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Abstract We study a recently discovered class of models for plateau bursting, in-
spired by models for endocrine pituitary cells. In contrast to classical models for
fold-homoclinic (square-wave) bursting, the spikes of the active phase are not sup-
ported by limit cycles of the frozen fast subsystem, but are transient oscillations gen-
erated by unstable limit cycles emanating from a subcritical Hopf bifurcation around
a stable steady state. Experimental timecourses are suggestive of such fold-subHopf
models because the spikes tend to be small and variable in amplitude; we call this
pseudo-plateaubursting. We show here that distinct properties of the response to at-
tempted resets from the silent phase to the active phase provide a clearer, qualitative
criterion for choosing between the two classes of models. The fold-homoclinic class
is characterized by induced active phases that increase towards the duration of the
unperturbed active phase as resets are delivered later in the silent phase. For the fold-
subHopf class of pseudo-plateau bursting, resetting is difficult and succeeds only in
limited windows of the silent phase but, paradoxically, can dramatically exceed the
native active phase duration.

Keywords Bursting · Calcium oscillations· Pituitary · Stable and unstable
manifolds· Fast-slow systems
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1 Introduction

Bursting is a ubiquitous phenomenon found in electrically excitable cells, consisting
of a slow alternation between a depolarized spiking or active phase and a hyperpolar-
ize low-voltage or silent phase. Slow is a relative term, meaning slow compared to the
timescale of the spiking. From a physiological point of view, bursting appears, in gen-
eral, to be a way for cells to construct slow oscillations out of fast oscillations. Burst
periods range from less than a second in fast cortical neurons, for which bursting has
been suggested to enhance the reliability of synaptic transmission (Lisman 1997), to
tens of seconds or minutes in secretory cells, which modulate organismal homeostasis
over the course of a day. The bursting patterns that cells exhibit are diverse both in
appearance and in the ionic mechanisms that produce them, but considerable progress
has been made in developing a general theory that ties them together (Rinzel 1987;
Bertram et al 1995; Izhikevich 2000; Golubitsky et al 2001).

A pattern of particular interest is the “square-wave” burst, which was among the
first to be understood because it looks like a relaxation oscillation but with spikes
superimposed on the depolarized plateau. Indeed, by averaging the fast equations,
one can derive an equivalent relaxation oscillator system that is a good approximation
to the original bursting system (Bertram et al 1995). When the spikes are initiated by
calcium currents, as is generally the case in endocrine cells, such plateaus enable the
cell to generate maintained elevations of cytosolicCa2+, which are very effective at
driving secretion. Two well-studied examples of non-endocrine square wave bursting
are the pacemaker neurons of the pre-Bötzinger complex, whose bursts ofNa+ spikes
underlie the respiratory rhythm (Butera et al 1999) and the chick spinal cord (Tabak
et al 2000).

Here we introduce a generic model for bursting in pituitary secretory cells, ad-
apted from a previous model for the pituitary corticotroph (LeBeau et al 1998). The
model exhibits what we call pseudo-plateau bursting, because the plateau is not ne-
cessarily attracting throughout the active phase. A typical experimental recording
from a pituitary somatotroph, which secretes growth hormone, is shown in Fig. 1.
Note the short period (< 5 s), the small amplitude of the spikes on the plateaus and
the sawtooth shape of the cytosolicCa2+ timecourse, which strongly suggests that
the rise in[Ca2+]i is the agent that terminates each active phase.

Similar patterns have been observed in other pituitary cells, such as lactotrophs
(Stojilkovic et al 2005, Fig. 4), which secrete prolactin, and corticotrophs (Kuryshev
et al 1996, Fig. 3), which secrete adrenocorticotrophic hormone. Another pituitary
cell, the gonadotroph, which secretes luteinizing hormone and follicle stimulating
hormone, does not show spontaneous bursting, but simulations suggest that it could
if it were augmented with a large-conductance (BK)Ca2+- and voltage-activatedK+

channel (van Goor et al 2001).

Another much studied example is the pancreaticβ -cell, which secretes insulin. It
shows a similar pattern to its pituitary cousins when recorded in isolation and has a
short period (Kinard et al 1999, Fig. 3). In the more physiological situation, in which
β -cells are situated in the electrically coupled islets of Langerhans, the bursts have
periods of tens of seconds to minutes and taller spikes (Kinard et al 1999, Fig. 1).
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Fig. 1 A representative recording of membrane potential (upper) and cytosolicCa2+ (lower) from a rat
pituitary somatotroph using the perforated patch-clamp recording configuration in the current-clamp mode.
(Reprinted with permission from Fig. 1, van Goor et al, J. Neurosci., 21(16):5902-5915. Copyright 2001
by the Society for Neuroscience.)

The β -cell was the first square-wave burster to be modeled (Chay and Keizer
1983), and a simulation of a version of that model (Sherman et al 1988) is shown
in Fig. 2(a). We will refer to this model as ”Chay-Keizer,” although it differs in a
number of details from the original, because it shares the key feature that the sole
slow negative feedback variable is cytosolicCa2+ acting on aCa2+-activatedK+

(K(Ca)) channel.

Alongside the Chay-Keizer simulation is one done with the pituitary model in
Fig. 2(b). Both models produce square-wave bursts driven byCa2+ acting on K(Ca)
channels and have similar ion channels for spiking. The pituitary model output re-
sembles the somatotroph data in Fig. 1 somewhat better than that of Chay-Keizer in
that the spikes on the plateau are smaller, but the differences are not clear cut enough
to be decisive. Experience has also shown that the appearance of the time course can
be deceptive (Bertram et al 1995). The more critical difference between the two mod-
els, which can be taken as representative of two classes of models, is in the bifurcation
diagrams of the respective fast subsystems, as described below.

In this study we show that even if the data are not precise enough to choose
between the two classes of models quantitatively, they can be distinguished qualit-
atively by their resetting properties, that is, by the ability of brief perturbations to
switch the system from the active to the silent phase andvice versa. The Chay-Keizer
model resets in essentially the same manner as a relaxation oscillator, but the pitu-
itary model turns out to be rather different. Thus, resetting offers an experimentally
feasible way to distinguish which is the appropriate class of model to use for pituitary
cells and other cells that show similar voltage patterns.
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This paper is organized as follows. In the next section we present the system equa-
tions for the pituitary model and describe the techniques used for the analysis; com-
plete details and values of the parameters are given in the Appendix. Section 3 gives
detailed results of the behavior of the pituitary model. We first contrast the possibil-
ities for upward resetting of the Chay-Keizer and the pituitary models in Section 3.1,
which is determined by the bifurcation structure of the respective fast subsystems.
We then continue with a detailed discussion of the effects of upward resetting on the
pituitary model both in the fast subsystem withCa frozen (Section 3.2) and in the
full system with dynamicCa (Section 3.3). We end with an extensive discussion in
Section 4, starting with a summary of the results in Section 4.1. Section 4.2 addresses
the robustness of the results. We explain the consequences both from a theoretical
and an experimental point of view in Sections 4.3 and 4.4, respectively.

2 Modeling and Methods

The model used here was developed by modifying a previously published model for
the pituitary corticotroph (LeBeau et al 1998). Our aim is to explore the potentially
rich dynamical behavior that pituitary cells can display. Therefore, we simplified the
model and reduced the number of variables only to the extent that existing numer-
ical tools are able to tackle the analysis. In this way, the complexity of the model still
reflects the actual biological system. The model is described by four differential equa-
tions, one for membrane potential, two for channel gating using the Hodgkin-Huxley
formalism, and one for calcium balance:

Cm
dV
dt

= −ICaL(V,mL)− ICaT(V)− IK(V,n)− IKCa(V,Ca)− ILeak(V)+ Iapp, (1)

dmL

dt
=

mL,∞(V)−mL

τm,L(V)
, (2)

dn
dt

=
n∞(V)−n

τn
, (3)

dCa
dt

= Jexchange+ f β (Jinflux−Jefflux). (4)

The details of parameters and auxiliary activation, inactivation, and time functions
for channel gating are in the Appendix. Source files can be downloaded fromhttp:
//lbm.niddk.nih.gov/sherman.

Dynamically, the equations partition into a fast subsystem, consisting ofV, mL ,
andn, that is responsible for the spikes on the plateau, and a slow subsystem, con-
sisting ofCa, that drives the system between active and silent phases. In the fast
system for fixed (frozen)Ca the active and silent phases are identified by (stable)
steady states, which we call the high-voltage and low-voltage states, respectively.
The identification ofCa as the slow negative feedback variable that drives the bursts
is suggested by the sawtoothCa waveform (Fig. 1). By itself this waveform is not
decisive, asCa could just be followingV, instead of drivingV. In the somatotroph,
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however, there is direct evidence supporting this mechanism, because theCa2+ che-
lator BAPTA suppresses the[Ca2+]i rise and kills the bursts (van Goor et al 2001,
Fig. 3).

For comparison with classical square-wave bursting models, we show some res-
ults with a simplified form of the Chay-Keizer model for pancreaticβ -cells (Sherman
et al 1988). Like the pituitary model, the Chay-Keizer model has a fast subsystem for
the spiking dynamics, which are driven by voltage-dependentCa2+ andK+ currents,
and a slow subsystem consisting ofCa, which provides negative feedback onto K(Ca)
current to switch the spikes on and off. The models differ in parameter values and in
some details. For example, the Chay-Keizer model has no T-typeCa2+ current, only
the L-type current, and the version used here has only three variables because the
gating variablemL for that current is set to its steady-state value. However, the only
differences that matter for our purposes are in the bifurcation structure of the fast
subsystem; see Fig. 2(c and d).

We use several techniques to analyse the models. Resetting experiments are sim-
ulated by briefly turning on the applied currentIapp in Eq. (1). These simulations are
carried out by integrating the equations using Matlab (The MathWorks, Natick, MA)
or XPP (Ermentrout 2002). The bifurcation diagrams of the fast subsystem are com-
puted usingAUTO (Doedel 1981). Finally, an important part of our analysis involves
the computation of global invariant manifolds for fixedCa-values in the fast sub-
system. In the three-dimensional fast subsystem (1)–(3) the two-dimensional global
stable manifolds of a saddle equilibrium or a saddle periodic orbit are of interest, be-
cause these may separate the basins of attraction of the low- and high-voltage steady
states.

The computation of two-dimensional global manifolds is a serious challenge, es-
pecially for systems with multiple time scales, and appropriate computational tech-
niques have only recently become available (Krauskopf et al 2005). Our analysis,
therefore, also provides for the first time insight into higher-dimensional effects on
the phase-resetting of excitable cells. We find that for the pituitary model the effects
are only at a quantitative level and the qualitative structure remains intact. We com-
puted the two-dimensional global manifolds with the specialized methodGLOBAL -
IZEBVP (England et al 2007; Krauskopf and Osinga 2003) that builds the surface up
as a collection of geodesic level sets, that is, a collection of closed curves (topological
circles) with the property that points on the same curve lie at the same geodesic dis-
tance from the equilibrium or periodic orbit. The geodesic distance is the arclength
of the shortest path on the manifold that connects the two objects, which need not
be a trajectory. Hence,GLOBALIZE BVP computes the manifold as a geometric ob-
ject and ignores the dynamics on it. The key step in this method is the observation
that points on a geodesic level set can be found as end points of orbit segments that
are the solution of a two-point boundary value problem. These two-point boundary
value problems are solved by continuation using the collocation routines inAUTO,
which makes the method particularly suitable for systems with multiple time scales.
We refer to England et al (2007) for more details. Visualization of the manifolds was
done inGEOMVIEW (Phillips et al 1993).
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Fig. 2 The bursting profile for the Chay-Keizer model (left column) compared with that for the pituitary
model (right column). Panels (a) and (b) showV (purple, left axis) andCa (orange, right axis) versus
t. Panels (c) and (d) show these orbits in the(Ca,V)-plane overlaid on the bifurcation diagrams of the
corresponding fast subsystems.

3 Results

The results of our numerical analysis are presented in the following sections. We
first discuss the bifurcation diagrams of the fast subsystem of the pituitary model and
compare it with that of the Chay-Keizer model. We then focus on upward resetting
in Sections 3.2 and 3.3. Section 3.2 concentrates on resetting in the frozen system,
whereCa acts as a parameter. These results give qualitative information about the
effects of resetting in the full dynamic case, which we discuss in Section 3.3.

3.1 Contrast of dynamical structure of Chay-Keizer and pituitary models

The bifurcation diagrams of the fast subsystems for the Chay-Keizer and pituitary
models are compared in Fig. 2(c and d), respectively. In Chay-Keizer, bursting is
due to the combination of slow negative feedback mediated by cytosolicCa2+ with
bistability between a low-voltage steady state and a high-voltage oscillatory state,
the latter consisting of a one-parameter family of stable limit cycles. In the pituit-
ary model, bursting is similarly dependent on slow negative feedback and hysteresis
between the low- and high-voltage states, but the active-phase limit cycles are saddle
periodic orbits. Thus, the spikes (or spikelets) are generated by transient oscillations
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Fig. 3 Basins of attraction (shaded) of the depolarized statexh in the fast subsystem. Panel (a) shows the
Chay-Keizer model withCa= 0.55. Panel (b) shows a projection of a similarly large basin for the pituitary
model withCa= 0.55(region I in Fig. 2(d)), but the basin is dramatically smaller for the pituitary model at
Ca= 1.0 (region II in Fig. 2(d)) shown in panel c. In each panel the horizontal axis isV and the vertical axis
is n. The periodic orbit and the high-voltage, low-voltage and saddle steady states are labeledΓ , xh, xl , and
xs, respectively. Panel (a) shows the one-dimensional stable and unstable manifoldsWs(xs) andWu(xs)
of xs, respectively, while panels (b) and (c) show projections of the one-dimensional unstable manifold
Wu(xs) and a one-dimensional sliceW

s(xs) of the two-dimensional stable manifold ofxs.

around a stable high-voltage steady state. In order to obtain spikes in such a case,
the slow variable (Ca) cannot be too slow; ifCawere very slow, the trajectory would
compress onto the high-voltage steady-state branch, producing a flat plateau without
spikes. This constraint does not generally apply to Chay-Keizer, where a slowing
down ofCa just increases the number of spikes per burst, although there are marginal
cases in which the speed of the slow variable matters.

In the terminology of Izhikevich (2000), Chay-Keizer is classified as a fold-
homoclinic burster because the active phase begins at a fold (LP) and terminates
at a homoclinic orbit of a saddle steady state (HHS). In contrast, the pituitary model
is a fold-subHopf burster, because the active phase begins at a fold (LP) and termin-
ates at a sub-critical Hopf bifurcation (H). Note that, strictly speaking, it is the branch
of unstable limit cycles associated with the active phase, and not necessarily the act-
ive phase itself that terminates atH, as seen in Fig. 2(d). The branch of unstable
limit cycles begins at a homoclinic orbit of the saddle steady state (HHS) that lies in
betweenLP andH.

Fig. 3(a) shows the phase portrait in the(V,n)-plane of the fast subsystem of the
Chay-Keizer model withCa= 0.55. The high-voltage state (the stable limit cycleΓ )
has a large basin of attraction with a neck that is near the low-voltage steady statexl .
Specifically, Fig. 3(a) suggests that arbitrarily brief pulses can cause upward resetting
providedIapp is large enough.

Figs. 3(b and c) show projections of the three-dimensional phase portraits into
the (V,n)-plane of the fast subsystem of the pituitary model withCa = 0.55 and
Ca= 1.0, corresponding to Regions I and II in Fig. 2(d), respectively. In addition to
the steady statesxh, xl , andxs and the one-dimensional unstable manifoldsWu(xs)
of the saddle steady statexs, we project a one-dimensional slice, denotedW

s(xs),
of the two-dimensioal stable manifold ofWs(xs) of xs. In order to obtain a truthful
relative location with respect toWu(xs), we slice the two-dimensional manifold with
a plane through the three steady states and project this slice onto the(V,n)-plane. The
stable manifold acts as a basin boundary in Fig. 3(b), but plays no role in separating
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the two stable steady states in Fig. 3(c). The basin boundary forCa = 1.0 is the
stable manifold of the periodic orbit; note that only the projection of the periodic
orbit is shown in Fig. 3(c). See Figs. 6 and 8 for corresponding images in the three-
dimensional phase space.

Fig. 3(b) is similar to Fig. 3(a), with the stable limit cycle replaced by the high-
voltage steady state. In Fig. 2(c), the projected basin of attraction of the high-voltage
steady state shrinks to a small circle and there is no neck. Therefore, upward reset-
ting is no longer possible if instantaneous pulses are used, but it is possible with
sufficiently long pulses that allowmL and, especially,n to increase. To the right of
H, it becomes even more difficult to reset, because the high-voltage steady state be-
comes unstable (i.e., the basin shrinks to a point); we limit our discussion to regions
I and II as the trajectories do not extend pastH with the parameters we have chosen.
These two-dimensional projections lead us to expect that, whereas it is easy to reset
the Chay-Keizer model throughout the silent phase of the bursts, the pituitary model
will have trouble, at least in region II. (Resetting downwards from active phase to
silent phase is easy and the same for both models, so we do not address that.)

It is not obvious, however, if the two-dimensional projections are sufficient to
predict the effect of upward resetting for the three-dimensional subsystem (1)–(3) of
the pituitary model. For example, in Region II, the unstable periodic orbitΓ cannot
be the boundary of the basin of attraction of the high-voltage steady state. In three
dimensions the basin boundary is formed by the two-dimensional stable manifold
Ws(Γ ), which could widen very quickly and create a much larger basin of attraction
that could make upward resetting just as easy as for the Chay-Keizer model. On the
other hand,Ws(Γ ) could also form an even smaller basin that could virtually preclude
resetting. In order to assess the difficulty of upward resetting in the fast subsystem
of the pituitary model, it is necessary to calculate the two-dimensional surface that
separates the basins of attraction of the low- and high-voltage steady states. Recently,
techniques have been developed that allow to compute two-dimensional separating
manifolds (see Section 2 for references). We describe the results of these techniques
and of resetting simulations in the next section.

3.2 Resetting in the frozen system

Fig. 4(a) shows how the bifurcation diagram of Fig. 2(d) is altered when a constant-
current pulseIapp= 6.69 is applied and maintained indefinitely. Two things happen:
the foldLP is pulled to the right, allowing the phase point to escape, and a new high-
voltage steady state is created. If the applied current is not too large, there is a good
chance that the new steady state will lie in the basin of attraction of the old high-
voltage state, leading to a successful reset. If the current is too large, the high-voltage
state will move out of the basin of attraction of the unperturbed high-voltage state.
As an example, consider upward resetting fromCa= 1.0. Fig. 4(b) shows how the
steady states and periodic orbit forCa= 1.0 depend onIapp. For small enoughIapp the
low-voltage steady state persists, but it disappears in a fold (LP) at Iapp≈ 6.49pA and
for largerIapp escape from the silent phase is possible atCa= 1.0, as shown in Fig.
4(a); the vertical line in Fig. 4(b) shows that forIapp= 6.69only a high-voltage steady
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Fig. 4 Influence of applied currentIapp on the fast subsystem of the pituitary model. Panel (a) shows how
the bifurcation diagram forIapp= 0 changes whenIapp is increased to6.69pA. The Hopf bifurcationH for
Iapp = 0 has disappeared altogether. Panel (b) shows how the equilibria and periodic orbits forCa= 1.0
µM vary with Iapp. The dot labeledbb indicates the value ofIapp at which the perturbed depolarized state
leaves the basin of attraction of the unperturbed state. Panel (c) shows how the fold and Hopf bifurcation
curves vary in(Iapp,Ca)-space.

state exists. Note that the periodic orbit disappears in a homoclinic bifurcation (HHS)
well before the fold. The point labeledbb on the branch of high-voltage steady states
in Fig. 4(b) lies on the boundary of the basin of attraction of the unperturbed high-
voltage steady state and marks the minimum value ofIapp that is large enough for the
high-voltage state to lie outside this basin of attraction. As shown in Fig. 4(b), for any
value ofIapp large enough to cause escape from the low-voltage state, the asymptotic
limit of the trajectory lies outside the basin for resetting upwards. It is still possible
to achieve a reset if the orbit transiently passes through the basin and the current
is turned off in time, but this is more delicate. For smallerCa, the minimum value
of Iapp decreases because the inhibitory effect ofCa on V via the BK channels is
smaller. This is summarized in Fig. 4(c). Putting the three views together suggests
that resetting should be easiest in region I, where the basin of attraction is larger and
the minimum value forIapp is lower.

Let us now study what happens to the (unperturbed) low-voltage steady state in
the fast subsystem (1)–(3), for a fixed value ofCa, if we apply a constant current
pulse Iapp only for a finite durationw. Fig. 5 shows the applied current strength-
duration relationship determined by forward integrations on a grid of(Iapp,w)-values
for Ca= 0.55 µM; the figure is representative forCa values in region I as indicated
in Fig. 2(d). The two-parameter bifurcation diagram in Fig. 4(c) predicts that for this
value ofCa, resets are not possible forIapp< 3.35 pA because the pulse is too weak



10

4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

12 12.5 13 13.5 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I app I app

w w(a) (b)

Fig. 5 Strength-duration diagram constructed by forward integrations for 10 s of the fast subsystem with
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is also a maximum value ofw generating successful capture (b).

to drive the fold (LP) beyondCa= 0.55 µM. The results of forward integration are
consistent with this, showing no resets forIapp< 3.376pA with stimulus durations up
to 1 s (the results in Fig 5(a) are displayed forw≤ 0.5 s). For3.35≤ Iapp<≈ 12.87
pA the perturbed system has a unique steady state that lies in the basin of attraction
of the high-voltage steady state of the unperturbed system. In this range, resetting
is guaranteed provided the duration is long enough. With forward integrations, we
found successful resets for all sufficiently long pulses for3.376≤ Iapp< 12.886pA,
which agrees with the prediction given the accuracy with which we can calculate
the manifold that forms the basin boundary. Note further that there is a horizontal
band of failures; in this region the trajectory winds transiently out of the basin. If the
pulse is maintained a little longer, however, the reset is successful. ForIapp> 12.87
pA, the induced high-voltage steady state lies outside of the basin, and resetting is
not possible except for a narrow strip corresponding to the time when the trajectory
transiently passes through the neck of the basin. Such delicate resets are possible
for arbitrarily largeIapp, but the window of duration shrinks to 0. Thus, in practice
resetting is not possible for largeIappand would appear as an overshoot, i.e.,V would
go above the unperturbed plateau but would not stay up significantly longer than the
pulse.

The most interesting region is the wavy boundary that straddles the lineIapp =
12.87 pA; an enlargement is shown in Fig. 5(b). For anyIapp in this region, failures
alternate with successes as the trajectory winds in and out of the basin of attraction
on the way to the induced high-voltage steady state. There can be failures when the
induced high-voltage state lies inside the basin, because the trajectory leaves the basin
transiently on the way to this induced high-voltage steady state, and there can be
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Fig. 7 Strength-duration diagram of the fast subsystem as in Fig. 5 but withCa= 1.0 µM (region II in
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successes when the steady state lies outside the basin but the trajectory enters the
basin transiently. Fig. 6 shows an example taken from the wavy region withIapp =
12.87 pA, the value where the induced high-voltage steady state lies approximately
on the boundary of the basin. On the way to the induced high-voltage steady state,
the trajectory winds in (cyan) and out (orange) of the basin.
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(dark greencurve). The horizontal axis isV in panel (a), while the view is rotated in panel (b) and part of
the basin boundary chopped off so one can see inside. Any applied currentIapp large enough to move the
system out of the low-voltage steady statexl will converge to a point outside the basin of attraction of the
high-voltage steady statexh. Shown inorangeis the trajectory forIapp= 6.69with segments that lie inside
the basin of attraction shown incyan. Redindicates the unstable manifoldsWu(xs) of xs (greendot).

We next examine the strength-duration relationship forCa = 1.0 µM (Fig. 7),
which is in region II. In this region, any stimulus strong enough to move the trajectory
out of the silent phase is strong enough to move the induced high-voltage steady state
out of the basin of the unperturbed high-voltage steady state, which is in any case
much smaller than in region I. That is, any value ofIapp to the right of the foldLP in
Fig. 4(b) is also to the right of the dot labeledbb at which the induced high-voltage
steady state first leaves the basin. Thus, the only possibility of resetting is for the
trajectory to visit the basin transiently, which leads to the narrow bands in Fig. 7.

Fig. 8 shows a resetting trajectory withIapp = 6.69 pA superimposed on the
phase portrait with the two-dimensional manifold that forms the basin boundary, with
frozenCa= 1.0 µM. In this example the induced high-voltage steady state lies out-
side the basin of attraction of the unperturbed high-voltage steady state. Thecyan
portions of the trajectory that are visible in Fig. 8b indicate successful resets when
the basin is transiently visited and correspond to values of duration in the two black
bands in Fig. 7. Fig. 8 also gives an impression of the effect of the additional gating
variablemL in the model. The resetting trajectory clearly moves away from the plane
through the steady statesxl , xs, andxh, while the saddle periodic orbitΓ lies almost
entirely in this plane. If the basin boundaryWs(Γ ) had had more of a trumpet shape,
successful resetting would have been achieved by arbitrarily brief pulses, just as for
the Chay-Keizer model.

3.3 Resetting in the full system (Ca dynamic)

We now examine resetting in the full four-dimensional system (1)–(4) in whichCa is
a slow variable rather than a frozen parameter. This is the situation that corresponds to
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Fig. 9 Phase-resetting profiles with applied currentIapp = 6.48 pA and durationw = 0.15 s initiated at
a late (left column) and early (right column) state in the silent phase. Panels (a) and (b) showV (purple,
left axis) andCa (orange, right axis) versust with Iapp versust underneath in panels (c) and (d). Panels (e)
and (f) show these as orbits in the(Ca,V)-plane overlaid on the corresponding bifurcation diagram of the
fast subsystem. The start and end of the pulse is indicated by athick dot, and the unperturbed oscillation is
shown inlight grey.

the experimental setting and hence is in principle testable. The analysis of the frozen
system suggests that it should be relatively easy to reset upwards at late points in the
silent phase for which the frozen system lies in region I (Figs. 5 and 6), and nearly
impossible to reset at early points in the silent phase, for which the frozen system lies
in region II (Fig. 7 and 8). However, the dynamics ofCa complicate the picture.

Fig. 9 shows examples of successful resetting of the full system in the time do-
main (a and b) and in the(Ca,V) phase plane (e and f). Success is defined as an
induced plateau that outlasts the applied current (Fig. 9(c and d)). The left panels (a,
c, e) show an example late in the silent phase, when the frozen system lies in region I.
A subtlety that does not arise in the frozen system is that if the duration of the applied
current is too long,Ca can increase, pulling the trajectory into region II. Thus, even
though the induced high-voltage steady state lies in the basin for this value ofIapp,
the current cannot be maintained too long, because the rise inCa will deform the
manifolds and shrink the basin of attraction.
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Fig. 10 Phase-resetting diagrams for the Chay-Keizer model withIapp = 2 pA, w = 0.2 s (a) and the
pituitary model (b) withIapp = 6.48 pA, w = 0.15 s. Plotted is the return time to low-voltage values
(V = −55 mV for Chay-Keizer andV = −30 mV for the pituitary model) after resetting at the given
phase, that is, the time relative to the duration of the silent phase. The upper (orange) horizontal line
indicates the duration of the unperturbed active phase and the lower (purple) horizontal line indicates the
duration of the current pulse. The large peak in panel (b) is cut off to keep the smaller peak visible; the
maximal∆ t is 13.3 s.

The right panels (b, d, f) of Fig. 9 show an example of resetting early in the silent
phase, when the frozen system lies in region II. In this case,Ca initially decreases
because the phase point lies below theCa null surface. This increases the size of the
basin of attraction, and allows the reset to succeed, even though the frozen picture
suggests that it would fail. Note that in this example, the induced plateau is longer
than the unperturbed plateau.

Fig. 10(a) shows how the duration of the induced excursion varies with the point
in the silent phase at which the pulse is applied for the Chay-Keizer model. Broadly,
the later the pulse is applied, the longer is the induced active phase. (The curve is not
monotonic because there is a bump every time a spike is added. The spike-adding
canard bifurcation is described by Terman (1991).)

The increase of excursion length with phase of reset is not surprising as at later
times the trajectory is closer to where it would jump up anyway. In contrast, Fig. 10(b)
shows that resetting does not necessarily become easier later in the silent phase for
the pituitary model. Resetting is only successful during narrow windows of the silent
phase because of the influence of theCa dynamics on the manifolds of the frozen
system. Remarkably, the successful resets can be much longer than the duration of
the unperturbed active phase, a phenomenon that is never seen in the Chay-Keizer
type models. Also, the left (stronger) peak corresponds to the situation in Fig. 9(b and
d), in which the reset trajectory begins in region II — the frozen analysis predicted
that resetting would be difficult for this region — whereas the right (weaker) peak
corresponds to Fig. 9(a and c), in which the trajectory begins in region I.

4 Discussion

We have considered two classes of candidate models for a particular flavor of pseudo-
plateau bursting observed so far in several pituitary cell types (Kuryshev et al 1996;
Stojilkovic et al 2005) and at times in isolated pancreaticβ -cells (Kinard et al 1999).
These bursts are relatively brief (a few seconds) and have small-amplitude spikes that
are suggestive of fluctuations rather than full-blown action potentials. The classical
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model for square-wave bursters, developed first by Chay and Keizer (1983) for pan-
creaticβ -cells (when studied in coupled islets of Langerhans) and later applied to
other cell types, such as respiratory pacemaker neurons (Butera et al 1999), and to
networks of neurons (Tabak et al 2000), is classified as fold-homoclinic based on
how the active phase begins and terminates (Izhikevich 2000). As an alternative, we
have presented here a model classified as fold-subHopf (Izhikevich 2000) because
the branch of limit cycles associated with the active phase ends at a sub-critical Hopf
bifurcation (Fig 2d); the termination of the active phase itself is more complex, as
discussed below.

A diagram with fold-subHopf structure was exhibited using a particular parameter
set for the original corticotroph model from which the present model was derived
(LeBeau et al 1998, Fig. 13). A recent model for pituitary lactotrophs has also been
shown to have the same structure (Tabak et al 2007, Fig. 3). Finally, the gonadotroph
model of van Goor et al (2001) has the same structure when shifted into a pseudo-
plateau bursting mode by “transfection” of a large-conductanceCa2+-activatedK+

channel (unpublished observations). The investigation of the properties of this class
of models is in its infancy, but it is already clear that they are rather different from and
more complex than those of the older fold-homoclinic class in many respects. (See
for example some of the counter-intuitive effects of changing calcium pump rates in
Tabak et al, 2007.)

4.1 Summary of results

In this study we have focused on the response to resetting pulses, which has not been
addressed previously. We have only discussed in detail upward resetting from the
silent phase to the active phase, as the properties of downward resetting do not differ
significantly between the two classes of models. The differences in the properties of
upward resetting, on the other hand, do provide a clear-cut experimental signal for
choosing whether a fold-homoclinic or a fold-subHopf model is more appropriate for
a given system. (There could be other types of models that work even better, so the
determination is only relative; see caveats below.)

We first considered resetting with the slow variable, cytosolic calcium (Ca), frozen
and identified two distinct regions, labeled I and II in Fig. 2(d). Consideration of two-
dimensional projections of the three-dimensional fast subsystem suggested that in
Region I, between the lower knee (LP) and the homoclinic orbit (HHS), resetting
would be relatively easy as the projected basin of attraction is large and contains both
the low- and high-voltage steady states (Fig. 3(b)). In contrast, in Region II, between
the homoclinic orbit (HHS) and the Hopf bifurcation (H), resetting was expected to
be more difficult as the projected basin is very small, shrinking to a point asH is
appproached (Fig. 3(c)).

Confirmation of these predictions required calculation of the three-dimensional
phase portraits. In region I, forward integrations showed that resetting is possible
for sufficiently prolonged depolarizing stimuli, as long as the current strength is not
so great that it pushes the high-voltage steady state of the perturbed system out of
the basin of attraction of the unperturbed high-voltage steady state (Fig. 5). In re-
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gion II, we found that any stimulus strong enough to escape the low-voltage steady
state pushes the induced high-voltage steady state out of the basin. Hence, resets are
possible only in very narrow bands of duration (Fig. 7). The two-dimensional sep-
arating manifolds that bound the basins of attraction of the high-voltage steady state
gave further information about the conditions for success of upward resetting with a
constant-current pulse of a given strength and duration when they were overlaid with
the trajectory generated by a pulse of this strength with infinite duration. Specifically,
they showed that the wavy border of the resetting region in Fig. 5 and the narrow
bands in Fig. 7 were due to the reset trajectory repeatedly intersecting the manifolds
(Figs. 6, 8).

In the full four-dimensional system, withCadynamic, the situation is more com-
plex because the dynamics ofCa deforms the basin of attraction of the high-voltage
steady state and can drive a reset trajectory that begins in region I into region II and
vice versa. The end result is that resetting is difficult whether initiated in either region,
with one narrow window of propitious phases corresponding roughly to each region
(Fig. 10(b)). Surprisingly, resets initiated in region II, expected to be more difficult
based on the frozen analysis, led to much longer excursions that could exceed the
native active-phase duration by an order of magnitude. This is dramatically different
from the situation in the fold-homoclinic burster, where resetting is possible through-
out the silent phase and the excursion durations are generally bounded by the native
active-phase duration (Fig. 10(a)).

4.2 Robustness of results

We believe that the three-dimensional fast subsystem is representative for the dy-
namics of possibly more detailed higher-dimensional models of a pituitary cell. Any
additional variable in the model would have faster kinetics thanmL, which already
has fast kinetics relative ton. This relatively faster kinetics ofmL causes the flow
to compress rapidly towards the high-voltage steady state, rendering the flow nearly
two-dimensional.A priori one might expect differences between a three-dimensional
fast subsystem and a two-dimensional reduced version, obtained by setting the L-type
Ca2+ channel activation variablemL to steady state, because the basin of attraction of
the high-voltage steady state, bounded by the stable manifold of the saddle periodic
orbit surrounding it, could bend significantly as one moves transverse to the peri-
odic orbit. However, we have checked that such a reduced version of the pituitary
model with a two-dimensional fast subsystem qualitatively shows the same pattern
of dynamic resetting as shown in Fig. 10(b). Whether there are genuine differences
between the two- and three-dimensional cases beyond the aspects we have examined
is an open question.

The marked difference in resetting patterns between fold-homoclinic and fold-
subHopf does not depend on the choice of the resetting parametersIapp andw; we
find the same pattern of strong and weak resets if either pulse strength or duration
is varied over a wide range and the other parameter is kept fixed (not shown). The
results can, however, depend on model parameters if these influence the locations of
the homoclinic and Hopf bifurcations relative to the fold. In the case considered here,
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the time spent in regions I and II is comparable. If region I is enlarged by moving
the homoclinic bifurcation to the right, resetting becomes easier and begins to exhibit
a pattern similar to the fold-homoclinic burster. We have observed this for a closely
related model (Tsaneva-Atanasova et al 2007) in which region II is very small.

4.3 Mathematical directions

An issue for further analysis is precisely how the active phase is terminated. Although
the model is classified as fold-subHopf by the criteria of Izhikevich (2000), the active
phase ends well before the Hopf bifurcation is reached. In the model of Tsaneva-
Atanasova et al (2007), where the Hopf bifurcation is right-shifted, the active phase
ends even before the homoclinic orbit. On the other hand, in the two-dimensional
reduced version of the model, the trajectory approaches the high-voltage steady-state
branch more rapidly. Because of this compression, the trajectory can tunnel through
the Hopf bifurcation and stay up for a significant time and distance even though there
is no stable steady state to support it (see also Izhikevich 2000, Fig. 103). Similar be-
havior is seen in subHopf-fold cycle bursters (Izhikevich 2000, Fig. 80), also known
as “elliptic” bursters. This tunneling phenomenon (Baer and Rinzel 1988) is respons-
ible for the exceptionally long resets recorded in Fig. 10(b), a mild example of which
is shown in Fig. 9(b and d). The ratio of the speed of the slow variable to the strength
of attraction of the high-voltage steady state would seem to be an important parameter
in determining where the active phase ends. The exit from the active phase also de-
pends on how the trajectory intersects the basin of attraction, which may be complex
due to the wrapping of the basin around the high-voltage steady state. Furthermore,
the manifolds deform asCa varies, making it difficult to predict the exit from the
frozen system, just as it was difficult to predict the dynamic resets from the frozen
system. Analyzing the full four-dimensional system may be necessary (cf. Terman
1991).

If the Hopf bifurcation is moved to the left, towards the fold, the active phases
become shorter, and the spikes become taller. Eventually, bistability is lost as the
homoclinic orbit coalesces with the fold to form a saddle-node loop. This is proposed
in Tsaneva-Atanasova et al (2007) as an explanation for both the natural variability
of burst periods in somatotrophs and the conversion of pseudo-plateau bursting to
beating by block of BKCa2+-activatedK+ channels (van Goor et al 2001). In the
model presented here, which lacks BK channels, the same transition can be achieved
by increasing the time constantτn of the voltage-dependentK+ channel or increasing
the conductancegCaL of the L-typeCa2+ channel. The same parameter manipulations
convert the Chay-Keizer model from a fold-homoclinic burster to a beater, but it does
not seem possible to compose the two transformations to convert fold-subHopf to
fold-homoclinic; at least one additional parameter change is required. It would be of
interest to determine if there is a simple way to carry out this conversion, as this might
indicate how close the two classes of bursters are in parameter space. That is, in spite
of the similar appearance, they may actually be far apart in the sense of plausible
biophysical modifications. The unfolding approach of Golubitsky et al (2001) may
be helpful here.
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4.4 Caveats and guidance for experimental testing

For the benefit of those who may be interested in testing the predictions of the model,
we summarize the key results and give some supplementary advice.

The basic conclusion from the study is that one can determine which of the two
classes of bursting models considered here is more appropriate for a given cell type
or preparation. In one type the spikes are generated by slowly modulated stable os-
cillations whereas in the other they are generated by transients. In the latter case, it is
much more difficult to reset the oscillations from the silent phase to the active phase
because the basin of attraction of the depolarized state is much smaller. However, in
the rare cases when success is achieved, the induced active phases may significantly
exceed the duration of the native active phase (Fig. 10(b)). A limitation of the test
proposed here is that it is one-sided: it is possible for a model with transient spikes
to show a resetting pattern similar to that of the classical square-wave burster so the
test is only decisive if a pattern of Fig. 10(b) is observed. We expect the pattern of
Fig. 10(a) in cases where the high-voltage steady state is stable throughout the active
phase (i.e. the fold-fold burster described above), and we have seen it in a model that
is close to fold-fold (Tsaneva-Atanasova et al 2007). Resetting from the active phase
to the silent phase should be similarly easy in all the above types of models and can
be used as a positive control to test that the protocols are working.

Another prediction of the study, which applies to both classes of models is that
pulses that are too strong or too long will result in failures to reset because the traject-
ory overshoots the high-voltage steady state. This is not obvious from purely biophys-
ical considerations, and in fact, similar failures do not occur when resetting from act-
ive to silent phase. Because it tends to be harder to reset in the early part of the silent
phase, failures may be detected early when late resets are still successful; this may
be an indication to reduce the stimulus strength or duration slightly. Note that over-
shoots are predicted for both the Chay-Keizer type model and the pituitary model, so
this phenomenon is itself of interest independent of the class of burster.

Since the spikes in the type of model described here are generated by transient
oscillations decaying to a steady state, one would not expect the model to apply to
cells with very long bursts; if the burst duration is long compared to the kinetics of
cytosolic calcium, the membrane potential would have enough time to settle down to
a plateau without spikes. Thus, likely candidates to be fit by the pituitary model are
cases in which the bursts are relatively short and the spike amplitude is small. Con-
versely, one might expect cells with larger spike amplitude to be much slower than
the pituitary cells that motivated this study. A cautionary exception to this inference
is the pre-B̈otzinger pacemaker neuron, but note that in those cells, the function of
the somatic spikes is to driveNa+-mediated action potentials down the axon to the
nerve terminal, not to driveCa2+ entry directly into the soma.

The emphasis here has been on the dynamical structures of the models rather
than the more usual approaches of comparing appearance of the output or biophysical
mechanisms (e.g. Stojilkovic et al 2005). It is entirely possible for cells to achieve the
same structure with different ion channels or different structures with the same ion
channels. Thus, the tests choose between classes of models rather than modelsper se.
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Appendix: Model Equations

In addition to the four differential equations (1)–(4) given in section 2, the ionic cur-
rents and auxiliary expressions given below are needed to complete the specification
of the model.

The ionic currents are:

– L-typeCa2+ current
ICaL = gCaLm

2
L(V−VCa); (5)

– T-typeCa2+ current

ICaT = gCaTm
2
T,∞(V)hT,∞(V)(V−VCa); (6)

– Voltage-dependentK+ current

IK = gKn(V−VK); (7)

– Leak current
ILeak = gLeak(V−VLeak); (8)

The leak stands in for a variety of subthreshold currents that play important mod-
ulatory roles in models for specific pituitary cell types. Such currents include the
A-type K+ current, which has been suggested to mediate the effects of dopam-
ine in lactotrophs (Tabak et al 2007), and the inward-rectifierK+ current and the
cyclic-nucleotide gated non-selective cation current, which have been suggested
to mediate the effects of somatostatin and growth hormone releasing hormone in
somatotrophs (Tsaneva-Atanasova et al 2007).

– Ca2+-activatedK+ current

IKCa = gKCa
Ca4

Ca4 +K4
KCa

(V−VK); (9)

In particular cell models, this current has been suggested to be the small-conductance
(SK) channel (Tabak et al 2007; van Goor et al 2001) or the current through a sub-
set of the big-conductance (BK) channels (Tsaneva-Atanasova et al 2007).

The steady-state activation functions take the form

X∞(V) =
1

1+exp(−(V−VX)/kX)
, (10)

with X = mL ,mT,hT, andn. The time functions are constants except for

τm,L(V) =
τ̄m,L

exp((V−Vτ)/kτ)+2exp(−2(V−Vτ)/kτ)
. (11)
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The calcium balance equation Eq. (4) has a term for exchange between the cytosol
and the internal (endoplasmic reticulum) store,

Jexchange=
Caeq−Ca

τCa
, (12)

a term for influx through calcium channels,

Jinflux =−α(ICaL+ ICaT), (13)

and a term for pumping calcium out of the cell,

Jefflux = νP
Ca2

Ca2 +K2
P

. (14)

The factorsα in Eq. (13) andβ in Eq. (4) combine to convert units of flux to units of
current (see Table 1).
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Parameter Description Value or Definition

dcell cell diameter 10µm
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Vcell cell volume 523.5µm3
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α 1

zCaFAcell
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β Acell
Vcell

0.6 µm−1
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Vm V for half-max L-channel activation −25 mV
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kmT T-channel activation slope factor 8 mV
VhT V for half-max T-channel inactivation −52 mV
khT T-channel inactivation slope factor −5 mV
Vn V for half-max K channel activation 5 mV
kn K channel activation slope factor 8 mV
Vτ L-channel time function referenceV −60 mV
kτ L-channel time function slope factor 22 mV
τ̄m,L L-channel time funtion scale factor 0.027 s
τn K-channel time constant 0.02 s
νP Maximal pump rate 40.0µM µm s−1

KP Ca for half-maximal pump activation 0.08µM
τCa ER exchange time constant 0.5 s
Caeq Background Ca 0.1µM

Table 1 Parameter values for the pituitary model (1)–(4).
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