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COMPUTING ONE-DIMENSIONAL GLOBAL MANIFOLDS OF
POINCAR�E MAPS BY CONTINUATION

J.P. ENGLAND�, B. KRAUSKOPF�, AND H.M. OSINGA�

February 2005

Abstract. We present an algorithm to compute one-dimensional stable and unstable manifolds
of saddle periodic orbits in a Poincar�e section. The computation is set up as a boundary value
problem by restricting the beginning and end points of orbit segments to the section. Starting from
the periodic orbit itself, we use collocation routines from AUTO to continue the solutions of the
boundary value problem such that one end point of the orbit segment varies along a part of the
manifold that was already computed. In this way, the other end point of the orbit segment traces
out a new piece of the manifold.

As opposed to standard methods that use shooting to compute the Poincar�e map as the k-th
return map, our approach de�nes the Poincar�e map as the solution to a boundary value problem.
This enables us to compute global manifolds through points where the ow is tangent to the section
| a situation that is typically encountered unless one is dealing with a periodically forced system.
Another major advantage of our approach is that it deals e�ectively with the problem of extreme
sensitivity of the Poincar�e map on its argument, which is a typical feature in the important class of
slow-fast systems.

We illustrate and test our algorithm by computing stable and unstable manifold in three ex-
amples: the forced Van der Pol oscillator, a model of a semiconductor laser with optical injection,
and a slow-fast chemical oscillator. All examples are accompanied by animations of how the manifolds
grow during the computation.

Keywords: Poincar�e map, stable and unstable manifolds, boundary value prob-
lem, slow-fast systems

AMS subject classi�cation: 37D10, 37M20, 37C10, 65L10

1. Introduction. The study of global dynamics plays an increasingly important
role in investigating the behavior of a dynamical system. Particularly in a parameter-
dependent setting, a local analysis will provide information about bifurcations of
steady states or periodic orbits, but global bifurcations typically involve global stable
and unstable manifolds of these objects. Global invariant manifolds must be com-
puted numerically and this remains a challenging and active area of research; see, for
example, [20, 21] and references therein.

We consider here the problem of computing a one-dimensional stable or unstable
manifold of a saddle point p0 of a Poincar�e map P of a vector �eld; see section 2
for formal de�nitions. The saddle point p0 corresponds to a periodic orbit � that
intersects the chosen Poincar�e section � transversely. In a local neighborhood U � �
of p0 the map P is a well-de�ned di�eomorphism, which is given as the (�rst) return
of the trajectory through a given point x 2 U to the neighborhood U .

There are many algorithms available for computing one-dimensional stable and
unstable manifolds of di�eomorphisms; see, for example, [12, 17, 24, 31] and references
therein. While each algorithm has its own particular avor, they all start from an
approximation of the local stable or unstable manifold near the saddle point and then
globalize or grow the manifold away from the saddle. In particular, the map must be
well de�ned, which is clearly the case for explicitly de�ned di�eomorphisms, such as
the H�enon map. These algorithms can also be used for Poincar�e maps of vector �elds,
provided that two requirements are ful�lled:
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(i) The Poincar�e map P is a well-de�ned di�eomorphism in a region of interest
of phase space, and

(ii) P (x) can be computed e�ectively and accurately by solving the initial value
problem for the initial condition x.

Note that requirement (ii) means that P (x) should not depend too sensitively on the
argument x: if a change of x below the accuracy of the computation has an order-one
e�ect on P (x) then P cannot be computed accurately in the usual way by solving the
initial value problem.

It is important to realize that requirement (i) is not globally satis�ed in the
case of a general vector �eld without periodic forcing: irrespective of the choice of
the section �, the Poincar�e map P is not a di�eomorphism on the whole of �. In
fact, if a Poincar�e map is a globally-de�ned di�eomorphism, then it is equivalent to
the stroboscopic map of a periodically forced system [30]. Periodically forced vector
�elds are an important class of systems; examples include the forced Van der Pol
and forced Du�ng equations; see, e.g., [9, 27]. Indeed, the Poincar�e map P of a
periodically forced vector �eld is a di�eomorphism on the entire section � and can
typically be computed accurately by integration over the forcing period. On the other
hand, if the vector �eld under consideration is not periodically forced then P is only
a local di�eomorphism near p0, namely as long as the ow remains transverse to the
section �. Further away from p0 the ow must become tangent to �. At such a
point the Poincar�e map, de�ned by a �xed number of intersections with �, is not
a di�eomorphism and typically not even continuous. The locus, which we denote
by C, where the ow is tangent to �, divides � into di�erent regions on which a
local Poincar�e map can be de�ned (as the return map to this part of the section).
There may also be regions where P is unde�ned, meaning that points in such a region
never return to �. Standard methods can be used to compute stable and unstable
manifolds up until the discontinuity boundary C is reached, but will not be able to
compute parts of the manifolds that cross C. It may be possible to continue such a
computation by restarting the algorithm in the next region by rede�ning the Poincar�e
map (e�ectively by considering a di�erent number of intersections with �). This is
done, for example, in [3] where the algorithm of [17] was adapted, but the method is
quite cumbersome and ad-hoc.

Requirement (ii) is not satis�ed for the important class of slow-fast systems. In
their simplest form, slow-fast systems have two di�erent timescales, such that one
variable changes much faster relative to the other. In fact, �nding the saddle point
p0 (by computing the associated periodic orbit �) may already be very di�cult. Fur-
thermore, the evaluation of P by solving an initial value problem typically leads to
numerical problems, even in a local neighborhood of the saddle p0. As a result, the
computation of global manifolds in slow-fast systems is extremely di�cult and stand-
ard methods break down. It is not uncommon for the stretching/contraction of the
manifold to be of a factor of 106 in these systems, such that a tiny pertubation in the
initial condition may lead to a huge di�erence in the entire orbit segment | the orbit
may not even return to the section.

In this paper we present an algorithm, called the ManBVP algorithm, that is able
to compute the (un)stable manifold of a saddle point p0 2 � even if requirements (i)
and/or (ii) are not satis�ed. Speci�cally, it can deal with

� Poincar�e maps that are not globally de�ned and feature discontinuity bound-
aries C in the region of interest, and
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� Poincar�e maps of slow-fast systems.

The key idea is to continue the entire orbit segment between x and P (x) as a boundary
value problem. The computation of an (un)stable manifold in � is started from
the saddle periodic orbit �, which we �nd by continuation with Auto [4]. The
orbit segment is then continued using pseudo-arclength continuation and collocation
routines from Auto, not as a periodic orbit but as an orbit with both boundary
points in �. The �rst boundary point of the orbit segment is initially varied along
the (un)stable eigenvector of p0 in �. In this way, the other boundary point of the
orbit segment begins to trace out an initial piece of manifold. We then allow the
�rst boundary point to vary along this initial piece and subsequently computed parts
of the manifold, so that the other boundary point continues to trace out more and
more of the (un)stable manifold. New points are added to the approximation of the
manifold at varying distances according to the curvature of the manifold.

The ManBVP algorithm works even if requirement (i) is not satis�ed because the
boundary value problems we are solving, which also contain the integration time T of
the orbit segment from x to P (x), are continuous across C. Put bluntly, we are only
interested in the fact that the end points of the orbit segments lie in � and do not
care how many times the orbit segments intersect � in between. As the computation
moves through C, the orbit used in the continuation automatically gains or loses an
intersections with �. In the computation this corresponds to a change in direction of
the �rst boundary point along the manifold already computed.

Our method also does not require (ii) to be satis�ed because it continues the
entire orbit segment from x to P (x) (with the collocation routine of Auto) from the
given periodic orbit �. Since the distance between orbit segments in the continuation
is measured along the entire orbit segment, the algorithm can deal e�ectively with
even quite severe sensitivity on the initial condition, as one encounters in slow-fast
systems; see section 6 for an example.

The ManBVP algorithm is not limited to systems that do not satisfy requirements
(i) and/or (ii). It can be used in general to compute one-dimensional global manifold
of Poincar�e maps | just like any of the standard methods. However, our method
is slightly more computationally expensive. The di�erence in computation time is
actually less than one may think. After all, any method spends most of the time
integrating the vector �eld to compute P . The ManBVP algorithm simply does this
in a slightly more expensive way by solving/continuing a boundary value problem with
the collocation solver of Auto. An additional advantage is that the computed orbit
segments give an impression of the two-dimensional global manifolds of the periodic
orbit in the full phase space. This gives further insight into the geometry of the
problem.

The performance of the ManBVP algorithm is illustrated in detail with three
examples. Each example is accompanied by animations that show which orbit seg-
ments in the full phase space are used as the computation proceeds. First, we use the
algorithm to compute stable and unstable manifolds in the periodically forced Van
der Pol oscillator. This is a test case example where the result of the computation
can be compared directly with standard methods. Secondly, we investigate an optic-
ally injected semiconductor laser, which gives rise to a non-globally de�ned Poincar�e
map. This is the example from [3] and we use it here to illustrate how our algorithm
automatically computes global manifolds across the discontinuity boundary C. We
also compute disconnected parts of the stable manifold that were not found before.
Third, we compute stable and unstable manifolds of a slow-fast model of a chemical
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oscillator as introduced in [1, 14]. To our knowledge, this is the �rst time that such
a computation was performed in a slow-fast system that is characterized by extreme
di�erence in the absolute sizes of the eigenvalues of the saddle. As a result, the orbit
segments used during the computation are almost identical along about 85% of their
length and only start to di�er at the very end.

The outline of this paper is as follows. In section 2 we introduce some notation and
give some background information. In section 3 we explain the ManBVP algorithm in
detail for the case of an n-dimensional vector �eld. Section 4 shows its performance
for the forced Van der Pol oscillator. In section 5 we consider the non-globally de�ned
Poincar�e map of an optically injected semiconductor laser. The example of the slow-
fast chemical oscillator is discussed in section 6. Finally, we draw some conclusions
and point to future work in section 7.

2. Notation and background. We consider a vector �eld

_x = f(x);(2.1)

where x 2 Rn and f : Rn ! Rn is su�ciently smooth. Of course, f may depend on
parameters, but we are interested here in a single vector �eld where all parameters
are �xed. Furthermore, suppose that (2.1) has a saddle periodic orbit �. That is, �
is a periodic orbit with Floquet multipliers both inside and outside the unit circle of
the complex plane, and only the trivial Floquet multiplier on the unit circle.

The Stable Manifold Theorem [23] guarantees the existence of global stable and
unstable (immersed) manifolds that are as smooth as f . The global stable manifolds
W s(�) and W u(�) are de�ned as the set of trajectories that tend to � in forward and
backward time, respectively:

W s(�) =
�
x 2 Rn j ’t(x) ! � as t ! 1

	

and

W u(�) =
�
x 2 Rn j ’t(x) ! � as t ! �1

	

In order to construct a Poincar�e or �rst-return map one considers an (n � 1)-
dimensional Poincar�e section � transverse to �. (The section � could be any smooth
manifold transverse to �, but one usually works with (n � 1)-dimensional hyper-
planes.) Let p0 be an intersection point of � with �. Due to transversality, there is a
neighborhood U � � of p0 where we can de�ne the Poincar�e map in the usual way as

P : U ! U(2.2)
x 7! ’tx(x)

where ’t is the ow of (2.1) and tx is the time it takes to return to U for the �rst time.
Considering the Poincar�e map is a standard approach in dynamical systems theory,
which has the advantage that the dimension of the system is reduced by one. The
periodic orbit � in Rn corresponds to the point p0 2 U , which is a hyperbolic saddle
point of P . In U the Poincar�e map is a di�eomorphism, that is, a di�erentiable map
with a di�erentiable inverse. Note that ’tx(x) will typically intersect � more than
once, say k times, where all but the last intersection lie outside the neighborhood
U . Therefore, it is a standard approach to de�ne the Poincar�e map P as the k-th
intersection with �. This should not be confused with the fact that one speaks of P
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as the �rst return map, which is meant with respect to return to the neighborhood
U .

As was mentioned in the introduction, unless one considers a periodically forced
system, the Poincar�e map P is not a di�eomorphism on the entire section �. We
de�ne the discontinuity locus C as

C := fx 2 � j f(x):n = 0g(2.3)

where n is the normal to � and the dot denotes the inner product in Rn. (If � is a
smooth manifold, rather than a hyperplane, then n depends on x.) The complement
of C consists of open regions of �. In some of these regions it is possible to de�ne
a local Poincar�e map as the k-th return to � for some positive integer k. However,
there may be regions in which points never return to the section � under the ow ’t,
so that not even a local Poincar�e map can be de�ned.

Since P is a local di�eomorphism near p0, the Stable Manifold Theorem guaran-
tees the existence of smooth (un)stable manifolds W s(p0) and W u(p0) in the region
where P is a di�eomorphism. In this paper we are interested in what happens when
W s(p0) and W u(p0) cross the discontinuity locus C. Therefore, we de�ne (generaliz-
ations of) these manifolds as:

W s(p0) = W s(�) \ �

and

W u(p0) = W u(�) \ �:

Note that this de�nition, has the advantage of being very geometrical. It follows
from the properties of the manifolds W s(�) and W u(�) in Rn that the (generalized)
global manifold W s(p0) and W u(p0) exist and are a union of manifolds in �. The
question of what W s(p0) and W u(p0) look like becomes one of singularity theory:
what are the possible intersections of a smooth l-dimensional manifold in Rn with an
(n � 1)-dimensional hyperplane?

Even in this general setting, it is still easier to compute W s(p0) and W u(p0),
rather than W s(�) and W u(�). To explain how this can be done we restrict to the
case that n = 3 from now on, that is, we consider a two-dimensional Poincar�e plane
� in a three-dimensional phase space. This is an important special case, as is also
shown by the examples in sections 4{6. Furthermore, it is much easier to imagine and
visualize the underlying geometry. Note that now both W s(p0) and W u(p0) are (sets
of) one-dimensional manifolds in �.

A simple example helps to explain the concepts. Suppose that there is a single
saddle-periodic orbit � 2 R3 that is convex (as is the case, for example, after a Hopf
bifurcation). Any section � that intersects � transversely intersects the periodic orbit
in two points, say, p0 and p1. Near both p0 and p1 one can de�ne the Poincar�e map
P as a local di�eomorphism. In the simplest case, the set C is a single smooth curve
where the ow is tangent to the section �. This curve divides the two regions of
de�nition of P .

In this situation, the stable and unstable manifolds of p0 and p1 in � may cross
C. One possibility is that a branch of W s(p0) coincides with a branch of W s(p1),
e�ectively connecting p0 and p1; see already Figure 5.4. This corresponds in the three-
dimensional phase space to the case that � intersects one ‘side’ of W s(�) in a single
curve. There are other, more complicated possibilities of how � may intersect W s(�).
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x1 x2 x3

P (x1)P (x2)P (x3)

1 1 2 3 2 12 3 4

xc

§

Fig. 2.1. When de�ned as the second return to the section �, the Poincar�e map is discontinuous
at the tangency point xc 2 C. However, when P is continued as the boundary value problem (2.4)
then it is continuous at xc.

For example, the intersection in � may consist of a closed curve that corresponds to
a piece of W s(p0) that is not connected to any saddle. While a systematic discussion
of all possibilities is beyond the scope of this paper, section 5 gives a good impression
of some of the possibilities.

A �nal, important point is how one can compute the Poincar�e map P . Except
in very special cases, there is no explicit form for P , so that it must be computed
numerically. The most common technique to approximate P is by solving the initial
value problem for x, that is, to integrate (2.1) until (the approximation of) ’tx(x) lies
again in U � � for some tx. Then P (x) = ’t�

(x) and tx = t�.
The point we take in this paper is that one should think of the Poincar�e map not

only as assigning P (x), but as assigning the entire orbit segment f’t(x) j 0 � 0 � txg.
This segment is the solution u of the two-point boundary value problem that solves
(2.1) subject to the boundary conditions

u(0) = x 2 U � � and u(T ) 2 U � �;(2.4)

where T = tx. The usual way of solving the initial value problem for x to �nd P (x)
can be interpreted as solving (2.4) by single shooting.

When solving the boundary value problem (2.4) by collocation with Auto the
integration time T is automatically solved for; see section 3 for details. The key
advantage is that a curve of C with adjacent regions where the Poincar�e map can
be de�ned locally as the k-th return and the (k + 2)-nd return to �, respectively, is
no longer a discontinuity boundary in the space of boundary value problems. The
situation is sketched in Figure 2.1. Therefore, the ManBVP algorithm is perfectly
capable of computing global manifolds across such discontinuity curves.

Furthermore, the boundary value problem approach also deals e�ciently with the
problem of sensitivity of the integration with respect to the initial condition, which is
a hall-mark of slow-fast systems. It is generally accepted that the best way of �nding
even a periodic orbit in a slow-fast system is to solve the associated boundary value
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problem. An e�cient and reliable method is Gauss collocation as used, for example,
in Auto [4] or Content [22]; see also [10] for an alternative approach. We essentially
take this insight to its logical conclusion and also use this boundary value problem
approach for computing global manifolds. The ManBVP algorithm uses this same
optimal theoretical setup. It is able to compute global manifolds in systems with very
di�erent time scale, of up to 8 orders of magnitude di�erence, as is demonstrated with
the example in section 6.

3. Algorithm. We explain the ManBVP algorithm for the computation of a
one-dimensional unstable manifold W u(p0) of a saddle periodic orbit p0 2 �; that is,
p0 has a single unstable eigenvalue j�uj > 1. The stable manifold can be computed
in exactly the same way by reversing time. We assume that �u is greater than zero
so that the Poincar�e map is orientation preserving on W u(p0); if �u < 0, then the
periodic orbit � used to start the computation must be covered twice such that its
period is doubled.

We calculate an approximation of W u(p0) as an ordered list of mesh points M =
f�0; �1; ::; �N g up to a prescribed arclength A. In between mesh points we use linear
line segments. The points �k lie in � at varying distance from each other depending
on the curvature of the manifold. Our methods grows the manifold by computing one
mesh point after another, and it can be seen as an adaptation of the method in [17]
to the speci�c context of general Poincar�e maps.

To compute points �k we follow entire orbit segments that de�ne the Poincar�e
map by continuation of a two-point boundary value problem by starting from the
periodic orbit �. The initial point of the orbit segment varies continuously, initially in
the direction of the unstable eigenvector, along a part of the manifold that was already
computed. The end point then traces out a new part of W u(p0) in �. A new point
�k+1 is added to M whenever requirements on the distance between points are reached
that depend on the curvature of W u(p0). In this way, the algorithm automatically
selects a minimum set of points for rendering the manifold in � according to prescribed
accuracy criteria. A pseudo-code representation of how a branch of unstable manifold
is grown is given in Figures 3.2 and 3.3. The main step of the ManBVP algorithm is
illustrated in Figure 3.1.

To solve the boundary value problems we use the orthogonal collocation routines
of Auto [4]. We ensure that the computation is accurate by increasing the number
of mesh points used in the collocation if necessary.

During a computation we can also record the orbit segments uk (from � back to
�) that are used to �nd the points �k = uk(1) that are added to M . These orbit
segments give a good impression of the relevant part of the two-dimensional manifold
W u(�) of the associated periodic orbit � of the vector �eld.

3.1. Computing the periodic orbit. We need to supply the algorithm with
initial data before the start of a computation. Namely, we need a saddle periodic
orbit that intersects the Poincar�e section � at a point p0, and we need the unstable
eigendirection on �. An approximation for the periodic orbit � = fx(t) j 0 � t � Tg,
where T > 0 is the minimal period of the orbit, can be found either by direct analysis
or, if the right-hand side f of (2.1) depends on a parameter, by continuation for
example, from a Hopf bifurcation.

We use Auto for the continuation of the two-point boundary value problem in
our algorithm, which means that the total integration time must be scaled to the
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interval [0,1]. Hence, the periodic orbit � is a solution of the system

u0(t) = Tf(u(t));(3.1)

with boundary condition

u(1) � u(0) = 0;(3.2)

that is, � = fu(t) j 0 � t � 1g = fx(tT ) j 0 � t � 1g. The period T is now a
parameter of the system. Note that an approximation of � obtained with Auto will
already be in this scaled form. Otherwise Auto routines can be used to scale the
integration time so that the problem formulation is in the required format.

To set up the computation in the Poincar�e section � we need to shift the periodic
orbit such that u(0) = u(1) = p0, where p0 is the intersection of � with � that we are
concerned with. This is done by shifting all the mesh points of the discretized orbit
such the last mesh point of the orbit is closest to �. Linear interpolation is then used
to �nd a point on �, which is added to the mesh as the start and endpoint of the
orbit. We correct this orbit using Newton’s method in Auto subject to the imposed
boundary conditions,

u(0) 2 �;(3.3)

u(1) 2 �:(3.4)

This shifted and corrected orbit is denoted by u0(t) and is one part of the starting
data. Note that � typically intersects � in points other than p0, but only p0 is
recognized as the point of interest, since p0 = u0(0) = u0(1).

3.2. Computing the eigenvector. We also use Auto to �nd Eu(p0), the linear
approximation of W u(p0). Speci�cally, we �nd Eu(p0) as the intersection of the linear
eigenspace Eu(�) with �. To this end, we extend the system to compute the �rst
variational equation

u0(t)
v0(t)

=
=

T f(u(t));
T Df(u(t)) v(t);

u 2 Rn;
v 2 Rn;(3.5)

where u0(t) is the same as (3.1) and T Df(u(t)) is its Jacobian matrix. Here, we use
the boundary condition (3.2) with the additional condition

v(1) � �1v(0) = 0;(3.6)

such that the orbit is periodic and the vector v, which gives the direction of the
derivative at each mesh point, extends in length by a factor �1 over one period of
the orbit. Here, �1 is a free parameter, and a branching bifurcation takes place along
the trivial solution branch v = 0 at �1 = �u. We also require the so-called integral
Floquet eigenfunction normalization by imposing that

Z 1

0
v(t) � v(t) � �2dt = 0:

Here, �2 represents a ‘distance’ along the eigenfunction and is again a free parameter.
Finally, if u(t) is a solution, u(t+�) is also a solution for any �. To ensure uniqueness
of the periodic orbit, we use the phase condition

Z 1

0
u(t) � u0

old(t)dt = 0
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where uold(t) is the previous solution computed in the continuation, which �xes �.
The extended system (3.5) is initialized using the periodic orbit u0(t) and the

trivial vector bundle 0 for v. The free parameters of the system are the period T ,
�1, which is initialized at an approximation of the unstable Floquet multiplier, and
�2, which is initialized at zero. In the �rst run a branching bifurcation is detected at
�1 = �u. We switch branches such that we continue along the eigenfunction v and
continue the solution up to a pre-speci�ed distance. This gives the unstable Floquet
vectors at every mesh point of the periodic orbit forming a \ribbon" of Eu(�) that
intersects �.

The linear line �eld that de�nes Eu(�) typically intersects � in a curve, rather
than a straight line. The eigenspace Eu(p0) is obtained by projecting the direction of
Eu(�) with base point p0 onto �. Note that Eu(p0) is tangent to Eu(�) \ � at p0.
In this paper we compute Eu(p0) by projection, which provides good starting data
for all examples that we considered. However, it is also possible to compute a small
segment of Eu(�) \ � as the initial approximation to W u(p0); see [8] for a discussion
in the context of delay di�erential equations.

3.3. Boundary conditions and user-de�ned functions. To set up notation,
let

Li(�) = (1 � �) �i�1 + ��i; 0 � � � 1:

denote the (parameterized) line segment between the already computed points �i�1
and �i. In the course of the ManBVP algorithm we allow one boundary point to vary
along Li(�), which means that the current solution u satis�es the additional boundary
condition

u(0) � Li(�) = 0:(3.7)

Furthermore, we require that u(1) lies in �, that is, we require (3.4). Note that (3.7)
replaces (3.3), because it automatically ensures that u(0) 2 �.

As u(t) is continued, u(0) moves along the line segment Li(�) and u(1) traces
out a new piece of manifold. In order to detect during a computation that the end of
the line segment Li(�) has been reached we introduce the user-de�ned functions

UZ(0) = �;(3.8)
UZ(1) = � � 1:(3.9)

To decide when to generate the next point �k+1 we consider the distance between the
end boundary point and the last computed point, which we de�ne as

�k = ku(1) � �kk:(3.10)

Furthermore, we monitor the angle

�k = \(�k�1; �k;u(1))(3.11)

between the last two computed points and the end boundary point of the current orbit.
We pre-specify the accuracy conditions as in [17] and continue the orbit segment until
�k = �max or �k�k = (��)max. These conditions are evaluated as Auto user-de�ned
functions

UZ(2) = �max � �k;(3.12)
UZ(3) = (��)max � �k�k:(3.13)
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For all the examples in this paper we use the accuracy conditions �max = 0:3 and
(��)max = 10�5.

As is discussed in [17], there may be sharp folds in the manifold that require an
extremely small �k, which is beyond computational numerical accuracy limitations.
Therefore, we specify the user-de�ned function

UZ(4) = �min � �k:(3.14)

If we detect UZ(4)=0 as u(1) traces out the manifold, and either �k > �max or
�k�k > (��)max, then we accept the endpoint of the orbit segment as a new mesh
point in M and give a warning message to the user. For the examples in this paper
we used �min = 10�4.

The accuracy control of the ManBVP algorithm is performed by monitoring the
same user-de�ned accuracy conditions as the method for di�eomorphisms in [17]. The
additional computational error from the boundary value problem can be controlled
independently. Therefore, the overall accuracy of a manifold computation up to a
prescribed arclength can be estimated in the same way. Note that this estimate
depends on | generally unknown | Lipschitz constants, so that no a priori bounds
are available. As is common in the �eld, the accuracy of a computation can be checked
by comparison with a computation of increased accuracy.

3.4. Starting the computation. The computation starts from the periodic
orbit � in the form u0, which satis�es the boundary conditions (3.4) and (3.7). Note
that we no longer require boundary condition (3.2).

We begin the continuation with u(t) = u0(t), set �0 = p0, and allow u(0) to vary
along Eu(p0). We temporarily de�ne, for the initial continuation only, the point �1
as �0 + �maxv0, where v0 is the eigendirection spanning Eu(p0) and �max is small and
speci�ed by the user. With this de�nition of �1 the initial line segment L1(�) is well
de�ned. In this setup, � varies in the interval [0,1] such that the start boundary point
of the orbit segment moves from p0 along the unstable eigendirection up to a small
distance �max. The free continuation parameters are � , the distance along Eu(p0),
and T , the period of the orbit. Initially, � = 0, u(0) = u(1) = p0 and T is the period
of u0, that is, of the period of �.

We also need to reformulate the accuracy conditions slightly di�erently for the
�rst continuation away from p0. We de�ne the distance

�1 = ku(1) � u(0)k

and the angle

�1 = \(p0;u(0);u(1));

That is, we use the begin and the end boundary points of the solution u. When either
of the accuracy conditions are met then the continuation stops and we set �1 = u(0)
and �2 = u(1). We now have the �rst three points of our approximation of W u(p0),
which are added to the list M . We also have the orbit segment whose end point is
the last computed point �2 stored in memory as u2(t) = u(t).

To �nd the next point �3, we simply vary u(0) along the line segment L2(�)
de�ned in the usual way by �1 and �2. Since the current solution u(t) has its start
point at �1 and its end point at �2, we set � = 0.

10
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Fig. 3.1. Graphical illustration of the ManBVP algorithm. A new point �k+1 is found by
continuation of the known orbit segment uk(t) with uk(0) 2 Li(�) and uk(1) = �k until uk+1 is
found with the property that its endpoint lies at distance �k from �k and either �k = �max or
�k�k = (��)max.

3.5. The general step of �nding �k+1. A general step of the algorithm con-
sists of continuing solutions of the boundary value problem (3.4) and (3.7) by calling
the respective Auto routines from the main program. Recall that this means that
the end point u(0) lies in the line segment Li(�), that is, between �i�1 and �i. The
computation stops when one of the user de�ned functions UZ(0){UZ(4) that are mon-
itored has a zero; see (3.8), (3.9), (3.12), (3.13), (3.14).

If either UZ(0) or UZ(1) is zero, then the end point u(0) tracing the computed
piece of W u(p0) has reached the end of the interval Li(�). In this case the computation
is restarted by allowing this end point to be in Li�1(�) or Li+1(�), respectively. It is
possible that during the computation the end of Lk, that is, of the computed mesh, is
reached. In this case we add �k+1 = u(1) as the new mesh point to M , which ends this
step. This situation typically arises at the very beginning of a computation, because
the initial point �2 (as found in section 3.4) is still very close to the saddle point p0.
The above step is often repeated, which e�ectively means that the point �2 is iterated
under the Poincar�e map until the distance between iterates is large enough. On the
other hand, it may be that W u(p0) converges to an attracting �xed point, which is
detected when the boundary point u(0) reaches the end of the computed mesh and
u(1) is at distance less then �min from �k = u(0). In this case the algorithm stops.
Similarly, the end of L0 may be reached, which means that the boundary point u(0)
has returned to the �xed point p0. In this case the computation stops; for an example
see section 5.
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If either UZ(2) or UZ(3) is zero then the other end point u(1) lies at the desired
distance from the last point �k in M , according to the prescribed accuracy conditions
(3.12){(3.13). We de�ne �k+1 = u(1) and add this point to the list M . This �nishes
the step. The next point �k+2 is then found in the same way, by starting the continu-
ation from the present solution u, using Li with the present � -value in [0; 1] (that is
not equal to either 0 or 1).

As was mentioned in section 3.3, a zero of UZ(4) may be detected when the
manifold folds so sharply that the distance between �k and �k+1 would be below the
minimal prescribed distance �min. If this is detected, we accept �k+1 = u(1) as a
new point of M , while giving a warning message to the user.

It is typical that the solution u becomes much longer and more complicated during
the computation of W u(p0). To avoid problems of convergence of the collocation
routine of Auto we automatically adapt the number of mesh points along the solution
when Auto fails to converge to a solution after the prescribed number of Newton
iterations.

The algorithm stops when the total required arclength is reached, or if the mani-
fold converges to an attracting �xed point of the Poincar�e map (which is detected as
was explained above).

12



Global Variables:

� the saddle periodic orbit fu0(t) j 0 � t � 1g.
p0 intersection point of � with the Poincar�e section �. (saddle of Poincar�e map.)
v0 unstable eigenvector of p0.

ManBVP (Maximum distance between p0 and �1: �max, target arclength: A)
u(t) = u0(t);
(�i�1; �i) = (p0; p0 + �maxv0;
� = 0;
(u2(t), �) = BVP Step(u(t), �i�1, �i, p0, null, �);
�0 = p0;
�1 = u2(0);
�2 = u2(1);
M = f�0; �1; �2g;
arclength = k�2 � �1k + k�1 � �0k;
u(t) = u2(t);
� = 0;
while (arclength < A)

�k = last point in M ;
�k�1 = next to last point in M ;
repeat

(u(t), �) = BVP Step(u(t),�i�1,�i, �k�1,�k, �);
if (� = 1) then

(�i�1; �i) = (�i; �i+1); /* switch to line segment [�i; �i+1] */
� = 0;

else if (� = 0) then
(�i�1; �i) = (�i�2; �i�1); /* switch to line segment [�i�2; �i�1] */
� = 1;

end if
until (� 6= 0 and � 6= 1)
uk+1(t) = u(t);
�k+1 = uk+1(1);
append(M; �k+1);
arclength = arclength + k�k+1 � �kk;

end while
return M ;

end.

Fig. 3.2. A pseudo-code representation of the ManBVP algorithm, which calls BVP Step in
Figure 3.3 for the continuation of the orbit segment with u(0) varying over (�i�1; �i).
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BVP Step (Current stored orbit: u(t), �i�1, �i, �k�1, �k, �)
Auto Continuation Free Parameters:

ICP(0) = � ;
ICP(1) = Period T ;

Auto Continuation boundary conditions:
Li(�) = (1 � �)�i�1 + ��i;
u(0) 2 Li(�);
u(0) 2 �;
u(1) 2 �;

Auto Continuation user-de�ned functions:
if (�k = null) then

�k = u(0); /* First run, use u(0) to compute � */
end if
�k = \(�k�1; �k ;u(1)); /* angle between �k�1, �k and u(1). */
�k = ku(1) � �kk; /* distance between last two points */
UZ(0) = � ;
UZ(1) = � � 1;
UZ(2) = �max � �k;
UZ(3) = (��)max � �k�k;
UZ(4) = �min � �k;

while (UZ(0) > 0 and UZ(1) < 0) /* 0 � � � 1 */
u = Auto Continuation Step;
Update free parameters and user-de�ned functions;
if (UZ(2) = 0 or UZ(3) = 0)

/* Reached limit of accuracy conditions */
break;

end if
if (UZ(4) = 0 and (UZ(2) < 0 or UZ(3) < 0))

/* Accuracy conditions already exceeded when � = �min,
Accept point anyway. */

print warning: \Accuracy conditions exceeded at � = �min";
break;

end if
end while
return (u(t), �);

end.

Fig. 3.3. The BVP Step routine, which uses Auto continuation and collocation to �nd the
orbit segment u(t), where u(0) varies along the line segment Li(�); see also Figure 3.2.
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4. The Forced Van der Pol oscillator. Our �rst example we consider as a
test case of a globally-de�ned Poincar�e map, namely that of the forced Van der Pol
oscillator, a well-known periodically driven system; see [9, 11, 25]. The system can be
written in the form of a three-dimensional vector �eld as

_x
_y
_t

=
=
=

y;
�x � �

�
x2 � 1

�
y + � cos!t;

1;
(4.1)

where �, � and ! are positive real parameters. The original unforced Van der Pol
oscillator, with � = 0, describes an RLC-circuit with a nonlinear resistor that gives
rise to oscillations in voltage and current; see [11] as a general reference. Here, �
describes how quickly the slow phase recovers, � is the amplitude of the forcing and
! the forcing frequency.

We consider here the Poincar�e map P , de�ned as the stroboscopic map taken
every period 2�=! of the forcing term. As for any periodically forced system, this
Poincar�e map is globally de�ned on the sections �k = ft = 2k�=!; k 2 Zg (which can
be identi�ed). For � = 0:4, � = 0:375 and ! = 0:893, a saddle periodic orbit � exists
that intersects �k at p0 � (1:178; �0:772). We compute the one-dimensional stable
and unstable manifolds W s(p0) and W u(p0) in the Poincar�e section �0 for the forced
Van der Pol oscillator as a test case for the ManBVP algorithm. For this globally
de�ned Poincar�e map the manifolds could be computed with any one-dimensional
manifold algorithm. The parameters are chosen such that the computed manifolds
may be directly compared with those computed in [18].

Figure 4.1(a) shows W u(p0) (red) and W s(p0) (blue) computed with the ManBVP
algorithm. A sink is located approximately at (x; y) = (2:062; �0:098); this is the
intersection of an attracting periodic orbit with �k, and is indicated by a blue triangle.
A repellor is the intersection of a repelling periodic orbit with �k, indicated by the red
square at approximately (x; y) = (0:952; �0:785). Both branches of W u(p0) converge
to the sink and the left branch of W s(p0) spirals in toward the repellor. Figure 4.1(b)
shows all the orbit segments that were used in the computation of W s(p0) and W u(p0),
together with the sections ��1, �0 and �+1 (green planes). During the computation
of W u(p0), the boundary point u(0) of each of the orbit segments lie in �0 and the
boundary points u(1) lie in �+1. For the computation of W s(p0) time is reversed, so
that for the orbit segments used to compute W s(p0), the boundary point u(1) lies in
��1. As is common, the computed points on �+1 and ��1 are used on �0 and added
to W u(p0) and W s(p0), respectively.

Figure 4.2 further illustrates the unstable manifold computation by showing the
orbit segments associated with the mesh points used to compute W u(p0). The saddle
periodic orbit � is the green curve that intersects both sections at p0. The boundary
point u(0) of an orbit segment is allowed to vary in �0 along the section of W u(p0) that
was already computed. The boundary point u(1) of the orbit segment then traces out
a new piece of manifold in �+1. The orbit segments shown are those corresponding to
the computed points on W u(p0); they vary in color from dark red to light red in the
computation. Notice how the orbit segments at the end of each branch tend to the
attracting periodic orbit (cyan curve). The �gure also gives a good impression of the
two-dimensional unstable manifold W u(�), which forms a cusped torus for the chosen
parameters; compare [18, Figure 5]. Figure 4.2(b) gives an enlarged view near �+1
and clearly shows how the points u(1) trace out W u(p0). Notice also the repelling
periodic orbit (red) inside the torus.
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Fig. 4.1. The global manifolds of system (4.1) for � = 0:4, � = 0:375 and ! = 0:893. Panel
(a) shows the saddle p0 and it unstable and stable manifolds, W u(p0) (red) and W s(p0) (blue),
respectively. One side of W s(p0) spirals into a source (red square) and both sides of W u(p0) connect
at a sink (blue triangle). The orbit segments that are associated with the mesh points generated by
the ManBVP algorithm are shown in panel (b). 16
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Figure 4.3 further illustrates the computation of W s(p0). Orbits on the stable
manifold accumulate on the saddle in forward time. Therefore, to grow the manifold
from the saddle we need to reverse time. This means that orbit segments now ow
from �0 to ��1. As u(0) of an orbit segment is allowed to vary along a section
of W s(p0) in �0 that has already been computed, u(1) traces out a new piece of
W s(p0) in ��1; the orbit segments vary in color from dark blue to light blue as the
computation progresses. An enlarged view near �+1 is shown in Figure 4.3(b) to
highlight how W s(p0) spirals in toward the repelling periodic orbit (red).

5. Semiconductor laser with optical injection. In this section we investig-
ate a semiconductor laser with optical injection as an example of a system that does
not have a globally de�ned Poincar�e map. Optical injection gives rise to rich dynamics
in the laser including oscillations in the electric �eld and even chaos; see, for example,
[28, 29]. The laser is modeled by the so-called rate equations

_E
_n

=
=

K +
� 1

2 (1 + i�) n � i!
�
E;

�2n � (1 + 2Bn)
�
jEj2 � 1

�
;(5.1)

where E = (Ex; Ey) is the complex electric �eld and n is the population inversion
(number of electron-hole pairs) [28]. The injected �eld strength is given by K and the
detuning (between the frequency of the free-running laser and the injected frequency)
by !. The material properties of the laser are given by �, B and . We use the
parameters � = 2, B = 0:015,  = 0:035, and choose ! = 0:270 and K = 0:290, as
in [3]. We study the Poincar�e map P on the section given by the plane � = f(E; n) :
n = 0g. A saddle periodic orbit � intersects the section four times at fp0; p1; p2; p3g,
which we interpret as four-periodic points of P when P is the �rst return to �. The
Poincar�e map is discontinuous on the circle C where the ow is tangent to the section,
given by jEj = 1. For jEj < 1 the ow through the section is upward (in the direction
n > 0) and for jEj > 1 the ow is downward (in the direction n < 0).

The stable and unstable manifolds were computed in [3] with an adaptation of
the algorithm of Krauskopf and Osinga [17]. This adaptation enabled the manifolds
to be computed past C. This was done in [3] in quite an ad-hoc way by changing the
number of intersections with � in the computation of the Poincar�e map by shooting.
Our method is able to compute a manifold automatically past points where P is
discontinuous, that is, where the manifold crosses C. During the continuation the
boundary conditions only require that the end points of the orbit segment lie in the
section and it does not matter how many times the orbit segment intersects � in
between. As the point u(1) of the solution of the boundary value problem passes
through C, the solution changes continuously into an orbit segment with one fewer
or one extra intersection and, e�ectively, the number of intersections with � changes
automatically; see already Figure 5.3.

Figure 5.1(a) shows all manifolds that we computed for system (5.1) in the Poin-
car�e section � with the ManBVP algorithm. The saddles fp0; p1; p2; p3g are indicated
by green crosses and a period-four sink is indicated by blue triangles. For clarity, some
of the manifolds are highlighted in Fig. 5.1(b){(d). Figure 5.1(b) shows the stable
manifolds that spiral in toward single points of the Poincar�e map P . The two branches
starting from p1 and p3 never interact with the discontinuity curve C. Here, every
point on the manifold is associated with an orbit segment that returns to � exactly
four times. The two branches from p0 and p2, on the other hand, cross the curve C
several times. A similar observation can be made in Figure 5.1(c) where branches of
the stable manifold cross C. Note that for the branches shown here W s(p0) = W s(p3)
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Fig. 5.1. The stable and unstable manifolds, as computed by the ManBVP algorithm, of the
four-periodic saddle fp0; p1; p2; p3g (green crosses), of (5.1) in the Poincar�e section fn = 0g for
parameters � = 2, B = 0:015, ! = 0:270, K = 0:290 and � = 0:035. The Poincar�e map is
discontinuous along the unit circle C (black curve). Panel (a) shows all stable and unstable manifolds
connected to the periodic orbit and also two disjoint branches of the stable manifold. Panel (b)
highlights just the stable manifolds that spiral into single points. Panel (c) highlights the branch
of stable manifolds that join two of the saddle points. Panel (d) highlights two (of many) disjoint
pieces of manifold.

and W s(p1) = W s(p2), that is, these branches connect di�erent saddles. Figure 5.1(d)
shows another property of the manifolds that can only happen for non-globally de�ned
Poincar�e maps. Namely, this panel shows two branches of the stable manifold that
are not connected to any of the four saddle points. The computation of each of these
di�erent branches is discussed in more detail below.

5.1. Unstable manifolds. The unstable manifolds of all the saddle points are
shown in Figure 5.1(a). A standard algorithm for the computation of unstable man-
ifolds would de�ne P as the fourth intersection with � so that each of these four-
periodic points becomes a �xed point of the system. The ManBVP algorithm starts
from the periodic orbit � in the full system and it is not necessary to identify how
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Fig. 5.2. The unstable manifolds of the points fp0; p1; p2; p3g as computed in �. The orbit
segments that are used in the computation of W u(p3) (red curves) give an impression of the entire
two-dimensional manifold of � (green curve). One side of the unstable manifold tends to a period-
two attractor (cyan curve), whilst the other side accumulates on a chaotic attractor.

often � intersects �. Figure 5.2 shows the orbit segments used in computing W u(p3);
the computations of the other unstable manifolds are similar. The orbit color varies
from dark red to light red as the computation of each branch progresses. The orbit
segments give an impression of the entire two-dimensional unstable manifold W u(�).
One side of W u(�) tends to a stable periodic orbit, whose intersections with � are the
period-four sinks of the �rst-return map. The other side of W u(�) accumulates on a
chaotic attractor, which is the reason for the ‘randomness’ in the color of the orbit
segments. As illustrated in Figure 5.2 the unstable manifolds do not interact with the
discontinuity boundary C so that they can be computed with a di�erent method.
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5.2. Crossing the discontinuity boundary. Let us now focus on the left
branch of W s(p0) as shown in Figure 5.1(c). This is more clearly illustrated in Figure
5.3. The saddle periodic orbit � is shown in green and all the orbit segments on
W s(�) are blue. Row (a) shows all the orbit segments used in the computation of an
initial piece of the stable manifold before it intersects C together with the time pro�le
of the last orbit segment computed. Since, we are computing a stable manifold, we
change the direction of the ow. Observe that all the orbit segments start near p0
and (in negative time) ow downward from �. They next intersect � near p3 and so
on until they return to � for the fourth time. The boundary points u(1) of the orbit
segments form the initial piece of W s(p0). The time pro�le in Figure 5.3(a2) shows
three intersections with � (green line) between u(0) and u(1); note that the end of
the orbit segment is owing downward into the section. Row (b) in Figure 5.3 shows
the computation up to the point where the manifold intersects C. The time pro�le
in panel (b2) shows that the last computed orbit segment still has three intersections
with the section between u(0) and u(1), but now the orbit segment is tangent to � at
the boundary point u(1). Row (c) in Figure 5.3 shows the orbit segments used in the
computation after the manifold has been computed past C. The time pro�le in panel
(c2) shows that there are now four intersections of the last computed orbit segment
with � between u(0) and u(1).

Comparing Figure 5.3(a2) and (c2), the two orbit segments are very similar and
the crossing of C should be viewed as a continuous transition by continuation in
integration time: the orbit in Figure 5.3(c2) is similar to the orbit segment in Figure
5.3(a2), but integrated further. This means that, before reaching C, u(0) moves away
from p0 as u(1) traces out the end of the manifold, but after crossing C, u(0) moves
back along W s(p0) toward p0. The method of [3] computed the stable manifolds past
C by manually changing the number of intersections with � in the computation of
P . Our method has the advantage of being able to compute past C automatically; a
crossing of C is noted and marked by a change in the direction in which u(0) moves
along W s.

Figure 5.4 shows the orbit segments used in the entire computation of this branch
of W s(p0). As we already observe in Figure 5.1(c), this branch of W s(p0) actually
connects to p3, such that W s(p0) = W s(p3). The connection of two stable manifolds
may at �rst glance appear to be counter-intuitive, but we must remember that p0
and p3 are part of the same periodic orbit � and that we are actually computing the
intersection of W s(�) with �.

It its also possible for a manifold to have multiple intersection with C. Figure
5.1(b) shows four di�erent branches of stable manifold that spiral in toward a single
point. Figure 5.5 shows the orbit segments used in the computation of the right branch
of W s(p2). It turns out that the two-dimensional manifold W u(�) spirals around the
stable manifold of an equilibrium; the point in � at the center of the spiral is the
point where the one-dimensional stable manifold of this equilibrium intersects �. It is
actually a point where the Poincar�e map is unde�ned, as this point never returns to �.
After crossing C the �rst time, the direction in which u(0) is moving along W s(p2)
changes and u(0) moves back toward p2. When the manifold crosses C again, the
direction of u(0) changes again. As the manifold spirals in, it crosses C many times,
and each time, the orbit segment used in the continuation gains an extra intersection
with � and the direction of u(0) changes along W s(p2). This can be seen in the
enlarged view in Figure 5.5(b). The orbit color varies from dark blue to light blue
as the computation progresses. Observe that u(0) traverses back and forth along the
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Fig. 5.3. A demonstration of how W s(p0) of system (5.1) is computed across C. Rows (a){(c)
show the computations before, at, and after the intersection with C, respectively. Panels in the
left column show orbit segments on W s(�) used to compute W s(p0). The time pro�les of the last
orbit segment computed in each case are shown in the right column (blue line), where the black dots
indicate the mesh points and the Poincar�e section � is the green line.
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manifold, which is indicated by the color of the orbit segments getting lighter as the
manifold spirals inward. The initial points of all orbit segments, whose end boundary
points make up most of the spiral, lie in a small segment of W s(p2) and the same
initial point is ‘shared’ by many of these orbit segments.

5.3. Disjoint branches. Figure 5.6(a) shows an enlarged view of one of the
disjoint pieces of W s that was shown in Figure 5.1(d). These disjoint pieces of manifold
map under P to a piece of manifold that is connected to a saddle. In Figure 5.6(a)
the entire disjoint piece of W s maps to the blue piece of W s(p1), such that its images
traverses the manifold back and forth as W s crosses C. This can be seen clearly in
Figure 5.6(b), where all orbit segments have u(0) on W s(p1) and u(1) on the disjoint
manifold. This part of W s is an isolated submanifold that is due to the way W s(�)
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intersects the section �. We are able to compute this disjoint piece of W s by �rst
computing the branch of W s(p1). Then, guessing which section of W s(�) may have
extra intersections with �, we choose a computed point on the branch of W s(p1) as
our starting point. This point is then integrated backward in time until it intersects
� again, which is a point on the disjoint manifold. We then correct the solution such
that it satis�es the boundary conditions and we can use the ManBVP algorithm in
the usual way. The boundary point u(0) is continued along a piece of manifold we
have already computed, and u(1) traces out the new branch of manifold.

6. Slow-fast model of a chemical oscillator. In this section we compute
stable and unstable manifolds of a Poincar�e map of a slow-fast system. The slow-
fast dynamics is characterized by two di�erent time scales, which results in great
sensitivity with respect to the initial conditions; see, for example, [13]. The Floquet
multipliers of the saddle periodic orbit di�er by several orders of magnitude. It is,
therefore, already di�cult to �nd the linear eigendirection of the corresponding saddle
of the Poincar�e map. Indeed, the boundary point u(0) remains virtually unchanged
close to p0 in the section �, while its image u(1) traces out the entire manifold.
Speci�cally, we consider a Van der Pol-Du�ng-type model [1, 14], that has been used
in the development of chemical oscillators [7]. The model is given by the equations

_x
_y
_z

=
=
=

"�1
1

�
ky � x3 + 3x � �

�
;

x � 2y + z;
"2 (y � z) ;

(6.1)

where k and � are general parameters, and "1 and "2 are parameters relating to the
di�erent timescales of the reaction. We choose the timescale parameters "1 = 0:1 and
"2 = 1, such that the x-variable evolves on a timescale ten times faster than y and z.
A saddle periodic orbit � and an attracting period-doubled orbit exist for k = �22:5
and � = 18. These orbit segments were found by continuation from stable solutions
using Auto [4]. We choose the Poincar�e section given by the plane � = f(x; y; z) :
z = �0:83g; the periodic orbit � intersects � at p0 � (�0:869; �0:709) and p1 �
(�1:158; �0:902). For the given parameters, the Poincar�e map is discontinuous along
the line C given by y = �0:83. The eigenvalues of p0 and p2 are �s = �9:25 � 10�4

and �u = �3:02843, computed by solving the �rst variational equations with Auto.
The eigenvectors of p0 and p1 computed by projecting the Floquet vectors down into
the section; see section 3.2. Due to the di�erence in magnitude of the eigenvalues, �u

is of order 1 and �s is of order 10�3, there is considerable contraction along the stable
manifold. Notice that the eigenvalues are negative. In order to preserve orientation
when growing the manifolds, we must consider the second full return, so that the
orbit returns to the correct side of the manifold. In the present setup, this means
that the continuation is started from the double covering of the periodic orbit �. The
contraction along the stable manifold is then 1=(�s)2 � 1:17 � 106. It is precisely
this di�erence in scales in slow-fast nature that makes it impossible to compute the
Poincar�e map by solving an initial value problem; very small changes in the starting
conditions will lead to very di�erent orbit segments that may not even return to �. By
monitoring variations along the entire orbit segment using a boundary value problem
formulation, we can e�ectively compute u(1) and, hence, compute the manifolds by
continuation.

We compute the stable and unstable manifolds of p0 and p1 in �; see Figure
6.1(a). The saddles p0 and p1 are indicated by green crosses. The period-doubled
attractor intersects � only twice, at the points indicated by blue squares, which are
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period-two sinks of the associated Poincar�e map. The left branch of W u(p0) and
the right branch of W s(p0) both cross C and connect to p1 (in the same way as for
the laser example in Section 5). The right branch of W u(p0) tends to one of the
sinks and the right branch of W u(p1) tends to the other sink. The left branch of
W s(p0) tends to �1, whilst the left branch of W s(p1) spirals in toward a single
point at approximately (0:946; �0:889; �0:830). At this point the Poincar�e map is
unde�ned as it is the intersection of the stable manifold of a saddle equilibrium located
approximately at (�0:887; �0:887; �0:887), indicated by a green point. The saddle
has two complex conjugate unstable eigenvalues, which causes W s(�) to spiral around
the stable manifold. Figure 6.1(b) shows all orbit segments that were used in the
computation of the manifolds.

We demonstrate in Figure 6.2 how W s(p0) is grown through C. The situation
is very similar to that in Figure 5.3, but the stretching of the stable manifold is
extremely large due to the slow-fast nature of the system. In panel (a) the periodic
orbit � is shown with its two intersections p0 and p1 in �. Panel (b) shows the manifold
grown up to the discontinuity boundary C. All orbit segments start near p0 and ow
backward in the direction z < �0:83 from the section. Every orbit shown makes two
‘turns’; the �rst turn lies almost on the saddle periodic orbit, and intersects � on the
opposite side of, but very close to p0. Only two-thirds of the way round the second
turn, do the orbit segments ‘fan out’ as u(1) traces out W s(p0). One can see how
the last orbit segment computed is tangent to �. Panel (c) shows W s(p0) computed
past C. The boundary points of the orbit segments have now moved back along
W s(p0) toward p0 and the orbit segments intersect � one extra time. Panel (d) shows
the manifold computed up to its connection with p1. Note that if we had computed
W s(p1) from p1 to p0 instead, we would have got the same piece of manifold using
similar orbit segments. However, as W s(p1) crosses C, the number of intersections of
computed orbit segments with � decreases by one.

The structure of the di�erent segments of manifold are shown in detail in Figure
6.3. The left column shows all orbit segments used in the computation, whilst a
selection of orbit segments are shown in the right column for a ‘see through’. Row (a)
shows the orbit segments of the piece of manifold shown in Figure 6.2. The boundary
points u(1) that form the segment of W s(p0) past C, are on orbit segments that
�rst intersect � along W s(p0) before C, and are integrated for longer time until they
intersect � again. Row (b) of Figure 6.3 shows how the orbit segments of W s(�) spiral
around the stable manifold of a saddle equilibrium. This is similar to the situation in
Section 5, resulting in W s(p1) spiraling into a single point in �, but in this case the
stable manifold of the equilibrium below � intersects � almost orthogonally. Panel
(b2) clearly shows the complicated spiraling of the orbit segments. The orbit segments
used in the computation of W u(p0) and W u(p1) are shown in row (c) of Figure 6.3.
Observe how the unstable orbit segments that are part of W u(�) tend to a period-
doubled attractor (cyan) that intersects � only twice. Notice how the ‘second loop’ of
this orbit just misses �. The orbit segments give a very good idea of the geometry of
the two-dimensional unstable manifold, which due to the negative Floquet multipliers
of �, forms a M�obius strip.

The orbit segments needed for the computation of the branch of W s(p1) that
spirals in toward the single point get longer and more complicated as the manifold is
grown. Figure 6.4 shows the last orbit (black) of the computation of the left branch
of W s(p1). The boundary point u(0) still lies very close to p0 (2:198 � 10�7), and the
orbit segment closely follows � for the �rst one and a quarter turn. Only then does it
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Fig. 6.2. A demonstration of how one branch of W s(p0) for system (6.1) is grown in � across
C. Panel (a) shows the periodic orbit � (green) with two intersections p0 and p1 with �. Panel (b)
shows W s(p0) grown up to the point where it touches C. Panel (c) shows the manifold computed
past C; u(0) now moves backward along the manifold and further orbit segments have an extra
intersection with �. Panel (d) shows the manifold grown up to p1. All orbit segments make at least
two full turns, the �rst being very close to �. They only ‘fan out’ after about one and two-third
turns. See also the animation eko a05.gif.

move away from � and spirals around the stable manifold of the saddle equilibrium.
This highlights the extreme sensitivity with respect to the initial condition. Notice
that the last orbit segment is now much longer than the original periodic orbit. For
this reason, the number of mesh points is automatically increased when Auto has
di�culty to converge during the computation. While � is discretized with 100 mesh
points, for the last orbit segment the number of mesh points has increased to 250. The
time pro�les for each of the three state variables of the last orbit segment computed
are shown in panels (b){(d). The mesh points are indicated by black points and the
green line in panel (d) is the Poincar�e section �. Compared with the time pro�les in
Figure 5.3, one notices how many more mesh points are needed.
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7. Conclusions. The ManBVP algorithm presented here is a general-purpose
method to compute one-dimensional manifolds of a Poincar�e map P of a vector �eld.
In particular, it can compute such manifolds even in situations where standard meth-
ods break down | across discontinuity boundaries of the Poincar�e map, and when
P (x) depends extremely sensitively on the initial condition x, a situation that is typical
in slow-fast systems. The performance of the ManBVP algorithm was demonstrated
and illustrated with three examples of increasing complexity.

While the present implementation is for three-dimensional vector �elds and, hence,
Poincar�e maps de�ned on a two-dimensional section, the ManBVP algorithm is not
limited to this case. It can be used to compute one-dimensional manifolds of a Poin-
car�e map de�ned by any codimension-one section. Furthermore, the section need not
be a hyperplane, but can be any codimension-one submanifold of the phase space of
the vector �eld on which a Poincar�e map can usefully be de�ned.

The setting itself of following the solution of a two-point boundary value problem
can be used in more general situations. For example, the method in [19, 20] for
computing two-dimensional (un)stable manifolds of vector �elds at present solves
boundary value problems by shooting. A future version of this method will also use
Auto’s continuation and collocation routines. Note that Doedel [21] also uses the
continuation of solutions of a boundary value problem. His method computes two-
dimensional (un)stable manifolds of vector �elds in Auto by following an orbit of,
say, a particular arclength, while one boundary point is allowed to vary along a circle
(or an ellipse) around a saddle point or saddle-periodic orbit.

An entirely more challenging problem is that of computing a two-dimensional
(un)stable manifold of a general Poincar�e map (not of the vector �eld). It is a nat-
ural approach to generalize the method for di�eomorphisms in [16] in a similar way.
While this sounds conceptually quite straightforward, this would require varying the
boundary conditions over simplices, not line segments. The implimentation of such a
method remains an interesting challenge for future work.

Finally, the bifurcation theory of non-globally de�ned Poincar�e maps is an inter-
esting topic of our ongoing research. The main question is to identify and classify
bifurcations that are due to interactions with the discontinuity boundary. The Man-
BVP algorithm makes it possible to study such bifurcation that involve (un)stable
manifolds. Note that this research is closely related in spirit to the study of global bi-
furcations in noninvertible maps [6], for which we developed the SearchCircle method
[5] that computes one-dimensional stable manifolds in the absence of an inverse.
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