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We present an analysis of the external cavity mode (ECM) structure of a vertical-cavity
surface-emitting laser subject to optical feedback. We consider a model in which two
transverse optical modes are excited. Furthermore, we allow weak coupling of the modes
via the feedback term. (In addition to the coupling through the inversion.) We use numer-
ical continuation techniques to find and follow solutions of the governing partial, delay
differential equations. This approach allows us to show how the ECM structure depends
on the key parameters of feedback strength, feedback phase and the amount of coupling
via the feedback term.

Vertical-cavity surface-emitting lasers (VCSELs) can support a number of transverse op-
tical modes. Under external influence, such as pump modulation [1], optical injection
[2] or optical feedback [3], these modes may interact resulting in complex dynamics. In
this study, we investigate a VCSEL model in which the first two, rotationally symmetric,
linearly polarised optical modes (LP01 and LP02) are excited [3]. We include a general
form of optical feedback in which the electric fields of the two modes can couple via the
external-cavity round-trip. This is in contrast to previous studies in which each field re-
ceives feedback only from itself [3]. More specifically, we study the external-cavity mode
(ECM) structure of a VCSEL with a small amount of feedback induced cross-coupling
between the electric fields. The ECMs underpin the more complicated dynamics and, as
such, a detailed analysis of their dependence on parameters is needed to fully understand
a VCSEL subject to optical feedback.

In dimensionless form, our VCSEL model [1] can be described by the following system
of delayed partial differential equations
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describing the evolution of the two complex electric fields E1(t) and E2(t), associated
with the radial profiles ψ1(r) and ψ2(r) of the LP01 and LP02 modes, respectively, and
the evolution of the spatial carrier distribution N(r, t). Dimensionless parameters are the
linewidth enhancement factor α = 3.0, the diffusion coefficient d f = 0.05, the ratio be-
tween the carrier lifetime and the photon decay rate T = 750.0, the pump applied to the
cladding region Jmin = 0.0 and to the core (with radius a = 0.3) region Jmax = 2.0. This
value of pump current was chosen well above threshold so that the system is lasing. The
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Figure 1: ECM-components for η = 0.9 with ECMs for Cp = 0, shown in the (ωs,Ptot)-
plane (a) and the (ωs, N̂)-plane (b).

feedback terms κFn(t,τ)eiCp involve the dimensionless (weak) feedback rate κ = 0.005,
and the dimensionless propagation time τ = 500 between the VCSEL and an external re-
flector; corresponding to a physical distance of approximately 10 cm. Furthermore, Cp

represents the feedback phase, which can be controlled experimentally by varying the
length of the external cavity on the scale of the optical wavelength, so that τ remains
unchanged [6].
In past studies the feedback function in Eq. (1) has been given as Fn(t,τ) = En(t − τ). In
other words, there is no coupling of the two electric fields through optical feedback. In
this study, we consider the following, more general, feedback terms

F1(t,τ) = ηE1(t − τ)+(1−η)E2(t − τ)ei∆
, (3)

F2(t,τ) = (1−η)E1(t − τ)e−i∆ +ηE2(t − τ). (4)

This allows the two fields to couple through the external-cavity round-trip. The amount
of coupling is given by the coupling parameter η. For η = 1, Eqs. (3) and (4) reduce
to the zero-coupling case, that is, both fields receive feedback only from themselves.
Conversely, for η = 0, the electric fields are cross-coupled, that is, the first electric field
receives feedback from the second field, and vice versa. Finally, we note that ∆ describes
the difference between the optical frequencies of the two fields in the absence of feedback.
In this study, we fix ∆ = 0.

In order to employ numerical methods, we first need to discretise (2) in the radial direc-
tion r. To this end, we consider 100 intervals, over the radius of the VCSEL, that is,
r ∈ [0,1]. At r = 0 we use zero Neumann boundary conditions, and at r = 1 we use zero
Dirichlet boundary conditions. This results in a large-scale delay differential equation
(DDE) of size 105, which presents quite a challenge for an analytical investigation. In
fact, even simulated results obtained from direct numerical integration of Eqs. (1) to (4)
are very time-consuming to produce. In this study, we use numerical continuation tech-
niques which allow us to find and follow in parameters branches of steady state solutions,
irrespective of their stability [7, 5]. These techniques are not generally used for systems
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Figure 2: ECM-components for η = 0.9 with ECMs for Cp = 0, shown in the (ωs,P1)-
plane (a1) to (a3), and (ωs,P2)-plane (b1) to (b3).

of this size and, hence, this study also acts as a test-case for the efficiency of such tools in
analysing large-scale DDEs.

The basic steady state solutions of Eqs. (1) to (4) are the so-called external cavity modes
(ECMS). They are given as

(E1(t),E2(t),N(r, t)) = (R1eiωst
,R2eiωst+iΦ

,Ns(r)), (5)

where Rn = |En| (n = 1,2) are the amplitudes of the two fields, ωs is the frequency of
the output light, Φ is a fixed phase difference, and Ns(r) is a fixed level of inversion in
both space and time. Note that the field intensities are given as P1 = R2

1 and P1 = R2
2. We

denote the total field intensity as Ptot = P1 +P2, that is, Ptot = |E1|
2 + |E2|

2.
Typically, in finding the steady state solutions of lasers with feedback [4], one first finds
an analytical expression for the frequency ωs which is used to obtain the values of am-
plitude, inversion and phase difference. However, due to its spatial nature, this approach
is not possible when solving for the ECMs of Eqs. (1)–(4). Therefore, we turn to the
aforementioned numerical continuation techniques.
As for conventional optical feedback (COF) [6] and filtered optical feedback (FOF) [4],
a continuous change of the feedback phase Cp over 2π traces the path from one ECM of
Eq. (5) to the next. Using the continuation package DDE-BIFTOOL [7] with Cp as a free
parameter, we can trace out closed curves on which the steady-state ECM solutions of
Eqs. (1) to (4) lie. We refer to these closed curves as the ECM-components.
Figure 1 shows the ECM-components of Eqs. (1)–(4) and the ECMs for Cp = 0 (shown
as large dots). The cross-coupling parameter was fixed at η = 0.9. Panel (a) shows the
ECM-components in the (ωs,Ptot)-plane, and panel (b) shows them in the (ωs, N̂)-plane,
where N̂ is the mean value of N(r) over the radial distance r ∈ [0,1]. The laser’s intensity



and inversion are in direct competition with one another. For example, the lower solutions
in Fig. 1(a) correspond to the upper solutions in Fig. 1(b). Furthermore, for our parameter
choice, the ECMs are shown to lie on four separate ECM-components which, like for the
COF laser, have the shape of an ellipse. (For the COF laser, one always finds a single
ECM-component.)
Figure 2 shows the same ECM-components for η = 0.9 and ECMs for Cp = 0 but now in
terms of the intensity contributions of the individual fields P1 (a1)–(a3) and P2 (b1)–(b3).
Three panels are used due to the position of the ECM-components on the y-axes. We
now find that, while the ECM-components shown in Fig. 1(a) have similar values of total
intensity Ptot, the individual intensities of the two fields E1 and E2 can be quite different.
Specifically, we have three types of solutions. In the first, the field E1 dominates, while E2

hardly contributes to the total intensity; see the ECM-components shown in Figs. 2(a1)
and (b3). These solutions make up the lowermost ellipse shown in Fig. 1(a). Conversely,
we have a solution in which the field E2 dominates, while E1 hardly contributes to the to-
tal intensity. This corresponds to Figs. 2(a3) and (b1), the uppermost ellipse of Fig. 1(a).
Finally, we have solutions in which both fields E1 and E2 contribute to the total inten-
sity. These solutions lie on the ECM-components shown in Figs. 2(a2) and (b2). They
correspond to the two intermediate ellipses of Fig. 1(a).

In summary, it has been shown that, while the total intensities of the ECMs on each
of the ECM-components are very similar, the individual contributions of the two fields
can be quite different. For example, we find solutions in which one of the two fields
hardly contributes to the total intensity. How these ECM-components depend on other
parameters, in particular on a variation of κ and η is presently being investigated and will
be discussed elsewhere.
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