamical systems. 8



SN SNHH(1) ~H(1)�1�20 :H(1) : ~H(1) :0x��
x��0 �1 x�Figure 2: Continuation through a non-central saddle-node homoclinic bifurcation. The hyper-bolic homoclinic curve is denoted by H(1), the non-central heteroclinic curve by ~H(1) and thecurve of folds by SN . Along the right-hand branch SNH of the fold curve there also exists acentral saddle-node homoclinic.It turns out that a similar property holds for the saddle-node bifurcation, contrary to astatement in Champneys & Kuznetsov (1994), provided an appropriate truncated problem isused for continuation. Suppose we continue a saddle homoclinic locus H(1) towards a foldbifurcation of x�, which means that an extra equilibrium approaches x�. For simplicity weassume that at the saddle-node point an unstable eigenvalue approaches zero, see Figure 2 fora planar illustration. Beyond the codim 2 point, the truncated boundary-value problem has asolution approximating a heteroclinic orbit connecting the two equilibria along the non-leadingstable manifold and existing along ~H(1). More precisely, the continuation algorithm switchesfrom the original equilibrium to the approaching one4, while the projection boundary conditionsplace the end points of the solution in the \stable" and \unstable" eigenspaces of the new x�.Close to the codim 2 point, the latter gives a good approximation to the unstable eigenspaceof the original equilibrium.2.2.2 Orbit and inclination 
ipsWe now consider test functions for two forms of global degeneracy along a curve of homoclinicorbits to a saddle, namely orbit- and inclination-
ip bifurcations. Therefore we additionally4Beyond the critical point it is the approaching equilibrium that is labelled x�.9



assume that there are no center eigenvalues of A(x�; �), while the leading eigenvalues are realand unique, that isRe �ns � � � � � Re �2 < �1 < 0 < �1 < Re �2 � � � � � Re �nu :Then, it is possible to choose normalised eigenvectors ws1 and wu1 of AT(x�; �) dependingsmoothly on (x�; �) and satisfyingAT(x�; �)ws1 = �1ws1 AT(x�; �)wu1 = �1 wu1 :Here and in what follows the dependence on x� and � of eigenvalues and eigenvectors is notindicated, for simplicity. Accordingly, normalised eigenvectors vs1 and vu1 of A(x�; �) are chosendepending smoothly on (x�; �) and satisfyingA(x�; �) vs1 = �1 vs1 A(x�; �) vu1 = �1 vu1 :An orbit 
ip bifurcation occurs when the homoclinic orbit changes its direction of approachto the saddle between the two components of a leading eigenvector. The de�ning equation forthe orbit-
ip bifurcation (with respect to the stable manifold) can be written aslimt!1 e��1t hws1; x(t)� x�i = 0; (2.20)where ha; bi = aTb is the standard scalar product of a; b 2 Rn. Similarly, the equation for theorbit-
ip with respect to the unstable manifold is given bylimt!�1 e��1t hwu1 ; x(t)� x�i = 0: (2.21)At a point where either condition (2.20) or (2.21) is ful�lled, the homoclinic orbit tends to thesaddle (in one time direction) along its nonleading eigenspace (see Sandstede (1995c) for thedetails).The truncated test functions are therefore given byOrbit-
ip (with respect to the stable manifold): 11 = e��1T hws1; x(+T )� x�i = 0: (2.22)Orbit-
ip (with respect to the unstable manifold): 12 = e�1T hwu1 ; x(�T )� x�i = 0: (2.23)Note that the projections and the scaling appearing in (2.22) and (2.23) are di�erent from thoseused in Champneys & Kuznetsov (1994). 10



The inclination-
ip bifurcation is related to global twistedness of the stable and unstablemanifolds W s;u(x�) of the saddle x� around its homoclinic orbit. At each point x(t) of thehomoclinic orbit the sum of tangent spacesZ(t) = X(t) + Y (t)is de�ned, where X(t) = Tx(t)W s(x�); Y (t) = Tx(t)W u(x�):Generically, codim Z(t) = 1, that is X(t) \ Y (t) = spanf _x(t)g.In order to describe the de�ning equations for the inclination-
ip bifurcation we have tointroduce the adjoint variational problem_' = �(Dxf)T(x(t); �)'; (2.24)'(t)! 0 as t!�1; (2.25)Z 1�1 ~'T(t)['(t)� ~'(t)]dt = 0: (2.26)The \phase condition" (2.26) selects one solution out of the family c '(t) for c 2 R. Thesolution '(t) of (2.24){(2.26) is orthogonal to the above de�ned subspace Z(t) for each t,thus, its limit behavior as t ! �1 determines the twistedness of the space Z(t) around thehomoclinic orbit. Inclination-
ip bifurcations occur at points along a homoclinic curve wherethis twistedness changes without an orbit 
ip occurring (see (Sandstede 1995c, Champneys &Kuznetsov 1994) and references therein for a more detailed explanation). The de�ning equationsfor the inclination-
ip bifurcation with respect to the stable manifold are given bylimt!�1 e�1t hvs1; '(t)i = 0; (2.27)and with respect to the unstable manifold bylimt!1 e�1t hvu1 ; '(t)i = 0: (2.28)If either (2.27) or (2.28) holds, the stable (unstable) manifolds of the saddle x� are neutrallytwisted around the homoclinic orbit (Sandstede 1995c).Next we de�ne Ps(x�; �) to be the (ns � n) matrix whose rows form a basis for the stableeigenspace of A(x�; �). Similarly, Pu(x�; �) is a (nu�n) matrix, such that its rows form a basisfor the unstable eigenspace of A(x�; �). Consider now replacing (2.24){(2.26) by the truncatedequations _' = �(Dxf)T(x(t); �)'+ " f(x(t); �); (2.29)11



Ps(x�; �)'(+T ) = 0; (2.30)Pu(x�; �)'(�T ) = 0; (2.31)Z T�T ~'T(t)['(t)� ~'(t)]dt = 0 (2.32)Here, " 2 R is an arti�cial free parameter, which turns (2.29) into a well-posed boundary-value problem. This truncated system was introduced and investigated in Sandstede (1995c).Evaluating the limits in (2.27) and (2.28) at t = �T , yields the following test functions.Inclination-
ip (with respect to the stable manifold): 13 = e��1T hvs1; '(�T )i = 0: (2.33)Inclination-
ip (with respect to the unstable manifold): 14 = e�1T hvu1 ; '(+T )i = 0: (2.34)Note again that the projections and the scaling appearing in (2.33) and (2.34) di�er from thoseused in Champneys & Kuznetsov (1994). The test functions  11;12;13;14 are well de�ned for boththe original and truncated boundary-value problems (Sandstede 1995c).2.2.3 Singularities along saddle-node homoclinic curvesSuppose that a central saddle-node homoclinic orbit is continued. Let 
1 = 0 be the uniquecentral eigenvalue, i.e. n0 = 1. Recall that in this case the truncated boundary-value problemis composed of equations (2.1), (2.2), (2.5){(2.8). Let v1 be an eigenvector corresponding to
1 = 0 and normalised according to vT1 v1 = 1:Suppose that v1 is di�erentiable along the saddle-node bifurcation curve. Then the followingtest functions, which di�er from those proposed in Bai & Champneys (1994) by the additionalscaling factor 1=T , will detect non-central saddle-node homoclinic orbits.Non-central saddle-node homoclinic orbit: 15 = 1T (x(+T )� x�)Tv1; (2.35) 16 = 1T (x(�T )� x�)Tv1: (2.36)These functions measure the component of the one-dimensional center manifold in which thetwo endpoints of the approximate homoclinic orbit lie, and are well-de�ned along the saddle-node bifurcation curve (see Figure 3). Owing to Schecter (1993, Lemma 3.1) both  15 and12



x(T ) x(�T )x(T ) x(�T ) SNH SN x(�T )x(T ) x�SN :SNH : �1�0 H(1)0x� �0�0 x�0 : �2
Figure 3: Continuation through a non-central saddle-node homoclinic bifurcation while follow-ing a central saddle-node homoclinic curve. 16 converge to smooth functions along the curve of central saddle-node homoclinic orbitsas T ! 1. The scaling is similar to the one for the 
ip bifurcations introduced before. Thecommon feature is to multiply by the correct factor to counteract the asymptotic behavior of thehomoclinic solution along the regular branch. This results in smooth de�ning equations in thelimit T !1, see Sandstede (1995c). Which of the test functions (2.35), (2.36) is annihilated isdetermined by whether the critical homoclinic orbit is a center-to-stable or unstable-to-centerconnection.The test-functions  9;10 and  15;16 provide us with two di�erent strategies for detectingnon-central saddle-node homoclinic orbits. This allows us to switch between the continuationof saddle and central saddle-node homoclinic orbits at such points, as well as giving us twopossible methods for continuing such singularities in three parameters.2.2.4 Other singularitiesThe test functions listed above do not detect all known codim 2 homoclinic singularities.Clearly, all cases when two homoclinic orbits are present at the critical parameter values areundetectable by monitoring these functions. The same is true for heteroclinic cycles, e.g. whena homoclinic orbit is broken by colliding with an extra equilibrium point. Some more commentsare made in the Conclusion. We also do not detect cases when a homoclinic orbit shrinks toan equilibrium at a local codim 2 bifurcation (like at the Bogdanov-Takens singularity). Note,13



however, that certain degeneracies which are not formally given a test function may nonethe-less be detected and continued using the described algorithm. For example, in Champneys,H�arterich & Sandstede (1995) it was shown that a non-transverse saddle-node homoclinic bi-furcation may be detected as a limit point with respect to the parameter along a curve of centralsaddle-node homoclinic bifurcations.3 ImplementationWe shall now explain how the algorithms given in the previous section are implemented withinthe continuation software auto86. See (Doedel & Kern�evez 1986) and the tutorial papersDoedel, Keller & Kern�evez (1991a, 1991b)) for details of the numerical methods used byauto86, of the practicalities of using the software and for a list of its capabilities.3.1 ContinuationAmong other things, auto can compute paths of solutions to boundary-value problems withintegral constraints and non-separated boundary conditions;_U(� ) = F (U(� ); �); U(�); F (�; �) 2 RN; � 2 Rnfree; � 2 [0; 1] (3.1)b(U(0); U(1); �) = 0; b(�; �) 2 Rnbc; (3.2)Z 10 q(U(� ); �)d� = 0; q(�; �) 2 Rnin; (3.3)as nfree free parameters � are allowed to vary, wherenfree = nbc + nin �N + 1: (3.4)The function q is also allowed to depend on F , the derivative of U with respect to pseudo-arclength and on ~U , the value of U at the previously computed point on the solution branch.Moreover, auto86 can accurately locate zeros along the solution branch of functionsgj(U(0); U(1); �); j = 1; : : : nuszr (3.5)Actually, the user-de�ned functions in auto86 are functions of parameters only (not necessarilyjust the free parameters). In HomCont data is passed between the auto86 subroutines uszrand bcnd using common blocks, to enable the gj's to depend also on the boundary values ofU . 14



To be concrete, suppose we wish to continue solutions to the equations (2.1), (2.2), (2.5){(2.7) for a homoclinic orbit to a hyperbolic equilibrium together with equations (2.29){(2.32)for the solution of the modi�ed adjoint variational equation, subject to n�x constraints i = 0; i = i�x1; : : : ; i�xn�x;where i�xj is the label of the the jth test function that has been frozen, as n�x = nfree + 2parameters �i; i = ifree1; : : : ifreenfreeare allowed to vary. Suppose too that we want to monitor ntest test functions i; i = itest1; : : : ; itestntest:Then this problem can be written in the form (3.1)-(3.5) after a suitable time shift and rescalingthat identi�es t = �T with � = 0 and t = T with � = 1. Speci�cally we haveN = 2n; nbc = 3n+ n�x; nin = 2; U(� ) = (x(� ); '(� ))T;� = (x�; "; �i; i = ifree1; : : : ifreenfree);F (U; �) = 0B@ 2Tf(x; �)�2T �[(Dxf)(x; �)]T'� "f(u; �)� 1CA ; (3.6)b(U(0); U(1); �) = 0BBBBBBBBBBBBBB@ f(x�; �)Ls(x�; �)(x(0)� x�)Lu(x�; �)(x(1)� x�)Pu(x�; �)'(0)Ps(x�; �)'(1) k; k = i�x1; : : : ; i�xn�x 1CCCCCCCCCCCCCCA ;q(U; �) = 0B@ _~xT(x� ~x)~'T('� ~') 1CA ;gi(U(0); U(1); �) =  i; i = itest1; : : : ; itestntest:Note that the de�ning equation (2.1) for the equilibrium is treated as a boundary condition.Also, the scaling of time should be taken into account when computing the test functions (2.22),(2.23), (2.33), (2.34). 15



In the case of saddle-node homoclinics, where one has to solve the problem (2.1), (2.2),(2.5){(2.8), we do not append the modi�ed variational equation or their boundary and integralconditions and remove the arti�cial component " from the parameter �. Instead we keep thesame number of free parameters nfree and additionally consider one of the boundary conditionsto be the de�ning condition for a saddle-node, which we express as zero of an eigenvalue ratherthan (2.8).3.2 Computation of eigenspacesIn order to have a well-posed problem, it is necessary for the boundary conditions to be suf-�ciently smooth with respect to parameters. Recall that the boundary conditions (2.5), (2.6)and (2.30), (2.31) are de�ned with respect to bases of the stable or unstable eigenspaces of Aor AT. One approach, adopted in Champneys & Kuznetsov (1994), is to compute the (gener-alised) eigenvectors in the appropriate eigenspace using a \black box" eigenvalue routine andthen to adapt this basis to be smooth with respect to parameters, using a technique due toBeyn (1990b, App C.) which amounts to the solution of a linear system of the dimension of theeigenspace in question (see also eqs. (3.8) and (3.9) in Champneys & Kuznetsov (1994)). Thedrawback of this approach is that we require the black box routine to be intelligent enough tocorrectly detect multiple eigenvalues and compute generalised eigenvectors there. This posesparticular problems when we wish to detect double leading eigenvalue bifurcations (see Section2.2.1).The approach used here is instead to extract the necessary basis from the Schur decom-position (see, for example (Golub & van Loan 1989)) of the matrix in question, which forde�niteness we take to be A. The algorithm, which can be summarised as follows, completelyavoids the above complications due to multiple eigenvalues. First, by the use of orthogonalsimilarity transformations, we reduce A to upper Hessenberg form. This is achieved using theeispack routines orthes and ortran. Next we use a modi�ed form of the eispack rou-tine hqr3, to reduce the upper Hessenberg matrix A to quasi-triangular form by orthogonalsimilarity transformations. The eigenvalues of A, which are contained in the 1 � 1 and 2 � 2diagonal blocks of the reduced matrix, are ordered in ascending or descending order of their realpart along the diagonal according to whether we wish to �nd a basis for the stable or unstableeigenspace. The superposition of the above transformations are accumulated in a matrix V .The �rst ns or nu columns of V give an orthogonal basis for the stable or unstable eigenspaceof A. Unfortunately, this procedure does not guarantee smoothness of the resulting basis with16



respect to parameters. Therefore, we employ the above-mentioned Beyn technique for achievingthis smoothness.Note that this Schur-vector technique also works in the saddle-node homoclinic case, becausewe only ever need the continuity of the stable and unstable eigenspaces of AT. Thus we neverneed the null-vector for the boundary conditions. On the contrary we do need the null-vector inorder to evaluate the test functions (2.35) and (2.36) for the non-central saddle-node homoclinicbifurcation, and appropriate eigenvectors in order to detect orbit and inclination 
ips usingthe test functions (2.22),(2.23), (2.33),(2.34). Moreover, these eigenvectors need also to becontinuous along homoclinic loci. This is done by using a standard routine (f02agf from thenag library) which computes eigenvectors with unit norm, and then ensuring a positive scalarproduct with the corresponding eigenvector computed at the previous point. Of course, we alsoneed to compute all the eigenvalues, and to order them with respect to their real parts.3.3 Starting strategiesWe suppose initially that we do not wish to compute the twistedness of the homoclinic loop.Three possible ways of starting the continuation of solutions to (2.1), (2.2), (2.5){(2.7), areallowed for in HomCont. Firstly we suppose that data may be saved from a previous auto86computation of a periodic orbit of large period. In this case, provided the endpoints of thestored data are close to the equilibrium, we simply use the standard restart facility of auto86.Secondly, data from a numerical integration of an orbit approximating a homoclinic, obtainedfor example by a shooting approach (see Kuznetsov (1990)), may be read into auto86 in multi-column format. Finally, we allow for use of a homotopy approach due to Doedel et al. (1993).This method consists of starting with a small solution in the unstable manifold, performingadditional continuation with respect to the truncation interval T , while monitoring the errorin the right-hand boundary conditions, and �nally performing continuation to make this errorzero. These techniques are demonstrated on examples in Section 4 below and in full details inChampneys, Kuznetsov & Sandstede (1995).In order to compute the twistedness of a homoclinic orbit or inclination-
ip bifurcationsone needs to solve for the modi�ed adjoint variational equation (2.29), (2.30){(2.32). Note thatthis system is a�ne in ' and that auto86 uses Newton's method to solve discretisations ofboundary-value problems. Therefore, if the homoclinic solution x(t) were already computed,then Newton's method applied to this a�ne problem would converge in one step, provided the17



initial guess ~' is chosen such that Z T�T ~'T(t)'(t) dt 6= 0; (3.7)where ' denotes the solution of the original problem (2.24){(2.26). Note that almost everyguess ~' will satisfy (3.7). In HomCont, we provide a facility for appending an initial guess for' to the data for a homoclinic solution. As such an initial guess we take the constant function~'(t) = (0:1; :::; 0:1)T:It is easy to modify this subroutine so that the user can incorporate his own initial guess for 'in the same manner. The required single Newton step is made in auto86 by performing onestep of continuation with respect to a dummy parameter.Note that it is trivial to start the computation of a saddle homoclinic orbit from a non-central saddle-node bifurcation detected by a zero of (2.18) or (2.19) along a curve of centralsaddle-node homoclinics, or visa versa, because no extra data is required.3.4 Running HomContTo run HomCont on a new example, the user is only required to specify the right-hand sidesof the di�erential equations, together with their Jacobian derivative, and various constantsde�ning the size of the problem, dimension of stable and unstable manifolds, as well as thekind of computation required including which test functions should be monitored or solvedfor. All this information is stored in a short fortran programme that is then linked tothe HomCont library which automatically de�nes the continuation problem to be solved byauto86. Full details, including how to repeat the computations presented below, are presentedin Champneys, Kuznetsov & Sandstede (1995).4 Examples4.1 Predator-prey model by M. Sche�erConsider the following system of two equations (Sche�er 1995)_X = rX �1� XK�� a1XYb1 +X + d0K; (4.1)_Y = e1 a1XYb1 +X � d1Y � a2ZY 2b22 + Y 2 ; (4.2)18



Figure 4: Parametric portrait of the predator-prey systemwhere X and Y are prey and predator population densities, Z is the density of a super-predatorthat is kept at a �xed level, while other parameters describe properties of the isolated dynamicsof predator and prey and their interaction. The values of all parameters except (K;Z) are setas follows:r = 0:5; a1 = 0:4; b1 = 0:6; d0 = 0:01; e1 = 0:6; a2 = 1:0; b2 = 0:5; d1 = 0:15:The parametric portrait of the system (4.1), (4.2) on the (Z;K)-plane is presented in Figure4. It contains fold (t1;2) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcationcurve P . The fold curves meet at a cusp singular point C, while the Hopf and the homocliniccurves originate at a Bogdanov-Takens point BT . Only the homoclinic curve P will concern ushere, the other bifurcation curves were computed using locbif (Khibnik, Kuznetsov, Levitin& Nikolaev 1993) (auto86 can be used as well).4.1.1 Continuation of central saddle-node homoclinicsLocal bifurcation analysis shows that at K = 6:0; Z = 0:06729762 : : :, the system has a saddle-node equilibrium (X0; Y 0) = (5:738626 : : : ; 0:5108401 : : :);19



with one zero and one negative eigenvalue (ns = 1; nu = 0). Direct simulations reveal ahomoclinic orbit to this saddle-node, departing and returning along its central direction (i.e.tangent to the null-vector). For example, a good initial approximation to this orbit can beobtained starting at (X;Y ) = (5:6856; 0:56351) and integrating numerically over T = 1046:178units of time.Starting from this solution, we continue the saddle-node central homoclinic orbit with re-spect to parameters K and Z, and monitor the test-functions  15 and  16 to detect non-centralsaddle-node homoclinic orbits. The output indicates that a zero of the test function  15 hasbeen located at D1 = (K1; Z1) = (6:610458 : : : ; 0:06932482 : : :);where the homoclinic orbit to the saddle-node becomes non-central, namely, it returns to theequilibrium along the stable eigenvector, forming a non-smooth loop. Repeating computa-tions in the opposite direction along the curve, one obtains another non-central saddle-nodehomoclinic bifurcation atD2 = (K2; Z2) = (5:180308 : : : ; 0:06385499 : : :):4.1.2 Switching between saddle-node and saddle homoclinic orbitsNow we can switch to continuation of saddle homoclinic orbits at the located codim 2 points D1and D2. For this, we �x ns = nu = 1 and use the standard restart facilities of auto86. One canactivate the test functions  9;10 to monitor for nonhyperbolic equilibria along the homocliniclocus. Running HomCont from D1 produces the upper branch of P in Figure 4. Restartingin the opposite direction from the �rst computed point will detect the same codim 2 point D1but now as a zero of the test-function  9. Actually, the program runs further and eventuallycomputes the point D2 and the whole lower branch of P emanating from it, however, thesolutions between D1 and D2 should be considered as spurious. The reliable way to computethe lower branch of P is to restart HomCont from the point D2 in the backward direction.This gives the lower branch of P approaching the Bogdanov-Takens point BT (see Figure 4).It is worthwhile to compare the homoclinic curves computed above with a curve T0 = constalong which the system has a limit cycle of constant large period T0 = 1046:178, which caneasily be computed using auto86 or locbif. Such a curve is plotted in Figure 5. It obviouslyapproximates well the saddle homoclinic loci of P , but demonstrates much bigger deviationfrom the saddle-node homoclinic segment D1D2. This happens, because the period of the limitcycle grows to in�nity while approaching both types of homoclinic orbit, but with di�erent20



Figure 5: Approximation by a large-period cycleasymptotics: as k����k
, where 
 = �1=�1, in the saddle homoclinic case, and as � ln k����kin the saddle-node case.4.1.3 Three-parameter continuationFinally, we can follow the curve of non-central saddle-node homoclinic orbits in three parame-ters. The extra continuation parameter is d0. To achieve this we restart at the codim 2 pointD1. We return to continuation of saddle-node homoclinics, but append the de�ning equation 15 = 0 to the continuation problem. Now we have ns = 1; nu = 0, and three free parameters(d0; Z;K). Notice that we consider d0 as the �rst continuation parameter, because auto86detects limit points with respect to this one.We will also detect intersections of the computed curve with the plane d0 = 0:01. RunningHomCont reveals a limit point withd0 = 0:01081235 : : : ;at which value the homoclinic curve P touches the branch t2 of fold bifurcations. Beyondthis value of d0, P consists entirely of saddle homoclinic orbits. The data at the intersectionpoint with the plane d0 = 0:01 reproduces the coordinates of the point D2. The results of21
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Figure 6: Projection onto the (K; d0)-plane of the three-parameter curve of non-central saddle-node homoclinic orbitsthis computation and a similar one starting from D1 in the opposite direction are displayed inFigure 6.4.2 Koper's extended Van der Pol modelThis section deals with the equations (Koper 1994)_x = "�11 (k y � x3 + 3 x� �); (4.3)_y = x� 2 y + z; (4.4)_z = "2(y � z): (4.5)To begin with we �x "1 = 0:1 and "2 = 1.4.2.1 The primary branch of homoclinicsFirst, we solve for a homoclinic orbit using the homotopy method. We begin with continuationin T starting from T = 0:1 and using approximate parameter values for a homoclinic orbit in(4.3){(4.5), namely � = �1:851185; k = �0:15;22



at which the corresponding saddle is located atx = y = z = �0:9591016 : : : :The output shows that the right-hand projection boundary condition is satis�ed atT = 19:08778 : : : :However, upon plotting the corresponding data (see Figure 7(a)) it can be noted that althoughthe right-hand projection boundary condition is satis�ed, the right-hand endpoint of the so-lution is still quite a way from the equilibrium. The endpoint can be made to approach theequilibrium by performing a further continuation in T with the right-hand projection conditionapplied but with � allowed to vary. Running HomCont again one can see thatT = 60:0provides a good approximation to a homoclinic solution (see Figure 7(b)).The second stage for obtaining a starting solution for a homoclinic bifurcation analysisis to add a solution of the modi�ed adjoint variational equation. This is done by a simpletwo-step process. First we use a support routine from HomCont to add some trivial datato that de�ning the homoclinic orbit with T = 60:0. Then we perform a single continuationstep in a dummy parameter in order to solve the modi�ed adjoint equation (see Section 3.3).The output contains the homoclinic solution and the solution of the adjoint equation. We nowhave a starting solution and are ready to perform a two-parameter continuation in (�; k) whilemonitoring the test functions  13;14 for an inclination 
ip and the test functions  9;10 for anonhyperbolic equilibrium.Among the output we �nd two zeros of the test function  13, which gives the accuratelocation of two inclination-
ip bifurcations:(�1; k1) = (�1:801663 : : : ; �0:2002655 : : :)and (�2; k2) = (�1:568756 : : : ; �0:4395466);and a point at which the equilibrium undergoes a saddle-node bifurcation (a zero of the testfunction  9), namely a non-central saddle-node homoclinic orbit at(�3; k3) = (0:1765060 : : : ; �2:405332 : : :):23
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appending the de�ning condition  16 = 0 to the continuation of saddle-node homoclinic orbits,or by appending  9 = 0 to the continuation of a saddle homoclinic orbit. The �rst approachwas used in the example in Section 4.1.3, for contrast we shall adopt the second approach here.The projection onto the ("1; k)-plane of all four of these codimension-two curves is given inFigure 13. The intersection of the inclination-
ip lines with one of the non-central saddle-nodehomoclinic line is apparent. Note that the two non-central saddle-node homoclinic orbit curvesare almost overlaid.5 ConclusionThis paper has presented a toolbox for homoclinic bifurcation analysis, collecting and extendingvarious recent developments. The resulting software, called HomCont, allows one to continuesaddle and saddle-node homoclinic orbits satisfying certain conditions, in two or more param-eters, and to switch easily between di�erent continuation problems.In fact, although not mentioned above, HomCont also supports the continuation of hetero-clinic orbits connecting two hyperbolic equilibria in an appropriate number of free parametersdepending on the codimension of the connection. However, none of the test functions providedare speci�cally designed for such orbits.We have also ignored explicit reference to systems with special properties like equivariance,reversibility or Hamiltonian structure. In some cases, such a system provides no extra compli-cations, for example when an orbit is not invariant under a discrete symmetry or reversibilitytransformation under which the underlying di�erential equation is invariant. In this case wesimply continue one of the symmetry-coupled homoclinic orbits. However, certain test func-tions may not have meaning in these situations. The case when the homoclinic orbit is invariantrequires separate treatment (see Champneys & Spence (1993) for reversible homoclinic orbitsand Aronson, van Gils & Krupa (1994) for some results on inclination 
ips in systems withZ2-symmetry).In the case of Hamiltonian systems, homoclinic orbits appear in continua, thus the basicproblem is that of one-parameter continuation. Given a system of the form_x = JrH(x; �); x 2 R2n; � 2 R;where J is the usual skew-symmetric (2n � 2n) matrix, one can however use a trick employedby Beyn (1990b) which consists of performing two-parameter continuation in (�; ") of a non-30



degenerate homoclinic orbit of the modi�ed system_x = JrH(x; �) + "rH(x; �):Here " is an arti�cial parameter which is zero along the true homoclinic branch. One couldthen use HomCont directly on the modi�ed system.As already mentioned there are many codim 2 or higher degeneracies of homoclinic bifurca-tions that we have not treated, notably cases involving multiple homoclinic orbits or collisionbetween the homoclinic orbit and another invariant set (e.g. another equilibrium or a limitcycle). We have also not discussed the possibility of branch switching to bifurcation curvesemanating from codim 2 homoclinic bifurcations. In particular, there are several cases wherecurves of double homoclinic orbits bifurcate from the primary one (see Champneys & Kuznetsov(1994) and references therein). In some cases the emanating curves are exponentially close tothe primary homoclinic branch, locally. One approach to treating both this problem and thecomputation of homoclinic orbits approaching heteroclinic cycles is to be able to solve coupledpairs of boundary value problems, de�ning two separate pieces of a single orbit and to be ableto switch between double and single boundary value problems.We hope that the presented toolbox will prove useful for both applications and for thedevelopment of new theoretical results and numerical algorithms for global bifurcations.6 AcknowledgementsThe authors acknowledge the support of a Nu�eld Foundation \Newly Appointed ScienceLecturer" grant and a visiting fellowship grant from the EPSRC, UK.ReferencesAronson, D., van Gils, S. & Krupa, M. (1994), `Homoclinic twist bifurcations with Z2 symme-try', J. Nonlinear Sci. 4, 195{219.Bai, F. & Champneys, A. (1994), Numerical detection and continuation of saddle-node ho-moclinic bifurcations of codimension one and two, Technical report, University of Bath.Mathematics Preprint 94-04.Belyakov, L. & Shil'nikov, L. (1990), `Homoclinic curves and complex solitary waves', SelectaMathematica Sovietica 9, 219{228. 31
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