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ABSTRACT
Measurements of spectrally resolved outgoing longwave radiation allows signatures of many aspects of greenhouse
warming to be distinguished without the need to amalgamate information from multiple measurements, allowing
direct interpretation of the error characteristics. Here, data from three instruments measuring the spectrally
resolved outgoing longwave radiation from satellites orbiting in 1970, 1997 and 2003 are compared. The data
are calibrated to remove the efiects of difiering resolutions and flelds of view so that a direct comparison can be
made. Comparisons are made of the average spectrum of clear sky outgoing longwave radiation over the oceans
in the months of April, May and June. Difierence spectra are compared to simulations created using the known
changes in greenhouse gases such as CH4, CO2 and O3 over the time period. This provides direct evidence for
signiflcant changes in the greenhouse gases over the last 34 years, consistent with concerns over the changes in
radiative forcing of the climate.
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1. INTRODUCTION
The Earth’s climate system has been studied in detail and strong evidence has been found linking surface
temperature changes and greenhouse gas concentrations.1, 2 This system is complicated by feedback processes,
the most notable of these being those involving the hydrological cycle. The spectrum of outgoing longwave
radiation (OLR) can be used to detect changes in the greenhouse efiect, due to the separation of signatures from
difierent gases. The spectrally resolved OLR is a measure of the cooling to space of the planet’s surface and
atmosphere due to absorption and emission at characteristic wavelengths.

This study builds on the work of Harries et al3 and analyzes the difierences seen between spectrally resolved
OLR measured in 1970, 1997 and 2003. Changes are detected in the spectrum which, through the use of a band
model, are attributed to known long term changes in greenhouse gases. Ideally, a long time period dataset of
spectrally resolved OLR would be used. As no such dataset exists, the longest currently available being 2 years of
AIRS4 data, three shorter datasets are calibrated to the same speciflcations and compared. In efiect, snapshots
of the atmosphere at three difierent times are compared.

2. DATA
Data detailing the spectrally resolved OLR are sparse and comes from only a small number of experiments. The
data used in this study were recorded by the IRIS,5, 6 IMG7, 8 and AIRS4 instruments. Additionally data from
HIS,9, 10 ARIES,11 SI-112, 13 and SI-214 and 16T15 are available but are precluded from the study due to the
speciflc characteristics of these datasets. The data characteristics required for detection of long term changes are:
su–cient spectral resolution for gas absorption bands to be seen; and adequate temporal and spatial sampling
to average out synoptic variability. Aircraft data such as ARIES and HIS fail to meet the temporal and spatial
sampling requirements for our purposes. The SI-1 and SI-2 satellite data sufiered from similar sampling issues.
The spectral resolution of 16T, the flrst spectrally resolving instrument to be spaceborne, was insu–cient for
spectral features to be distinguished.
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Table 1. Comparison of the properties of the IRIS, IMG and AIRS instruments.

Characteristic IRIS IMG AIRS
Spectral Range (cm¡1) 400-1600 600-3030 650-2700
Spatial Field of View 95x95km 8kmx8km 13.5kmx13.5km (nadir)

41kmx22.4km (zenith)
Spectral Resolution (cm¡1) 2.8 0.10-0.25 0.4-1.0
Noise equivalent spectral radiance

(mW m¡2sr¡1 per cm¡1)
§0.23 §(0.31-0.6) §(0.01-0.8)

Some properties of the IRIS, IMG and AIRS instruments are listed in table 1 with the details presented
below. The main time period of overlapping data available is in the months of April, May and June so this is
the time period used. The spectral range used is 700-1400cm¡1 which is the largest available when considering
the high noise at both low IMG wavenumbers and high IRIS wavenumbers.

2.1. IRIS
The oldest instrument used in this study is the IRIS5, 6 (InfraRed Interferometric Spectrometer) instrument.
This was a series of instruments launched by NASA in the late 1960’s, 1970’s and early 1980’s. IRIS-D was the
only one of this series which was both Earth orbiting and provided a long time series and so this is the instrument
used in this study. IRIS-D (subsequently referred to as IRIS) °ew on the NASA Nimbus 4 satellite which was
launched in April 1970 into a 1100km altitude sun-synchronous polar orbit. It recorded data until January 1971
when it was switched ofi having fulfllled its design brief. IRIS was a Fourier Transform Spectrometer and for its
time was considered highly adventurous in its aims. It recorded spectra between 400cm¡1 and 1600cm¡1 but
wavenumbers over 1400cm¡1 sufier from high noise. Its fleld of view allowed it to record spectra with a ground
footprint of 95km diameter. The IRIS instrument had a path length of 0.36cm giving a spectral resolution of
1.4cm¡1 which was apodized using a Hamming Window function to a resolution of 2.8cm¡1. All aspects of the
design of IRIS represented large leap in the design of FTS particularly the high resolution and wide spectral
range combined with an instrument small, light and resilient enough to be spaceborne.

2.2. IMG
IMG7, 8 (Interferometric Monitor for Greenhouse Gases) was a much more advanced Fourier Transform Spec-
trometer which was launched in August 1996 onboard the ADEOS satellite by the Japanese Space Agency. It
recorded data between November 1996 and June 1997 when operations ceased as a result of the break up of the
solar paddle. IMG was developed to provide continuous coverage of the spatial distribution of the greenhouse
gases and to measure detailed proflles of water vapour and temperature. To do this IMG required spectral reso-
lution of 0.1cm¡1 and a spectral range of 600-3030cm¡1. To achieve an apodized spectral resolution of 0.1cm¡1,
the mirror in the interferometer must travel a distance of 10cm with optical alignment correct to within angles
of 0.0001–.7 To ensure that the smooth movement of the mirror and optical alignment were maintained, the
mirror movement system was designed with a state of the art magnetic suspension system, the flrst time such
a system was used in a spaceborne instrument. As the instrument was required to have a wide spectral range,
one detector could cover not the entire range. Three difierent detectors were required, each recording a difierent
part of the spectrum. The only detector used in this study recorded between 600 and 2000cm¡1. Data are only
usable at greater than 700cm¡1 due to noise in the lower wavenumber section of the spectrum. ADEOS orbited
in a 797km altitude polar sun-synchronous orbit giving a square ground footprint of the instrument of 8km by
8km. Except for a 10 day period between 1st and 10th April when the instrument recorded continuously, IMG
operated in a 4 day on, 10 day ofi cycle. At the start of routine operations in November 1996, it was discovered
that the moving mirror alignment system was sticking randomly causing unacceptable degradation in the quality
of the spectrum being recorded at the time. Tests were ongoing to try and correct the gain system to compensate



for this efiect when the satellite failed. The problems caused 85% of the spectra recorded to be discarded as
being unacceptably noisy.

2.3. AIRS
The Atmospheric Infrared Sounder (AIRS)4 was launched on the EOS-Aqua satellite by NASA in May 2002.
Aqua orbits on a 705km polar sun-synchronous orbit giving twice daily global coverage. AIRS is a grating
spectrometer rather than the Fourier Transform Spectrometer design of the previous two instruments. It uses
this design to achieve similar resolution and spectral range to IMG but records at a much greater speed, enabling
far greater coverage than that achieved by either IRIS or IMG. As an example, AIRS recorded 96 spectra including
its calibration recordings in 2.667 seconds whereas IMG recorded 8 spectra including its calibration recordings
in 110 seconds. The spectral range of AIRS is from 650cm¡1 to 2700cm¡1 measured by 2378 channels which
are separated into 17 modules of detectors which do not overlap, resulting in discontinuous spectral coverage.
The consequences of these spectral gaps are discussed in section 3.1. The detectors all have at least two times
redundancy but we still see 238 channels which either have failed or are too noisy to use in the 700cm¡1 to
1400cm¡1 region. The spectral resolution of a grating spectrometer is controlled by the aperture of the detectors
on the focal plane array of the instrument. The detectors in AIRS are all 10„m by 10„m squares with 10„m gaps
between each detector and its nearest neighbour. This gives a resolution of between 0.4cm¡1 and 1cm¡1. The
recording geometry of AIRS is very difierent to that of either of the other two instruments. IRIS and IMG both
view nadir through a flxed aperture and image compensation mirror. To enhance the spatial coverage and to
take advantage of its speed, AIRS scans to §49.5– cross track as the satellite moves forwards taking 90 spectra
each with an instantaneous fleld of view of 1.1–. This results in a ground footprint of 13.5km diameter at nadir
but closer to 41km by 22.4km at the largest zenith angles.

3. COMPARISON METHOD
3.1. Difiering Instrument Characteristics
To compare the spectra of the three instruments, it is necessary to degrade IMG and AIRS to the poorer
speciflcations of IRIS. The flrst difierence which must be accounted for is the difierence in spectral resolution
between the three datasets. The spectral resolution of the IMG data were initially reduced to that of AIRS by
multiplying the interferogram by an appropriately sized Hamming window. The AIRS and AIRS resolution IMG
data can not be reduced to the resolution of IRIS by multiplying their interferogram by an appropriately sized
Hamming window due to the gaps in the AIRS spectrum and so their resolutions are reduced by convolving the
spectrum with the fourier transform of the Hamming window. The resolution reduction process uses a variable
sized Hamming window to ensure that the resolution of the data is correct across the entire spectrum as the AIRS
data resolution varies greatly. This process ensures that all spectral features are the same width in all datasets.
The other major difierence in the instrument characteristics which must be accounted for is the difierences in
fleld of view. In a Fourier Transform Spectrometer, the efiect of the flnite fleld of view is to broaden features
and shift them to lower wavenumbers. The efiect of the broadening is taken into account concurrently with the
resolution degradation. Grating spectrometers do not introduce a shift due to the flnite fleld of view but a shift
is seen in the AIRS data due to movement in the focal plane array. The shifting to lower wavenumber is taken
into account by shifting the IMG and AIRS data along to the IRIS shifted position.

3.2. Identiflcation of Cloud Free Spectra
To reduce the amount of variability seen and thus aid interpretation, only cloud free spectra are used. Brindley
and Harries16 discuss the use of all sky data to make similar studies but concludes that the IRIS and IMG datasets
only have adequate sampling to study the clear sky case. A two stage process is used which is speciflcally designed
to identify the properties of a clear sky spectrum. This removes spectra contaminated by cloud from the dataset
and also removes spectra contaminated by other efiects, such as dust storms or high instrument noise. In the flrst
stage, the equivalent blackbody brightness temperature (subsequently referred to as brightness temperature) in
the clearest part of the spectrum (1126.32cm¡1) is compared to the known sea surface temperature from the
NCEP reanalysis dataset.17 A threshold to deflne the difierence accepted as clear is determined by looking at
the maximum difierence in a simulated clear sky spectrum of the atmosphere created using a band model and the



Table 2. Number of spectra for IRIS, IMG and AIRS before and after removing cloud.

IRIS IMG AIRS
Number before removing cloud 3662 420 273977
Number after removing cloud 25 138 37834

NCEP water vapour and temperature flelds. Standard deviations are examined to ensure that no signature of
cloud, such as high variability in the window, remains. The second stage is designed to remove thin cirrus from
the dataset and uses the method of Ackerman et al.18 The efiect of cirrus cloud on the spectrum is to introduce
a tilt in the atmospheric window so the brightness temperature difierence between 913.57cm¡1 and 1250.08cm¡1

is compared to an acceptance threshold. A high difierence indicates a high tilt across the atmospheric window
indicative of cirrus cloud in the fleld of view of the instrument when it was recording. The threshold is chosen
by the same method as in the flrst stage.

Difierences are examined between spectra in the Central Paciflc region (10–N-10–S, 180–W-230–W) as this is
one of the better sampled regions in all three datasets. The number of spectra before and after removing cloud
in each dataset is listed in table 2. A larger proportion of spectra are removed in the case of IRIS than AIRS
and IMG respectively, due to the increasing size of their flelds of view. The larger the fleld of view, the more
likely it is that it contains cloud. The spatial sampling of the spectra, after cloudy spectra have been removed,
is as shown in Fig. 1. The sampling irregularities in IMG are visible in (d) re°ecting the 4 day on, 10 day ofi
instrument power sequence and the removal of high numbers of noisy spectra. The sampling of AIRS is seen to
be very good. The gap in temporal sampling between 26th May and 12th June is due to the data being corrupted
at NASA and not having been reprocessed at the time of writing. Overall, the sampling of all three datasets
is reasonable. Additional evidence that the sampling is adequate is derived from the fact that the standard
deviation of all datasets are very similar. If either the IRIS or IMG data sampling were insu–cient, then the
standard deviation would be likely to be a difierent magnitude as the complete variability of the atmosphere
over the three month time period would not be captured.

4. OBSERVATIONAL SPECTRAL OLR DIFFERENCES
Average spectra and the difierences between them are shown in Fig. 2. The average spectrum for each instrument
for the Central Paciflc region is shown in Fig. 2(a). Inspection of individual features in Fig. 2(a) shows consistent
width and wavenumber for average spectrum from all instruments indicating that the resolution and fleld of view
corrections have been correctly applied. Figure 2(b) shows the difierences between the average spectra shown
in Fig. 2(a). The lower line is the 1997 IMG spectrum minus the 1970 IRIS spectrum; the middle line is the
2003 AIRS spectrum minus the 1970 IRIS spectrum; and the upper line is the 2003 AIRS spectrum minus the
1997 IMG spectrum. A negative going brightness temperature difierence is observed in the CO2 band around
700cm¡1 in the 1997-1970 and the 2003-1970 difierence spectra. A signature is observed in the ozone band
around 1060cm¡1 in all difierence spectra. A strongly negative going brightness temperature difierence in the
methane band at 1304cm¡1 is observed for the 1997-1970 and 2003-1970 difierence spectra with a difierence
in the opposite sense seen in the 2003-1997 difierence spectrum, indicating that the methane concentration in
2003 may be less than that observed in 1997, supporting the results of Dlugokencky et al.19 Studies have been
performed for numerous geographic locations and the major features in the difierence spectra appear in all cases
studied. In Fig. 2(c), the difierence spectra observed in the quasi-global region (60–N-60–S, 0–W-360–W) are
plotted. The similarity between the difierences in the Central Paciflc and the quasi-global regions highlights the
data quality as difierent number of spectra are averaged in the two cases. To attribute the causes of the shape
of the difierence spectra seen, simulations of the spectra have been created.

5. SIMULATED SPECTRAL OLR DIFFERENCES
Spectra were simulated using the MODTRAN20 version 3 band model running at a resolution of 1cm¡1. The
resolution of these spectra are then reduced using a Hamming window as performed on the observed spectra.



Figure 1. (a), (c) and (e) The spatial sampling and (b), (d) and (f) the temporal sampling of the IRIS, IMG and AIRS
instruments in the Central Paciflc region in April, May and June.

MODTRAN was run with user deflned proflles constructed using a number of gas concentration datasets. In
Fig. 3 the difierences between the simulations of the observed spectrally resolved OLR representative of 1970, 1997
and 2003 are presented from three difierent gas concentration datasets. In each simulation, proflles are deflned
for temperature, water vapour, CO2, CH4, O3, N2O, CFC11 and CFC12. Figures 3(a) and (b) show difierences
between spectra simulated using averaged reanalysis data. Figure 3(a) used temperature and water vapour
(calculated from the speciflc humidity) proflles from the NCEP reanalysis dataset.17 The NCEP reanalysis skin
temperature is used for the sea surface temperature. Ozone proflles are taken from the STOCHEM chemical
transport model forced by realistic emissions scenarios in the troposphere and using measured trends in the
stratosphere.21 For 2003, these model runs were not available so the 1997 proflle is scaled by the TOMS22, 23 total
column abundance. Concentrations of the other gases are taken from the Climate Monitoring and Diagnostics
Laboratory’s °ask measurement system at the closest available station.19, 24, 25 These concentrations are used
to scale the standard US atmospheric proflles26 for the correct gases. Figure 3(b) used temperature and water
vapour proflles from ECMWF analyses.27, 28 (Data from ERA-40 was used for 1970 and 1997 simulations and
data from the operational analysis was used for 2003).

The NCEP and ECMWF simulations (Fig. 3(a) and (b)) give a reasonable representation of the observations
(Fig. 2(b)). There are however a number of deflciencies. The NCEP simulated difierences and the observations



Figure 2. (a) The average spectra for each time period in the Central Paciflc. IRIS plotted as solid line, IMG as dotted
line and AIRS as dashed line. (b) The difierences between the average spectra in the Central Paciflc. Lower line, 1997
IMG spectrum minus 1970 IRIS spectrum ofiset by -10K, middle line, 2003 AIRS spectrum minus 1970 IRIS spectrum
ofiset by -5K and upper line, 2003 AIRS spectrum minus 1997 IMG spectrum. The ofisets are applied for clarity. (c) as
(b) but for the quasi global (60±N-60±S, 0±W-360±W) region.

both show a brightness temperature difierence in the window which is slightly positive whereas the ECMWF
simulated difierence is negative. The cause of this in both the NCEP and ECMWF simulations is that the
window temperature, and by implication the sea surface temperature, is too low. In the case of the 1970
ECMWF simulation, the window temperature is even more erroneously low than the other simulations causing
the negative going brightness temperature difierence. In both cases, the brightness temperature difierence in
the 1200-1400cm¡1 region of water vapour absorption is sloping toward larger values at higher wavenumbers
which is in contrast to the slope towards smaller values seen in the observed difierences. The reason for this
error, which is most pronounced in the 2003-1970 spectrum, appears to be due to poorly understood temperature
structure in the mid to upper troposphere. In the case of the 2003 simulations, the temperature and water vapour
concentration structures in the mid and upper troposphere mean that the simulated spectrum has a very similar
shape to that observed. In the case of the 1970 simulations, and to a lesser extent the 1997 simulations, the
water vapour concentration and temperature proflles ensure that the depth of the absorption lines are very close
to the depths seen but the background temperature is too hot, causing the shape of the brightness temperature
difierence in the 1200-1400cm¡1 region not to match that observed.



Figure 3. (a) Simulated difierences using NCEP water vapour and temperature. Lower line, 1997 spectrum minus 1970
spectrum ofiset by -10K, middle line, 2003 spectrum minus 1970 spectrum ofiset by -5K and upper line, 2003 spectrum
minus 1997 spectrum. (b) as (a) but using ECMWF water vapour and temperature. (c) as (a) but using proflles which
create a simulated difierence with most agreement with the observed difierences.

The efiects of methane are modelled using the CMDL ground concentration and standard atmosphere proflle
and hence both simulations will show the same efiects. The modelled CH4 band is not as deep and is wider than
the observed. The positive-going brightness temperature difierence seen in the 2003-1997 observed spectrum is
not seen. The region of absorption by ozone is represented reasonably well, although the errors in the window
temperature difierences mean that the background temperature from which the signature of ozone is seen is
incorrect. The most noticeable difierence between the observations and the simulations is the lack of small scale
variability in the simulations, especially in the window region. A number of causes of this have been investigated
and are discussed in section 6.

To attempt to address some of the deflciencies in the simulations produced using the ECMWF and NCEP
datasets, a third simulation (hereafter called simulation 3) has been produced and the results of this are plotted
in flgure 3(c). Here, we use gas proflles to create a brightness temperature difierence spectrum which is as close
to the observed difierences as possible. The gas proflles used are consistently within the range of proflles available
for a variety of sources. Using the proflles from ECMWF, NCEP and CMDL as above as well as ozonesondes,29

HALOE,30 ATSR,31 GOME,32 GOES33 and SAGE34 data, a maximum and minimum measured proflle for



each gas at each time are deflned. The simulation is then allowed to input any physically reasonable proflle
between the maximum and minimum measured gas concentration to flnd the proflle which produces a modelled
spectrum best reproducing the observed spectrum. The most noticeable improvements in the ability of this
simulation to match the observations is in the overall shape of the 1200-1400cm¡1 region, the improved shape
of the CO2 band, the flne detail of the shape of the window difierences and the distribution of CH4 brightness
temperature difierence features. We will discuss the mechanism for each of these improvements in turn.

As was the case for the ECMWF and NCEP simulations, the depth of the water vapour absorption lines
in the 1200-1400cm¡1 region are correct. In simulation 3 the background temperature of the spectra in this
region is the same as the observed whereas it was hotter in the ECMWF and NCEP simulations. The efiect
on the difierences is that the general shape of the region is closer to that seen in the observed difierences. The
depth of the negative going brightness temperature difierences in this region are also closer to those seen in the
observations, indicating that the depths of the absorption features modelled is closer to those observed in the
average spectrum for each instrument. The major difierence still observed in this region is now the seemingly
smoother nature of the simulation than the observed difierences. The observations produce a more ‘spiky’
difierence and we have been unable to reproduce this by changing the input gas proflles in the simulations. Noise
as a cause of this difierence is discussed in section 6.

The difierences in the CO2 band show much sharper features in this simulation, better representing the obser-
vations, than the very smooth difierences produced in the NCEP and ECMWF simulations. This improvement
was achieved by changing the upper atmosphere temperature proflle rather than the CO2 proflle. The flne details
of the shape of the window brightness temperature difierence in this simulation are made to look more like the
observations by flne tuning of the sea surface temperature, and the temperature and water vapour concentration
at 1000hPa.

Signiflcant difierences in the methane band are seen between this ’tuned’ simulation, the NCEP and ECMWF
simulations and the observational difierences. This simulation improves upon the NCEP and ECMWF simula-
tions in that the proportions of brightness temperature difierence seen in the case of each difierence spectra is
correct ie. the 1997-1970 difierence is the largest, the 2003-1970 difierence is slightly smaller and the 2003-1997
difierence is in the opposite sense. The brightness temperature difierences in this simulation, whilst being cor-
rectly proportioned, are not the same size as those seen in the observational data. No combination of water
vapour concentration, temperature and methane concentration using the data available could reproduce the size
of the difierences observed. Analysing the cause in more depth, we flnd that the 1970 simulation produces a
methane band which is very similar in size and shape to that observed. In the case of the 1997 simulation we are
unable to produce a band which is deep enough without increasing the methane concentration to around 45%
more methane than the gas concentration measurements would suggest. Similarly in the case of 2003, 32% more
methane is required.

Overall the most noticeable difierence between the simulation and the observational difierence spectra is the
smoothness of the simulations when compared to the observations. There could be a number of reasons for this.
Firstly, problems in the calibration of the three observational datasets to each other may cause this efiect. This
was investigated by changing the smoothing on the simulations and failed to produce the °uctuations seen without
producing obvious misalignments when the spectra are compared which are not seen in the observations. The
most likely cause of this efiect now that calibration problems have been discounted is noise in the observational
data.

6. EFFECTS OF NOISE EQUIVALENT RADIANCE
Noise is present in all spectra due to multiple noise sources in the instruments such as photon noise, detector noise,
source noise and digitizing noise. The amplitude of the noise equivalent spectral radiance for each instrument is
given in table 1. As random noise and averaged spectra are being compared, the noise on the average spectra
will scale as 1=

p
N where N is the number of spectra in the average. Knowing a proflle of the noise equivalent

radiance spectrum for each instrument, it can be smoothed to the IRIS resolution and the size of this efiect on
the difierence spectra can be calculated. In flgure 4, the same simulation as in flgure 3(c) is presented including
an estimate of the size of the efiect that the noise equivalent radiance would have had on the observed spectrum.



Figure 4. Simulation of the observed difierence spectra, as seen in flgure 3(c), including the efiects of the corresponding
instruments’ noise equivalent brightness temperature. The thickness of the line indicates the range of the combined noise
equivalent brightness temperatures.

The °uctuations in the observed spectra are within the range of the noise except for features in the methane
band where the difierences are signiflcantly larger than the modelled noise levels.

7. CONCLUSIONS
Calibration has been performed so that three datasets of spectrally resolved OLR recorded in 1970, 1997 and 2003
can be directly compared. Under clear sky, ocean background conditions for the months of April, May and June,
observation of the difierence in the spectrally resolved OLR are obtained which show features in the absorption
bands of the major greenhouse gases in the atmosphere. Simulation created using the NCEP reanalysis and
ECMWF analyses show that these datasets do not capture the same variations seen in the OLR observations.
Simulations created using proflles merged from a number of datasets show that we can explain the difierences
seen in the CO2 and ozone bands by the known changes in the those gases over the last 34 years. Large changes
are seen in the methane band potentially attributable to long term changes in the methane concentration but
importantly not consistent with the admittedly sparse independent concentration measurements available.
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