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Abstract

This thesis is devoted to two topics in Analytic number theory, namely, that

of Waring type problems in thin sets and mixed moments of the Riemann zeta

function.

We begin by examining the expected asymptotic formula of the represen-

tation function in Waring’s problem over sums of three cubes, both with and

without multiplicities, thereby establishing its validity in the former case and

deriving a lower bound in the latter.

A separate discussion is devoted to the investigation of the above setting

for small exponents. We obtain upper bounds for the number of variables

needed to represent every sufficiently large integer in the prescribed way for

the exponents 2, 3 and 4. We make use of the minor arc analysis in the case

k = 2 and combine it with an intrincate major arc counterpart to deduce an

almost all result for the analogous Lagrange’s four-square theorem where the

variables are restricted to the sums of three cubes.

We complete the circle method part of the thesis by examining the anal-

ogous problem in which the sums of three cubes are replaced by sums of t

positive l-th powers, the desired objective in such a context being the ac-

complishment of some uniformity in the number s of variables needed. Those

considerations are discussed and partially achieved when t lies in two particular

ranges.

The second part of the thesis comprises the investigation of mixed third

moments of the Riemann zeta function. We establish an asymptotic evalu-

ation of the moment at hand in three different situations: one in which the

corresponding coefficients are rational numbers in a suitable range, another

one in which the coefficients are linearly independent over Q, and the last one

in which one of the coefficients equals minus the other one. In certain cases

we are able to provide explicit account of lower order terms.
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Chapter 1

Introduction

1.1 Diophantine problems and diagonal equa-

tions

Since its first appearance in 1918 in investigations of Hardy and Ramanujan

[54] concerning the asymptotic evaluation of the partition function, which we

define as the number of ways of writing a natural number n as

n = x1 + . . .+ xj, xi ∈ N, j ∈ N

where x1 ≤ x2 ≤ . . . ≤ xj, the circle method has been one of the most

powerful exploited techniques in the analysis of problems of additive nature

in the theory of numbers. From its very early stages, it has been employed in

various different areas of analytic number theory and has become a prominent

tool in the analysis of diophantine equations, which are polynomial equations

over the integers. The subsequent developments and refinements of it have led

to noteworthy advances in the understanding of solutions of general systems

of homogeneous equations, providing remarkably satisfactory results in the

instance when the number of variables of the corresponding polynomials is

quite large with respect to the degree of those polynomials.

In the analysis of diophantine equations with fewer variables one often en-

counters situations in which the number of solutions, if any, is expected, or

at least conjectured to be small. Under such circumstances then algebraic

geometric arguments are often employed to derive such conclusions. We take
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this opportunity to draw the reader’s attention to the relatively recent cele-

brated resolution of Fermat’s Last Theorem [160], which states that no triple

(x, y, z) ∈ N3 satisfies the equation

xn + yn = zn

for n ≥ 3, or Faltings’ theorem [41], which proves the finiteness of the rational

points of curves of genus greater than 1 defined over a number field, to provide

some of the most prominent results wherein the aforementioned approach has

found success. In contrast, when the number of variables is reasonably large

then one usually expects to have many solutions, and succesful applications

of the circle method when attempting to shew the existence of any of those

often achieve so by actually providing strong lower bounds in the number of

solutions of the corresponding systems of equations.

For the sake of transparency and further convenience we introduce for fixed

k ≥ 2 and ai ∈ Z, not all with the same sign whenever k is even, the collection

of equations

a1x
k
1 + . . .+ asx

k
s = 0, xi ∈ N,

which we will henceforth refer to as diagonal equations. Of particular interest

among the diophantine problems are these equations because of their connec-

tion with problems in additive number theory and because the results involving

those may be applied to obtain non-trivial consequences concerning the reso-

lution of more general systems of homogeneous equations and the density of

rational points on algebraic varieties. It is also worth noting that the devel-

opment of the techniques to obtain sharper results in the analysis of diagonal

equations entails refinements of estimates for some exponential sums which in

turn deliver bounds for fractional parts of polynomials and have implications

in the theory of equidistribution. Likewise, progress in the resolution of these

equations often relies on improvements in estimates of mean values of those

exponential sums which in turn might have applications for other subjects in

analytic number theory.

It seems appropiate to remark that the extensive investigations by scholars

concerning diagonal equations in many variables via the circle method have

led to some of the most formidable results attained by the approach thereof,

and the first three chapters of the present memoir will be primarily devoted
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to the analysis of problems involving those. For the purpose of illustrating the

history of the aforementioned equations we shall give an exhaustive account of

the main results within this circle of ideas in the next sections.

Nonetheless, there has also been a considerable amount of work devoted to

the analysis of diagonal equations in which the number of variables is reason-

ably small as compared to the degree of those, and herein other analytic and

algebraic geometric methods play a not unimportant role. When the equa-

tions in hand are symmetric, a consideration of a handful of examples lends

credibility to the belief that there are fewer solutions other than the diago-

nal ones, and we should note herein that establishing such a result is called a

paucity problem. Albeit the following list that will be presented shortly does

not pretend to give account of all of the problems pertaining to the situation

at hand, it is convenient to mention first excursions concerning, for k ≥ 3, the

asymptotic evaluation of

xk1 + xk2 = yk1 + yk2 ,

where x1, x2, y1, y2 ∈ N, and connected problems involving the estimation of

the cardinality νk(x) of the set of integers up to x which have more than one

representation as a sum of two k-th powers. We find it appropiate to refer the

reader to the series of memoirs of Hooley [66], [67], [68], [69], [72] that shew the

bound νk(x) = Oε,k(x
5/3k+ε) by employing sieve methods in conjunction with

Deligne’s estimates. It is also worth mentioning the papers of Greaves [47], [48],

which establish a weaker bound by utilising Weil’s estimates instead, and the

work of Skinner and Wooley [125], which sharpens Hooley’s estimate by making

use of an elementary argument relying on a result of Bombieri and Pila [11]

for counting integral points on curves. The current best bound for large k due

to Browning [17] is of the shape νk(x)� x2/3k+ε and is based on an argument

of Heath-Brown [64] concerning the number of rational points on curves in the

projective space. For the sake of completeness, though, we refer the reader to

further refinements of Browning and Heath-Brown [19] and Salberger [122] for

intermediate values of k.

We also find it convenient to mention the result of Browning and Heath-

Brown [18] on the investigation of the number of solutions of the equation

xk1 + xk2 + xk3 = xk4 + xk5 + xk6, 1 ≤ xi ≤ P.
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By making use of ideas concerning lattice points in conjunction with algebraic

geometric arguments, the aforementioned authors show that the cardinality of

the set of off-diagonal solutions is o(P 3) whenever k ≥ 33. As a consequence,

they derive an asymptotic formula for the cardinality of numbers that are

expressible as sums of three k-th powers, improving upon an earlier approach

of Wooley [166] employing the circle method. It is worth mentioning the

work of Salberger [121], wherein he derives the same conclusion for k ≥ 25.

Salberger and Wooley have further obtained the paucity of diagonal solutions

of the equation

xk1 + . . .+ xks = xks+1 + . . .+ xk2s, 1 ≤ xi ≤ P

in the instances when k ≥ (2s)4s.

It may also seem appropiate to illustrate our exposition by considering the

connected problem concerning the system of equations

xk1 + xk2 + xk3 = xk4 + xk5 + xk6,

x1 + x2 + x3 = x4 + x5 + x6,

where 1 ≤ xi ≤ P, and herein we shall mention the work of Greaves, who

deduced that the cardinality of the set of non-diagonal solutions thereof is

O(P 17/6+ε). Skinner and Wooley [126] sharpened this to O(P 8/3+1/(k−1)+ε) in

a subsequent paper by generalising the methods employed in [125]. These

bounds have now been superseded by the work of Salberger [120], which yields

O(P 5/2+ε) for k ≥ 6. As was mentioned earlier, the focus of the present memoir

is on the instance where the circle method is applicable, and we shall not discuss

the above situation again in our work.

1.2 Waring’s problem

The first explicit mention of the simplest case of Waring’s problem proba-

bly dates back to the 3rd century AD in the hellenistic mathematics treatise

Arithmetica. Although Diophantus claims therein to know how to prove that

every natural number can be written as a sum of four squares, it wasn’t until

1770 that a rigorous proof was written down by Lagrange, even Euler and Fer-
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mat failing to find success on such a problem. We refer the interested reader

to [55], [104], [106] for different proofs of the theorem.

On that same year, Waring conjectured a generalization of the above by

asking whether for fixed k ∈ N there exists a number s depending on k for

which every natural number is expressible as

n = xk1 + . . .+ xks (1.2.1)

for non-negative integers xi. On denoting by g(k) to the minimum such s,

if it exists, he further claimed without proof that g(2) = 4 (which was a

consequence of Lagrange’s theorem), g(3) = 9, g(4) = 19 and so on. By the

end of the nineteenth century though, the existence of g(k) was only known for

a handful of exponents, and it wasn’t until 1909 when Hilbert [65] proved it for

all k by using a combinatorial argument relying on some intrincate polynomial

identities.

Very shortly after that breakthrough, Wieferich [159] and Kempner [90]

showed that g(3) = 9, the statement g(4) = 19 being established by Balasub-

ramanian, Dress and Deshouillers [4], [5] in 1986, the identity g(5) = 37 by

Chen [24] in 1964 and g(6) = 73 by Pillai [109] in 1940 . Before giving account

of the progress being made concerning the evaluation of g(k) for general k and

for the purpose of merely illustrating such a discussion, we find it appropiate

to observe that the number

n = 2k

⌊(3

2

)k⌋
− 1

satisfies n < 3k. Consequently, the most economical way of expressing n as a

sum of k-th powers would only involve 1 and 2k as summands and would yield

the bound

g(k) ≥
⌊(3

2

)k⌋
+ 2k − 2.

Moreover, after the work of many mathematicians, it is now known that the

above inequality is an equality whenever

2k
{

(3/2)k
}

+ b(3/2)kc ≤ 2k. (1.2.2)
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If the above conclusion does not hold then

g(k) = 2k + b(3/2)kc+ b(4/3)kc − θ,

where θ is 2 or 3 depending on whether

b(4/3)kcb(3/2)kc+ b(4/3)kc+ b(3/2)kc

equals or exceeds 2k respectively. It also seems appropiate to mention that

condition (1.2.2) does not hold only for at most a finite number of cases (see

Mahler [99]), and that the work of Kubina and Wunderlich [91] yields (1.2.2)

whenever k ≤ 471, 600, 000. Describing the long history of contributions in-

volving such evaluations is hardly the point of this discussion, whence in the

interest of curtailing our digression we refer the reader to [39], [40], [105], [151].

In view of the above discussion it transpires that the function g(k) is de-

termined by the behaviour of small k-th powers. The more modern variant

of the problem avoids that limitation by seeking to minimise the number of

variables to represent instead every sufficiently large number. We denote for

further convenience by G(k) to the smallest positive integer s for which every

sufficiently large integer can be written as a sum of s positive k-th powers.

It appears at first glance that a consideration of the representation of small

values of n, as discussed above, already delivers robust lower bounds on g(k).

The problem then reduces to show via the circle method that the numbers

larger than that already considered are expressible employing at most that

many variables, whilst the only lower bounds for G(k) that one may deduce

esentially arise from local solubility constraints.

It seems apparent that the latter framework is much harder, and as will

be detailed shortly, matching the upper bounds deduced via the circle method

with the lower ones stemming from the local solubility analysis lies beyond the

reach of current technology in most of the cases.

As a prelude to our forthcoming discussion we find it appropiate to briefly

mention the results available on the literature concerning the evaluation of

G(k). It might be worth noting first that Lagrange’s theorem for squares

in conjunction with the observation that a sum of three squares cannot be

congruent to 7 modulo 8 already delivered G(2) = 4. In 1939, Davenport [30]

incorporated the exponent k = 4 to the above list by shewing that G(4) = 16
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employing a sophisticated version of the diminishing ranges argument. In fact,

his proof is accomplished by deriving a suitable minor arc estimate involving

14 variables, and so the latter author further deduces that every large positive

integer not congruent to 15 or 16 modulo 16 is expressible as a sum of at

most 14 biquadrates. The enthusiast reader shall be referred to the work of

Vaughan [137], [139] or Kawada and Wooley [87] for further refinements in the

above setting within this circle of ideas.

Nevertheless, the above evaluations are the only ones known, and the cur-

rent best upper bounds for G(k) obtained via the circle method are still quite

far from the conjectured values. In order to describe the history of the progress

and sharpening of the estimates for the aforementioned function rather pre-

cisely, we feel obliged to provide to the reader with a gentle introduction to the

Hardy-Littlewood method, which we defer to the next section. Nonetheless,

it is worth mentioning the bound G(3) ≤ 7 obtained by Linnik [96] in 1943

avoiding the use of the circle method. We shall not give an overall account

of recent progress in the understanding of sums of cubes herein, but never-

theless we content ourselves to mention that Vaughan [140] further deduced

a lower bound on the number of representations of large positive integers as

sums of seven cubes of the expected order via the circle method by combining

a sixth moment estimate involving cubes obtained in [139] in conjunction with

ideas from [136] and a delicate analysis. Wooley further simplified the proof

to obtain such upper bound by refining the aforementioned estimate in [166].

1.3 Notation

We will give an overview of the most basic approach to Waring’s problem util-

ising the Hardy-Littlewood method promptly, but for the sake of preciseness

some basic notation which will be used throughout the entire memoir is re-

quired. For functions f(t) and g(t), the abbreviation f(t)� g(t) will mean as

is customary that there exists some constant C > 0 for which |f(t)| ≤ C|g(t)|,
and f(t) � g(t) will denote the inequality |f(t)| ≥ C|g(t)| (this is often re-

ferred to as Vinogradov’s notation in the literature). We will also write A � B

when A � B � A. Whenever the symbols �, � or � appear in the re-

strictions pertaining to a sum it will mean that the corresponding tuples are

subjected to the underlying inequality for some particular choice of the implicit
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constant, the precise value not having any impact in the subsequent estima-

tion. As usual in analytic number theory, for each x ∈ R then e(x) will mean

exp(2πix), and for each natural number q then e(x/q) will be written as eq(x).

We will write a ≤ V ≤ b for V = (v1, . . . , vn) when a ≤ vi ≤ b for 1 ≤ i ≤ n.

When ε appears in any bound, it will mean that the bound holds for every

ε > 0, though the implicit constant then may depend on ε. We adopt the

convention that unless specified, whenever we write δ in the computations we

mean that there exists a positive constant δ for which the bound holds. We

write pr||n to denote that pr|n but pr+1 - n. The function ||x|| denotes the

distance to the nearest integer.

1.4 The application of the circle method to

Waring’s problem

We begin our discussion by fixing first s, k ∈ N, taking a natural number n,

which the reader should think of as being large, introducing the parameter

P = n1/k and considering the representation function

Rs,k(n) = card
{

(x1, . . . , xs) ∈ Ns : n = xk1 + . . .+ xks

}
.

The circle method employs Fourier Analysis to obtain quantitative informa-

tion about the above function, and in order to illustrate this idea we find it

convenient to introduce the Weyl sum

f(α) =
∑

1≤x≤P

e(αxk). (1.4.1)

Then by employing the basic orthogonality relation

∫ 1

0

e(αh)dα =

{
1 when h = 0

0 when h ∈ Z \ {0}
(1.4.2)

we obtain the identity

Rs,k(n) =

∫ 1

0

f(α)se(−αn)dα,
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which expresses Rs,k(n) in terms of the n-th Fourier coefficient of f(α)s, whence

it transpires that controlling Rs,k(n) amounts to understanding the behaviour

of the exponential sum f(α). We will shortly provide the reader with an

overview of the ideas to analyse the above integral, but first we find it appropi-

ate to mention that assuming that integers of the same size should have similar

number of representations then one would expect to obtain Rs,k(n) � ns/k−1.

It might be worth noting first that on taking a/q for a, q ∈ Z with 0 ≤ a < q

and (a, q) = 1 then by sorting the terms into arithmetic progressions modulo

q one finds that

f(a/q) =
P

q

q∑
r=1

e(ark/q) +O(q).

Consequently, assuming that the sum involved in the above expression is non-

zero, it appears at first glance that whenever q is sufficiently small then the

above equation is an asymptotic formula and implies that |f(a/q)| is fairly big,

and one expects to derive a similar conclusion for α close to rational numbers

with small denominator. If, on the contrary, α does not satisfy the above

property then one would expect the argument αxk to be distributed rather

randomly modulo 1 and hence to obtain plenty of cancelation when summing

over x.

Motivated by such an observation, we will dissect the unit interval into

major arcs, which will be sufficiently narrow intervals centered at rational

numbers with small denominator, and minor arcs, which will be the comple-

ment of those. The above discussion then lends credibility to the expectation

that the main contribution to the integral will be arising from the major arcs.

History enthusiasts may find it interesting to know that such a terminology

stems from the original treatment of Hardy and Littlewood involving the use

of Cauchy’s integral formula to express Rs,k(n) as a contour integral over a

circumference on the complex plane.

In order to put these ideas into effect, we take δ > 0 to be a small parameter,

consider a ∈ Z and q ∈ N with 0 ≤ a ≤ q ≤ P δ and with the property that

(a, q) = 1 and introduce

M(a, q) =
{
α ∈ [0, 1) : |α− a/q| ≤ P δ

n

}
.

We define the major arcs M to be the union of the above intervals, and the mi-

10



nor arcs will then be m = [0, 1)\M. We also introduce, for further convenience,

the auxiliary functions

S(q, a) =

q∑
r=1

e(αrk), v(β) =

∫ P

0

e(βγk)dγ.

We take α ∈M(a, q) and write α = a/q + β. Then, by sorting the terms into

arithmetic progressions modulo q one obtains

f(α) =

q∑
r=1

e(ark/q)
∑
x≤P

x≡r (mod q)

e(βxk).

It transpires that the derivative of the argument inside the inner sum on the

above equation is fairly small, whence an application of Riemann-Stieltjes in-

tegration already suffices to obtain the asymptotic relation

f(α) ∼ q−1S(q, a)v(β).

We find it appropiate to mention that a slightly more sophisticated approach

involving a truncated version of Poisson summation formula in conjunction

with estimates for complete exponential sums delivers an error term of the size

O(q1/2+ε) in the above formula.

Integrating over each individual arc and summing over pairs (a, q) satisfying

the above properties we deduce that∫
M

f(α)se(−αn)dα ∼ S(n, P δ)J(n;P δ)

where

S(n;P δ) =
∑
q≤P δ

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−an/q)

and

J(n;P δ) =

∫
|β|≤P δn−1

v(β)se(−βn)dβ.

A careful analysis of the exponential sum S(q, a) reveals that whenever (a, q) =

1 then

S(q, a)� q1−1/k,

11



which already suffices to provide, for s sufficiently large in terms of k, the

convergence of

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1S(q, a)

)s
e(−an/q),

the bound S(n) � 1 and the asymptotic relation S(n;P δ) ∼ S(n). The

reader may find it useful to mention that S(n) is often referred to as the

singular series. It is a noteworthy feature that by using the multiplicative

nature of the terms inside the series in conjunction with the bounds for S(q, a)

already mentioned and some basic orthogonality relations one may write it as

the infinite product

S(n) =
∏
p

σ(p),

where the local factors σ(p) are defined as

σ(p) = lim
h→∞

ph(1−s)card
{

(x1, . . . , xs) ∈
(
Z/phZ

)s
: xk1+. . .+xks ≡ n (mod ph)

}
.

Using some elementary combinatorial arguments one can derive a lower

bound for the function inside the above limit not depending on h whenever

s ≥ 4k, and a refined estimate for S(q, a) when one restricts q to prime powers

combined with the previous observation delivers the lower bound S(n) � 1.

We should note that the analysis of the congruence problem, often referred to

as local solubility analysis, can be further refined to obtain sharper conclusions

concerning the restriction on s. In particular, every bound for G(k) that

we mention in the discussion will embody these local solubility refinements

in order to ensure that the estimate S(n) � 1 holds, but we shall not give

account of those henceforth.

Likewise, a simple argument involving integration by parts yields the bound

v(β)� P

(1 + n|β|)1/k
.

The above estimate already delivers the convergence of the singular integral,

which we define by

J(n) =

∫ ∞
−∞

v(β)se(−βn)dβ,

12



subject to the condition s ≥ k + 1, and provides the asymptotic relation

J(n;P δ) ∼ J(n). It follows from Fourier’s Integral Theorem that

J(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1,

whence by the preceding discussion one gets∫
M

f(α)se(−αn)dα ∼ Γ(1 + 1/k)s

Γ(s/k)
ns/k−1S(n).

We should remark that by employing all of the refinements mentioned

throughout the above discussion, the above formula can be established when-

ever s ≥ max(5, k + 1). It transpires then that the major arcs are rather well

understood and the restrictions in the number of variables stemming from the

corresponding analysis thereof are essentially optimal. In contrast, the minor

arc toolbox available is somewhat more limited, and any refinements on upper

bounds for G(k) essentially have their reliance on developments in the minor

arc machinery. In what follows we shall give a brief account of the history of

the progress in the minor arc analysis in connection with Waring’s problem for

large k.

Our journey begins in 1916 with the pointwise bound

sup
α∈m
|f(α)| � P 1−δ21−k+ε

obtained by Weyl [157] employing his Weyl differencing technique. This non-

trivial saving in conjunction with a near-optimal bound for the 4-th moment

of f(α) stemming from an elementary divisor estimate argument and a refined

major arc analysis already suffices to deduce the upper bound

G(k) ≤ (k − 2)2k−1 + 5,

which was accomplished by Hardy and Littlewood [51]. In 1938, Hua [73]

further exploited the Weyl differencing ideas and incorporated them to the

analysis of mean values over the unit interval, thus obtaining∫ 1

0

|f(α)|2jdα� P 2j−j+ε (1.4.3)

13



whenever 1 ≤ j ≤ k. Combining the above equation with the pointwise bound

earlier mentioned one obtains for s ≥ 2k + 1 the estimate∫
m

|f(α)|sdα�
(

sup
α∈m
|f(α)|

)s−2k
∫ 1

0

|f(α)|2kdα� P s−k−21−kδ+ε.

The preceding discussion in conjunction with the above major arc discussion

then yields ∫ 1

0

f(α)se(−αn)dα ∼ S(n)
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1, (1.4.4)

which in turn implies the bound G(k) ≤ 2k + 1 attributed to the latter author.

1.5 Large sieve inequality

The western modern approach of problems within this circle of ideas often re-

lies on the application of the large sieve inequality, whence it has been thought

pertinent to defer the above description on the progress in Waring’s problem

in order to have first a separate discussion about the proof and use of such a

powerful utensil. Its first appearance on the stage dates back to the work of

Linnik [95] on estimates for the cardinality of sets of natural numbers miss-

ing some congruence classes modulo a prime number for a given collection of

primes. The modern shape of the large sieve is also applicable to the latter

setting but is stated in a more general framework involving L2-type estimates

and has proved to be a very robust tool in many other contexts in analytic

number theory. In order to describe the statement of the inequality at hand,

we introduce first for M,N ∈ Z with N ≥ 1 and a sequence of real numbers

(cn) the trigonometric polynomial

T (x) =
M+N∑
n=M+1

cne(nx).

Theorem 1.5.1. (Large sieve inequality) Consider δ > 0. Let R ∈ N and let

xr (1 ≤ r ≤ R) be a set of real numbers with the property that

||xr − xs|| ≥ δ, r 6= s.

14



Then one has
R∑
r=1

|T (xr)|2 ≤ C(N + δ−1)
M+N∑
n=M+1

|cn|2

for some constant C > 0.

For the purpose of illustrating our exposition with the circle of ideas un-

derlying such inequalities we will shortly provide a sketch of the proof of the

above theorem, but we should note first that if R = 1 and cn = e(−nx1) then

the equality
R∑
r=1

|T (xr)|2 = N
M+N∑
n=M+1

|cn|2

holds. Similarly, a simple computation involving orthogonality reveals that

∫ 1

0

R∑
r=1

|T (x+ r/R)|2dx = R
M+N∑
n=M+1

|cn|2,

whence an application of the mean value theorem yields the existence of some

x ∈ [0, 1] for which

R∑
r=1

|T (x+ r/R)|2 ≥ R
M+N∑
n=M+1

|cn|2.

The reader may note that the corresponding set of R points are R−1 spaced

apart modulo 1. In view of the above discussion, it transpires that Theorem

1.5.1 as currently stated is sharp (up to a constant). It might also be convenient

to observe that it is a noteworthy feature that whenever N is significantly

smaller than δ−1 then the diagonal contribution esentially dominates over the

non-diagonal one.

We find it desirable to mention that the first appearance of such a formula-

tion in the literature dates back to Davenport and Halberstam [34] in 1966, who

delivered the above inequality with 11
5

max(δ−1, N) replacing C(N+δ−1). This

bound was ultimately improved independently by Montgomery and Vaughan

[100] and Selberg [124], that replaced the aforementioned factor by (N + δ−1),

which in view of the preceding discussion is essentially best possible (see

Bombieri and Davenport [9] for some intermediate results). Because of its

simplicity, we shall prove herein a version of the above due to Gallagher [45].

To this end we shall include first a technical lemma.
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Lemma 1.5.1. (Sobolev) Suppose that a, b ∈ R with a < b and f : [a, b] → C
has a continuous derivative. Then one has∣∣∣f(a+ b

2

)∣∣∣ ≤ 1

b− a

∫ b

a

|f(x)|dx+
1

2

∫ b

a

|f ′(x)|dx.

Proof. We observe first that integration by parts yields∫ b

(a+b)/2

f(x)dx =
b− a

2
f
(a+ b

2

)
−
∫ b

(a+b)/2

f ′(x)(x− b)dx

and ∫ (a+b)/2

a

f(x)dx =
b− a

2
f
(a+ b

2

)
−
∫ (a+b)/2

a

f ′(x)(x− a)dx.

Therefore, summing the above equations, taking absolute values and ap-

plying the triangle inequality delivers the desired result.

Proof of Theorem 1.5.1. For the purpose of getting a sharper constant in the

inequality at hand it is desirable to introduce the parameter K = M +1+bN
2
c

and write T (x) = e(Kx)U(x), where

U(x) =

N−bN
2
c−1∑

n=−bN
2
c

cn+Ke(nx).

It will therefore suffice to bound the mean square of U(x) instead. Indeed,

Lemma 1.5.1 applied to U(x)2 yields

R∑
r=1

|U(xr)|2 ≤ δ−1

R∑
r=1

∫ xr+δ/2

xr−δ/2
|U(x)|2dx+

R∑
r=1

∫ xr+δ/2

xr−δ/2
|U(x)U ′(x)|dx

≤ δ−1

∫ 1

0

|U(x)|2dx+

∫ 1

0

|U(x)U ′(x)|dx, (1.5.1)

where in the last line we used the spacing conditon modulo 1 of the sequence

(xr). It then transpires that orthogonality delivers

∫ 1

0

|U(x)|2dx =
M+N∑
n=M+1

|cn|2

16



and ∫ 1

0

|U ′(x)|2dx ≤ (πN)2

M+N∑
n=M+1

|cn|2.

Moreover, Cauchy’s inequality in conjunction with the above lines yields

∫ 1

0

|U(x)U ′(x)|dx ≤
(∫ 1

0

|U(x)|2dx
)1/2(∫ 1

0

|U ′(x)|2dx
)1/2

≤ Nπ

M+N∑
n=M+1

|cn|2,

whence by the preceding discussion one obtains

R∑
r=1

|T (xr)|2 ≤ (πN + δ−1)
M+N∑
n=M+1

|cn|2,

as desired.

The use of the large sieve inequality plays a prominent role in the analysis

of pointwise estimates of exponential sums, and we shall give an account of

how these ideas have been put into effect in the scene of the refinements on the

estimates for G(k) in the next section. It also seems appropiate to mention that

the use of the large sieve inequality is of great importance in Chapter 4, whence

we find it worth sketching how the application of such a utensil ultimately leads

to pointwise bounds for Weyl sums since our treatment herein is inspired by

the argument utilised in that context. To this end, a generalisation of the

large sieve inequality for l dimensions, whose proof is slightly more intrincate,

is required. It has been thought preferable to include instead Gallagher’s

proof of the one-dimensional version for the sake of prioritising concision over

completeness since it already suffices to illustrate the underlying principles.

The aforementioned l-dimensional version of the large sieve (see [141] for a

simplified proof) is due to Huxley [77] and Wilson [161] and was originally con-

ceived to extend earlier sieve type bounds and other related results involving

the distribution of primes in arithmetic progressions in the context of number

fields.

Theorem 1.5.2. Let l ≥ 2 and take δj > 0 for 1 ≤ j ≤ l. Suppose that Γ is a

non-empty set of points γ ∈ Rl with the property that for each γ, γ′ ∈ Γ with

γ 6= γ′ the inequality

||γj − γ′j|| > δj

holds for at least one j ≤ l, where γj, γ
′
j denote the j-th component of the
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corresponding vector. Take natural numbers Nj for 1 ≤ j ≤ l. Let N denote

the set of integer tuples n = (n1, . . . , nl) with 1 ≤ nj ≤ Nj and consider the

weighted exponential sum

S(α) =
∑
n∈N

cne(n ·α)

for complex numbers cn. Then one has

∑
γ∈Γ

|S(γ)|2 �
∑
n∈N

|cn|2
l∏

j=1

(Nj + δ−1
j ).

Equipped with such a result we are ready to sketch how to derive pointwise

bounds for Weyl sums employing mean values of such sums. To this end we

define, for any integer x ∈ N and fixed k ∈ N the vector ν(x) = (x, x2, . . . , xk)

and consider, for α ∈ [0, 1)k the Weyl sum

fk(α) =
P∑
x=1

e(α · ν(x)). (1.5.2)

We also take, for convenience, the mean value

Js,k(P ) =

∫
[0,1)k
|fk(α)|2sdα. (1.5.3)

We further introduce a set

M∈ [1, P ], M = card(M),

and observe that for any m ∈M then one has

fk(α) =
P+m∑
x=1+m

e(α · ν(x−m)) =

∫ 1

0

g(m,β)
P+m∑
y=1+m

e(−βy)dβ,

where

g(m,β) =
2P∑
x=1

e(α · ν(x−m) + βx),

and where in the last step we applied orthogonality. Therefore, averaging over
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the set M yields

fk(α)�M−1
∑
m∈M

sup
β∈[0,1)

|g(m,β)|
∫ 1

0

min(P, ||β||−1)dβ

�M−1 log(2P ) sup
β∈[0,1)

∑
m∈M

|g(m,β)|. (1.5.4)

It seems pertinent to observe that

α · ν(x−m) = αkx
k + νk−1(x) · γ(m) +

k∑
j=1

(−m)jαj,

where γ(m) is a (k − 1)-tuple whose entries are polynomials on m. We also

define, for further convenience and n = (n1, . . . , nk−1) ∈ Nk−1 the complex

numbers

a(n) =
∑

x1,...,xs

e
(
αk(x

k
1 + . . .+ xks) + β(x1 + . . .+ xs)

)
,

where in the above sum the variables xi ∈ N satisfy the system of equations

xh1 + . . .+ xhs = nh, (1 ≤ h ≤ k − 1).

It then transpires that an application of Holder’s inequality in (1.5.4) delivers

|fk(α)|2s �M−1(log(2P ))2s
∑
m∈M

∣∣∣∑
n

a(n)e
(
γ(m) · n

)∣∣∣2,
where in the above line n = (n1, . . . , nk−1) runs over integer tuples satisfying

1 ≤ nh ≤ sP h. It may be noticeable that the right side of the above inequality

is eager to be estimated by the (k − 1)-dimensional version of the large sieve

inequality. For the purpose of avoiding a prolix discussion we refer the reader

to Chapter 5 of Vaughan [141] for the verification of the spacing condition

of the vectors γ(m), and confine ourselves to state without proof that for a

suitable choice of minor arcs m and set M satisfying card(M) � P one can

verify that the latter condition holds for δh = P−h. Therefore, by the preceding

discussion in conjunction with Theorem 1.5.2 one has that whenever α ∈ m
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then

|fk(α)|2s � (log(2P ))2sP k(k−1)/2−1
∑
n

|a(n)|2

� (log(2P ))2sP k(k−1)/2−1Js,k−1(P ),

where we remind the reader that Js,k−1(P ) was defined in (1.5.3). We find it

appropiate to mention that whenever s ≥ k(k − 1)/2 then it is a consequence

of the recent resolution of the main conjecture in Vinogradov’s mean value

theorem [15] that

Js,k−1(P )� P 2s−k(k−1)/2+ε,

whence taking s = k(k − 1)/2 in the above equation and combining such an

estimate with that of the preceding line yields, for α ∈ m, the bound

fk(α)� P 1−1/k(k−1)+ε,

as desired. The reader shall rest assured that the next subsection will be

partially devoted to give account of the history of Vinogradov’s mean value

theorem.

1.6 Developments in the minor arc machinery

1.6.1 Asymptotic formula in Waring’s problem

We should remark first that all of the approaches mentioned in the minor

arc analysis in Section 1.4 further deliver an asymptotic formula for the rep-

resentation function, and thus find it desirable to have a succinct discussion

describing the refinements in the number of variables to secure the validity

of such a formula. To this end we define for convenience by G̃(k) to the

smallest s for which (1.4.4) holds. Then, as was noted above, Hardy and Lit-

tlewood [51] obtained the bound G̃(k) ≤ (k− 2)2k−1 + 5, and Hua improved it

to G̃(k) ≤ 2k+1. The latter bound was further refined by Vaughan [136], [138]

by showing that G̃(k) ≤ 2k whenever k ≥ 3. By utilising a stronger version of

the estimate (1.4.3) due to Heath-Brown in conjunction with ideas from [136]

then Boklan [7] accomplished the sharpening of the aforementioned bound

and obtained G̃(k) ≤ 7 · 2k−3 whenever k ≥ 6. It is a noteworthy feature
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that hirtherto the foremost bounds for 3 ≤ k ≤ 5 are those of Vaughan, while

the work of Boklan yields the current best one when k = 6. For intermediate

values of k the reader shall be referred to [8], [107] [177] in the interest of

curtailing the exposition.

For larger k, Vinogradov’s mean value theorem plays a prominent role,

whence for the purpose of illustrating our discussion we shall introduce the

corresponding formulation and elucidate its relevance to the problem at hand.

To this end, we find it pertinent to draw the reader’s attention to the defini-

tions of fk(α) and Js,k(P ) in (1.5.2) and (1.5.3) respectively. A simple argu-

ment employing orthogonality and the triangle inequality in conjunction with

the consideration of the diagonal solutions already delivers the lower bound

P 2s−k(k+1)/2 +P s � Js,k(P ), and leads to the question on whether the estimate

Js,k(P )� P s+ε + P 2s−k(k+1)/2,

often referred to as the main conjecture in Vinogradov’s mean value theorem,

holds or not. The problem of estimating Js,k(P ) has an extensive history

which we shall shortly and briefly give account of herein and dates back to

Vinogradov [148], but for the time being we find it worth noting first that on

recalling (1.4.1) and using orthogonality then∫ 1

0

|f(α)|2sdα =
∑
|ni|≤sP i

∫
[0,1)k
|f(α)|2se(−αk−1nk−1 − . . .− α1n1)dα

� P k(k−1)/2Js,k(P ). (1.6.1)

The reader may recall that progress in the investigation concerning the asymp-

totic formula at hand esentially hinges on refinements on the estimates for the

mean value on the left side of the previous equation, whence in view of the

above line of inequalities it transpires that sufficiently strong bounds for Js,k(P )

deliver robust estimates for such a mean value which would ultimately lead to

establish the validity of such a formula.

Estimates for G̃(k) employing these circle of ideas were provided first by

Vinogradov [148], who accomplished the bound G̃(k) ≤ 183k9(log k + 1)2. By

improving the estimates for Vinogradov’s mean value theorem, Hua [75] refined

the latter to G̃(k) ≤ (4 + o(1))k2 log k. Meanwhile, the work of Linnik [97],

Karatsuba [85] and Stechkin [131] led, whenever s ≥ k to the satisfactory
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bound

Js,k(P )� P 2s− 1
2
k(k+1)+ηs,k

where ηs,k = 1
2
k2(1− 1/k)bs/kc. The reader may find it worth noting that with

this notation then a combination of the above bound and (1.6.1) yields∫ 1

0

|f(α)|2sdα� P 2s−k+ηs,k .

Wooley [163] further refined this estimate by showing that, roughly speaking,

one may take ηs,k ≈ k2e−2s/k2 whenever s ≤ k2 log k and ηs,k ≈ (log k)3e−3s/2k2

for s > k2 log k, and managed to accomplish G̃(k) ≤ (2 + o(1))k2 log k by

employing such an improvement in conjunction with standard techniques and

the large sieve inequality. In a later memoir, Ford [42] combined such a bound

with a more recondite framework of ideas involving an iterative argument rem-

iniscent to that of Wooley [165] in order to establish G̃(k) ≤ (1 + o(1))k2 log k.

Progress concerning Vinogradov’s mean value theorem and the asymptotic

formula remained stubborn until the seminal work of Wooley [172] and the

introduction of his new efficient congruencing technique, which established

the main conjecture for the range s ≥ k(k + 1) and the corresponding bound

G̃(k) ≤ 2k2 + 2k − 3. The interested reader shall be referred to the paper

of Ford and Wooley [43] or Wooley [173] for the purpose of having a better

understanding of subsequent improvements within this circle of ideas. We

also find it worth drawing the reader’s attention to minor refinements in the

bound for G̃(k) accomplished in work of the latter author [171] by making use

of the progress available at the time in Vinogradov’s mean value theorem in

conjunction with a novel mean value estimate over the minor arcs that shares

some resemblance with an estimate which we shall deduce herein in Chapter

4.

This whole avenue of new ideas eventually emerged into the resolution

of the main conjecture for the whole range of s by Wooley [175] when k =

3, and by Bourgain, Demeter and Guth [15] when k ≥ 4 by making use of

decoupling ideas, the case k = 2 being classical, and independently by Wooley

[177] employing the more flexible efficient congruencing approach for k ≥ 3.

Therein the new estimates in Vinogradov’s mean value theorem are employed

in conjunction with the ideas from [171] and other manoeuvres in order to
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obtain the bound

G̃(k) ≤ k2 − k +
√

8k +O(1),

which remains the best one hirtherto. We find it appropiate to mention that

some of the ideas involved in the proof of such a bound are used in Chapter 2

to deduce the validity of an analogous asymptotic formula in another context.

1.6.2 Minor arc developments and bounds on G(k)

As was previously foreshadowed, all of the minor arc approaches mentioned so

far accomplished the validity of the asymptotic formula for the representation

function at hand. In contrast, the most prominent improvements in the up-

per bounds for G(k) depart from the aforementioned treatments in that the

variables are restricted to particular subsets of the natural numbers for the

purpose of saving more variables in the corresponding minor arc analysis. The

first approach in this direction was accomplished by Vinogradov in a long series

of papers, the novelty of the new ideas employed in almost all of his memoirs

lying on the so-called diminishing ranges argument. This method had already

been introduced by Hardy-Littlewood [52] and further exploited by Davenport

(see [29], [32]). Describing such ideas extensively is hardly the point of this

gentle introduction, but for the purpose of illustrating our discussion we shall

give a sketch of it in its simplest form.

To this end we take t ≥ 2, define

P1 =
1

6
P, Pj+1 =

1

2
P

1−1/k
j , j ≤ t− 1,

and consider the set of integers U of the shape

u = xk1 + . . .+ xkt , Pj < xj ≤ 2Pj, j ≤ t.

We also introduce for convenience the exponential sum

S(α) =
∑
u∈U

e(αu).

The reader may observe that in view of the restrictions on the size of the
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variables, the only solutions to the equation

xk1 + . . .+ xkt = yk1 + . . .+ ykt , Pj < xj, yj ≤ 2Pj. (1.6.2)

are the diagonal ones (the ones satisfying xj = yj for all j). It then transpires

that

|U| � P k−k(1−1/k)t (1.6.3)

and that ∫ 1

0

|S(α)|2 � P k−k(1−1/k)t , (1.6.4)

where the reader should observe that the above mean value counts the num-

ber of solutions of the equation (1.6.2), which in turn delivers a saving of

P k−k(1−1/k)t over the trivial bound. This estimate, in conjunction with point-

wise bounds of exponential sums derived employing similar ideas and the large

sieve inequality already yields bounds of the shape G(k) ≤ Ck log k.

We shall not give account of all of the extensive work accomplished by

Vinogradov and others (see [23], [135], [144], [145], [146], [147], [149], [150])

concerning estimates of that flavour, but nonetheless find it desirable sketching

some of the main ideas to obtain such bounds. For such purposes we take l ≥ 2,

consider X = P 1/2 and

X1 =
1

6
X, Xj+1 =

1

2
X

1−1/k
j , j ≤ l − 1, (1.6.5)

and denote for every m ∈ N by Ql(m) to the number of solutions of the

equation

m = xk1 + . . .+ xkl , Xj < xj ≤ 2Xj.

We further introduce, for convenience, the exponential sum

H(α) =
∑

X/2≤p<X

∑
m≤Xk

Ql(m)e(αpkm),

where p runs over the prime numbers. An application of Cauchy’s inequality

then delivers

|H(α)|2 � X
∑

X/2≤p<X

∣∣∣ ∑
m≤Xk

Ql(m)e(αpkm)
∣∣∣2,
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If α ∈ m then one may verify a suitable spacing condition modulo 1 required for

the application of the large sieve inequality and combine it with the estimate

(1.6.3) to obtain

|H(α)|2 � Xk+1
∑
m≤Xk

Ql(m)2 � X2k+1−k(1−1/k)l ,

which then yields

|H(α)| � Xk+1/2−k(1−1/k)l/2.

The reader may observe that this approach saves X1/2−k(1−1/k)l/2 over the

trivial bound, which would entail saving a factor of Xc for some fixed c > 0

whenever l = k log k + C ′′k for fixed C ′′ > 0. Therefore, combining both this

estimate and (1.6.4) for the choice t = k log k +C ′k for a big enough constant

C ′ yields ∫
m

|S(α)|2|H(α)|dα� |U|5/2P 1/2−k−δ

for some δ > 0, which, in conjunction with a careful major arc analysis delivers

G(k) ≤ 3k(log k + C) for some constant C > 0. We find it worth mentioning

the bound

G(k) ≤ 3k(log k + 9)

achieved by Vinogradov [152] by means of the ideas described above. A care-

ful inspection of the manoeuvres underlying the previous discussion reveals

that any pointwise minor arc estimate obtained using diminishing ranges type

bounds and employing the above circle of ideas could save a factor of say

P 1/(4k log k) per variable over the trivial bound. However, the fact that the sizes

of the variables are all different makes the analysis less flexible, leaving one in

the recalcitrant position of having to employ k log k variables to only save a

factor of P 1/4.

In a subsequent memoir, Vinogradov [153] further refined the above esti-

mate to

G(k) ≤ 2k
(

log k + 2 log log k + log log log k + 13/2
)

(1.6.6)

for large k. Most of the minor arc saving therein is provided by employing

the diminishing ranges argument for counting solutions to (1.6.2) in order to

bound the corresponding mean value in a similar fashion as in the earlier work.

However, as opposed to the previous approaches, instead of utilising a point-
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wise bound on the minor arcs relying on estimates for the number of solutions

of (1.6.2), the latter author considers a more complicated exponential sum

which he estimates by making use of the large sieve inequality in conjunction

with an intrincate argument involving diminishing ranges ideas and the use

of Vinogradov’s mean-value theorem. The use of this pointwise minor arc es-

timate only entails introducing Ck more variables at the cost of employing

4k log log k extra variables in the mean value analysis that ultimately saves

roughly speaking k log k variables over the previous approaches.

The estimate of Vinogradov remained unbeaten for a period of more than

25 years, and was in the end superceded by Karatsuba’s work [86], which

delivered

G(k) ≤ 2k(log k + log log k + 6k) (1.6.7)

whenever k ≥ 4000, the novelty of which had its reliance on a sharper point-

wise minor arc bound. We find it desirable to remark that in the latter memoir

there is no improvement in the minor arc saving stemming from the corre-

sponding mean value considered, since the mean value employed therein is of

the strenght of those appertaining to diminishing ranges ideas. As was out-

lined above, the previous approach of Vinogradov relied on a pointwise bound

of an exponential sum involving Ck variables on diminishing ranges which was

obtained making use of Vinogradov’s mean-value theorem, thereby providing a

saving of P c/(log k)2 log log k. In contrast, Karatsuba considers instead symmetric

diagonal equations involving k-th powers of square-free numbers which are of

the same size.

In what follows we shall give an account of a sketched version of the argu-

ment employed by the latter author. For such purposes it has been thought

pertinent to introduce for l ∈ N the parameters

Pj = P (1−1/k)j−1/k, 1 ≤ j ≤ l

and consider the set of square-free numbers defined by

Vl =
{
p1 · · · pl : Pj/4 ≤ pj ≤ Pj/2, pj prime

}
.

Observe that the elements of Vl are of size P 1−(1−1/k)l(logP )−l. The latter au-
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thor then obtains an estimate for the number J(P ) of solutions of the equation

xk1 + . . .+ xkl = yk1 + . . .+ ykl , xi, yi ∈ Vl (1.6.8)

of the shape J(P ) � P 2l−k+(k−l)(1−1/k)l . While these equations provide sav-

ings which are slightly inferior to those stemming from the diminishing ranges

ideas, they are still robust enough to deliver stronger pointwise estimates when

applied in conjunction with the large sieve inequality. We find it worth noting

that mean values involving variables of the same shape and size offer wider

flexibility when applying the large sieve inequality to obtain those estimates.

In order to illustrate these ideas we take X as in (1.6.5) and introduce the

exponential sum

W (α) =
∑

X/2≤p<X

∑
x∈Vl

e(αpkxk), (1.6.9)

where as customary p runs over the primes. We also find it worth defining

rl(y) as the number of solutions of the equation

y = xk1 + . . .+ xkl , xi ∈ Vl.

It is apparent that an application of Holder’s inequality yields

|W (α)|2l � X2l−1
∑

X/2≤p<X

∣∣∣∣∣∑
x∈Vl

e(αpkxk)

∣∣∣∣∣
2l

= X2l−1
∑

X/2≤p<X

∣∣∣∣∣ ∑
y≤Xk

rl(y)e(αpky)

∣∣∣∣∣
2

,

whence we have reached a position from which to bound the above term via

the large sieve inequality, and thus get, ignoring the verification of the spacing

modulo 1, the estimate

|W (α)|2l � X2l−1+k
∑
x≤Xk

rl(y)2 � X4l−1+(k−l)(1−1/k)l ,

whenever α ∈ m, where the sum involved in the above equation counts the

number of solutions of (1.6.8) and where we applied the bound right after that

equation. It then transpires that the choice l = bk(log k+ 2 log log k)c leads to
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the bound

sup
α∈m
|W (α)| � X|Vl|P−1/(4k log k+ck),

wherein the constant ck satisfies ck = o(4k log k) and can be made explicit.

We feel obliged to mention that in the original treatment of Karatsuba

there is no explicit mention to the large sieve inequality, but the manouvers

deployed therein are very much reminiscent of its proof. However, his approach

is somewhat less efficient and ends up delivering the weaker estimate

W (α)� P 1−1/24k log k,

which nonetheless suffices to sharpen substantially Vinogradov’s previous bound.

The author’s approach then achieves most of the minor arc saving by utilising

a mean value estimate involving a p-adic analogue of the diminishing ranges

argument of the same strength, thus employing 2k log k+ 2 log log k+Ck vari-

ables in due course, and hence only necessitating C ′k extra copies of W (α) to

provide the rest of the minor arc saving required.

The seminal paper of Vaughan [139], which completely changed the scenery

in the subject and laid the foundations of the modern approach to problems

within this circle of ideas made significant improvements in the bounds on G(k)

for small k and other related questions involving small exponents. However,

the ideas underpinning these developments in the memoir barely managed to

provide a small refinement of the bound (1.6.7). The main novelty of the paper

is the use of variables of the same size that are smooth.

In order to put ideas into effect, we find it convenient to define, for param-

eters P,R > 0 the set of smooth numbers

A(P,R) = {n ∈ [1, X] ∩ N : p | n and p prime⇒ p ≤ R}.

The latter author considers the equation

xk1 + . . .+ xks = yk1 + . . .+ yks , xj, yj ∈ A(P,R) (1.6.10)

whose number of solutions can be expressed by orthogonality as a mean value

of smooth Weyl sums, relates it to the number of solutions of

xk +mk(xk1 + . . .+ xks−1) = yk +mk(yk1 + . . .+ yks−1), (1.6.11)
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wherein

x ≤ P, y ≤ P, xj, yj ∈ A(P 1−θ, R), P θ < m ≤ min(P, P θR)

for some 0 < θ ≤ 1/k via an application of Holder’s inequality in conjunction

with the use of the structure of smooth numbers and runs an iterative argu-

ment involving a differencing process. The mean value estimates cognate to

the equations involving smooth variables obtained in the latter memoir are of

the same strenght as those stemming from diminishing ranges ideas. Nonethe-

less, the use of smooth numbers in this context provides greater flexibility for

both the estimations of the number of solutions of (1.6.10) and the investiga-

tions of pointwise upper bounds via the large sieve inequality combined with

an application of Holder’s inequality and the mean value estimates obtained

thereof. The latter author then employs the same argument that was outlined

in (1.6.9) utilising instead variables belonging to the set A(P,R), which ulti-

mately leads to a pointwise bound that saves a factor of roughly P 1/4k log k and

enables him to deduce the estimate

G(k) ≤ 2k

(
log k + log log k + 1 + log 2 +O

( log log k

log k

))
. (1.6.12)

Despite obtaining such modest improvement, a modification of the ap-

proach followed by Vaughan permitted Wooley [162], [164] to essentially reduce

the above upper bound by a factor of 2, namely

G(k) < k

(
log k + log log k + 2 + log 2 +O

( log log k

log k

))
. (1.6.13)

His treatment departs from the previous one in the differencing process when

running the iterative argument, and delivers a bound for the number of solu-

tions of (1.6.10) of the shape P 2s−k+ke1−2s/k
. The earlier strategy for obtaining

pointwise minor arc estimates combined with the aforementioned bound thus

essentially yields a power saving of P 1/2k log k and suffices to establish (1.6.13).

We find it desirable to finish the discussion by noting that an analogous bound

to (1.6.13) has also been obtained by the latter author [167] without the log 2

summand by deriving a pointwise estimate for smooth Weyl sums which ulti-

mately saves a factor of P 1/k log k.
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1.7 Waring’s problem in thin sets

The main body of the present work shall comprise results in both additive

number theory and the subject of moments of the Riemann zeta function, and

succintly motivating and describing those pertaining to the use of the circle

method is the purpose of the present section.

We begin our discussion by drawing the readers attention back to the prob-

lem of representing every sufficiently large integer n as

n = xk1 + . . .+ xks . (1.7.1)

It transpires that a natural direction that one may pursue is that of restricting

each of the underlying variables to thin subsets in the above equation and anal-

yse the analogous questions which were addressed for the original problem. In

order to progress in the discussion, some notation is required. We thus denote

for convenience by GA(k) to the least positive integer s with the property that

every sufficiently large natural number n posseses a representation of the shape

(1.7.1) with xi ∈ A. We recall the bound (1.6.13) to the end of noting that a

consideration of the set of l-th powers then lends credibility to the heuristic

that, for A ⊂ N nicely distributed over arithmetic progressions and satisfying

the property |A ∩ [1, N ]| � Nα for some 0 < α < 1 then one would ideally

expect to achieve

GA(k) ≤ k

α

(
log(k/α) +O(log log(k/α)). (1.7.2)

The reader may find it useful to note that the above bound would hold for the

aforementioned set of l-th powers in view of (1.6.13). However, the methods

available to anaylise the classical Waring’s problem fail hugely to deliver such

conclussions for even particular non-trivial examples, and so the above prob-

lem, as currently stated, is very hard. It is also worth noting that when the

set A satisfies |A ∩ [1, N ]| � N1−ε then some of the techniques employed in

the field may be applicable to deliver quite sharp conclusions which greatly

simplify things. We deliberately avoid such a situation in the present memoir

and concentrate on instances for which such a property is not known to hold.

A significant portion of the analysis in the additive number theoretic sec-

tions is devoted to the examination of the above problems for A = C , where C
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is the set of natural numbers represented as the sums of three positive cubes,

it being only conjectured that C have positive density, the best current lower

bound on the cardinality of the set being N (X) = |C ∩ [1, X]| � Xβ, where

β = 0.91709477, (1.7.3)

due to Wooley [170]. The first result that shall be presented herein and is

discussed in Chapter 2 concerns the analysis of the validity of the asymptotic

formula for the corresponding representation function. For such purposes we

introduce for fixed k, s and n ∈ N the counting function Rk,s(n), which we

define as the number of solutions of

n = (x3
1,1 + x3

1,2 + x3
1,3)k + . . .+ (x3

s,1 + x3
s,2 + x3

s,3)k

for xi,j ∈ N.

Theorem 1.7.1. Let s ≥ 9k2−k+2. Then, there exists a constant δ > 0 such

that

Rk,s(n) = Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

S(n)ns/k−1 +O(ns/k−1−δ),

where S(n) here is the product of some local densities and satisfies S(n)� 1.

The counting of the multiplicity of each sum of three cubes enables one

to express Rs,k(n) as the Fourier coefficient of an exponential sum that we

can treat using conventional methods. Experts may then recognise the diffi-

culty associated to the problem when one instead removes the counting of the

multiplicities of each sum of three cubes. Attaining an analogous evaluation

with the current knowledge seems out of reach, and we content ourselves with

deriving a non-trivial lower bound by obtaining an asymptotic formula for a

suitable representation function involving smooth numbers. Without further

delay, it seems appropiate to define r(n) by the number of solutions of (1.7)

but with each sum of three cubes involved being counted just once.

Theorem 1.7.2. Let s be any positive integer with s ≥ 9k2 − k + 3. One has

the lower bound

r(n)� nβs/k−1,

where β was defined right after (1.7.3).
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It is a noteworthy feature that the preceding lower bound may be the best

possible estimate attainable with the current knowledge available.

We shift our focus to the problem of minimising the number of variables s

needed to represent every sufficiently large number as a sum of k-th powers of

sums of three cubes, it being discussed in Chapter 3, and denote for convenience

by G3(k) to the minimum such s. It is often the case in additive problems

involving small powers of positive integers that some arguments utilised to

analyse those are not applicable in the setting of bigger exponents, such an

observation motivating having a discussion about small values of k. A naive

approach to bounding G3(k) would then be to replace each sum of three cubes

by the specialisation 3x3, and this suggests a bound of the shape G3(k) ≤
G(3k). Before giving account of the results attained in our work it is worth

recalling the estimates G(6) ≤ 24 due to Vaughan-Wooley [142], G(9) ≤ 47

and G(12) ≤ 72 due to Wooley [172].

Theorem 1.7.3. One has G3(2) ≤ 8, G3(3) ≤ 17 and G3(4) ≤ 57.

The above result confirms that we actually use the three integral cubes non-

trivially in our argument. The key ingredient to the proof is a pointwise bound

for some exponential sum over the minor arcs that we obtain by following the

treatment of Vaughan [139]. We find it desirable to mention that the mean

value estimate utilised in the problem for k = 4 makes use of a bound for

a mean value of smooth Weyl sums of exponent 12. Nonetheless, it seems

pertinent to point out that the classical diminishing ranges argument is more

efficient than the approach taken herein and ultimately saves a handful of

variables.

In view of the above result for squares, experts may wonder whether the

minor arc analysis pertaining to that instance could be combined with a careful

major arc treatment to derive an almost all result for the analogous Lagrange’s

four-square theorem when one restricts the variables to lie on C . Confirming

this belief is, inter alia, the purpose of the following theorem discussed in

Chapter 3.

Theorem 1.7.4. Almost all natural numbers n have a representation of the

shape

n = (x3
1+x3

2+x3
3)2+(x3

4+x3
5+x3

6)2+(x3
7+x3

8+x3
9)2+(x3

10+x3
11+x3

12)2, xi ∈ N.
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It seems worth anticipating that the bound on the cardinality E(N) of

exceptional set that is derived in this memoir is of the shape

E(N)� N(logN)−4/31+ε.

We find it desirable to note that one could utilise ideas from the paper [21] to

get E(N) � N1−δ for some (possibly microscopic) δ > 0, the achievement of

such a refinement hardly being the point of this memoir in view of the poor

description available of the constant δ.

The last section comprising the circle method part of this thesis examines

the analogous problem when one replaces the set of integers represented by

sums of three cubes in the above setting by that of numbers represented as

a sum of t positive l-th powers. The purpose of our investigation in this

new setting is to establish uniform bounds with respect to l in the number of

variables that enables one to assure the validity of a lower bound of the right

order of magnitude for the corresponding representation function rather than

to sharpen the k dependence of such bounds. In order to embark in such an

endeavour, we find convenient to define, for k, l, t ∈ N the set

Tt =
{
xl1 + . . .+ xlt : x ∈ Nt

}
and anticipate that we shall restrict our attention to the analysis of the solu-

bility of (1.2.1) for the choice A = Tt with t lying on different regimes.

For such purposes, it seems worth fixing k and begin by considering the case

t = C(k)l, where C(k) is a fixed integer-valued function. It is worth mentioning

that the sharpest estimate available for the cardinality of the above set is of

the shape |Tt ∩ [1, N ]|� N ck for some constant 0 < ck < 1, such a conclusion

being easily derived by a routinary diminishing ranges argument. Following

the preceding discussion and in view of the heuristics that suggested (1.7.2)

it becomes natural to consider the problem of finding an integer s(k) only

depending on k with the property that every sufficiently large integer n can

be expressed as

n = (xl1,1 + . . .+ xl1,C(k)l)
k + . . .+ (xls(k),1 + . . .+ xls(k),C(k)l)

k, xi,j ∈ N.

The reader may observe that for fixed k then the right side of the above
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equation consists of sums of C ′l positive integral l-th powers gathered in groups

and raised to the power k for some constant C ′ = C ′(k) > 0 depending on k. It

then transpires that accomplishing such an endeavour seems even harder than

deriving the bound G(l) ≤ C ′l, which would in turn be a big breakthrough in

view of (1.6.13). Despite not being able to achieve such a result, we derive the

following weaker version comprising the introduction of k-th powers of natural

integers for the purpose of handling a wider range of the major arcs.

Theorem 1.7.5. Let k, l ≥ 2 and let C(k) be an integer valued function with

the property that C(k) ≥ log k+4. Let t = C(k)l. Then there is some parameter

satisfying s0(k) = k2 +O(k) such that for s ≥ s0(k) and every sufficiently large

n one has

n = (xl1,1 + . . .+ xl1,t)
k + . . .+ (xls,1 + . . .+ xls,t)

k +
4∑
i=1

yki , (1.7.4)

wherein yi, xi,j ∈ N.

It is worth noting that the bound (1.6.13) reveals that for sufficiently large

k the summands involving the diagonal forms in the above equation are re-

markably exploited in order to attain such a representation. The novel idea

of the proof relies on a pointwise bound of a suitable exponential sum over

the minor arcs that is uniform on l which we obtain via an application of

the large sieve inequality. It is a noteworthy feature that the approach taken

herein further establishes a lower bound in the number of representations of

the expected size, the diminishing ranges approach failing to achieve such an

endeavour.

Before describing another result concerning a different regime for t it is

convenient to define ξ0(k, l) = dl/2
(

log l + log
(
k(k + 1)

)
+ 2
)
e. We find it

desirable to note that with the current knowledge available one may only be

able to achieve |Tξ0(k,l) ∩ [1, N ]| � N1−c/k2l for some c > 0.

Theorem 1.7.6. Let k, l ≥ 2 and take ξ ≥ ξ0(k, l) and s ≥ s0(k), where s0(k)

is a parameter satisfying s0(k) = k2 + O(k). Then every sufficiently large n

can be represented as

n = (xl1,1 + . . .+ xl1,ξ)
k + . . .+ (xls,1 + . . .+ xls,ξ)

k,

where xi,j ∈ N.
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The reader should observe that the above result is uniform in l and does

not require any additional summands of different nature at the cost of taking

diagonal forms with more variables.

We find it desirable to complete this section by anticipating that the mean

value estimates utilised in the course of the minor arc analysis pertaining

to each of the problems either makes use of available mean value estimates

corresponding to the instance when A = N in the above setting or utilises

mean values associated to the natural polynomial structure cognate to the

corresponding sets. It therefore transpires that in view of the poor bounds in

the cardinality of the corresponding sets analysed, the bounds in the number

of variables deduced in this memoir for large k are a long way off from the

desired ones.

1.8 Moments of the Riemann zeta function

The use of analytic methods in the investigation of the properties of the Rie-

mann zeta function to derive results concerning the distribution of prime

numbers and related problems has a long history and in modern form es-

entially dates back to the unconditional proof of the prime number theorem

by Hadamard and de la Vallée Poussin in 1896. Shortly after, a formidable

amount of work following various different avenues has led to suprisingly good

results in analytic number theory, the corresponding conjectural counterparts

pertaining to those results being in most occasions far out of reach. Providing

an extensive historical overview of the progress within the field is hardly the

point of the present introduction. We shall nonetheless give a brief account of

how moments of the Riemann zeta function and problems within this circle of

ideas play a prominent role in the area and may be applied in the investigation

of prime numbers to the end of motivating their analysis. For such purposes

it seems worth defining the aforementioned Riemann zeta function by means

of the formula

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1,
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and note that it can be analytically extended to a meromorphic function on

the plane. We further introduce, for convenience, the function

ψ(x) =
∑
n≤x

Λ(n),

wherein Λ(n) denotes the von Mangoldt function, defined by means of the

relation

Λ(n) =

{
log p if n = pk for some k ∈ N
0 else.

We also find it useful to write ψ0(x) = ψ(x) if x is not a perfect power and

ψ(x)− 1
2
Λ(x) when it is. It is a noteworthy feature that the classical proof of

the prime number theorem utilising complex analytic methods has its genesis

in the formula

ψ0(x) = x−
∑

ρ=β+iγ
|γ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2) +R(x, T ),

wherein the above sum runs over the zeros of ζ(s) and the function R(x, T ) is

essentially of small size. The reader may also find it useful to recall, if neces-

sary, that the prime number theorem is equivalent to the assertion ψ0(x) ∼ x.

In view of the above consideration, it transpires that improvements pertain-

ing to the error term in the preceding asymptotic relation may have their

reliance on zero-free regions of the Riemann-zeta function. A careful exam-

ination of the preceding formula may also reveal that results cognate to the

existence of primes in short intervals may potentially stem from the sharpening

of zero-density estimates, such being an avenue explored by a not unformidable

number of scholars. The interested reader shall be referred to Huxley [78] or

Baker, Harman and Pintz [3].

The aforementioned bounds for the number of zeros in rectangles of large

height may be derived employing various techniques, the estimates of moments

of zeta or certain Dirichlet polynomials having the potential of achieving so

(see Ingham [81], Jutila [83]), and among those, that of utilising pointwise

estimates of the shape

ζ(1/2 + it)� tδ (1.8.1)

for 0 < δ < 1 plays a prominent role, as it becomes apparent after a perusal
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of the papers of, inter alia, Huxley [78] or Jutila [83].

The problem of estimating (1.8.1) has a long history and dates back to

the work of Weyl, it being the first instance in the literature for which the

convexity bound t1/4 was broken, thereby obtaining δ = 1/6 instead. Consid-

erations of space preclude us from providing an account of the extensive sequel

of improvements in this direction, but for the purpose of illustrating the dis-

cussion we shall content ourselves by mentioning that the foremost bound due

to Bourgain [13] achieves (1.8.1) with δ = 13/84 + ε by combining decoupling

estimates with the previous work of Bombieri-Iwaniec [10] and Huxley [79].

We take this as an opportunity to emphasize that it is expected that

ζ(1/2 + it)�ε t
ε,

such a conjecture often being referred to as the Lindelöf Hypothesis.

The above estimate, as previously foreshadowed, would have many impli-

cations in the analytic theory of numbers but seems completely out of reach

with the current technology available. Nevertheless, the problem of estimating

the above on average, in a suitable sense, turns out to be more tractable. For

such purposes, it seems worth defining for real k > 0 the integral

Mk(T ) =

∫ T

0

|ζ(1/2 + it)|2kdt.

We shall give a succint overview of what is known about the above object,

but nonetheless find it worth mentioning to the end of further motivating the

analysis of moments that the Lindelöf hypothesis is equivalent to the bound

Mk(T )� T 1+ε for all k ∈ N. (1.8.2)

The first succesful asymptotic evaluation dates back to the early work of

Hardy-Littlewood (1918) concerning the second moment, to which the reader

shall be referred to [134, Theorem 7.3], by making a clever use of the approxi-

mate functional equation for ζ(s) in a suitable shape. After the efforts of many

scholars invested in such an endeavour, it currently takes the form

M1(T ) = T log(T/2π) + (2γ − 1)T + E1(T )

37



with E1(T ) satisfying bounds of the shape E1(T )� T∆ for some fixed ∆ > 0,

the sharpest of which follows after work of Bourgain and Watt [16] and may be

taken to be ∆ = 1515/4816+ε. We find it desirable to conclude the discussion

concerning the second moment by presenting the estimate

ζ(1/2 + it)2 � (log t)4 + (log t) maxE1{t± (log t)2}

due to Heath-Brown [61]. It then transpires that upper bounds for E1(T )

deliver pointwise estimates for |ζ(1/2 + it)|, such an approach having the re-

calcitrant limitation that E1(T ) = Ω(T 1/4) , it being an immediate consequence

of the formula∫ T

0

E1(t)2dt =
2

3
(2π)−1 ζ(3/2)4

ζ(3)
T 3/2 +O(T 5/4 log2 T )

provided by the latter author [58]. Eight years after the aforementioned mile-

stone of Hardy-Littlewood, Ingham [80] utilised the approximate functional

equation for ζ(s)2 that at that time had recently been introduced by Hardy-

Littlewood [53] to obtain

M2(T ) =
1

2π2
T log4 T +O(T log3 T ), (1.8.3)

the deficiency in such an approach having its reliance, inter alia, on the con-

comitant aspect that the corresponding error term pertaining to the aforemen-

tioned approximation is too large. These complications were circumvented in

the work of Heath-Brown [59] by utilising instead an approximate functional

equation for |ζ(1/2 + it)|4, thereby considerably reducing the error term aris-

ing after the application of such an approximation, and ultimately led to the

evaluation

M2(T ) = TP4

(
log T

)
+ E2(T ), (1.8.4)

wherein P4(x) is a quartic polynomial and E2(T ) � T 7/8+ε. It seems desir-

able to add that the off-diagonal term contributes to the lower order terms

in the above formula, the analysis of which makes a crucial use of estimates

of Kloosterman sums due to Weil [155]. We find it useful to add for the pur-

pose of illustrating the historical discussion that Atkinson [1] had previously

obtained an analogous formula to that of (1.8.4) for a smooth version of the

fourth moment, a recalcitrant aspect of such a result being that it does not
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provide any effective information about the error term in (1.8.3).

The above bound on E2(T ) was eventually refined in the work of Zavorot-

nyi [178] and Ivic-Motohashi [82] by making use of the spectral theory of

automorphic forms, thus ultimately leading to the estimate

E2(T )� T 2/3+ε,

which essentially remains best possible.

However, the extensive investigations done pertaining to the asymptotic

behaviour of higher moments, despite the large efforts invested in such an

endeavour, have been so far conjectural. This avenue was first pursued in the

work of Conrey-Gosh [26] in their paper concerning the asymptotic evaluation

of M3(T ) which ultimately led to the conjectural result∫ T

0

|ζ(1/2 + it)|6dt ∼ 42

9!

∏
p

(
(1− 1/p)4

(
1 +

4

p
+

1

p2

))
,

the main idea latent in the argument having its reliance on a conjectural for-

mula for the second moment of the Riemann zeta function twisted by the

square of a Dirichlet polynomial of length T , an analogous formula holding if

the length of the corresponding polynomial be T 1/2−ε. To the end of providing

a historical background it shall be noted that hirtherto it was believed that

Mk(T ) ∼ ckT (log T )k
2

(1.8.5)

would hold for k > 0, but the precise value of the constants ck had not been

provided for any k.

The previous paper was followed by a memoir of Conrey-Gonek [27] which

encompassed a method to conjecturally evaluate both the sixth and the eighth

moment by pursing a not dissimilar approach in conjunction with new ideas

concerning mean values of long Dirichlet polynomials and the use of the δ-

method of Duke, Friedlander and Iwaniec to compute divisor correlation sums.

The conjectural investigations of the asymptotic formula for the moments

were independently culminated by Keating-Snaith [89] with the incorporation

of Random Matrix theory to the picture, which ultimately led to establishing

(1.8.5) with precise values for the constants ck. It should nonetheless be noted
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for the purpose of merely illustrating the present introduction that further

conjectural examinations pertaining to higher order moments have been pur-

sued by Conrey-Farmer-Keating-Rubinstein-Snaith [25] by bringing into use

the so-called recipe, thereby delivering analogous conclusions of the shape

Mk(T ) = TPk2
(

log T
)

+O(T 1/2+ε)

for k ≥ 3, wherein Pk2(x) is a degree-k2 polynomial.

We shall shift our focus to the analysis of lower and upper bounds for

moments, such a consideration providing more flexibility to the extent that

under further assumptions, sharp estimates may be achieved for real k > 0

rather than just for integers. Lower bounds of the shape

Mk(T )� T (log T )k
2

were already established for integral 2k by Ramachandra [117], such a result

being extended to positive rational numbers in the work of Heath-Brown [60]

and accomplished for real k > 0 under the assumption of RH by Ramachandra

[116]. Such a condition was ultimately removed in a paper of Radziwill and

Soundararajan [115] when k ≥ 1.

As was foreshadowed earlier, unconditional upper bounds for arbitrarily

large k of the expected shape are a long way off, the weaker inequality (1.8.2)

being equivalent to the Lindelof Hypothesis. It should not therefore come as

a surprise that the majority of the results obtained in this direction are con-

ditional. The first investigations following this trend are due to Ramachan-

dra [117], [118] and Heath-Brown [62], thus delivering the bounds

Mk(T )� T (log T )k
2

for 0 ≤ k ≤ 2 under the assumption of RH, such a range being further

extended to 2.18 in a later paper of Radziwill [114]. However, it wasn’t till the

breakthrough of Soundararajan [128] that an analogous result was established

for all k > 0 at the cost of deriving the weaker estimate

Mk(T )� T (log T )k
2+ε,

the ε in the exponent ultimately being removed in a subsequent paper of Harper
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[56]. We find it desirable to conclude this discussion by remarking that the

best unconditional result improving earlier work of many others accomplishes

the estimate Mk(T ) � T (log T )k
2

for the range 0 ≤ k ≤ 2 and is due to

Heap-Radziwill-Soundararajan [57].

1.9 Mixed moments of the Riemann zeta func-

tion

We shall complete the introduction with a description of the problems con-

cerning moments of the Riemann zeta function in this memoir. We find it

desirable to anticipate, as opposed to what the reader may have guessed in

view of the brevity of the former section, that the body of this thesis shall

comprise a longer discussion devoted to the analysis of such problems than

the circle method counterpart, the main reasons lying on both the prolixity of

some of the routinary computations associated to such investigations and the

considerations of space and time in the former section devoted to the historical

introduction of those problems.

Hirtherto, little attention has been paid to the problem of examining mixed

moments of the type

Ia(T ) =

∫ T

0

ζ(1/2 + ia1t) · · · ζ(1/2 + iakt)dt (1.9.1)

for a = (a1, . . . , ak) ∈ Rk and k ∈ N, such a collection of integrals being

an interesting source of examples from which to look for similar, or perhaps

dissimilar behaviour exhibited in the analysis of moments of L-functions. We

find it worth announcing that the central object of study in this memoir will

be the above mixed moment for k = 3, space and time limitations forcing us

to defer analogous considerations for k = 4. For the sake of clarity we find it

worth defining, for positive real numbers a, b, c ∈ R+ the integral

Ia,b,c(T ) =

∫ T

0

ζ(1/2 + iat)ζ(1/2− ibt)ζ(1/2− ict)dt.

In Chapter 5 we use the approximate functional equation for each of the zeta

factors to obtain several results which we now describe.
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Theorem 1.9.1. Let T > 0 and a, b, c ∈ N with the property that (a, b, c) = 1.

Then, whenever a < c ≤ b one has the asymptotic evaluation

Ia,b,c(T ) = σa,b,cT + Ea,b,c(T ),

where σa,b,c > 1 is a computable constant and

Ea,b,c(T )� T 1−1/2a+1/2c + T 3/4+a/4c.

If a weak version of the abc conjecture is assumed, the above error term may

be refined to obtain

Ea,b,c(T )�T 1/2+a/(a+c)+ε

+ (log T )2
(
T 3/4 + T 3/4−a/4c+(a,c)/2c + T 3/4−a/4b+(a,b)/2b

)
.

We next shift our focus to the case when a, b, c ∈ R. Experts in the

community may recognise the little amount of correlation of the zeta factors

in (1.9.1) that one expects whenever these coefficients are linearly independent.

Quantifying this belief is the end of the following theorem.

Theorem 1.9.2. Let T > 0 and a, b, c ∈ R be algebraic numbers linearly

independent over Q. Then one has

Ia,b,c(T ) ∼ T.

The last part of the study in Chapter 5 is devoted to the examination of

the case a = c, a new framework of ideas being required in order to succesfully

accomplish the asymptotic evaluation.

Theorem 1.9.3. Let a < b be natural numbers satisfying (a, b) = 1. Then one

has the asymptotic formula

Ia,b,a(T ) ∼ ζ
(
(a+ b)/2

)
T log T.

In Chapter 6, a different approach is taken to analyse (1.9.1), the theorem

stemming from such an examination being of the same type as that of Theorem

1.9.1 with a refined error term in certain cases. We avoid giving account of

the precise statement herein due to space limitation purposes.
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The thesis is completed with a theorem in a dissimilar yet not entirely in-

trincate context, some of the techniques earlier used not being required therein

in favour of a more explicit control of the corresponding lower order terms. We

deduce a formula of a shape with few precedents in the literature save some

third moments of quadratic Dirichlet L-function evaluation. We define for such

purposes the integral

I(T ) =

∫ T

0

ζ(1/2 + 2it)ζ(1/2− it)2dt (1.9.2)

and anticipate the main theorem concerning its evaluation.

Theorem 1.9.4. For T > 0 one has the asymptotic formula

I(T ) = c1T + c2T
7/8 +O

(
T 3/4(log T )3

)
,

where the constants c1, c2 ∈ C are defined by means of the equations

c1 =
ζ(3/2)3

2ζ(3)
(3− i),

and

c2 =
32(2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1i.
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Chapter 2

Asymptotic formula and lower

bounds for the representation

functions

2.1 Introduction1

It is widely believed, but still unknown, that the set of integers C represented

as a sum of three positive integral cubes has positive density. Hardy and

Littlewood [50] first announced what is known as the Hypothesis-K, which

asserts that for each ε > 0, the number of representations rk(n) of n as a sum

of k positive integral k-th powers is O(nε). Although this conjecture is known

to be false when k = 3 (see Mahler [98]), the weaker claim that∑
n≤X

rk(n)2 � X1+ε, (2.1.1)

known as Hypothesis K∗ (see [71]), would allow one to show, through a stan-

dard Cauchy-Schwarz argument, that N (X) = |C ∩ [1, X]| � X1−ε. In fact,

under some unproved assumptions on the zeros of some Hasse-Weil L-functions,

Hooley ( [70], [71]) and Heath-Brown [63] showed using different procedures

that (2.1.1) holds for k = 3. Nevertheless, some unconditional progress has

been made on strengthening lower bounds for N (X). By using methods of di-

minishing ranges, Davenport [31] obtained the boundN (X)� X47/54−ε. Later

1This chapter is based on material by the author [113] that is published in Mathematika.
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on, Vaughan improved it to N (X) � X11/12−ε by introducing smooth num-

bers in his “new iterative method” [139], and Wooley, extending the method

to obtain non-trivial bounds for fractional moments of smooth Weyl sums, im-

proved the estimate in a series of papers ( [166], [168], [174]), the best current

one being N (X)� Xβ, where β = 0.91709477.

A vast number of results can be found in the literature on problems involv-

ing equations over special subsets of the integers. The Green-Tao Theorem [49],

which proves the existence of arbitrarily long arithmetic progressions over the

primes is an example of such problems when the special set is the set of prime

numbers. Other instances where the set C is involved include some correla-

tion estimates for sums of three cubes by Brüdern and Wooley [22], and lower

bounds of the shape N3(C , X)� X5/2−ε, by Balog and Brüdern [6]. The pa-

rameter N3(C , X) here denotes the number of triples with entries in C ∩ [1, X]

whose entries averages lie on C as well.

In this paper we investigate the asymptotic formula for Waring’s problem

when the set of k-th powers of integers is replaced by the set of k-th powers

of elements of C , but before stating the main result that we obtain here it is

convenient to introduce some notation. Let k ≥ 2 and n ∈ N. Take P = n1/3k.

For every vector v ∈ Rn and parameters a, b ∈ R we will write a ≤ v ≤ b to

denote that a ≤ vi ≤ b for 1 ≤ i ≤ n. We take the function T (x) = x3
1+x3

2+x3
3,

and consider the weights

r3(x) = card
{

x ∈ N3 : x = T (x), x ≤ P
}

and the set

Xn =
{

(x1, . . . , xs) ∈ C s, n =
s∑
i=1

xki

}
.

Define the functions

R(n) =
∑
X∈Xn

r3(x1) · · · r3(xs), r(n) =
∑
X∈Xn

1, (2.1.2)

which count the number of representations of n as a sum of k-th powers of

integers represented as sums of three positive cubes, counted with and without

multiplicities respectively. Take the singular series associated to the problem,
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defined as

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−3

∑
1≤r≤q

e
(
aT (r)k/q

))s
e
(
− an/q

)
. (2.1.3)

The main result of this paper establishes an asymptotic formula for R(n). For

such purpose, it is convenient to introduce the parameter H(k) = 9k2− k+ 2.

Theorem 2.1.1. Let s ≥ H(k). Then, there exists a constant δ > 0 such that

R(n) = Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

S(n)ns/k−1 +O(ns/k−1−δ),

where the singular series satisfies S(n)� 1.

Our proof of Theorem 2.1.1 is based on the application of the Hardy-

Littlewood method. In order to discuss the constraint of the previous result

on the number of variables, we define first G̃(k) as the minimum number such

that for s ≥ G̃(k), the anticipated asymptotic formula in the classical Waring’s

problem holds. We remind the reader that as a consequence of Vinogradov’s

mean value theorem, Bourgain [14] showed that G̃(k) ≤ k2− k+O(
√
k). The

lack of understanding of the cardinality of the set C mentioned at the beginning

of the paper both weakens the minor arc bounds and prevents us from having

a better understanding of its distribution over arithmetic progressions, which

often comes into play on the major arc analysis. The methods used in this

memoir then are based on arguments in which in most of the sums of three

cubes employed in the representation, all but one of the cubes is fixed in the

associated analysis. Consequently, the constraint for the number of variables

that we obtain here is asymptotic to the bound for G̃(3k) mentioned above.

The problem becomes more challenging when we remove the counting of the

multiplicities, and even if getting an asymptotic formula seems out of reach,

Theorem 2.1.1 can be used to obtain a non-trivial lower bound. However, the

whole strategy relies on an estimate for the L2-norm of the sequence r3(x) of

the shape ∑
x≤X

r3(x)2 � X7/6+ε (2.1.4)

that follows after an application of Hua’s Lemma [141, Lemma 2.5]. Instead
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of taking that approach, we restrict the triples to lie on

C(P ) =
{
x ∈ [1, P ]3 : x1, x2 ∈ A(P, P η)

}
,

where η > 0 is a small enough fixed parameter and

A(X,R) = {n ∈ [1, X] ∩ N : p | n and p prime⇒ p ≤ R},

and make use of the stronger estimate∑
x≤X

s3(x)2 � X1+ν (2.1.5)

due to Wooley [174, Theorem 1.2], where s3(x) = card
{
x ∈ C(P ) : x = T (x)

}
and ν = 0.08290523. It transpires that one should then have some control

of the order of magnitude of the analogous function of R(n) when we impose

that restriction on the triples. For such matters, we define for each n ∈ N the

aforementioned counting function

Rη(n) =
∑
X∈Xn

s3(x1) · · · s3(xs). (2.1.6)

We also introduce Dickman’s function, defined for real x by

ρ(x) = 0 when x < 0,

ρ(x) = 1 when 0 ≤ x ≤ 1,

ρ continuous for x > 0,

ρ differentiable for x > 1

xρ′(x) = −ρ(x− 1) when x > 1.

Theorem 2.1.2. Let s be any positive integer with s ≥ H(k). Then, there

exists δ > 0 such that

Rη(n) =Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

ρ
(
1/η
)2s

S(n)ns/k−1

+O(ns/k−1(log n)−δ),

where the singular series satisfies S(n)� 1.
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An application of this theorem then, together with equation (2.1.5) and

some other arguments yield the following result, which improves substantially

the bound that one could obtain if no restriction on the triples was made.

Theorem 2.1.3. Let s be any positive integer with s ≥ H(k) + 1. One has the

lower bound

r(n)� n(1−ν)s/k−1,

where ν was defined right after (2.1.5).

It is worth noting that the preceding lower bound may be the best possible

estimate attainable with the current knowledge available. The final question

that will be addressed here is the constraint on the number of variables that

guarantees the existence of solutions. For such purpose, we define G3(k) as

the minimum integer such that for all s ≥ G3(k) then r(n) ≥ 1 holds for

sufficiently large integers. We apply a previous result of Wooley [162] to obtain

the following bound.

Theorem 2.1.4. Let k ∈ N. Then,

G3(k) ≤ 3k
(

log k + log log k +O(1)
)
.

Our proofs for the main theorems of the paper are based on the applica-

tion of the Hardy-Littlewood method. In Section 2.2, we apply a mean value

estimate related to that of Vinogradov to bound the minor arc contribution.

Section 2.3 deals with estimates of complete exponential sums and other re-

lated sums. In Sections 2.4 we discuss the local solubility of the problem and

some properties of the singular series and include a brief proof of Theorem

2.1.4. Using the Riemann-Stieltjes integral we give an approximation of f(α)

over the major arcs in Section 2.5. In Section 2.6 we study the singular in-

tegral, we obtain an asymptotic formula for the major arcs and we include a

proof of Theorem 2.1.1. Section 2.7 is devoted to the study of the asymptotic

formula when we introduce smooth numbers, and Theorem 2.1.3 is then proven

in Section 2.8 via an application of Theorem 2.1.2. We have also included a

small appendix in which we improve the constraint on the number of variables

needed in Theorem 2.1.1 for small exponents by using restriction estimates.

Notation. Unless specified, any lower case letter x written in bold will

denote a triple of integers (x1, x2, x3). For any scalar λ and any vector x we
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write λx for the vector (λx1, λx2, λx3). When R, V ∈ Zd then R ≡ V (mod q)

will mean that Ri ≡ Vi (mod q) for all 1 ≤ i ≤ d.

2.2 Minor arc estimate.

We obtain estimates for certain moments of an exponential sum on the minor

arcs which we now define. Fix s, k ≥ 2 and consider

f(α) =
∑
x≤P

fx(α), where fx(α) =
∑

1≤x≤P

e
(
αT (x, x)k

)
and x ∈ N2. Recalling (2.1.2), note that by orthogonality it follows that

R(n) =

∫ 1

0

f(α)se(−αn)dα.

The purpose of this section is to bound the minor arc contribution of this

integral. In order to make further progress we make use of a Hardy-Littlewood

dissection in our analysis. When a ∈ Z and q ∈ N satisfy 0 ≤ a ≤ q ≤ P ξ and

(a, q) = 1 with ξ < s
s+2

, consider

M(a, q) =
{
α ∈ [0, 1) :

∣∣∣α− a/q∣∣∣ ≤ P ξ

qn

}
. (2.2.1)

Then the major arcs M will be the union of these arcs and m = [0, 1) \M will

be the minor arcs.

Proposition 2.2.1. When s is any positive integer with s ≥ H(k) one has∫
m

|f(α)|sdα� P 3s−3k−δ.

Moreover, if s ≥ 3k(3k + 1) then it follows that∫
m

|f(α)|sdα� P 3s−3k−ξ+ε.

Proof. We bound the previous integrals in terms of a mean value of that of

Vinogradov and apply estimates derived from Wooley [177, Theorems 14.4,

14.5]. For such purpose, it is convenient to take the set B = m× [0, 1)k−1 and
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consider the exponential sums

Gx(α) =
∑
x≤P

e
(
αkT (x,x)k +

k−1∑
j=1

αjx
3j
)

and F (α) =
∑
x≤P

e
( k∑
j=1

αjx
3j
)
.

(2.2.2)

We write H(k) = 2t for some positive integer t. Using Hölder’s inequality and

orthogonality we find that∫
m

|f(α)|2tdα� P 4t−2

∫
m

∑
x≤P

|fx(α)|2tdα

= P 4t−2
∑
x≤P

∑
nj

∫
B

|Gx(α)|2te
(
−

k−1∑
j=1

αjnj
)
dα� P 4t+3k(k−1)/2

∫
B

|F (α)|2tdα,

(2.2.3)

where (nj)j runs over the tuples with 1 ≤ |nj| ≤ tP 3j. Observe that by Weyl’s

inequality [141, Lemma 2.4] one has that

sup
α∈B
|F (α)| � P 1−δ,

whence the aforementioned pointwise bound and Theorem 14.5 of [177] with

the choice r = 3k − 2 deliver the estimate∫
B

|F (α)|2tdα� P 2t−3k(k+1)/2−δ. (2.2.4)

The above equation and (2.2.3) then yield the first part of the proposition. For

the second part we use a small modification of Wooley [177, Theorem 14.4].

On that paper, the author, in a more general setting, takes the choice ξ = 1

and obtains a saving of X over the expected main term. It transpires that the

same exact method can be applied to save Xξ for ξ < 1. Thus, we have that

for s ≥ 3k(3k + 1) then∫
B

|F (α)|sdα� P s−3k(k+1)/2−ξ+ε.

Replacing 2t by s in (2.2.3) and using the previous equation we get the desired

result.
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2.3 Complete exponential sums

In this section we study the complete exponential sum associated to the prob-

lem and deduce some bounds involving this sum. For such purpose, it is

convenient to define for a ∈ Z and q ∈ N with (a, q) = 1 the expressions

S(q, a) =
∑

1≤r≤q

eq
(
aT (r)k

)
and Sk(q, a) =

q∑
r=1

eq(ar
k).

Note that by orthogonality then one can rewrite S(q, a) as

S(q, a) = q−1

q∑
u=1

S3(q, u)3Sk(q, a,−u), where Sk(q, a, b) =

q∑
r=1

eq(ar
k + br).

(2.3.1)

In what follows we provide bounds for S(q, a) using estimates for S3(q, a) and

Sk(q, a, b). Observe that by the quasi-multiplicative structure of it then it

suffices to investigate the instances when q = pl is a prime power.

Lemma 2.3.1. Let l ≥ 2, let p be a prime number and a ∈ Z with (a, p) = 1.

Then,

S(pl, a)� min(p3l−1, lp3l−l/k+ε).

Proof. Note that Vaughan [141, Theorem 7.1] yields the bound

S(pl, a,−u)� pl(1−1/k)+ε.

Therefore, an application of this estimate and Theorem 4.2 of [141] to equation

(2.3.1) gives

S(pl, a)� p2l−l/k+ε

pl∑
u=1

(u, pl)� lp3l−l/k+ε.

Observe that we can also deduce the bound S(pl, a,−u)� pl−1 from the proof2

of Vaughan [141, Theorem 7.1], so the application of this estimate instead and

the same procedure delivers S(pl, a)� p3l−1.

When p is prime we can provide a more precise description of S(p, a) by

involving the sum Sk(p, a) in its expression. Despite not using this refinement

2See in particular the argument following Vaughan [141, (7.16)]
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in this chapter, we have included such analysis for further use in the upcoming

one.

Lemma 2.3.2. Let p be a prime number and a ∈ Z with (a, p) = 1. Then,

S(p, a) = p2Sk(p, a) +O(p2).

In particular, one has the bound S(p, a)� p5/2.

Proof. By equation (2.3.1) it follows that S(p, a) = p2Sk(p, a) + E, where

E = p−1
∑

1≤u≤p−1

S3(p, u)3Sk(p, a,−u).

Using Vaughan [141, Lemma 4.3] to bound S3(p, u) and the work of Weil3 [155]

to bound Sk(p, a,−u) we obtain the estimate E � p2. Consequently, another

application of the aforementioned lemma of Vaughan [141] to Sk(p, a) delivers

S(p, a)� p5/2.

The reader may notice that this result is then best possible since whenever

(k, p− 1) > 1 then there is a positive proportion of positive integers a ≤ p for

which Sk(p, a)� p1/2, whence the above result delivers an asymptotic formula

in those situations. It seems unclear whether the error term in the formula

could be improved. Such improvement though would not have any impact in

our work. For future purposes, it is convenient to define, for each q ∈ N, the

exponential sums

Sn(q) =

q∑
a=1

(a,q)=1

(
q−3S(q, a)

)s
eq(−na), S∗s (q) =

q∑
a=1

(a,q)=1

∣∣q−3S(q, a)
∣∣s (2.3.2)

and to analyse their behaviour when summing over q.

Lemma 2.3.3. Let s ≥ max(4, k + 1). One has∑
q≤Q

S∗s (q)� Qε and
∑
q≤Q

|Sn(q)| � Qε, (2.3.3)

3See Schmidt [123, Corollary 2F] for an elementary proof of this bound.
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and for s ≥ max(5, k + 2) it follows that∑
q≤Q

q1/k|Sn(q)| � Qε and
∑
q>Q

|Sn(q)| � Qε−1/k. (2.3.4)

Proof. To show (2.3.3) it suffices to prove the bound for S∗s (q) since one trivially

has the inequality |Sn(q)| ≤ S∗s (q). Applying Lemmata 2.3.1 and 2.3.2 we

deduce that each of Sn(p) and S∗s (p) is O(p1−s/2), and each of Sn(pl) and

S∗s (p
l) is O

(
min(pl−s, lspl−ls/k+ε)

)
when l ≥ 2. Consequently, whenever one

has s ≥ max(4, k + 1) then using the fact that S∗s (q) is multiplicative we find

that

∑
q≤Q

S∗s (q)�
∏
p≤Q

(
1 +

∞∑
l=1

S∗s (p
l)
)
�
∏
p≤Q

(1 + C/p)� Qε,

where C > 0 is some suitable constant. The first assertion of (2.3.4) follows

by the same argument, and the second follows observing that then∑
Q≤q≤2Q

|Sn(q)| � Qε−1/k,

whence summing over dyadic intervals we obtained the desired result.

2.4 Singular series

We give sufficient conditions in terms of the number of variables to ensure

the local solubility of the problem and combine such work with the bounds

obtained in the previous section to introduce and analyse the singular series

associated to the problem. We also include a brief proof of Theorem 2.1.4. For

such purposes, a little preparation is required. Let p a prime number and take

τ ≥ 0 such that pτ ||3k. Let γ = 2τ + 1, consider the set

Mn(ph) =
{

Y ∈ [1, ph]3s :
s∑
i=1

T (yi)
k ≡ n (mod ph)

}
, (2.4.1)

where Y = (y1, . . . ,ys) with yi ∈ N3, and the subset

M∗
n(ph) =

{
Y ∈Mn(ph) : p - y1,1, p - T (y1)

}
,
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where y1 = (y1,1, y1,2, y1,3). Define as well the quantities Mn(ph) = |Mn(ph)|
and M∗

n(ph) = |M∗
n(ph)|. Here the reader may want to observe that the divis-

ibility restrictions on the above definition are imposed for a latter application

of Hensel’s Lemma. Before showing that under some constraint in the number

of variables then M∗
n(pγ) > 0, we first provide an accurate description of the

set

M3,3(ph) =
{
T (x) : x ∈

(
Z/phZ

)3

, (x1, p) = 1
}

that will be used throughout the whole argument.

Lemma 2.4.1. Let h ∈ N. Then, whenever p 6= 3 one finds that

M3,3(ph) = Z/phZ. (2.4.2)

For the case p = 3 one has M3,3(3) = Z/3Z and when h ≥ 2 then

M3,3(3h) =
{
x ∈ Z/3hZ : x 6≡ 4 (mod 9), x 6≡ 5 (mod 9)

}
.

Proof. When p 6= 3, we can assume that h = 1, since an application of Hensel’s

Lemma would then yield the case h ≥ 2. For a better description of the

argument, it is convenient to define the counting functions

Nn(p) = card
{

x ∈
(
Z/pZ

)3
: T (x) ≡ n (mod p)

}
,

Nn,4(p) = card
{

y ∈
(
Z/pZ

)4
: y3

1 + y3
2 + y3

3 − ny3
4 ≡ 0 (mod p)

}
.

Observe that by making a distinction for the tuples counted in Nn,4(p) regard-

ing the divisibility of y4 by p one has that (p − 1)Nn(p) = Nn,4(p) − N0(p).

Note that when (n, p) = 1 then the work of Weil [156] on equations over finite

fields leads to

|Nn,4(p)− p3| ≤ 6(p− 1)p and |N0(p)− p2| ≤ 2(p− 1)
√
p.

Consequently, one finds that Nn(p) = p2 +Ep with |Ep| ≤ 6p+2
√
p, and hence

Nn(p) ≥ 1 for p ≥ 7. Observe as well that Nn(2) ≥ 1 and Nn(5) ≥ 1 follow

trivially. This implies that there is at least one solution to the equation

x3 + y3 + z3 ≡ n (mod p), (x, p) = 1, (2.4.3)
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and when n = 0 then (1,−1, 0) is also a solution for (2.4.3), whence the

preceding discussion yields (2.4.2).

When p = 3 then the case h = 1 is trivial. Note that since cubes can only

be ±1 (mod 9), the only residues which cannot be written as sums of three

cubes are 4 and 5. For h = 3, a slightly tedious computation reveals that the

only residues not represented as sums of three cubes are the ones congruent to

4 or 5 (mod 9). Therefore, a routine application of Hensel’s Lemma delivers

the proof for h ≥ 4.

The previous lemma asserts that the local solubility of the problem studied

here only differs from the local solubility of the original Waring’s problem at

the prime 3. This conclusion is gathered in the following statement.

Lemma 2.4.2. Suppose that s ≥ p
p−1

(
k, pτ (p−1)

)
when p 6= 2, 3 or p = 2 and

τ = 0, that s ≥ 9
4

(
k, φ(3γ)

)
when p = 3, that s ≥ 2τ+2 when p = 2 and τ > 0

with k > 2, and that s ≥ 5 when p = k = 2. Then one has M∗
n(pγ) > 0.

Proof. If p 6= 3 then Lemma 2.4.1 implies that the local solubility for each

of these primes is equivalent to that of the original Waring’s problem, hence

Vaughan [141, Lemma 2.15] yields M∗
n(pγ) > 0. Here the reader might want

to observe that the definition for γ taken here is different from the one in

Vaughan [141, (2.25)], so one may have to apply Lemma 2.13 of [141] as well.

For the case p = 3, Lemma 2.4.1 delivers∣∣∣M3,3(3γ) ∩ U(Z/3γZ)
∣∣∣ = 4 · 3γ−2,

where U(Z/3γZ) denotes the group of units of Z/3γZ. Therefore, using Vaughan

[141, Lemma 2.14] we get that M∗
n(3γ) > 0 whenever s ≥ 9

4

(
k, φ(3γ)

)
.

Observe that by the combination of Lemma 2.4.1 and Vaughan [141, Lemma

2.14] then for u ≥ 9k/4 we find that the form T (x1)k + · · ·+ T (xu)
k covers all

the residue classes modulo 3k. Take now s such that every sufficiently large

number can be written as a sum of s integral 3k-th powers. Given a large

integer n, we can find integral triples x1, . . . ,xu for which

n ≡ T (x1)k + · · ·+ T (xu)
k (mod 3k) and 1 ≤ xi ≤ 3k.
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Fixing any one such choice of the xi, we can also find integers x1, . . . , xs sat-

isfying

x3k
1 + · · ·+ x3k

s = 3−k
(
n−

(
T (x1)k + · · ·+ T (xu)

k
))
.

Here the reader may find convenient to observe that the term on the right side

of the equality is still large. Therefore, we obtain the representation

n = T (x1)k + · · ·+ T (xu)
3k + 3k

(
x3k

1 + · · ·+ x3k
s

)
.

Noting that the sums of three cubes on the right side have been replaced by the

specialization 3x3, one gets G3(k) ≤ u+s, and hence by Wooley [162, Corollary

1.2.1] we have that G3(k) ≤ 3k
(

log k+log log k+O(1)
)
, which yields Theorem

2.1.4. As experts will realise, one could apply the ideas of Wooley [167] to

obtain a refinement of the shape

G3(k) ≤ 3k

(
log k + log log 3k + log 3 + 2 +O

( log log k

log k

))

by using instead other specializations. For the sake of brevity though we omit

making such analysis here.

Finally we combine work of this section with estimates from the previous

one to analyse the singular series. Observe that by (2.3.2) we can rewrite the

singular series, defined in (2.1.3), as

S(n) =
∞∑
q=1

Sn(q).

To express the above series as a product of local densities it is convenient to

define the infinite sum

σ(p) =
∞∑
l=0

Sn(pl)

for each prime p.

Proposition 2.4.1. Let s ≥ max(5, k + 2). Then, one has

S(n) =
∏
p

σ(p), (2.4.4)

the series S(n) converges absolutely and S(n)� 1. Moreover, if s satisfy the
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conditions of Lemma 2.4.2 one gets S(n)� 1.

Proof. Using the estimates mentioned at the beginning of the proof of Lemma

2.3.3 we find

∞∑
l=1

|Sn(pl)| � p1−s/2 + pk−s +
∑
l≥k+1

lspl−ls/k+ε � p−3/2. (2.4.5)

Therefore, (2.4.4) holds by multiplicativity, S(n) converges absolutely and

S(n)� 1. In order to prove the lower bound, we recall first (2.3.2) and (2.4.1)

to deduce that orthogonality then yields

h∑
l=0

Sn(pl) = Mn(ph)ph(1−3s).

If s satisfies the conditions of Lemma 2.4.2, an application of Hensel’s Lemma

gives the lower bound Mn(ph) ≥ p(3s−1)(h−γ), which combined with the above

equation implies that σ(p) ≥ p−(3s−1)γ. Consequently, the previous estimate

and (2.4.5) deliver the lower bound S(n)� 1.

2.5 Approximation on the major arcs.

In this section we use a simple argument involving the Riemman-Stieltjes in-

tegral and integration by parts to approximate f(α) by an auxiliary function

on the major arcs. We also provide bounds for this function. For such pur-

poses, we introduce first some notation. Let α ∈ [0, 1) and a ∈ Z, q ∈ N
with (a, q) = 1. Denote β = α − a/q and define the aforementioned auxiliary

function

V (α, q, a) = q−3S(q, a)v(β), where v(β) =

∫
[0,P ]3

e
(
βT (x)k

)
dx. (2.5.1)

Lemma 2.5.1. Let q < P . Then one has that

f(α) = V (α, q, a) +O
(
P 2q(1 + n|β|)

)
.
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Proof. Before embarking on our task, it is convenient to define the sums

Kr(β) =
∑
x≤P

x≡r (mod q)

e
(
Fβ(x)

)
, Br(x) =

∑
0<z≤x

z≡r (mod q)

1,

where Fβ(x) = βT (x)k. Observe that by sorting the summation into arithmetic

progressions modulo q we find that

f(α) =
∑
r≤q

eq
(
aT (r)k

)
Kr(β). (2.5.2)

For each r ∈ N3 write r = (r1, r3). Then by Abel’s summation formula we

obtain

Kr(β) =Br3(P )
∑
x1

e
(
Fβ(x1, P )

)
−
∫ P

0

∑
x1

∂

∂z
e
(
Fβ(x1, z)

)
Br3(z)dz,

where x1 runs over pairs x1 ∈ [1, P ]2 with x1 ≡ r1 (mod q). Consequently,

using the equation Br3(x) = x/q +O(1) and integration by parts one gets

Kr(β) = q−1

∫ P

0

∑
x1

e
(
Fβ(x1, z)

)
dz +O

(
q−2P 2(1 + n|β|)

)
.

We repeat the exact same procedure for the first two variables to obtain

Kr(β) = q−3v(β) +O
(
q−2P 2(1 + n|β|)

)
,

whence the combination of the above expression with (2.5.2) yields the result

claimed above.

In order to make further progress, we provide an upper bound for v(β)

in the following lemma. This lemma will be used throughout the major arc

analysis.

Lemma 2.5.2. Let β ∈ R. One has that

v(β)� P 3

(1 + n|β|)1/k
.
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Proof. Let y ∈ [0, P ]2 and set Cy = y3
1 + y3

2. Define the auxiliary function

By(y) = (3k)−1y1/k−1(y1/k − Cy)−2/3.

Note that by a change of variables one can rewrite v(β) as

v(β) =

∫
y∈[0,P ]2

∫ My

Ny

By(y)e(βy)dydy, (2.5.3)

where Ny = Ck
y and My = (P 3 +Cy)k. Observe first that when |β| ≤ n−1 then

one trivially gets

v(β)�
∫
y∈[0,P ]2

∫ My

Ny

By(y)dydy� P 3.

For the case |β| > n−1 we split the integral into

v(β)� I1 + I2 + I3,

where

Ii =

∫
x∈Ti

e
(
βT (x)k

)
dx for each i ∈ {1, 2, 3}

and the sets of integration taken are

T1 =
{

x ∈ [0, P ]3 : x ≤ |β|−1/3k
}
, T2 =

{
x ∈ [0, P ]3 : x2, x3 > |β|−1/3k

}
,

T3 =
{

x ∈ [0, P ]3 : x3 > |β|−1/3k, x1, x2 ≤ |β|−1/3k
}
.

Note that for the first integral one has I1 ≤ |T1| � |β|−1/k. For the other two

it is convenient to define the parameter Tβ = (|β|−1/k +Cy)k and consider the

setM2 = [0, P ]× [|β|−1/3k, P ]. Then, by applying integration by parts we find

that

I2 =

∫
y∈M2

∫ My

Tβ

By(y)e(βy)dydy � |β|−1

∫
y∈M2

By(Tβ)dy,

where we used the fact that the function By(y) is decreasing. Observe that

whenever y ∈M2 then one has |β|−1/k ≤ Cy, which delivers the estimate

I2 � |β|−1+2/3k

∫
y∈M2

C1−k
y dy� |β|−1+2/3k

∫
|β|−1/3k≤x

x4−3kdx� |β|−1/k.
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Likewise, we introduce the set M3 = [0, |β|−1/3k]2 to handle I3. Using the

same argument we get that

I3 � |β|−1

∫
y∈M3

By(Tβ)dy,

and applying the fact that Cy � |β|−1/k whenever y ∈ M3 to bound By(Tβ)

then we obtain

I3 � |β|−1

∫
y∈M3

|β|1−1/3kdy� |β|−1/k.

The combination of the bounds for I1, I2 and I3 yields the result of the lemma.

2.6 The asymptotic formula for R(n).

We compute the size of the singular integral and use the work and the bounds

obtained in the previous sections to obtain an asymptotic formula for R(n).

Whenever s ≥ k + 1 define the aforementioned singular integral by

J(n) =

∫ ∞
−∞

v(β)se(−βn)dβ.

Consider the set

S =
{

(y1, y1, . . . ,ys, ys) ∈ R3s : yi ∈ [0, P ]2, Nyi ≤ yi ≤Myi

}
.

Then, recalling (2.5.3) and using a change of variables it follows that

J(n) = lim
λ→∞

∫ λ

−λ

∫
Y∈S

s∏
i=1

Byi(yi)e
(
β
( s∑
i=1

yi − n
))
dYdβ

= lim
λ→∞

∫ 3ksn

0

φ(v)
sin
(
2πλ(v − n)

)
π(v − n)

dv,

where we have taken

φ(v) =

∫
Y∈S′

Bys(γv)
s−1∏
i=1

Byi(yi) dY, with γv = v −
s−1∑
i=1

yi
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and S ′ ⊂ N3s−1 is the set determined by the underlying inequalities. Observe

that φ(v) is a function of bounded variation, whence by Fourier’s Integral

Theorem it follows that J(n) = φ(n). To obtain a precise formula for J(n) it

is convenient to introduce the subset Y ⊂ [0, n]s−1 defined by the constraint

0 ≤ γn ≤ n. Then, by several subsequent changes of variables and the formula

of the Euler’s Beta function one has that

J(n) = 3−3sk−sΓ
(
1/3
)3s
∫
Y
γ1/k−1
n

( s−1∏
i=1

y
1/k−1
i

)
dy1 · · · dys−1

= Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

ns/k−1. (2.6.1)

We are now equipped to compute an asymptotic formula for the major arc

contribution, which we define by

RM(n) =

∫
M

f(α)se(−αn)dα.

Proposition 2.6.1. Let s ≥ max(5, k + 2). Then,

RM(n) = Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

S(n)ns/k−1 +O(ns/k−1−δ).

Proof. For the sake of simplicity we consider the auxiliary function f ∗(α) for

α ∈ [0, 1) by putting

f ∗(α) = V (α, q, a)

when α ∈ M(a, q) ⊂ M and f ∗(α) = 0 for α ∈ m. We remind the reader

that V (α, q, a) was defined in (2.5.1). Recalling Lemma 2.5.1 then whenever

α ∈M(a, q) one has that

f(α)s − f ∗(α)s � P 2sqs(1 + n|β|)s + P 2q(1 + n|β|)|f ∗(α)|s−1.

Integrating over the major arcs, which were defined in (2.2.1), we find that∫
M

|f(α)s − f ∗(α)s|dα� P 2s+ξ(s+2)n−1 + P 3s−3k−1+ξ
∑
q≤P ξ

S∗s−1(q), (2.6.2)

and hence Lemma 2.3.3 and the assumption on ξ stated before (2.2.1) implies

that the above integral is O(P 3s−3k−δ). Observe that by the same lemma and
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Lemma 2.5.2 respectively we have

∑
P ξ<q

|Sn(q)| = O(P−δ) and

∫
|β|>Pξ

qn

|v(β)|sdβ = O
(
P 3s−3kqδP−δξ

)
for q ≤ P ξ and some δ > 0. Combining these observations with the aforemen-

tioned lemmata and equations (2.3.4) and (2.6.2) we obtain

RM(n) = S(n)J(n) +O(ns/k−1−δ),

and hence (2.6.1) delivers the result.

Theorem 2.1.1 then follows applying Propositions 2.2.1, 2.4.1 and 2.6.1.

2.7 Asymptotic formula over the smooth num-

bers.

In this section we investigate the asymptotic formula for the representation

function when two of the variables of each triple lie on the smooth numbers.

The strategy for bounding the integral over the minor arcs of g(α) combines

arguments of Section 2.2 with major arc techniques. We define the major arcs

N to be the union of

N(a, q) =
{
α ∈ [0, 1) :

∣∣α− a/q∣∣ ≤ q−1(logP )κP−3k
}

(2.7.1)

with 0 ≤ a ≤ q ≤ (logP )κ and (a, q) = 1, where κ = 1/5. We take the minor

arcs n = [0, 1) \N. Similarly, when 1 ≤ X ≤ L with L = P 1/3k, define W(X)

as the union of the arcs

W(a, q) =
{
α ∈ [0, 1)k : |αj − aj/q| ≤ q−1XP−3j (1 ≤ j ≤ k)

}
with 0 ≤ a ≤ q ≤ X and (q, a1, . . . , ak) = 1. For the sake of simplicity we

write

W = W(L), P = W
(
(logP )κ

)
,

and we take the minor arcs w = [0, 1)k \W and p = [0, 1)k \P. First we prove

a lemma which permits us to have a saving over the trivial bound for some
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Weyl sum on p. For such purposes we consider the exponential sum associated

to the Vinogradov’s system

fk(α;X) =
∑

1≤x≤X

e
(
α1x+ . . .+ αkx

k
)
.

Lemma 2.7.1. Let X be any real positive number sufficiently big in terms of

k, let µ be a real number such that µ−1 > 4k(k − 1) and let γ denote a real

number with X−µ ≤ γ ≤ 1. Then whenever |fk(α;X)| ≥ γX, there exist an

integer q ∈ N and a tuple a = (a1, . . . , ak) ∈ Nk with (q, a1, . . . , ak) = 1 and

1 ≤ q � γ−k−ε and such that

|qαj − aj| � γ−k−εX−j (1 ≤ j ≤ k).

Proof. Suppose that |fk(α;X)| ≥ γX. Then, applying Wooley [172, Theorem

1.6] we obtain that there exist q ∈ N and a ∈ Nk with (q, a1, . . . , ak) = 1 such

that 1 ≤ q ≤ X1/k and

|qαj − aj| ≤ X1/k−j (1 ≤ j ≤ k). (2.7.2)

In order to make further progress it is convenient to define the auxiliary func-

tion

T (α; q, a) = q + |qα1 − a1|X + · · ·+ |qαk − ak|Xk.

By Theorems 7.1, 7.2 and 7.3 of Vaughan [141] one has that

|fk(α;X)| � qεXT (α; q, a)−1/k + T (α; q, a).

Observe that equation (2.7.2) yields T (α; q, a) � X1/k, which implies that

qεXT (α; q, a)−1/k is the term dominating in the previous estimate. Therefore,

by the preceding discussion and the fact that q ≤ T (α; q, a) we obtain

γX ≤ |fk(α;X)| � XT (α; q, a)−1/k+ε,

which gives T (α; q, a)� γ−k−ε and delivers the lemma.

We are now equipped to prove the minor arc estimate. Recalling (2.1.6)

and the definition of C(P ) made after (2.1.4), observe that by orthogonality
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one has that

Rη(n) =

∫ 1

0

g(α)se(−αn)dα, where g(α) =
∑

x∈C(P )

e
(
αT (x)k

)
.

In what follows we show that the minor arc contribution is smaller than the

expected main term by combining the previous lemma and other minor arc

estimates with some major arc ideas.

Proposition 2.7.1. Whenever s is any positive integer with s ≥ H(k) one

has ∫
n

|g(α)|sdα� P 3s−3k(logP )−δ.

Proof. We write H(k) = 2t for some positive integer t. Recalling (2.2.2) and

using the same argument as in (2.2.3) it follows that∫
n

|g(α)|2tdα� P 4t+3k(k−1)/2

∫
n

∫
[0,1)k−1

|F (α)|2tdα. (2.7.3)

Observe that we can estimate the above integral by∫
n

∫
[0,1)k−1

|F (α)|2tdα�
∫
w

|F (α)|2tdα+

∫
W\P
|F (α)|2tdα. (2.7.4)

Note as well that combining Vaughan [141, Theorem 5.2] with Bourgain’s result

on Vinogradov’s mean value theorem [14, Theorem 1.1] one has that

sup
α∈w
|F (α)| � P 1−δ.

We then bound the first term on the right side of (2.7.4) via an application of

the above pointwise bound and Wooley [177, Theorem 14.5] in the same way

as in (2.2.4) to obtain ∫
w

|F (α)|2tdα� P 2t−3k(k+1)/2−δ.

In order to estimate the second one we provide a major arc analysis. For

such purpose we consider the auxiliary function

V (α; q, a) = q−1S(q, a)I(α− a/q),
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where

S(q, a) =

q∑
r=1

eq
(
a1r

3 + . . .+ akr
3k
)
, I(β) =

∫ P

0

e(β1γ
3 + . . .+ βkγ

3k)dγ.

For the sake of conciseness, we define for α ∈ [0, 1)k the function

V (α) = V (α; q, a)

when α ∈ W(a, q) ⊂ W and V (α) = 0 for α ∈ w. Observe that by Vaughan

[141, Theorem 7.2] then whenever α ∈W it follows that

F (α)− V (α)� L,

whence the triangle inequality then yields

|F (α)|2t−2 − |V (α)|2t−2 � LP 2t−3.

Therefore, combining the fact that mes(W)� Lk+1P−3k(k+1)/2 with the above

estimate we get∫
W

|F (α)|2t−2dα−
∫
W

|V (α)|2t−2dα� P 2t−2−3k(k+1)/2−δ.

On the other hand, note that Vaughan [141, Theorems 7.1, 7.3] gives

V (α)� qεP
(
q + |qα1 − a1|P 3 + · · ·+ |qαk − ak|P 3k

)−1/3k

,

and consequently, it follows that∫
W

|F (α)|2t−2dα� P 2t−2−3k(k+1)/2.

We finally apply Lemma 2.7.1 to F (α) to obtain that when α ∈ p then one

has F (α) < P (logP )−δ for some δ > 0. Therefore, combining this bound with

the above major arc estimate we obtain∫
W\P
|F (α)|2tdα� P 2t−3k(k+1)/2(logP )−δ.

The preceding discussion and equations (2.7.3) and (2.7.4) imply the proposi-
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tion.

Next we introduce some properties of the smooth numbers concerning

their density and distribution over arithmetic progressions which will be used

throughout the argument for the approximation of g(α) over the major arcs.

For such purposes, it is convenient to define

Ar(m) =
∑

x∈A(m,P η)
x≡r (mod q)

1.

Lemma 2.7.2. Let q,m ∈ N with q ≤ P η and P η < m ≤ P. Then for each

0 ≤ r ≤ q − 1 one has

Ar(m) = q−1mρ
( logm

η logP

)
+O

( m

logm

)
,

where the function ρ(x) was defined before Theorem 2.1.2.

Proof. It follows from Montgomery and Vaughan [102, Theorem 7.2] and the

argument of the proof of Vaughan [139, Lemma 5.4].

We are now equipped to provide the approximation for g(α). In fact, we

prove here a generalized version for future use in one of our forthcoming article.

For such purpose, we take constants 0 ≤ C1 < C2 and C3 > 0. Let Q > 0, let

m ∈ N and define the exponential sum

gQ,m(α) =
∑
x∈B

e
(
αT (mx)k

)
,

where

B =
{

x ∈ N3 : C1Q < x1 ≤ C2Q, x2, x3 ∈ A(C3Q,Q
η)
}
.

Despite making the choice κ = 1/5 in the definition (2.7.1), the following

lemma contains a result which makes no use of that choice and remains valid

for the range 0 < κ < 1.

Lemma 2.7.3. Let α ∈ N(a, q), where a ∈ Z, q ∈ N with (a, q) = 1 and

q ≤ (log)κ. Let m ∈ N with (m, q) = 1. Take Q > 0 with the property that
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mQ � P and consider β = α− a/q. Then,

gQ,m(α) = VQ,m(α, q, a) +O
(
E(Q)

)
,

where we take E(Q) = Q3(logQ)κ−1 log logQ and

VQ,m(α, q, a) = q−3S(q, a)ρ
(
1/η
)2
∫
x∈SQ

e
(
Fm(x)

)
dx

with Fm(x) = βT (mx)k and

SQ =
{

x ∈ R3 : C1Q ≤ x1 ≤ C2Q, 0 ≤ x2, x3 ≤ C3Q
}
.

Proof. For ease of notation, we omit the subscripts for the rest of the proof.

We combine the ideas of the proof of Lemma 2.5.1 with the analysis of the

distribution of smooth numbers discussed above. For such purposes, it is

convenient to define first

Kr(β;m) =
∑
x∈B

x≡r (mod q)

e
(
Fm(x)

)
.

Observe that by sorting the summation into arithmetic progressions modulo q

one has

gQ,m(α) =
∑
r≤q

eq
(
aT (mr)k

)
Kr(β;m). (2.7.5)

For each r ∈ N3, write r = (r1, r3) with r1 = (r1, r2). Then, we find that

Kr(β;m) =
∑
x1

∫ C3Q

0

e
(
Fm(x1, x)

)
dAr3(x),

where the integral on the right side is the Riemann-Stieltjes integral and x1

runs over the set

Cr1 =
{

x1 ∈ N2, C1Q < x1 ≤ C2Q, x2 ∈ A(C3Q,Q
η), x1 ≡ r1 (mod q)

}
.

The reader may find useful to observe that the contribution coming from the

set [0, Q/ logQ] to the above integral is O
(
q−3Q3(logQ)−1

)
, whence integration
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by parts yields

Kr(β;m) =Ar3(C3Q)
∑
x1

e
(
Fm(x1, C3Q)

)
−
∫ C3Q

Q/ logQ

∑
x1

∂

∂z
e
(
Fm(x1, z)

)
Ar3(z)dz +O

(
q−3Q3(logQ)−1

)
.

We observe for convenience that

(mQ)3k|β| � n|β| � q−1(logQ)κ.

Therefore, the integral of the error term that arises when we approximate

Ar3(z) in the above equation is bounded above by∫ C3Q

Q/ logQ

∑
x1

∣∣∣∂Fm
∂z

(x1, z)
∣∣∣ z

log z
dz � q−3Q3(logQ)κ−1.

Before embarking in the process of giving a better description of the above

equation, we recall that an application of the mean value theorem gives that

for any w ∈ [Q/ logQ,C3Q] then∣∣∣ρ(1

η

)
− ρ
( logw

η logQ

)∣∣∣� log logQ

logQ
.

Consequently, by Lemma 2.7.2 and the preceding discussion we obtain

Kr(β;m) =q−1ρ
(
1/η
)
C3Q

∑
x1

e
(
Fm(x1, C3Q)

)
− q−1ρ

(
1/η
) ∫ C3Q

Q/ logQ

z
∑
x1

∂

∂z
e
(
Fm(x1, z)

)
dz +O

(
q−3E(Q)

)
,

and hence integration by parts yields

Kr(β;m) = q−1ρ
(
1/η
) ∫ C3Q

0

∑
x1

e
(
Fm(x1, z)

)
dz +O

(
q−3E(Q)

)
,

where we implicitly used that the term arising after evaluating at the end-

points and the contribution of the interval [0, Q/ logQ] to the above integral

is O(q−3Q3(logQ)−1). Likewise, applying a similar procedure for the second
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variable one gets

Kr(β;m) = q−2ρ
(
1/η
)2
∫
y∈[0,C3Q]2

∑
x

e
(
Fm(x,y)

)
dy +O

(
q−3E(Q)

)
, (2.7.6)

where x runs over the range C1Q < x ≤ C2Q and x ≡ r1 (mod q). For the

first variable, we follow the same procedure as in Lemma 2.5.1 to obtain

∑
x≡r1 (mod q)

e
(
Fm(x,y)

)
= q−1

∫ C2Q

C1Q

e
(
Fm(x,y)

)
dx+O

(
1 + q−1(logQ)κ

)
.

Consequently, combining the above equation with (2.7.6) we get

Kr(β;m) = q−3ρ
(
1/η
)2
∫
x∈SQ

e
(
Fm(x)

)
dx +O

(
q−3E(Q)

)
.

Observe that since (m, q) = 1 then a change of variables yields

S(q, am3k) = S(q, a).

The lemma then follows by the preceding discussion and (2.7.5).

Corollary 2.7.1. Let α ∈ N(a, q) where a ∈ Z, q ∈ N with (a, q) = 1 and

q ≤ (logP )κ. Consider β = α− a/q. One has that

g(α) = W (α, q, a) +O(P 3(logP )κ−1 log logP ),

where on recalling (2.5.1) we take

W (α, q, a) = q−3S(q, a)ρ(1/η)2v(β).

Proof. Note that g(α) = gP,1(α) with the choices C1 = 0, C2 = 1 and C3 = 1.

The result is then a consequence of the previous lemma.

In the rest of the section we deduce an asymptotic formula for the contri-

bution over the major arcs. For such purposes, consider the integral

RN(n) =

∫
N

g(α)se(−αn)dα.
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Define the auxiliary function g∗(α) for α ∈ [0, 1) by putting

g∗(α) = W (α, q, a)

when α ∈ N(a, q) ⊂ N and g∗(α) = 0 for α ∈ n.

Proposition 2.7.2. Let s ≥ max(5, k+2). Then, there exists a constant δ > 0

such that

RN(n) =Γ
(
4/3
)3s

Γ
(
1 + 1/k

)s
Γ
(
s/k
)−1

ρ
(
1/η
)2s

S(n)ns/k−1

+O(ns/k−1(log n)−δ).

Proof. Observe that by the definition (2.7.1) one has that for α ∈ N(a, q) and

β = α− a/q the bounds

(1 + n|β|)−(s−1)/k ≥ (logP )−(s−1)κ/k ≥ (logP )(s−1)(κ−1).

Consequently, Lemmata 2.5.2 and Corollary 2.7.1 yield

g(α)s − g∗(α)s � P 3s(logP )κ−1+ε(1 + n|β|)−(s−1)/k,

whence integrating over the major arcs we obtain that∫
N

∣∣g(α)s − g∗(α)s
∣∣dα� P 3s−3k(logP )−δ.

Observe that by Lemmata 2.3.3 and 2.5.2 respectively we have

∑
q>(logP )κ

|Sn(q)| � (logP )−δ and

∫
|β|> (logP )κ

qn

|v(β)|sdβ � P 3s−3kqδ(logP )−δκ,

where in the second integral q ≤ (logP )κ. Consequently, the combination

of the aforementioned lemmas, equations (2.3.4) and (2.6.1) and the above

bounds deliver the theorem.

Theorem 2.1.2 then follows by the application of Proposition 2.4.1, the

estimate for the minor arcs in Proposition 2.7.1 and the above proposition.
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2.8 Lower bound for r(n).

In this section we prove Theorem 2.1.3 via an application of Theorem 2.1.2.

The main idea is to show that the contribution to Rη(n) of tuples whose

coordinates have many representations as sums of three positive integral cubes

is fairly small. We present first some notation and a simple lemma which will

be used in the proof. Recalling the definition for s3(n) described before (2.1.5)

and the parameter ν presented right after that equation, let θ = ν/k and

consider the set

SK(n) =
{
m ∈ N : 1 ≤ m ≤ n1/k : s3(m) > Knθ

}
,

where K > 0.

Lemma 2.8.1. Let n ∈ N and K > 0. Then∑
m∈SK(n)

s3(m)� K−1n1/k.

Proof. It follows by noting that∑
m∈SK(n)

s3(m)� K−1n−θ
∑

m∈SK(n)

s3(m)2 � K−1n1/k,

where in the last step we used (2.1.5).

Define R1(n) as the contribution to Rη(n) of tuples X ∈ C s for which

xi ∈ SK(n) for some i. Likewise, let R0(n) be the contribution to Rη(n) of

tuples X ∈ C s with xi /∈ SK(n) for every 1 ≤ i ≤ s. Observe that with this

notation then one has

Rη(n) = R0(n) +R1(n). (2.8.1)

Note that by orthogonality, Theorem 2.1.2 and Lemma 2.8.1 one finds that

R1(n)�
∑

m∈SK(n)

s3(m)

∫ 1

0

g(α)s−1e
(
− α(n−mk)

)
dα

� n(s−1)/k−1
∑

m∈SK(n)

s3(m)� K−1ns/k−1.

whenever s − 1 ≥ H(k). Therefore, taking K to be big enough in terms of k
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and s, we have by Theorem 2.1.2 and (2.8.1) that Rη(n) � R0(n). Since each

representation of n as a sum of k-th powers of elements of C is counted at

most s3(x1) . . . s3(xs) ≤ Ksnsθ times by R0(n), we find that

r(n)� ns/k−1−sθ = n(1−ν)s/k−1,

which delivers Theorem 2.1.3.

2.9 Asymptotic formula for small powers

We improve the constraint on the number of variables in Theorem 2.1.1 for the

cases 2 ≤ k ≤ 7 by interpolating between some restriction estimates and mean

value bounds for Weyl sums over the minor arcs computed in Proposition 2.2.1.

In the following lemma we present the aforementioned restriction estimate

bounds, but first define r(k) = 2k for 2 ≤ k ≤ 3 and r(k) = k(k + 1) when

4 ≤ k ≤ 7. For the sake of conciseness, we omit writing the dependence on k

for the rest of the section.

Lemma 2.9.1. One has that∫ 1

0

|f(α)|rdα� P 13r/4−3k+ε.

Proof. Note that recalling the definition of r3(n) before (2.1.2) we can rewrite

the exponential sum f(α) as

f(α) =
∑
x≤3P 3

r3(x)e(αxk).

We then apply mean value estimates of Bourgain [12, (1.6)] when k = 2,

Hughes and Wooley [76, Theorem 4.1] for the case k = 3 and the work of

Wooley [177, Corollary 1.4] when 4 ≤ k ≤ 7 to obtain∫ 1

0

|f(α)|rdα� P 3r/2−3k+ε
( ∑

1≤m≤3P 3

r3(m)2
)r/2

.

Observe that the cited result for the case 4 ≤ k ≤ 7 is the weighted version of

Vinogradov’s mean value theorem. As experts will realise, we can apply such

result to obtain the estimate that we use herein via a similar argument than
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k 2 3 4 5 6 7
s 24 63 134 216 316 435
t 23.4331 62.9722 133.4783 215.3978 315.9897 434.9924

Table 2.1

the one used in (2.2.3). The lemma then follows by combining the previous

bound with (2.1.4).

Before describing the rest of the proof it is convenient to introduce some

parameters. Take h = b(k + 1)/2c. Consider p = 1 + r/4ξ0 and the exponents

q = p/(p− 1) and t = r/p + 3k(3k + 1)/q, where ξ0 is defined as the positive

root of the quadratic equation which is obtained by imposing the condition

ξ0 = 1− 1/(t− 2h+ 1).

Let s = dte. Both the values of s and t are gathered in Table 2.1. The following

statement improves the number of variables obtained in Proposition 2.2.1 by

interpolating the estimates that we get in the second part of Proposition 2.2.1

with Lemma 2.9.1.

Proposition 2.9.1. One has that∫
m

|f(α)|sdα� P 3s−3k−δ,

where we take the minor arcs m to be as described right after (2.2.1) with ξ on

the range ξ0 < ξ < 1− 1/(s− 2h+ 1).

Proof. By Hölder’s inequality, Proposition 2.2.1 and Lemma 2.9.1 we obtain

that ∫
m

|f(α)|tdα�
(∫ 1

0

|f(α)|rdα
)1/p(∫

m

|f(α)|3k(3k+1)dα
)1/q

�
(
P 13r/4−3k+ε

)1/p(
P 27k2+6k−ξ+ε)1/q � P 3t−3k−δ,

from where the lemma follows by observing that t < s.

The rest of the appendix is devoted to make a refinement of the argument

used in Proposition 2.6.1 to enlarge the major arcs by taking ξ on the range
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described above and win one variable for the cases k = 3, 6 and 7. Let q < P .

Denote by N(q, P ) the number of solutions of the congruence

T (x1)k + . . .+ T (xh)
k ≡ T (y1)k + . . .+ T (yh)

k (mod q),

where 0 ≤ xi,yi ≤ P. By expressing q as the product of prime powers, using

the structure of the ring of integers of these prime powers and noting that the

number of primes dividing q is bounded by qε we obtain N(q, P ) � qε−1P 2h,

and hence orthogonality yields

q∑
a=1

|f(β + a/q)|2h � qN(q, P )� qεP 2h. (2.9.1)

Now consider the difference function D(α) = f(α) − f ∗(α). By the triangle

inequality one has

|f(α)s − f ∗(α)s| � F1(α) + F2(α),

where

F1(α) = |f(α)|2h|D(α)|
(
|f ∗(α)|s−2h−1 + |D(α)|s−2h−1

)
and F2(α) = |D(α)||f ∗(α)|s−1. The integral over the major arcs for F2(α) is

bounded in the same way as in equation (2.6.2), and by combining Lemmata

2.5.1 and 2.5.2 with equation (2.9.1) we get∫
M

F1(α)dα� P 3s−3k+ξ−1+ε
∑
q≤P ξ

S∗s−2h−1(q) + P 3s−3k+(s−2h+1)ξ−s+2h
∑
q≤P ξ

qε−1.

Using the fact that ξ < 1−1/(s−2h+1) and Lemma 2.3.3 we obtain that the

previous integral is O(P 3s−3k−δ). Therefore, by the preceding discussion, the

argument following (2.6.2) and Propositions 2.4.1 and 2.9.1 then the conclusion

of Theorem 2.1.1 holds for the values of s in Table 2.1.
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Chapter 3

Waring’s problem in sums of

three cubes for small exponents

3.1 Upper bounds on the number of variables

for small exponents1

As the above heading anticipates, the purpose of the present subsection is

to provide an upper bound for the minimum s with the property that every

sufficiently large integer can be represented as the sum of s positive k-th powers

of integers, each of which is represented as the sum of three positive cubes for

the cases 2 ≤ k ≤ 4.

3.1.1 Introduction

Additive problems involving small powers of positive integers have led to a

vast development of new ideas and techniques in the application of the Hardy-

Littlewood method which often cannot be extended to the setting of general

k-th powers. Finding the least number s such that for every sufficiently large

integer n then

n = xk1 + . . .+ xks , (3.1.1)

where xi ∈ N, might be among the most studied examples. We denote such

number s by G(k). Let C be the set of integers represented as a sum of

1This section is based on a paper [110] by the author that has been accepted in the
Journal of the Australian Mathematical Society.
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three positive integral cubes. In this memoir we shall be concerned with the

function G3(k), which we define as the minimum s such that (3.1.1) is soluble

with xi ∈ C , for the cases 2 ≤ k ≤ 4.

Providing the precise value of G(k) is still an open question for most k, the

cases k = 2, 4 being precisely the only ones solved. Lagrange showed in 1770

that G(2) = 4 and Davenport [30] proved in 1939 the identity G(4) = 16, and

though it is believed that G(3) = 4, the best current upper bound is G(3) ≤ 7

due to Linnik [96].

Not very much is known about C . In fact, it isn’t even known whether it

has positive density or not, the best current lower bound on the cardinality of

the set being

N (X) = |C ∩ [1, X]| � Xβ,

where β = 0.91709477, due to Wooley [174]. We note that under some

unproved assumptions on the zeros of some Hasse-Weil L-functions, Hooley

( [70], [71]) and Heath-Brown [63] showed using different procedures that∑
n≤X

r3(n)2 � X1+ε,

where r3(n) is the number of representations of n as sums of three positive in-

tegral cubes, which implies by applying a standard Cauchy-Schwarz argument

that N (X) � X1−ε. This lack of understanding of the cardinality of the set

also prevents us from understanding its distribution over arithmetic progres-

sions, which often comes into play on the major arc analysis. Therefore, even

if the exponents k = 2, 4 are well understood for the original problem, it turns

out to be much harder when we restrict the variables to lie on C . In this paper

we establish the following bounds for G3(k).

Theorem 3.1.1. One has G3(2) ≤ 8, G3(3) ≤ 17 and G3(4) ≤ 57.

We are far from knowing whether these estimates are good or bad, since the

only lower bounds that we have for the above quantities are 4 ≤ G(3) ≤ G3(3)

and 16 = G(4) ≤ G3(4). For the case k = 2 though we can actually do better.

We take, for convenience, an integer j ≥ 0, and observe that the only solutions

to

x2
1 + x2

2 + x2
3 + x2

4 = 33 · 212j (3.1.2)
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with xi ∈ N ∪ {0} are either

x1 = 5 · 26j, x2 = 21+6j, x3 = 21+6j, x4 = 0,

or

x1 = 4 · 26j, x2 = 3 · 26j, x3 = 21+6j, x4 = 21+6j,

or

x1 = 4 · 26j, x2 = 4 · 26j, x3 = 26j, x4 = 0

or the solutions corresponding to permutations of the above. This may be

seen by taking the equation (3.1.2) modulo 8, realising that one must have

2 | xi for every i, iterating the process and noting that the only solutions to

the equation

y2
1 + y2

2 + y2
3 + y2

4 = 33

satisfy either

{y1, y2, y3, y4} = {5, 2, 2, 0} or {y1, y2, y3, y4} = {4, 3, 2, 2}

or

{y1, y2, y3, y4} = {4, 4, 1, 0}.

However, one has 4 · 26j ≡ 4 (mod 9) and 5 · 26j ≡ 5 (mod 9), and no number

congruent to 4 or 5 (mod 9) can be written as the sum of three cubes. There-

fore, there are infinitely many numbers not represented as sums of at most

four squares of sums of three cubes. The preceding remark implies then the

bound 5 ≤ G3(2).

Our proof of Theorem 3.1.1 is based on the application of the Hardy-

Littlewood method. In the setting of this paper, the constraint which prevents

us from taking fewer variables is the treatment of the minor arcs discussed in

Subsection 3.1.2. In order to analyse them we utilise an argument of Vaughan

[139, Lemma 3.4] to bound certain families of exponential sums over the minor

arcs together with non-optimal estimates of sums of the shape∑
x≤X

a2
x, where ax = card

{
x ∈ N3 : x = x3

1 + x3
2 + x3

3, x2, x3 ∈ A(P, P η)
}
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with η > 0 being a small enough parameter and

A(Y,R) = {n ∈ [1, Y ] ∩ N : p | n and p prime⇒ p ≤ R}.

Here, the reader may find it useful to observe that it is a consequence of

Montgomery and Vaughan [102, Theorem 7.2] that

card
(
A(P, P η)

)
= cηP +O

(
P/ logP

)
for some constant cη > 0 that only depends on η. In order to briefly discuss

the outcome that follows after applying the argument of Vaughan we introduce

the exponential sum

W (α) =
∑

M/2≤p≤M

∑
H/2≤h≤H

bhe(αp
3khk), (3.1.3)

where M,H > 0 and bh are weights which the reader should think of being

ah and p runs over prime numbers. It is worth mentioning that in order to

make the argument work, the parameters M and H must be subjected to the

constraint max(M5−1/k,M2k−1
) ≤ H. The saving over the natural bound HM

for W (α) obtained with the method is roughly speaking of size M1/2H−1/24,

which makes the estimate obtained worse than trivial for k ≥ 5.

A naive approach to bounding G3(k) would then be to replace each sum

of three cubes by the specialisation 3x3, and this suggests a bound of the

shape G3(k) ≤ G(3k). With this idea in mind, the bounds G(6) ≤ 24 due to

Vaughan and Wooley [142], G(9) ≤ 47 and G(12) ≤ 72 due to Wooley [176]

reveal that the methods used in this memoir improve what would have been

the trivial approach and confirms that we are actually using the three integral

cubes non-trivially in our argument. For the cases k = 2, 3 we combine the

pointwise bound obtained for W (α) over the minor arcs with some restriction

estimates involving the coefficients am. When k = 4 we instead use a bound

for a mean value of smooth Weyl sums of exponent 12. The estimate for W (α)

obtained here is then robust enough to enable us to gain 15 variables from the

trivial approach over the minor arcs and allows us to prune back to a narrower

set of major arcs.

The purpose of the present section is to derive upper bounds for the mini-

mum number of variables that guarantee the existence of solutions to equation
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(3.1.1) for smaller values of k. As experts may expect, the minor arc arguments

in the analysis of the previous chapter, as opposed to those employed in the

present one, rely on estimates stemming from Vinogradov’s Mean Value The-

orem [177]. Moreover, the major arc discussion follows a standard approach,

and the author incorporates the three cubes in the analysis of the singular

series. In constrast, the major arc manoeuvres herein entail fixing the two

smooth cubes in order to provide robust approximations of the corresponding

exponential sums on a wider set of major arcs, and the pruning operations

deployed in the discussion involve both these approximations and minor arc

type estimates. Moreover, the absence of two of the cubes in the corresponding

singular series makes the local solubility analysis more tedious and somewhat

different than that of the aforementioned chapter.

In the next section, we shall employ the minor arc bound for the case

k = 2 obtained in the present section to derive an almost all result for the

analogue of Lagrange’s four square theorem when the variables are restricted

to the set of sums of three positive cubes. Moreover, we shall make use of the

approximations of the exponential sums obtained herein in the pruning process

and apply several major arc type lemmata deduced in this work. Nevertheless,

we shall also incorporate the three cubes in the analysis of the singular series

involving four squares, which in turn entails having a rather delicate discussion

of a different nature regarding the behaviour of such a series. This strategy

requires the use of thinner major arcs and pruning operations that have little

resemblance to the manouvres deployed in the present section.

The paper is organized as follows. In Subsection 3.1.2 we use Vaughan

methods to estimate W (α) and provide bounds for the contribution of the

minor arcs which are good enough for our purposes when k = 2, 3. We ap-

proximate the generating functions of the problem on a narrower set of major

arcs in Subsection 3.1.3. In Subsections 3.1.4, 3.1.5 and 3.1.6 we only consider

the exponents k = 2, 3, whereas in Subsection 3.1.7 we prove the theorem for

k = 4. Subsections 3.1.4 and 3.1.5 are devoted to the study of the singular se-

ries and the singular integral respectively. We then prune back to the narrower

set of arcs to show a lower bound for the major arc contribution in Subsection

3.1.6.
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3.1.2 Minor arc estimates

As mentioned in the introduction, we provide an estimate for the exponential

sum W (α) by using methods of Vaughan. We make use of a Hardy-Littlewood

dissection and combine both the bound for W (α) and a restriction estimate of

a certain mean value to bound the minor arc contribution for the cases k = 2, 3.

We also remark that the estimate for W (α) is also used in Subsections 3.1.6

and 3.1.7 to prune the major arcs back to a narrower set of arcs. Before going

into the proof of the main lemma, it is convenient to write

Sk(q, a) =

q∑
r=1

eq(ar
k). (3.1.4)

We also introduce the multiplicative function τk(q) by defining τ2(q) = q−1/2

and

τk(p
uk+v) = p−u−1 when u ≥ 0 and 2 ≤ v ≤ k

and

τk(p
uk+1) = kp−u−1/2 when u ≥ 0

for k ≥ 3. Observe that with this definition then one has the bound

τk(q)� q−1/k, (3.1.5)

and the proof of Theorem 4.2 of [141] yields

q−1Sk(q, a)� τk(q). (3.1.6)

Lemma 3.1.1. Let 2 ≤ k ≤ 4. Take parameters H,M > 0 with the property

that max(M5−1/k,M2k−1
) ≤ H. Let α ∈ [0, 1). Suppose that α = a/q + β,

where a ∈ Z and q ∈ N with (a, q) = 1 and such that q ≤ Y, and |β| ≤ q−1Y −1,

where Y is a parameter in the range Mk ≤ Y ≤ HkM2k. Then the exponential

sum W (α), defined in (3.1.3), satisfies

W (α)� Hε

(
HM +

τk(q)HM
2

1 +M3kHk|α− a/q|

)1/2( ∑
H/2≤h≤H

|bh|2
)1/2

. (3.1.7)

Proof. For the sake of simplicity we will not write the limits of summation for

p and h throughout the rest of the subsection. We apply Cauchy-Schwarz to

80



obtain

W (α)�
(∑

h

|bh|2
)1/2(∑

h

∑
p1,p2

e
(
α(p3k

1 − p3k
2 )hk

))1/2

�
(∑

h

|bh|2
)1/2(

HM + E(α)
)1/2

, (3.1.8)

where the term HM comes from the diagonal contribution and

E(α) =
∑
h

∑
p2<p1

e
(
α(p3k

1 − p3k
2 )hk

)
.

In order to estimate E(α) we will follow closely the argument employed in

Vaughan [139, Lemma 3.4]. For a given pair of primes (p1, p2) we choose

b, r ∈ N with (b, r) = 1 and such that r ≤ 2kHk−1 and

|α(p3k
1 − p3k

2 )− b/r| ≤ (2k)−1r−1H1−k.

Then if r > H, an application of Weyl’s inequality [141, Lemma 2.4] yields the

bound ∑
h

e
(
α(p3k

1 − p3k
2 )hk

)
� H1−21−k+ε � H1+εM−1,

where we used the restriction on M at the beginning of the lemma. If on the

other hand r ≤ H we combine Lemmata 6.1 and 6.2 of [141] with (3.1.6) to

obtain ∑
h

e
(
α(p3k

1 − p3k
2 )hk

)
� τk(r)H

1 +Hk
∣∣α(p3k

1 − p3k
2 )− b/r

∣∣ + r1/2+ε.

Consequently, one has that

E(α)� E0 +H1+εM +
∑

(p1,p2)

H1/2+ε � E0 +H1+εM,

where

E0 =
∑

(p1,p2)∈A

τk(r)H

1 +Hk
∣∣α(p3k

1 − p3k
2 )− b/r

∣∣
and A is the set of pairs (p1, p2) with p2 < p1 for which r < (6k)−1Mk and

such that ∣∣α(p3k
1 − p3k

2 )− b/r
∣∣ < 2−1r−1/kMH−k.
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Note that the contribution of the pairs for which one of the previous two

restrictions doesn’t hold is O(HM). For each pair (p1, p2), define n = p2,

l = p1 − p2 and D =
(
(n+ l)3k − n3k

)
/l. Then one finds that

E0 �
∑
(n,l)

τk(r)H

1 +Hk
∣∣αlD − b/r∣∣ , (3.1.9)

where (n, l) runs over pairs with 1 ≤ l ≤ M and M/2 ≤ n ≤ M such that

(n+ l, n) = 1 and satisfying the existing bounds on r and
∣∣αlD − b/r∣∣.

We next choose for convenience c, s ∈ N satisfying (c, s) = 1 and with the

property that s ≤ HkM−k and

|αl − c/s| ≤ s−1MkH−k.

By the constraint imposed on M and H at the beginning of the lemma we

obtain∣∣∣c
s
− b

rD

∣∣∣sDr < DrMkH−k+
1

2
sr1−1/kMH−k <

3k

6k
M5k−1H−k+

1

2
sMkH−k ≤ 1.

Therefore, one has crD = bs, and hence the coprimality condition on r and b

yields r|s. Let s0 = s/r. We then have that s0 | D, whence

E0 �
∑
s0|s

τk

( s
s0

)∑
(n,l)

H

1 +HkD
∣∣αl − c/s∣∣ ,

where the sum on (n, l) runs over the same range described after (3.1.9) with

the conditions (n + l, n) = 1 and
(
(n + l)3k − n3k

)
/l ≡ 0 (mod s0). Once we

fix l then using the above constraints one has that the number of such n is

bounded above by O
(
(M/s0 + 1)sε0

)
. Consequently, we obtain that

E(α)� H1+εM +HεME1,

where

E1 =
∑
l∈L

τk(s)H

1 +HkM3k−1
∣∣αl − c/s∣∣ ,

and L is the set of integers l ≤M for which s < Mk/2 and

|αl − c/s| < M2−3kH−k.
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Now we choose d, t with (d, t) = 1 satisfying t ≤Mk+1 and

∣∣α− d/t∣∣ ≤ t−1M−k−1.

We then find that∣∣∣ c
ls
− d

t

∣∣∣slt < stM2−3kH−k + slM−k−1 <
1

2
M3−kH−k +

1

2
≤ 1.

Therefore, one has ct = dsl and hence s|t. Let t0 = t/s. Then it follows that

t0 | l, and on defining l0 = l/t0 we obtain

E1 �
∑
t0|t

τk

( t
t0

) ∑
l0≤M/t0

H

1 +HkM3k−1l0t0
∣∣α− d/t∣∣ � τk(t)HM

1+ε

1 +HkM3k
∣∣α− d/t∣∣ .

If either t ≥Mk/2 or

|α− d/t| ≥ 2−1t−1/kH−kM1−3k

then we get E1 � HM ε and we would be done. For the remaining cases one

finds that∣∣∣a
q
− d

t

∣∣∣qt < 1

2
qH−kM1−3kt1−1/k + tY −1 <

1

2
Y H−kM−2k +

1

2
MkY −1 ≤ 1,

which implies that a = d and q = t, and yields the bound

E(α)� H1+εM +
τk(q)H

1+εM2

1 +HkM3k
∣∣α− a/q∣∣ .

The combination of this estimate and (3.1.8) proves the lemma.

Before describing the application of this lemma in the minor arc treatment

it is convenient to introduce some notation. Let n be a natural number and

take P = n1/(3k). Define the parameters

γ(k) =
3

3 + max(5− 1/k, 2k−1)
, M = P γ(k), H = max(M5−1/k,M2k−1

).

(3.1.10)

We observe for further purposes that

P 3 = M3H. (3.1.11)
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Note that these choices for M and H maximize the saving obtained for W (α)

over the trivial bound in the previous lemma. Take

H1 =
(1

2

)1/3

H1/3, H2 =
(2

3

)1/3

H1/3, H3 =
(1

6

)1/3

H1/3.

For every triple x ∈ R3, consider the function T (x) = x3
1 + x3

2 + x3
3. Define the

sets

H =
{

(y,y) ∈ N3 :
P

2
≤ y ≤ P, y ∈ A(P, P η)2

}
,

W =
{

(y,y) ∈ N3 : H1 ≤ y ≤ H2, y ∈ A(H3, P
η)2
}
,

and the corresponding weights

ax = |{x ∈ H : x = T (x)}|, bh = |{x ∈ W : h = T (x)}|,

where bh is the choice that we make for the weights of W (α) in (3.1.3). We

use ax to define the weighted exponential sum

h(α) =
∑
x≤3P 3

axe(αx
k).

Before describing how h(α) and W (α) play a role in the argument we first

show upper bounds on the L2-norms of the weights which will be used to

estimate the minor arc contribution. Let X > 0, consider

f(α;X) =
∑
x≤X

e(αx3), f(α;X;Xη) =
∑

x∈A(X,Xη)

e(αx3)

and define the mean value

U(X) =

∫ 1

0

|f(α;X)|2|f(α;X;Xη)|4dα.

It is a consequence of Wooley [174, Theorem 1.2] that U(X) � X3+1/4−τ ,

where τ = 0.00128432. Consequently, on considering the underlying diophan-

tine equations due to orthogonality, it follows that∑
x≤3P 3

a2
x ≤ U(P )� P 3+1/4−τ ,

∑
H/2≤h≤H

b2
h ≤ U(H1/3)� H13/12−τ/3.

(3.1.12)
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The reader may note that we didn’t write the entire decimal expression of

τ , so the bound for U(X) holds for a slightly bigger τ . Therefore, whenever

we encounter bounds with the mean value U(X) involved, we can omit the

parameter ε in the exponents.

Take

s(k) = 2k when k = 2, 3

t(2) = 4 and t(3) = 9. (3.1.13)

For ease of notation we will just write s and t instead of s(k) and t(k) through-

out the paper. Let R(n) be the number of solutions of the equation

n =
t∑
i=1

T (pixi)
k +

s+t∑
i=t+1

T (xi)
k,

where xi ∈ W for 1 ≤ i ≤ t with M/2 ≤ pi ≤ M prime and xi ∈ H for

t+ 1 ≤ i ≤ s+ t. Note that by orthogonality then

R(n) =

∫ 1

0

h(α)sW (α)te(−αn)dα.

Our goal throughout Subsections 3.1.2 to 3.1.6 is to obtain a lower bound for

R(n) for all sufficiently large n. For such purpose, we make use of a Hardy-

Littlewood dissection in our analysis. When 1 ≤ X ≤Mk, we define the major

arcs M(X) to be the union of

M(a, q) =
{
α ∈ [0, 1) :

∣∣∣α− a/q∣∣∣ ≤ X

qn

}
(3.1.14)

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. For the sake of simplicity we write

M = M(Mk), N = M
(
(6k)−1H1/3

)
.

We define the minor arcs as m = [0, 1) \M and n = [0, 1) \N. This dissection

remains valid for the case k = 4 and will be used in Subsection 3.1.7. We

then take α ∈ m and observe that by Dirichlet’s approximation there exist

non-negative integers a, q with (a, q) = 1 and 1 ≤ q ≤ nM−k such that

|α− a/q| ≤ Mk

qn
.
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Consequently, one has q > Mk, and hence (3.1.12) and Lemma 3.1.1 yield the

bound

W (α)� H1/2+εM1/2
(∑
h≤H

b2
h

)1/2

� H1+1/24−τ/6M1/2. (3.1.15)

As was previously observed right after (3.1.3), the reader may find it useful to

note that in view of (3.1.10) then the above estimate is worse than the trivial

one HM whenever k ≥ 5. This explains the reason why we have restricted our

analysis in this memoir to the cases 2 ≤ k ≤ 4. In the following proposition

we combine this pointwise bound with some restriction estimates to bound the

minor arc contribution.

Proposition 3.1.1. When k = 2, 3 then one has that∫
m

|h(α)|s|W (α)|tdα� (HM)tP 3s−3k−δ. (3.1.16)

Proof. Combining Bourgain [12, (1.6)] when k = 2 and the work of Hughes

and Wooley [76, Theorem 4.1] when k = 3 with equation (3.1.12) we find that∫ 1

0

|h(α)|sdα� P 3s/2−3k+ε
( ∑
x≤3P 3

a2
x

)s/2
� P 3s−3k+s/8−δ.

Therefore, an application of the pointwise bound on the minor arcs obtained

in (3.1.15) yields the estimate∫
m

|h(α)|s|W (α)|tdα� H t+t/24M t/2P 3s−3k+s/8−δ.

We define for convenience the parameter ξ(k) as ξ(2) = 0 and ξ(3) = 7/92,

and deduce that the proposition then follows after noting by (3.1.10) that

H t/24M t/2P s/8 = M tP−ξ(k). For the purpose of this paper, knowing the ex-

istence of δ > 0 for which (3.1.16) holds suffices. The reader may observe

though that the precise saving over the expected main term that we obtain

here is H tτ/6P ξ(k)+sτ/2−ε.
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3.1.3 Approximation of exponential sums over the ma-

jor arcs

We adapt the argument of Vaughan [141, Theorem 4.1] to estimate the differ-

ence between the exponential sums h(α),W (α) and their approximations over

the major arcs. Let y ∈ [0, P ]2 and set

Cy = y3
1 + y3

2. (3.1.17)

Let β ∈ R and let p be a prime number. Consider the integrals

vy(β) =

∫ P

P/2

e
(
β
(
x3 +Cy

)k)
dx and vy,p(β) =

∫ H2

H1

e
(
βp3k

(
x3 +Cy

)k)
dx.

(3.1.18)

Note that by a change of variables one finds that

vy(β) =

∫ Ny

My

By(γ)e(βγ)dγ, vy,p(β) =

∫ Ny,p

My,p

By,p(γ)e(βγ)dγ, (3.1.19)

where the limits of integration taken are My =
(
P 3/8+Cy

)k
, Ny =

(
P 3+Cy

)k
,

My,p =
(
Hp3/2 +Cpy

)k
and Ny,p =

(
2Hp3/3 +Cpy

)k
, and the functions inside

the integral are defined as

By(γ) =
1

3k
γ1/k−1(γ1/k − Cy)−2/3, By,p(γ) =

1

3kp
γ1/k−1(γ1/k − Cpy)−2/3.

(3.1.20)

We introduce the auxiliary multiplicative function wk(q) defined for prime

powers by taking

wk(p
3ku+v) =


p−u−v/3k when u ≥ 1 and 1 ≤ v ≤ 3k,

p−1 when u = 0 and 2 ≤ v ≤ 3k,

p−1/2 when u = 0 and v = 1.

(3.1.21)

In order to discuss the approximation of f(α) on the major arcs, it is convenient

to consider for a ∈ Z and q ∈ N with (a, q) = 1 the sums

Sy(q, a) =

q∑
r=1

eq

(
a
(
r3 + Cy

)k)
and V (α, q, a) = q−1

∑
y

Sy(q, a)vy(β),

(3.1.22)
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where y runs over the set A(P, P η)2 of pairs of smooth numbers.

Lemma 3.1.2. Suppose that a ∈ Z and q ∈ N with (a, q) = 1. Let α ∈ [0, 1)

and β = α− a/q. Then we have the estimate

h(α)− V (α, q, a)� P 2q1+εwk(q)(1 + n|β|)1/2.

Moreover, if |β| ≤ (2 · 3kkq)−1Pn−1 one finds that

h(α)− V (α, q, a)� P 2q1+εwk(q). (3.1.23)

Proof. Let b ∈ Z and y ∈ A(P, P η)2. We define

Sy(q, a, b) =

q∑
r=1

eq
(
a
(
r3 + Cy

)k
+ br

)
and Iy(b) =

∫ P

P/2

e
(
F (γ; b)

)
dγ,

(3.1.24)

where the function in the argument inside the integral is taken to be

F (γ; b) = β
(
γ3 + Cy)k − bγ/q.

Both the complete exponential sum and the integral play a role in the analysis

of the main and the error term. Observe that h(α) can be written as

h(α) =
∑

y∈A(P,P η)2

hy(α), with hy(α) =
∑

P/2≤x≤P

e
(
α(x3 + Cy)k

)
.

Then by sorting the summation into arithmetic progressions modulo q and

applying orthogonality, it follows that

hy(α) = q−1
∑

−q/2<b≤q/2

Sy(q, a, b)
∑

P/2≤x≤P

e
(
F (x; b)

)
,

whence using Vaughan [141, Lemma 4.2] we obtain

hy(α)− q−1Sy(q, a)vy(β) =q−1
∑

−B<b≤B
b 6=0

Sy(q, a, b)Iy(b)

+O
(
q−1 log(H + 2)

∑
−q/2<b≤q/2

∣∣Sy(q, a, b)
∣∣),

(3.1.25)
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where B = (H + 1/2)q and H =
⌈
3kkP−1n|β|+ 1/2

⌉
. Note that by the quasi-

multiplicative property, in order to bound Sy(q, a, b) it suffices to consider the

case when q is a prime power. For such purposes, we take q = p3ku+v. We

observe first that by Vaughan [141, Theorem 7.1] one has that

Sy(q, a, b)� q1−1/3k+ε.

Moreover, when v ≥ 2 and u = 0 we can deduce from the proof of the same

theorem2 that Sy(pv, a, b)� pv−1. For the case q = p, the work of Weil3 [155]

yields the estimate Sy(p, a, b)� p1/2. Therefore, combining these bounds with

the definition (3.1.21) one finds that

Sy(q, a, b)� q1+εwk(q). (3.1.26)

Consequently, by (3.1.25) we have

hy(α)− q−1Sy(q, a)vy(β)� qεwk(q)
∑

−B<b≤B
b 6=0

|Iy(b)|+ q1+εwk(q) log(H + 2).

(3.1.27)

To treat the sum on the right-hand side we use the methods of the proof

of Vaughan [141, Theorem 4.1]. In his analysis he classifies the range of inte-

gration of I(b) according to the size of |G′(γ)|, where

G(γ) = βγk − bγ/q and I(b) =

∫ X

0

e
(
G(γ)

)
dγ.

We follow Vaughan’s analysis closely, dividing the range of integration of Iy(b)

according to the size of |F ′(γ; b)|, to obtain∑
−B<b≤B

b 6=0

|Iy(b)| � q1+ε(1 + n|β|)1/2.

Since log(H + 2)� (1 + n|β|)1/2 then

hy(α)− q−1Sy(q, a)vy(β)� q1+εwk(q)(1 + n|β|)1/2,

2See in particular the argument following [141, (7.16)]
3See Schmidt [123, Corollary 2F] for an elementary proof of this bound.
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which implies the first statement of the lemma by summing over y ∈ A(P, P η)2.

Note that when |β| ≤ (2 · 3kkq)−1Pn−1 and b 6= 0 one has |F ′(x; b)| ≥ |b|/(2q)
and H = 1. Observing that F ′(x; b) is monotonic then partial integration

yields ∑
−B<b≤B

b6=0

|Iy(b)| �
∑

−B<b≤B
b 6=0

q

|b|
� q1+ε.

Combining this estimate with (3.1.27) and summing over y ∈ A(P, P η)2 we

get (3.1.23).

By applying similar methods we can obtain the same type of approximation

for the exponential sum W (α). For a ∈ Z and q ∈ N with (a, q) = 1 and

recalling (3.1.18) and (3.1.22) we introduce the auxiliary function

W (α, q, a) = q−1
∑
y,p

Spy(q, a)vy,p(β), (3.1.28)

where y ∈ A(H3, P
η)2 and M/2 ≤ p ≤M.

Lemma 3.1.3. Suppose that (a, q) = 1 and (p, q) = 1 for all primes with

M/2 ≤ p ≤M . Let α ∈ [0, 1) and β = α− a/q. Then we have the estimate

W (α)−W (α, q, a)�MH2/3q1+εwk(q)(1 + n|β|)1/2(logP )−1.

Moreover, if |β| ≤ (6kq)−1H1/3n−1 one finds that

W (α)−W (α, q, a)�MH2/3q1+εwk(q)(logP )−1.

Proof. In the same way as before, we can express the exponential sum W (α)

as

W (α) =
∑
y,p

Wy,p(α), where Wy,p(α) =
∑

H1≤x≤H2

e
(
αp3k(x3 + Cy)k

)
,

and the parameter Cy was defined in (3.1.17). Sorting the summation into

arithmetic progressions modulo q and applying orthogonality one has that

Wy,p(α) = q−1
∑

−q/2<b≤q/2

Sy(q, ap3k, b)
∑

H1≤x≤H2

e
(
βp3k(x3 + Cy)k − bx

q

)
.
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Recalling that (q, p) = 1 then a change of variables yields

Sy(q, ap3k) = Spy(q, a).

Therefore, the application of the argument of Vaughan [141, Theorem 4.1] in

the same way as we did above leads to

Wy,p(α)− q−1Spy(q, a)vy,p(β)� q1+εwk(q)(1 + n|β|)1/2,

and if |β| ≤ (6kq)−1H1/3n−1 then

Wy,p(α)− q−1Spy(q, a)vy,p(β)� q1+εwk(q),

which delivers the desired result by summing over the range of (y, p) described

in (3.1.28).

3.1.4 Treatment of the singular series

Unless specified, in this subsection and the two upcoming ones we assume that

k = 2, 3. We introduce some exponential sums and present upper bounds which

we obtain making use of the arguments in Vaughan [141, Theorem 7.1]. We

also discuss the congruence problem and introduce some divisibility constraints

on Cyi and Cpiyi to ensure local solubility. For further purposes, we remind

the reader of the definition (3.1.13). For the rest of the paper, unless specified,

Y = (y1, . . . ,ys+t) ∈ N2s+2t and p = (p1, . . . , pt)

will denote tuples with yi ∈ A(P, P η)2 for t+1 ≤ i ≤ s+t and yi ∈ A(H3, P
η)2

for 1 ≤ i ≤ t, where pi are primes satisfying M/2 ≤ pi ≤ M. Take q ∈ N and

define

SY,p(q) = q−s−t
q∑

a=1
(a,q)=1

e(−an/q)
t∏
i=1

Spiyi(q, a)
s+t∏
i=t+1

Syi(q, a).

The following technical lemma provides a straightforward upper bound for the

previous exponential sum and will be used throughout the major arc treatment.

Lemma 3.1.4. Assume that 2 ≤ k ≤ 4. Let m ≥ 2. Take α ≤ m−1
3k

when
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m ≥ 3 and α = 0 for m = 2. Let Q ≥ 1. Then, recalling (3.1.21) one has∑
q≤Q

qαwk(q)
m � Qε.

Moreover, for the case k = 4 we also have∑
q≤Q

qτ4(q)4w4(q)� Qε, (3.1.29)

where τ4(q) was defined just before Lemma 3.1.1.

Proof. By the multiplicative property of wk(q) it follows that

∑
q≤Q

qαwk(q)
m �

∏
p≤Q

(
1 +

∞∑
h=1

phαwk(p
h)m
)
�
∏
p≤Q

(
1 + Cp−1

)
� Qε.

For the second estimate we use the bound τ4(ph)4 � p−h when h ≥ 2 to obtain

∞∑
h=1

phτ4(ph)4w4(ph)� p−3/2 +
∑
h≥2

w4(ph)� p−1.

Equation (3.1.29) follows then combining the above bound with multiplicativ-

ity.

Lemma 3.1.5. Let a ∈ Z and q ∈ N with (a, q) = 1. The functions Sy(q, a)

and SY,p(q) defined above satisfy

Sy(q, a)� q1+εwk(q), SY,p(q)� q1+εwk(q)
s+t. (3.1.30)

As a consequence, for every Q ≥ 1 and every α ≤ s+t−1
3k
− 1 it follows that∑

q≤Q

qα|SY,p(q)| � Qε and
∑
q>Q

|SY,p(q)| � Qε−α. (3.1.31)

Proof. On recalling (3.1.24) note that Sy(q, a) = Sy(q, a, 0). Therefore, (3.1.26)

yields Sy(q, a) � q1+εwk(q), and hence (3.1.30) holds. This estimate and

Lemma 3.1.4 imply the first inequality in (3.1.31). Finally, observe that as a

consequence we have ∑
Q≤q≤2Q

|SY,p(q)| � Qε−α,
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from where the second inequality of (3.1.31) follows by summing over dyadic

intervals.

We apply the bounds obtained in the previous lemma to a collection of

singular series and other related series. For such purpose, it is convenient to

define, for tuples (Y,p) and each prime p the sums

SY,p(n) =
∞∑
q=1

SY,p(q), σ(p) =
∞∑
l=0

SY,p(pl).

Lemma 3.1.6. The singular series SY,p(n) converges absolutely, the identity

SY,p(n) =
∏
p

σ(p) (3.1.32)

holds and 0 ≤ SY,p(n) � 1. Furthermore, on recalling (3.1.13) and (3.1.17)

one has SY,p(n)� 1 provided that:

1. When k = 2 one has Cpiyi ≡ 28 (mod 108) for 1 ≤ i ≤ t and Cyi ≡ 28

(mod 108) for t+ 1 ≤ i ≤ s+ t;

2. When k = 3 one has Cpiyi ≡ 0 (mod 162) for 1 ≤ i ≤ t and Cyi ≡ 0

(mod 162) for t+ 1 ≤ i ≤ s+ t.

As mentioned before, the constraints on Cyi and Cpiyi ensure the local

solubility of the problem. Note that the set of tuples with these divisibility

conditions has positive density over the set of tuples without the restrictions

since it follows from the proof of Lemma 5.4 of [139] that smooth numbers

are well distributed on arithmetic progressions. Therefore, we are still able to

get the expected lower bound for the major arc contribution. Observe though

that the choices for the constraints are not unique, but for the purpose of this

exposition it will suffice to study just one of the possible restrictions.

Proof. Note that the application of Lemma 3.1.5 yields the estimate

σ(p)− 1� p−2. (3.1.33)

This bound and the multiplicative property of SY,p(q) imply (3.1.32), the con-

vergence of the series SY,p(n) and its upper bound. To give a more arithmetic
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description of σ(p) it is convenient to introduce

Mn(ph) =
{

X ∈ [1, ph]s+t : n ≡
t∑
i=1

(x3
i+Cpiyi)

k+
s+t∑
i=t+1

(x3
i+Cyi)

k (mod ph)
}

and Mn(ph) = |Mn(ph)|. Observe that by a standard argument making use of

orthogonality we obtain the relation

h∑
l=0

SY,p(pl) = p(1−s−t)hMn(ph).

In view of (3.1.33) it transpires then that in order to prove the lower bound

for SY,p(n) it will suffice to show that p(1−s−t)hMn(ph) ≥ Cp for some positive

constant Cp depending on p. For each p prime, take τ ≥ 0 for which pτ‖3k.

Define γ = γ(p) = 2τ + 1 and

M∗
n(pγ) =

{
X ∈Mn(pγ) : p - x1, p - (x3

1 + Cp1y1)
}
.

We take h ≥ γ for convenience. Our priority for the rest of the lemma will be

to show that |M∗
n(pγ)| > 0, since then an application of Hensel’s Lemma will

yield the bound Mn(ph) ≥ p(s+t−1)(h−γ).

For further discussion, it is convenient to consider for a fixed number C ∈ N
the sets

TC(pγ) =
{
x3 + C (mod pγ)

}
and

T ∗C (pγ) =
{
x3 + C (mod pγ) : p - x, p - (x3 + C)

}
.

Let p ≡ 1 (mod 3). Under this condition one has p ≥ 7, so γ = 1 with

|TC(p)| = (p+ 2)/3 and |T ∗C (p)| ≥ 1. If we denote the set of k-th powers of the

above set by

T kC (pγ) =
{
yk (mod pγ) : y ∈ TC(pγ)

}
,

then one finds that

|T kC (p)| ≥
⌈
(p+ 2)/3k

⌉
.

One can check that |T kC (7)| ≥ 2 for every C ∈ N, and whenever p > 7 we find

that

(s+ t− 1)
(⌈p+ 2

3k

⌉
− 1
)
≥ p,
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and hence Cauchy-Davenport [141, Lemma 2.14] delivers |M∗
n(p)|> 0. When

p ≡ 2 (mod 3) and p > 2 then γ = 1 and we further get |TC(p)| = p and

|T ∗C (p)| ≥ 1, whence another application of Cauchy-Davenport [141, Lemma

2.14] yields |M∗
n(p)| > 0. For the case p = 2 and k = 2 the divisibility

contraints reduce the problem to the resolution of

y6
1 + · · ·+ y6

8 ≡ n (mod 8)

with yi ∈ N and 2 - y1, which is straightforward. The case k = 3 is also trivial

since then one would have γ(2) = 1. Likewise, if p = 3 one finds that whenever

C ≡ 1 (mod 27) then

T 2
C (27) = {0, 1, 4, 13, 22}

and |T ∗C (27)| = 3, so |M∗
n(27)| > 0 when k = 2 follows combining the con-

straints for Cpiyi and Cyi described above and Vaughan [141, Lemma 2.14].

Finally, when k = 3 we make use of the conditions Cyi ≡ 0 (mod 81) and

Cpiyi ≡ 0 (mod 81) to reduce the problem to finding a solution for

y9
1 + . . .+ y9

17 ≡ n (mod 243)

with yi ∈ N and 3 - y1. The solubility of this congruence is a consequence of

Vaughan [141, Lemma 2.15].

3.1.5 Singular integral

In this subsection we analyse the size of the singular integral following the

classical approach making use of Fourier’s Integral Theorem. For each pair of

tuples (Y,p) consider

JY,p(n) =

∫ ∞
−∞

VY,p(β)e(−nβ)dβ, where VY,p(β) =
t∏
i=1

vyi,pi(β)
s+t∏
i=t+1

vyi(β),

and vyi,pi(β) and vyi(β) were defined in (3.1.18).

Lemma 3.1.7. One has that 0 ≤ JY,p(n)� P sH t/3n−1. Moreover, whenever

(Y,p) satisfies M/2 ≤ pi ≤ 51M/100 for 1 ≤ i ≤ t and yi ≤ P/2 for

t+ 1 ≤ i ≤ s+ t then

JY,p(n)� P sH t/3n−1. (3.1.34)
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In the following discussion we rewrite JY,p(n) as an integral whose size is

easier to estimate. The conditions on the tuples described before ensure that

we get a suitable range of integration for such integral. Note that the set of

tuples on that range has positive density over the set of tuples without the

restrictions, and hence we are still able to get the expected lower bound for

the major arc contribution.

Proof. By using the expression of both vy(β) and vy,p(β) in (3.1.19) we find

that

JY,p(n) = lim
λ→∞

∫ λ

−λ

∫
x∈S

BY,p(x)e
(
β
( s+t∑
i=1

xi − n
))
dxdβ,

where the function BY,p(x) is taken to be

BY,p(x) =
t∏
i=1

Byi,pi(xi)
s+t∏
i=t+1

Byi(xi)

and we integrate over the set

S =
∏

[Myi,pi , Nyi,pi ]×
∏

[Myi , Nyi ].

Then by integrating on β and making the change of variables v =
∑s+t

i=1 xi we

obtain

JY,p(n) = lim
λ→∞

∫ S2

S1

φ(v)
sin
(
2πλ(v − n)

)
π(v − n)

dv,

where φ(v) is defined as

φ(v) =

∫
x∈S′(v)

Bys+t

(
v −

s+t−1∑
i=1

xi

) t∏
i=1

Byi,pi(xi)
s+t−1∏
i=t+1

Byi(xi)dx,

the subset S ′(v) ⊂ Rs+t−1 denotes the tuples satisfying

xi ∈ [Myi,pi , Nyi,pi ] for 1 ≤ i ≤ t, xi ∈ [Myi , Nyi ] for t+ 1 ≤ i ≤ s+ t− 1,

and

Mys+t ≤ v −
s+t−1∑
i=1

xi ≤ Nys+t (3.1.35)
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and the above limits of integration are

S1 =
t∑
i=1

Myi,pi +
s+t∑
i=t+1

Myi , S2 =
t∑
i=1

Nyi,pi +
s+t∑
i=t+1

Nyi .

Since φ(v) is a function of bounded variation, it follows from Fourier’s In-

tegral Theorem 4 that JY,p(n) = φ(n), which implies positivity. Note that

combining the identity (3.1.11), the limits of integration defined after (3.1.19)

and equation (3.1.20), we find that whenever x ∈ S ′(n) then it follows that

Byi,pi(xi) � H1/3n−1 for 1 ≤ i ≤ t and Byi(xi) � Pn−1 for t+1 ≤ i ≤ s+t−1,

and one further has

Bys+t(n−
s+t−1∑
i=1

xi) � Pn−1.

Therefore, combining the previous ideas we obtain the upper bound for JY,p(n)

stated at the beginning of the lemma. Moreover, if (Y,p) lies in the range

described right after that bound, then there exist intervals Ii ⊂ [Myi,pi , Nyi,pi ]

for 1 ≤ i ≤ t and Ii ⊂ [Myi , Nyi ] for t + 1 ≤ i ≤ s + t − 1 satisfying |Ii| � n

and with the property that whenever xi ∈ Ii then (3.1.35) holds for v = n.

Consequently, the preceding discussion yields (3.1.34).

For the sake of brevity we define the auxiliary functions h∗(α) and W ∗(α)

by putting

h∗(α) = V (α, q, a) and W ∗(α) = W (α, q, a)

when α ∈ M(a, q) ⊂ M and h∗(α) = W ∗(α) = 0 for α ∈ m. Here the reader

may want to recall (3.1.22) and (3.1.28). For the rest of the subsection we

present some bounds for these functions.

Lemma 3.1.8. Let β ∈ R. For every prime p and y ∈ N2 one has

vy(β)� P

1 + n|β|
and vy,p(β)� H1/3

1 + n|β|
.

Moreover, whenever α ∈M(a, q) ⊂M one finds that

h∗(α)� qεwk(q)P
3

1 + n|α− a/q|
and W ∗(α)� qεwk(q)MH

(1 + n|α− a/q|)(logP )
.

4See the argument in Davenport [33, p. 21–22] or in [158, 7.43].
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Proof. When |β| ≤ n−1, the bound for vy(β) follows observing that by (3.1.19)

and the limits of integration taken after (3.1.19) then

vy(β)�
∫ Ny

My

y1/k−1
(
y1/k − Cy

)−2/3
dy � P.

The reader may find it useful to recall (3.1.17) in the above line. For the case

|β| > n−1, using the fact that By(y) is decreasing and integrating by parts we

have that

vy(β)� |β|−1By(My)� |β|−1n1/3k−1,

which proves the statement. The case vy,p(β) is done in a similar way and

follows after applying (3.1.11). Combining these estimates and Lemma 3.1.5

we get the bounds for h∗(α) and W ∗(α).

3.1.6 Major arc contribution

In this subsection we show that the contribution of the set of narrow arcs N is

asymptotic to the expected main term. We prove then that the contribution

of the remaining arcs is smaller by combining major and minor arc techniques

and making use of Lemma 3.1.1.

Proposition 3.1.2. There exists δ > 0 such that∫
M

h(α)sW (α)te(−αn)dα =
∑
Y,p

SY,p(n)JY,p(n) +O(H tM tP 3s−3k−δ),

where (Y,p) lies in the range of summation described at the beginning of §4.

Proof. We note first that the triangle inequality yields

h(α)s − h∗(α)s � |h(α)− h∗(α)|
(
|h∗(α)|s−1 + |h(α)− h∗(α)|s−1

)
.

Observe that by (3.1.10) and the definition (3.1.14) then whenever α ∈ N(a, q)

one has that

(1 + n|β|)−1 ≥ qH−1/3 ≥ qP−1

and

|β| ≤ (6kq)−1H1/3n−1 ≤ (2 · 3kkq)−1Pn−1
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for n sufficiently large. Consequently, Lemma 3.1.2 applied to |h(α) − h∗(α)|
and Lemma 3.1.8 applied to |h∗(α)| in the above equation deliver

h(α)s − h∗(α)s � q1+εwk(q)
sP 3s−1(1 + n|β|)−s+1, (3.1.36)

and by the same reason then whenever α ∈ N(a, q) with (p, q) = 1 for all

primes M/2 ≤ p ≤M , Lemma 3.1.3 gives

W (α)t −W ∗(α)t �M tH t−1/3q1+εwk(q)
t(1 + n|β|)−t+1. (3.1.37)

We also need a bound on the following quantity to exploit some orthogonality

relation when averaging over q. Denote by N(q, P ) the number of solutions of

the congruence

T (p1x1)k + T (p2x2)k ≡ T (p3x3)k + T (p4x4)k (mod q),

where xi ∈ [1, H1/3]3 and M/2 ≤ pi ≤ M with q ∈ N. By expressing q

as the product of prime powers, using the structure of the ring of integers

modulo these prime powers and noting that the number of primes dividing q

is O
(
(log q)/ log log q

)
we obtain

N(q, P )� qε(MH)4(logP )−4
(
q−1 + P−1

)
, (3.1.38)

where we also used the identity (3.1.11), and hence by orthogonality it follows

that

q∑
a=1

|W (β + a/q)|4 ≤ qN(q, P )� q1+ε(MH)4(logP )−4
(
q−1 + P−1

)
. (3.1.39)

Combining (3.1.36) and (3.1.39) one has that∫
N

∣∣∣h(α)s − h∗(α)s
∣∣∣|W (α)|tdα� (HM)tP 3s−3k−1

∑
q≤H1/3

q1+εwk(q)
s

� (HM)tP 3s−3k−δ,

where we used (3.1.10) and Lemma 3.1.4. Before introducing the auxiliary

function W ∗(α) to replace W (α) we must ensure that the contribution of the

arcs with M/4 < q ≤ (6k)−1H1/3 is small enough. By doing so we avoid having
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to approximate W (α) for the cases when p | q for primes p appearing in the

definition (3.1.3) of W (α). Combining Lemma 3.1.8 with (3.1.39) one finds

that

∑
M/4<q≤(6k)−1H1/3

q∑
a=1

(a,q)=1

∫ 1

0

|h∗(β + a/q)|s
∣∣W (β + a/q)

∣∣tdβ
�(HM)tP 3s−3k+ε

∑
M/4<q≤(6k)−1H1/3

wk(q)
s � (HM)tP 3s−3k−δ,

where in the last step we applied the definition (3.1.21). For the range q ≤M/4

we always have (p, q) = 1 for all primes M/2 ≤ p ≤M , so we can use (3.1.37)

and Lemma 3.1.8 to obtain

∑
q≤M/4

q∑
a=1

(a,q)=1

∫
N(a,q)

|h∗(α)|s
∣∣∣W (α)t −W ∗(α)t

∣∣∣dα
� P 3s−3kM tH t−1/3

∑
q≤M/4

q2+εwk(q)
s+t � (HM)tP 3s−3k−δ,

where in the last line we used (3.1.10) and applied Lemma 3.1.4. By Lemmata

3.1.4 and 3.1.8 one has that

∑
q≤M/4

q∑
a=1

(a,q)=1

∫
|α−a/q|>(6kq)−1H1/3n−1

|h∗(α)|s|W ∗(α)|tdα

� H2t/3−s/3+1/3M tP 3s−3k
∑
q≤M/4

qs+t+εwk(q)
s+t � (HM)tP 3s−3k−δ.

Therefore, using the previous bounds, making a change of variables and com-

bining Lemmata 3.1.5 and 3.1.8 it follows that∫
N

h(α)sW (α)te(−αn)dα =
∑
Y,p

SY,p(n)JY,p(n) +O
(
(HM)tP 3s−3k−δ).

(3.1.40)

The rest of the subsection is devoted to ensure that the contribution of the

remaining major arcs is smaller than the main term in the previous equation.
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Let R(q, P ) be the number of solutions of the congruence

T (x1)k + T (x2)k ≡ T (x3)k + T (x4)k (mod q),

where xi ∈ [1, P ]3. Applying the same argument we used in (3.1.38) for bound-

ing N(q, P ) we find that R(q, P )� qεP 12(q−1 + P−1), and hence by orthogo-

nality it follows that

q∑
a=1

|h(β + a/q)|4 ≤ qR(q, P )� q1+εP 12(q−1 + P−1). (3.1.41)

Moreover, observe that by a similar argument for the case k = 2 we get

q∑
a=1

|h(β + a/q)|2 � q1+εP 6(q−1 + P−1). (3.1.42)

We consider for convenience the mean value

IM =

∫
M\N
|h(α)|s

∣∣W (α)
∣∣tdα.

Our strategy for the treatment of this integral will be to bound W (α) pointwise

via Lemma 3.1.1 and use some major arc estimates. For such purposes, we

define first Υ(α) for α ∈ [0, 1) by taking

Υ(α) = τk(q)(1 + n|α− a/q|)−1

when α ∈ M(a, q) ⊂ M and Υ(α) = 0 otherwise. When a ∈ Z and q ∈ N
satisfy 0 ≤ a ≤ q ≤Mk and (a, q) = 1, consider the set of arcs

M′(a, q) =
{
α ∈ [0, 1) :

∣∣∣α− a/q∣∣∣ ≤ M

q1/kn

}
(3.1.43)

and take M′ to be the union of such arcs. Note that then one has M′ ⊂ M.

Observe that for α ∈M \M′, the bound in the right handside of (3.1.7) corre-

sponding to the diagonal contribution dominates over the one corresponding

to the non-diagonal contribution. Therefore, we can apply the same argument

that we applied in Proposition 3.1.1 to estimate the integral over this set.

When α ∈ M′ then it is the bound corresponding to the non-diagonal term

the one which dominates. Let I ′M be the contribution of M′ \N to the integral

101



IM . By making use of Lemma 3.1.1 and (3.1.12) we obtain that

I ′M � H t+t/24−δM t

∫
M′\N
|h(α)|sΥ(α)t/2dα� H t+t/24−δM t(I1 + I2),

where

Ii =

∫
M′\N
|h(α)|s−2Gi(α)Υ(α)t/2dα, i = 1, 2

with G1(α) = |h∗(α)|2 and G2(α) = |h(α)− h∗(α)|2. In view of the definitions

(3.1.14) and (3.1.43) for N and M′ respectively, we make a distinction between

the ranges q ≤ (6k)−1H1/3 and (6k)−1H1/3 < q ≤ Mk. We also combine

Lemmata 3.1.4 and 3.1.8 with equations (3.1.41) and (3.1.42) and the bound

(3.1.5) to obtain

I1 �P 3s−3kH−t/6−1/3
∑

q≤(6k)−1H1/3

wk(q)
2qt/2+1−t/2k+ε

+ P 3s−3k
∑

(6k)−1H1/3<q≤Mk

wk(q)
2q1−t/2k+ε

(
q−1 + P−1

)
� P 3s−3k+εH−t/6k.

Likewise, combining equations (3.1.41) and (3.1.42) with Lemmata 3.1.2 and

3.1.4 one finds that

I2 �P 3s−3k−2+εH−t/6+2/3
∑

q≤(6k)−1H1/3

qt/2−t/2kwk(q)
2

+ P 3s−3k−2+ε
∑

(6k)−1H1/3<q≤Mk

wk(q)
2q3−t/2k(q−1 + P−1

)
�P 3s−3k+εH−t/6k,

where we made use of (3.1.10). Therefore we obtain that

I ′M � (HM)tP 3s−3k−δ,

whence the result of the proposition follows combining (3.1.40) with the pre-

vious estimates.

Proof of Theorem 3.1.1 when k = 2, 3. Note first that Lemma 3.1.7 ensures

positivity for JY,p(n) and guarantees that for (Y,p) in the range described

in the lemma then JY,p(n)� P sH t/3n−1. Similarly, Lemma 3.1.6 ensures the

positivity of SY,p(n) and implies that for (Y,p) satisfying the local conditions
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described after (3.1.32) then SY,p(n)� 1. As observed at the beginning of the

lemmas, the intersection of the sets of pairs (Y,p) satisfying those conditions

has positive density. Therefore, we find that∑
Y,p

SY,p(n)JY,p(n)� (HM)tP 3s−3k(logP )−t.

Propositions 3.1.1 and 3.1.2 then yield the boundR(n)� (HM)tP 3s−3k(logP )−t,

which proves the theorem for k = 2, 3.

3.1.7 The case k = 4.

In this subsection we discuss the proof of the theorem for fourth powers. For

such purpose, it is convenient to introduce the exponential sum

f(α) =
∑

x∈A(P,P η)

e(αx12).

Let R4(n) be the number of solutions of the equation

n =
11∑
i=1

T (pixi)
4 + 81

(
y12

1 + · · ·+ y12
46

)
,

where xi ∈ W with M/2 ≤ pi ≤ M for 1 ≤ i ≤ 11 and yi ∈ A(P, P η) for

1 ≤ i ≤ 46. Observe that the sums of three cubes on the right handside have

been replaced by the specialization 3y3. Note as well that orthogonality yields

the identity

R4(n) =

∫ 1

0

W (α)11f(81α)46e(−αn)dα.

Our goal throughout the subsection is to obtain a lower bound for R4(n) for

all sufficiently large n. Recalling (3.1.10) and (3.1.15) and using the table of

permissible exponents for k = 12 in Vaughan and Wooley [143] we find that∫
m

|W (α)|11|f(81α)|46dα� H11+11/24−δM11/2

∫ 1

0

|f(α)|46dα

� (HM)11P 34+∆23−1/2−δ, (3.1.44)

where ∆23 = 0.4988383, and hence it follows that the minor arc contribution

is then O
(
(HM)11P 34−δ).
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We define a set of narrow major arcs P by taking the union of

P(a, q) =
{
α ∈ [0, 1) :

∣∣∣α− a/q∣∣∣ ≤ R

n

}
with 0 ≤ a ≤ q ≤ R and (a, q) = 1, where R = (logP )1/5, and consider

p = [0, 1) \ P. In the next few lines we will combine all sort of major and

minor arc techniques to prune back to the set of narrow arcs P. As observed

after (3.1.43), whenever α ∈ M \M′ then the bound in the right handside

of (3.1.7) corresponding to the diagonal contribution dominates over the one

corresponding to the non-diagonal contribution. Therefore, we can apply the

same argument that we applied in (3.1.44) to obtain that the integral over that

set is O
(
(HM)11P 34−δ).

We next note for further purposes that Theorem 1.8 of Vaughan [139] yields

sup
n
|f(81α)| � P 1−ρ+ε, (3.1.45)

where ρ = 0.004259. As experts will realise, one could obtain a slightly bigger

ρ by applying the methods in [167]. For the sake of brevity though, we avoid

that treatment and make use of the weaker version of the estimate. We also

remark that such improvement in the exponent would make no impact in the

argument. Observe that using the same procedure as in (3.1.39) and (3.1.41)

we deduce that

q∑
a=1

|f
(
81(β + a/q)

)
|12 � q1+εP 12(q−1 + P−1). (3.1.46)

Note as well that whenever α ∈ M′ \ N then (1 + n|β|)3/2 ≥ H1/3q−1, and

hence Lemmata 3.1.3 and 3.1.8 yield

W (α)�MH2/3q1+εw4(q)(1 + n|β|)1/2.

By the preceding discussion together with Lemma 3.1.1 and equations (3.1.45)

and (3.1.46) we obtain∫
M′\N
|W (α)|11|f(81α)|46dα� (HM)11P 34(1−ρ)

∑
q≤M4

q2τ4(q)4w4(q)(q−1 + P−1).

104



Here the reader may find useful to observe that we applied the estimates

(3.1.7) and (3.1.12) to eight copies of W (α) and the bound for W (α) deduced

above to just one of them. Likewise, we made use of the pointwise estimate

(3.1.45) to bound 34 copies of f(81α) and we used the other 12 to exploit the

congruence condition via (3.1.46). We get that the above sum when q ≤ P

is O
(
(HM)11P 34−δ) via Lemma 3.1.4. Similarly, we use Lemma 3.1.4 and the

bound qP−1 ≤ P 1/11, which follows after (3.1.10), for the range P ≤ q ≤ M4

to obtain that such contribution is also O
(
(HM)11P 34−δ). By the observation

made before (3.1.36), which is still valid for k = 4, and Lemma 3.1.3 we find

that whenever α ∈ N then

W (α)� qεw4(q)HM

(1 + n|β|)(logP )
.

Therefore, the application of this bound and (3.1.39) yield∫
N\P
|W (α)|11|f(81α)|46dα�(HM)11P 34(logP )−11R−6

∑
q≤R

qεw4(q)7

+ (HM)11P 34(logP )−11
∑
q>R

qεw4(q)7.

Consequently, Lemma 3.1.4 and (3.1.21) imply that the above integral is then

O
(
(HM)11P 34(logP )−11−δ).
In what follows, we will briefly describe the singular series associated to the

problem. There might be other approaches that would lead to more precise

asymptotic formulae, but for the sake of simplicity we avoid including the sums

of three cubes in the singular series. On recalling (3.1.4), it is convenient to

consider, for an integer m ∈ N and a prime p the sums

Sm(q) = q−46

q∑
a=1

(a,q)=1

S12(q, 81a)46eq
(
− a(n−m)

)
, σm(p) =

∞∑
h=0

Sm(ph).

Observe that whenever 3 - q then we can make a change of variables to rewrite

Sm(q) as

Sm(q) = q−46

q∑
a=1

(a,q)=1

S12(q, a)46eq
(
− a81

−1
(n−m)

)
,

where 81
−1

denotes the inverse of 81 (mod q). Note as well that Lemma 3
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of [137] yields the bound Sm(q)� qτ12(q)46, which in turn further implies that

σm(p) = 1 +O(p−22) and delivers the convergence of the singular series

Sm(n) =
∞∑
q=1

Sm(q) (3.1.47)

and its upper bound Sm(n) � 1. Here the reader may find useful to observe

that we implicitly used the multiplicativity of Sm(q) and the expression of the

singular series as the product

Sm(n) =
∏
p

σm(p).

The estimate Sm(q) � q−17/6, which follows trivially via an application of

Vaughan [141, Theorem 4.2] also delivers, for Q ≥ 1, the bound∑
q>Q

|Sm(q)| � Q−α (3.1.48)

for some α > 0. Observe that by Lemmata 2.12, 2.13 and 2.15 of [141] one

gets for every prime p 6= 3 the lower bound σm(p) ≥ p−45γ, where γ = 3 when

p = 2 and γ = 1 otherwise. Likewise, note that when m ≡ n (mod 81) and

h ≥ 5 orthogonality yields

h∑
l=0

Sm(3l) = 3−45hMn,m(3h),

where Mn,m(3h) denotes the number of solutions of the congruence

x12
1 + · · ·+ x12

46 ≡ (n−m)/81 (mod 3h−4)

with 1 ≤ xi ≤ 3h. Therefore, the application of Lemmata 2.13 and 2.15 of [141]

gives σm(3) ≥ 3−86. Consequently, combining these lower bounds with the fact

that σm(p) − 1 = O(p−22) we obtain Sm(n) � 1. Observe as well that the

preceding discussion yields Sm(n) ≥ 0 for every m ∈ N.
Before showing a lower bound of the expected size for the contribution of

the set of narrow arcs, we introduce for convenience the weighted exponential
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sum

w(β) =
∑

P 12η<x≤n

1

12
x−11/12ρ

( log x

12η logP

)
e(βx),

where ρ denotes the Dickman’s function, defined for real x by

ρ(x) = 0 when x < 0,

ρ(x) = 1 when 0 ≤ x ≤ 1,

ρ continuous for x > 0,

ρ differentiable for x > 1

xρ′(x) = −ρ(x− 1) when x > 1.

For the sake of simplicity, we define the auxiliary function f ∗(α) by putting

f ∗(α) = q−1S(q, 81a)w
(
81(α− a/q)

)
when α ∈ P(a, q) ⊂ P and f ∗(α) = 0 for α ∈ p. Then, it is a consequence of

Vaughan5 [139, Lemma 5.4] that for α ∈ P(a, q) ⊂ P one has

f(81α)− f ∗(α) = O
(
PR−3

)
and

f ∗(α)� q−1/12P (1 + n|β|)−1/12.

Moreover, by the methods of Vaughan [141, Lemma 2.8] and the monotonicity

of ρ it follows that

w(β)� P

(1 + n|β|)1/12
. (3.1.49)

Finally, when m ∈ N it is convenient to introduce K(m), defined as the number

of solutions of the equation

m = T (p1x1)4 + · · ·+ T (p11x11)4

for xi ∈ W and M/2 ≤ pi ≤ M. Combining the estimates mentioned before

5Observe that the condition (a, q) = 1 in Vaughan [139, Lemma 5.4] can be relaxed to
(a, q) = C for some constant C.
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(3.1.49) we obtain that∫
P

W (α)11f(81α)46e(−αn)dα =
∑
m≤11n

K(m)

∫
P

f ∗(α)46e
(
− α(n−m)

)
dα

+O
(
(HM)11P 34(logP )−11−δ).

Observe that the main term on the right can be written as

∑
m≤11n

K(m)
∑
q≤R

Sm(q)

∫
|β|≤n−1R

w(81β)46e
(
− β(n−m)

)
dβ. (3.1.50)

By (3.1.49) we obtain that the integral on the above expression over the range

|β| > n−1R is O(P 34(logP )−δ). Therefore, an application of this observation

and (3.1.48) gives that the contribution of the set of narrow arcs P is

∑
m≤11n

K(m)Sm(n)

∫ 1

0

w(81β)46e
(
−β(n−m)

)
dβ+O

(
(HM)11P 34(logP )−11−δ).

We further note that whenever P 12η < x ≤ n then

ρ
( log x

12η logP

)
� 1,

so combining the positivity of Sm(n), orthogonality and the lower bound

Sm(n) � 1 when m ≡ n (mod 81) we obtain that (3.1.50) is bounded be-

low by ∑
m≤11n/12

m≡n (mod 81)

K(m)(n−m)17/6.

One can check via an application of Hensel’s Lemma6 and Lemma 2.14 of

[141] that the set of numbers of the shape T (p1x1)4 + · · · + T (p11x11)4 with

pi,xi ≤ 81 covers all the residue classes modulo 81. Consequently, by the

preceding discussion we find that∫
P

W (α)11f(81α)46e(−αn)dα� (HM)11P 34(logP )−11,

which combined with the estimates obtained through the pruning process

6Here the reader may find useful to observe that the set of sums of three cubes modulo
27 are the residue classes not congruent to 4 or 5 modulo 9.
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yields R4(n)� (HM)11P 34(logP )−11.

3.2 On squares of sums of three cubes7

In this new section we make use of the above analysis when k = 2 to show

that almost every positive integer can be expressed as a sum of four squares

of integers represented as the sum of three positive cubes.

3.2.1 Introduction

It is often the case in additive number theory that there might be problems

involving the representation of integers that remain open, yet it can be shown

that almost all integers have a representation. Lagrange’s celebrated theorem,

proven in 1770, states that every positive integer n can be written as

n = x2
1 + x2

2 + x2
3 + x2

4, (3.2.1)

where xi ∈ N ∪ {0}. Let C denote the set of integers represented as sums of

three positive cubes. In this memoir we will focus our attention on the problem

of solving equation (3.2.1) where the set of variables lies on the set C .

Not very much is known about C . In fact, it isn’t even known whether it

has positive density or not, the best current lower bound on the cardinality of

the set being

N (X) = |C ∩ [1, X]| � Xβ−ε,

where β = 0.91709477, due to Wooley [174]. Under some unproved assump-

tions on the zeros of some Hasse-Weil L-functions, Hooley ( [70], [71]) and

Heath-Brown [63] showed using different procedures that∑
n≤X

r3(n)2 � X1+ε,

where r3(n) is the number of representations of n as a sum of three positive

integral cubes, which implies by applying a standard Cauchy-Schwarz argu-

ment that N (X) � X1−ε. This lack of understanding of the cardinality of

7This section is based on a published paper by the author [111] in the Quarterly Journal
of Mathematics.
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the set also prevents us from understanding its distribution over arithmetic

progressions, which often comes into play on the major arc analysis. In this

memoir, though, we use the classical approach for dealing with exceptional

sets involving Bessel’s inequality and we make use of an estimate for the mi-

nor arcs obtained in the previous subsection to prove that for almost every

positive integer n the equation (3.2.1) has a solution with xi ∈ C . More pre-

cisely, let E(N) be the number of positive integers n ≤ N for which (3.2.1)

fails to possess a solution with xi ∈ C .

Theorem 3.2.1. For each ε > 0 one has

E(N)� N(logN)−4/31+ε. (3.2.2)

The reader might want to recall from the previous section that for the

integers n = 33 · 212j for j ≥ 0 then by taking the equation modulo powers

of 2 one finds that for at least one of the variables, say x1, one either has

x1 ≡ 4 (mod 9) or x1 ≡ 5 (mod 9). Therefore, x1 cannot lie on C . In the

above theorem we are far from obtaining an upper bound of the expected size,

but as shown on the preceding discussion, the exceptional set of integers not

represented as in (3.2.1) has infinite cardinality, and in fact

E(N)� logN.

By using the natural polynomial structure given by C and an estimate for

a mean value of some weighted exponential sums, we remind the reader that

in the previous section we proved via an application of the Hardy-Littlewood

method that every sufficiently large integer n can be represented as

n =
8∑
i=1

x2
i

with xi ∈ C . In the setting of this paper, the constraint that prevents us from

taking fewer variables is the analysis of the minor arcs. Such analysis is based

on the use of non-optimal estimates of sums of the shape∑
m≤X

a2
m, where am =

{
x ∈ N3 : m = x3

1 + x3
2 + x3

3, x2, x3 ∈ A(P, P η)
}
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with η > 0 a small enough parameter and

A(Y,R) = {n ∈ [1, Y ] ∩ N : p | n and p prime⇒ p ≤ R}.

Here, the reader may find it useful to observe that it is a consequence of

Montgomery and Vaughan [102, Theorem 7.2] that

card
(
A(P, P η)

)
= cηP +O

(
P/ logP

)
(3.2.3)

for some constant cη > 0 that only depends on η.

In order to prove Theorem 3.2.1 we show that for almost every integer

the minor arc contribution is of smaller size than the expected main term.

We also approximate the generating exponential sums of the problem by an

auxiliary function over a set of narrower major arcs. Finally, we show via

Bessel’s inequality that for almost all integers the n-th Fourier coefficient of

such exponential sums can also be approximated on the wider major arcs. As

experts will realise, the power of logN saved in (3.2.2) comes from the choice of

the narrower major arcs and the fact that the error term in (3.2.3) only saves

a factor of logN . Without severely complicating the argument, this choice

seems inevitable for exploiting the information given by the variables x2 and

x3 lying on A(P, P η) to ensure the convergence of the singular series and to

obtain suitable properties for it. Therefore, the power saving for the bound of

the cardinality of the exceptional set seems out of reach with these methods.

The application of Bessel’s inequality for bounding exceptional sets has

already been used by some authors before (see for instance Montgomery and

Vaughan [101]). There is another approach by Wooley which instead uses

an exponential sum over the exceptional set that often gives stronger upper

bounds for the cardinality of those sets (see Wooley [162], [169]). However, in

order to be able to use the latter method, one would need stronger minor arc

bounds for auxiliary 8-th moments together with near optimal bounds for am,

which are not available in the literature so far.

We devote the rest of the discussion to introduce a harder version of the

problem studied here. It is well-known that the numbers that cannot be written

as sums of three squares are the ones of the shape 4ν ·m for m ≡ 7 (mod 8).
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Let

N =
{
n ∈ N : n 6≡ 7 (mod 9), n 6= 4ν ·m for some m ≡ 7 (mod 8), ν ≥ 0

}
.

Then one would hope to have for almost all integers n ∈ N a representation

n = x2
1 + x2

2 + x2
3

for some xi ∈ C . If we seek to prove this statement using the circle method

approach then one should be able to obtain good enough minor arc bounds of

moments of exponential sums involving six variables. We remind the reader

though that we are just able to deal with minor arc bounds when we have eight

or more variables, and it seems out of reach to lower that number down to 6.

Likewise, the analysis of the singular series with just three variables looks very

challenging.

3.2.2 Preliminary definitions

Let N be a natural number and consider the parameters

P = bN1/6c, M = P 2/5, H = P 9/5.

Observe that then one has M3H = P 3. Consider as well

H1 =
(1

2

)1/3

H1/3, H2 =
(2

3

)1/3

H1/3, H3 =
(1

6

)1/3

H1/3.

For any vector x ∈ R3 set the function T (x) = x3
1 +x3

2 +x3
3, which will be used

throughout the paper. Take the sets of triples

H =
{

y ∈ N3 : P/2 < y1 ≤ P, (y2, y3) ∈ A(P, P η)2
}
,

W =
{

y ∈ N3 : H1 < y1 ≤ H2, (y2, y3) ∈ A(H3, P
η)2
}
,

where η is a sufficiently small but positive parameter. Let n ∈ N such that

N/2 ≤ n ≤ N . We define R(n) as the number of solutions of the equation

n = T (p1x1)2 + T (p2x2)2 + T (x3)2 + T (x4)2,
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where x1,x2 ∈ W , x3,x4 ∈ H and M/2 ≤ p1, p2 ≤ M. Our goal in the next

subsections will be to obtain a lower bound for R(n) for almost all natural

numbers. For such purpose, it is convenient to define the weights

ax =
∣∣∣{y ∈ H : x = T (y)

}∣∣∣ and bh =
∣∣∣{y ∈ W : h = T (y)

}∣∣∣,
and consider the exponential sums

h(α) =
∑
x≤3P 3

axe(αx
2) and W (α) =

∑
M/2≤p≤M

∑
H
2
≤h≤H

bhe(αp
6h2).

Observe that by orthogonality it follows that

R(n) =

∫ 1

0

h(α)2W (α)2e(−αn)dα.

We will make use of two Hardy-Littlewood dissections in our analysis, and

these we now describe. Let 1 ≤ X ≤ P 4/5. When a ∈ Z and q ∈ N satisfy

0 ≤ a ≤ q ≤ X and (a, q) = 1, consider

M(a, q) =
{
α ∈ [0, 1) :

∣∣∣α− a/q∣∣∣ ≤ X

qn

}
.

We take the major arcs M(X) to be the union of the arcs M(a, q). For the

sake of simplicity we write

M = M(P 4/5), N = M
(
(logP )τ

)
,

where τ = 18/31. We also define the minor arcs as m = [0, 1) \M.

Next we introduce the auxiliary functions that play a leading role in the

discussion of Subsections 3.2.3 to 3.2.6. For a ∈ Z and q ∈ N with (a, q) = 1,

let S(q, a) denote the complete exponential sum associated to the problem,

which we define by

S(q, a) =
∑
r≤q

eq
(
aT (r)2

)
.

Consider the functions

v(β) =

∫
x∈S

e
(
F (x)

)
dx and vp(β) =

∫
x∈SW

e
(
Fp(x)

)
dx,
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where F (x) = βT (x)2 and Fp(x) = βT (px)2, and the sets of integration taken

are

S =
{

x ∈ [0, P ]3 : P/2 ≤ x1 ≤ P
}

and

SW =
{

x ∈ R3 : H1 ≤ x1 ≤ H2, 0 ≤ x2, x3 ≤ H3

}
.

Let α ∈ [0, 1) and choose β = α − a/q. Recalling the constant cη mentioned

in (3.2.3), define

V (α, q, a) = q−3S(q, a)c2
ηv(β) and W (α, q, a) =

∑
M/2≤p≤M

Vp(α, q, a),

(3.2.4)

where Vp(α, q, a) = q−3S(q, a)c2
ηvp(β). For the sake of brevity, we define the

auxiliary functions h∗(α) and W ∗(α) by setting

h∗(α) = V (α, q, a) and W ∗(α) = W (α, q, a)

when α ∈M(a, q) ⊂M and h∗(α) = W ∗(α) = 0 for α ∈ m. Before describing

the outline of the memoir, it is convenient to introduce

F(α) = h(α)2W (α)2 − h∗(α)2W ∗(α)2.

In Subsection 3.2.3 we approximate h(α) and W (α) by the functions h∗(α)

and W ∗(α) respectively when α ∈ N. Making use of these approximations

we bound the integral of F(α)e(−αn) over N in Subsection 3.2.5. In the

second part of that subsection and Subsection 3.2.6 we show that the upper

bound for the integral of the same function over M \N still holds for almost

all integers. We obtain such result by estimating the integral of |F(α)|2 and

applying Bessel’s inequality. Subsection 3.2.4 is devoted to the study of the

singular series. In such analysis we give a lower bound of the singular series

for almost all integers, which combined with the lower bound for the singular

integral computed in Subsection 3.2.6 provides a lower bound for the major arc

contribution. We also combine the major arc estimates obtained throughout

the memoir with the minor arc bound derived in the previous subsection to

show in Subsection 3.2.6 that the minor arc contribution is smaller than the

major arc one for almost all integers.
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3.2.3 Approximation of exponential sums over the ma-

jor arcs.

Based on previous work by the author we briefly provide some technical lemmas

to approximate the exponential sums over the set of narrower major arcs.

Lemma 3.2.1. Let α ∈ N(a, q) with a ∈ Z, q ∈ N and (a, q) = 1. Then one

obtains the formula

h(α) = V (α, q, a) +O
(
P 3(logP )τ−1+ε

)
.

Proof. This is a consequence of Lemma 7.3 of [113]. The reader may check

that the exponential sum h(α) here corresponds to gQ,m(α) with the choices

Q = P, m = 1 and constants C1 = 1/2, C2 = 1 and C3 = 1.

Lemma 3.2.2. Let α ∈ N(a, q) with a ∈ Z, q ∈ N and (a, q) = 1. Then,

W (α) = W (α, q, a) +O
(
HM(logP )τ−2+ε

)
.

Proof. Observe that

W (α) =
∑

M/2≤p≤M

Wp(α), where Wp(α) =
∑
x∈W

e
(
αT (px)2

)
.

We also apply Lemma 7.3 of [113] to Wp(α). The reader may check that Wp(α)

here corresponds to gQ,m(α) with the choices Q = H1/3 and m = p and the

constants C1 =
(
1/2
)1/3

, C2 =
(
2/3
)1/3

and C3 =
(
1/6
)1/3

. Consequently, it

transpires that

Wp(α) = Vp(α, q, a) +O
(
H
(

logP )τ−1+ε
)
,

which delivers the result.

The following series of lemmas make use of the work done in the above sec-

tion and the previous chapter to give upper bounds for the auxiliary functions

that play a role in the main term of the contribution of the major arcs.

Lemma 3.2.3. Let β ∈ R. Then one has that

v(β)� P 3

1 + n|β|
and vp(β)� H

1 + n|β|
.
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Proof. For each y ∈ R2, consider Cy = y3
1 + y3

2. Define the auxiliary functions

vy(β) =

∫ Ny

My

By(γ)e(βγ)dγ and vy,p(β) =

∫ Ny,p

My,p

By,p(γ)e(βγ)dγ

where By(γ), By,p(γ) and the limits of integration taken are

By(γ) =
1

6
γ−1/2

(
γ1/2 − Cy

)−2/3
, My =

(P 3

8
+ Cy

)2

, Ny =
(
P 3 + Cy

)2

and

By,p(γ) =
1

6p
γ−1/2

(
γ1/2 − Cpy

)−2/3
, My,p =

(p3H

2
+ Cpy

)2

and

Ny,p =
(2p3H

3
+ Cpy

)2

.

By a change of variables we find that

v(β) =

∫
y∈[0,P ]2

vy(β)dy and vp(β) =

∫
y∈[0,H3]2

vy,p(β)dy. (3.2.5)

Observe that Lemma 3.1.8 yields the pointwise bounds vy(β)� P (1 +n|β|)−1

and vy,p(β) � H1/3(1 + n|β|)−1. The result then follows applying these esti-

mates trivially to the above integrals.

Lemma 3.2.4. Let a ∈ Z and q ∈ N with (a, q) = 1. Then, one has

S(q, a)� q5/2+ε. (3.2.6)

Moreover, when p is prime and l ≥ 3 one finds that

S(pl, a)� lp5l/2+ε. (3.2.7)

When l = 2 then S(p2, a)� p5 and for the case l = 1 we obtain the refinement

S(p, a) = p2S2(p, a) +O(p2), where S2(p, a) =

p∑
r=1

ep(ar
2). (3.2.8)

Proof. Equations (3.2.7) and (3.2.8) follow from Lemmata 2.3.1 and 2.3.2 of

the previous chapter. The bound for the case l = 2 also follows from Lemma
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2.3.1. We remind the reader of the estimates

d(q)� qε, ω(q)� log q/ log log q,

where the functions d(q) and ω(q) denote the number of divisors of q and

the number of prime divisors of q, respectively. Combining such bounds with

the multiplicative property of S(q, a) and the estimates for S(pl, a) discussed

before we obtain (3.2.6).

The next lemma gathers the previous results to provide an upper bound

for the auxiliary functions h∗(α) and W ∗(α).

Lemma 3.2.5. Let a ∈ Z and q ∈ N with (a, q) = 1. Take α ∈M(a, q). Then,

h∗(α)� q−1/2+εP 3

1 + n|β|
and W ∗(α)� q−1/2+εHM

(logP )(1 + n|β|)
.

Proof. This follows from Lemmata 3.2.3 and 3.2.4 via equation (3.2.4).

3.2.4 Treatment of the singular series

In this subsection we discuss some convergence properties of the singular series

and we analyse the local solubility of the problem. As a consequence, we derive

a lower bound for the singular series for almost all integers. For such purposes,

it is convenient to define, for q ∈ N, the sums

Sn(q) =

q∑
a=1

(a,q)=1

(
q−3S(q, a)

)4
eq(−na), S(n) =

∞∑
q=1

Sn(q)

and for each prime p, the infinite series

σ(p) =
∞∑
l=0

Sn(pl).

Lemma 3.2.6. One has that

S(n) =
∏
p

σ(p),

the singular series S(n) converges absolutely and S(n) � nε. Also, when
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Q > 0 one gets∑
q≤Q

q1/2|Sn(q)| � (nQ)ε and
∑
q≥Q

|Sn(q)| � nεQε−1/2. (3.2.9)

Moreover, for any constant υ > 0 there exists a set Aυ ⊂ [1, N ] satisfying

|Aυ| � N(logN)−υ and such that for every n ∈ [1, N ] \ Aυ one obtains

S(n)� (logN)−υ.

Proof. Recalling (3.2.8), consider the exponential sum

Sn,2(q) =

q∑
a=1

(a,q)=1

(
q−1S2(q, a)

)4
eq(−na).

By Lemma 3.2.4 one has that

Sn(p) = Sn,2(p) +O(p−3/2). (3.2.10)

Observe that an application of the same lemma yields Sn(pl)� l4p−l+ε when

l ≥ 3 and Sn(p2)� p−2. One can also deduce from equation (4.27) of Vaughan

[141, Theorem 4.3] that whenever p - n then Sn,2(p) � p−3/2. Therefore, the

combination of the previous estimates gives

∞∑
l=1

|Sn(pl)| � p−3/2.

Likewise, when p | n, then an application of the aforementioned bounds for

Sn(pl) and the estimate Sn,2(p)� p−1, which is an immediate consequence of

Vaughan [141, Lemma 4.3], lead to

∞∑
l=1

|Sn(pl)| � p−1.

Therefore, by the preceeding discussion and the multiplicative property of

Sn(q), one gets the convergence for S(n) and the upper bound

S(n)�
∏
p-n

(
1 + C1p

−3/2
)∏
p|n

(
1 + C2p

−1
)
� nε
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for some constants C1, C2 > 0. Similarly, one finds that

∞∑
l=1

pl/2|Sn(pl)| � p−ξ,

where ξ = 1 if p - n and ξ = 1/2 if p | n. Consequently, the combination of the

above estimates yields the bound∑
q≤Q

q1/2|Sn(q)| �
∏
p≤Q
p-n

(1 + C1p
−1)

∏
p≤Q
p|n

(1 + C2p
−1/2)� (nQ)ε.

The second estimate in (3.2.9) follows observing that as a consequence of the

above equation then ∑
Q≤q≤2Q

|Sn(q)| � nεQε−1/2,

whence summing over dyadic intervals we obtain the desired result.

We will devote the rest of the subsection to prove the lower bound for the

singular series. By equation (4.27) of Vaughan [141, Theorem 4.3] and (3.2.10)

then whenever p - n one has Sn(p) � p−3/2. We can also deduce from the

proof8 of [141, Theorem 4.5] that Sn,2(p) ≥ 0 for p | n, which, combined with

(3.2.10), yields Sn(p) ≥ −C3p
−3/2 for some C3 > 0. Consequently, using the

bound Sn(pl) � l4p−l+ε for l ≥ 2 mentioned after (3.2.10) one gets that in

both cases then σ(p) ≥ 1− C4p
−3/2 for some C4 > 0, and hence there exists a

constant C > 0 for which

S(n)�
∏
p≤C

σ(p). (3.2.11)

In order to give a more arithmetic description of σ(p) we define for each h ∈ N
the set

Mn(ph) =
{

Y ∈ [1, ph]12 :
4∑
i=1

T (yi)
2 ≡ n (mod ph)

}
,

and Mn(ph) = |Mn(ph)|. Observe that orthogonality yields the identity

h∑
l=0

Sn(pl) = p−11hMn(ph),

and hence σ(p) = limh→∞ p
−11hMn(ph). For further discussion, it is relevant to

8See the argument just before [141, Theorem 4.6]
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introduce the set

M∗
n(ph) =

{
Y ∈Mn(ph) : p - y1,1, p - T (y1)

}
,

where y1 = (y1,1, y1,2, y1,3), and M∗
n(ph) = |M∗

n(ph)|. By Lemma 4.2 of [113]

we have that whenever p 6= 2, 3 then M∗
n(p) > 0 for all n. Consequently, a

standard application of Hensel’s Lemma leads to Mn(ph) ≥ p11(h−1), which

yields σ(p) ≥ p−11. For the cases p = 2, 3, it is convenient to define the set

M3,3(ph) =
{
T (x) : x ∈

(
Z/phZ

)3
, (x1, p) = 1

}
.

A slightly tedious computation reveals thatM3,3(27) is the set of residues not

congruent to 4 or 5 modulo 9. Therefore, one has that

A =
{
x2 (mod 27), x ∈M3,3(27)

}
=
{

0, 1, 4, 9, 10, 13, 19, 22
}
.

Consider the set B = {y ∈ A : (y, 3) = 1
}
. Observe that then

A+B =
{

1, 2, 4, 5, 8, 10, 11, 13, 14, 17, 19, 20, 22, 23, 26
}
.

Consequently, by Cauchy-Davenport (see [141, Lemma 2.14]) we find that then

M∗
n(27) > 0, whence another application of Hensel’s Lemma gives the bound

Mn(3h) ≥ 311(h−3), and hence σ(3) ≥ 3−33.

The rest of the discussion will be devoted to the analysis for the prime

p = 2. Take γ ≥ 0 to be the exponent for which 2γ||n and let θ = b(γ − 1)/2c.
A routine application of Hensel’s Lemma reveals that M3,3(2h) consists of all

the residue classes modulo 2h. Therefore, when γ ≤ 2, one has that M∗
n(8) > 0,

whence another application of Hensel’s Lemma would yield σ(2) ≥ 2−33. For

the case γ ≥ 3 then whenever h ≥ γ + 2 one can check that the congruence

x2
1 + x2

2 + x2
3 + x2

4 ≡ n (mod 2h) (3.2.12)

is soluble with solutions xi = 2θyi, where yi is defined modulo 2h−θ and

y2
1 + y2

2 + y2
3 + y2

4 ≡ 2−2θn (mod 2h−2θ) (3.2.13)

with 2 - y1. Note that (3.2.13) has a solution modulo 8 with 2 - y1, and hence
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by Lemma 2.13 of [141] there are at least 23(h−2θ−3)× 24θ solutions to (3.2.12).

By the same lemma, one has that the number of solutions to

z3
1 + z3

2 + z3
3 ≡ xi (mod 2h)

is bounded below by 22(h−1). Consequently, we obtain Mn(2h) ≥ 211h−γ−16,

which delivers σ(2)� 2−γ.

To finish the proof we take Aυ ⊂ [1, N ] to be the set of numbers with

2γ ≥ (logN)υ. Observe that |Aυ| ≤ N(logN)−υ. Then, by the preceding

discussion and (3.2.11) it follows that whenever n /∈ Aυ one has

S(n)� (logN)−υ.

3.2.5 Mean values of the error term over the major arcs

Before proving an estimate for the first and second moment of F(α) over N

and M \N respectively we will present some major arc type bounds that will

be used later on the proof. For such matters, it is convenient to introduce the

auxiliary multiplicative function w2(q), defined for prime powers by taking

w2(p6u+v) =


p−u−v/6 when u ≥ 1 and 1 ≤ v ≤ 6

p−1 when u = 0 and 2 ≤ v ≤ 6

p−1/2 when u = 0 and v = 1.

(3.2.14)

Lemma 3.2.7. Let a ∈ Z and q ∈ N with (a, q) = 1 and take α ∈ M(a, q).

Denote β = α− a/q. Then,

h(α)� qεw2(q)P 3

1 + n|β|
,

and for |β| ≤ (12q)−1H1/3n−1 and q ≤M/4 we have that

W (α)� qεw2(q)HM

(logP )(1 + n|β|)
. (3.2.15)
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Proof. Lemmata 3.1.2 and 3.1.5 of the previous subsection yield the bounds

h(α)� qεw2(q)P 3(1 + n|β|)−1 + P 2q1+εw2(q)

whenever α ∈ M(a, q). Observe that (1 + n|β|)−1 ≥ qP−1 when α ∈ M(a, q),

and so the first term on the right side of the above equation dominates over

the second one. Likewise, Lemmata 3.1.3 and 3.1.5 of the previous subsection

deliver

W (α)� qεw2(q)MH(logP )−1(1 + n|β|)−1 +MH2/3q1+εw2(q)(logP )−1

for the range described just before (3.2.15). Noting that (1+n|β|)−1 ≥ qH−1/3

we find that the first term also dominates over the second one in the above

equation. The preceding discussion then provides the lemma.

Lemma 3.2.8. For q ∈ N and every Q > 0 one finds that w2(q) ≤ q−1/6.

Moreover, one has∑
q≤Q

w2(q)2 � Qε and
∑
q≤Q

w2(q)2+δ � 1

for any δ > 0.

Proof. Both estimates follow from the definition (3.2.14) and the fact that

w2(q) is multiplicative.

Combining the previous technical lemmas, we provide bounds for the L1-

norm of F(α) over the set of arcs N and the L2-norm of the same function

over M \N which are good enough for our purposes.

Proposition 3.2.1. One has that∫
N

∣∣F(α)
∣∣dα� (HM)2(logP )3τ/2−3+ε. (3.2.16)

Proof. Recalling Lemmata 3.2.1 and 3.2.5 it follows that for α ∈ N(a, q) ⊂ N

then

h(α)2 − h∗(α)2 � P 6(logP )τ−1+ε
(

(logP )τ−1 + q−1/2(1 + n|β|)−1
)
. (3.2.17)
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Likewise, by Lemmata 3.2.2 and 3.2.5 we have that for α ∈ N(a, q) ⊂ N then

W (α)2 −W ∗(α)2 � (HM)2(logP )τ−3+ε
(

(logP )τ−1 + q−1/2(1 + n|β|)−1
)
.

(3.2.18)

Denote by N(q) the number of solutions of the congruence

T (p1x1)2 ≡ T (p2x2)2 (mod q),

where xi ∈ [1, H1/3]3 and M/2 ≤ pi ≤ M . By expressing q as the product of

prime powers, using the structure of the ring of integers of those prime powers

and noting that the number of primes dividing q is bounded by qε, we obtain

N(q)� qε−1(HM)2(logP )−2,

and hence orthogonality delivers

q∑
a=1

|W (β + a/q)|2 ≤ qN(q)� qε(HM)2(logP )−2. (3.2.19)

Integrating over the major arcs and applying (3.2.17) and (3.2.19) one gets∫
N

∣∣h(α)2 − h∗(α)2
∣∣|W (α)|2dα� (HM)2(logP )3τ−4+ε

∑
q≤(logP )τ

q−1

+ (HM)2(logP )τ−3+ε
∑

q≤(logP )τ

q−1/2 � (HM)2(logP )3τ/2−3+ε.

Similarly, using Lemma 3.2.5 and (3.2.18) we obtain∫
N

|h∗(α)|2
∣∣W (α)2 −W ∗(α)2

∣∣dα� (HM)2(logP )3τ/2−3+ε.

Equation (3.2.16) then holds combining the previous estimates and the triangle

inequality.

Observe that the error term in Lemmata 3.2.1 and 3.2.2 when we approxi-

mate h(α) and W (α) by h∗(α) and W ∗(α) respectively is non-trivial only for

the set of small major arcs N. For the wider major arcs, we obtain instead an

almost all result via Bessel’s inequality.
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Proposition 3.2.2. One has that∫
M\N

∣∣F(α)
∣∣2dα� P 6(HM)4(logP )−4−2τ/3+ε.

Proof. It is worth noting first that

|F(α)|2 � |h(α)|4|W (α)|4 + |h∗(α)|4|W ∗(α)|4.

For bounding the above integral we make use of standard major arc techniques

and we exploit the extra number of variables that we get by taking squares.

Before going into the proof, it is convenient to define Υε(α) for α ∈ [0, 1) and

ε > 0 by taking

Υε(α) = qεw2(q)(1 + n|α− a/q|)−1

when α ∈M(a, q) ⊂M and Υε(α) = 0 otherwise. Using Lemma 3.2.7 we find

that ∫
M\N
|h(α)|4|W (α)|4dα� P 12

∫
M\N
|W (α)|4Υε(α)4dα.

Observe that combining Lemma 3.2.8 with equation (3.2.19) we obtain that the

contribution of the arcs with q > M/4 or q ≤ M/4 and |β| > (12q)−1H1/3n−1

is O
(
(HM)4P 6−δ). Let I ′ be the contribution to I of the arcs with q ≤ M/4

and |β| ≤ (12q)−1H1/3n−1. Then Lemma 3.2.7 yields

I ′ � P 12(HM)2(logP )−2

∫
M\N
|W (α)|2Υε(α)6dα,

whence using Lemma 3.2.8 and (3.2.19) again we get that

I ′ � P 6(HM)4(logP )−4−2τ/3+ε.

On the other hand, an application of Lemma 3.2.5 gives the estimate∫
M\N
|h∗(α)|4|W ∗(α)|4 � P 6(HM)4(logP )−4−2τ+ε,

which concludes the proof.
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3.2.6 Singular integral and Proof of Theorem 1.1

We briefly introduce the singular integral, give upper and lower bounds for it

and discuss the size of the exceptional sets of the integers n with large minor

arc contribution and for which the n-th Fourier coefficient of F(α) over M\N
is large as well. Consider

J(n) =
∑
p

∫
Y

JY,p(n)dY, (3.2.20)

where we define the collection JY,p(n) of singular integrals by

JY,p(n) =

∫ ∞
−∞

VY,p(β)e(−nβ)dβ and VY,p(β) =
2∏
i=1

vyi,pi(β)
4∏
i=3

vyi(β).

The range of integration taken above is the set of tuples Y = (y1, . . . ,y4) with

y1,y2 ∈ A(H3, P
η)2 and y3,y4 ∈ A(P, P η)2. Likewise, p runs over pairs of

primes (p1, p2) with M/2 ≤ pi ≤M. Here the reader might find useful to recall

(3.2.5) and to observe that Lemma 3.2.3 guarantees the absolute convergence

of the above integrals.

Lemma 3.2.9. One has that

J(n) � (HM)2(logN)−2.

Proof. An inspection of the proof of Lemma 3.1.7 of the above subsection

reveals that the positivity and the upper bound for JY,p(n) deduced there

remain valid subject only to the condition s+ t ≥ 2. Consequently, on making

the choices k = s = t = 2 here we obtain 0 ≤ JY,p(n) � P−4H2/3, whence

applying this estimate trivially to (3.2.20) gives the required upper bound.

Likewise, whenever one has M/2 ≤ pi ≤ 51M/100 for i ≤ t and yi ≤ P/2 for

t + 1 ≤ i ≤ s + t then the lower bound obtained in that lemma also holds as

long as
((

3/8
)k
s+
(
1/8
)k
t
)
P 3k < n. Therefore, on considering such range here

we get that JY,p(n)� P−4H2/3. Observe that the set of tuples on that range

has positive density over the set without the restrictions. Consequently, the

preceding remark and the positivity of JY,p(n) deliver the lower bound stated

at the beginning.

We remind the reader of the definition (3.2.4). Note that then the combi-
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nation of Lemma 3.2.3 and equation (3.2.9) with a change of variables yields∫
M

h∗(α)2W ∗(α)2e(−αn)dα = S(n)J(n) +O
(
(HM)2N−δ

)
. (3.2.21)

For the rest of the subsection we introduce the exceptional sets which arise in

both the major and the minor arc analysis and we give bounds for the cardi-

nality of them. Let δ > 0 and let Eδ(N) denote the set of integers satisfying

N/2 ≤ n ≤ N and with the property that∫
m

h(α)2W (α)2e(−nα)dα� (HM)2P−δ/2.

Likewise, define E(N) to be the set of integers N/2 ≤ n ≤ N for which∫
M\N
F(α)e(−nα)dα� (HM)2(logP )−2−2τ/9. (3.2.22)

Proposition 3.2.3. With the above notation, one has that

|E(N)| � N(logN)−2τ/9+ε,

and there exists some δ > 0 for which |Eδ(N)| � N1−δ.

Proof. We obtain these two bounds via a routine application of Bessel’s in-

equality. For such matters, observe first that Proposition 3.1.1 gives the esti-

mate ∫
m

|h(α)W (α)|4dα� (HM)4P 6−2δ,

for some δ > 0. Define the Fourier coefficient c(n) of the product of the

generating functions on the minor arcs by

c(n) =

∫
m

h(α)2W (α)2e(−nα)dα.

Note that Bessel’s inequality yields

∑
N/2≤n≤N

|c(n)|2 �
∫
m

|h(α)W (α)|4dα� (HM)4P 6−2δ,

whence the bound on |Eδ(N)| follows from last equation. Similarly, we intro-
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duce the Fourier coefficient

a(n) =

∫
M\N
F(α)e(−nα)dα.

Then by Proposition 3.2.2 and Bessel’s inequality we get

∑
N/2≤n≤N

|a(n)|2 �
∫
M\N
|F(α)|2dα� P 6(HM)4(logP )−4−2τ/3+ε,

which yields the bound for |E(N)| stated at the beginning of the proposition.

Proof of Theorem 3.2.1. Take n ∈ N with N/2 ≤ n ≤ N and n /∈ Eδ(N) ∪
E(N). Recalling the definitions before (3.2.22) and combining Propositions

3.2.1 and (3.2.21) we obtain

R(n) =

∫
m

h(α)2W (α)2e(−αn)dα +

∫
M

h∗(α)2W ∗(α)2e(−αn)dα

+

∫
M

F(α)e(−αn)dα = S(n)J(n) +O
(
(HM)2(logN)−2−2τ/9+ε

)
.

Now fix a parameter υ < 2τ/9. Then applying Lemmata 3.2.6 and 3.2.9

we find that whenever n is as described above with the additional condition

n /∈ Aυ(N) then one has

R(n)� (HM)2(logN)−2−υ.

Observe that by Lemma 3.2.6 and Proposition 3.2.3 the cardinality of the set

of integers N/2 ≤ n ≤ N with n /∈ Eδ(N) ∪ E(N) ∪ Aυ(N) is O
(
N(logN)−υ

)
.

Consequently, summing over dyadic intervals and observing that we can take

υ to be as close to 2τ/9 as possible we obtain the desired result.
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Chapter 4

Uniform bounds in Waring’s

problem over diagonal forms

4.1 Introduction1

Waring’s problem (first resolved by Hilbert) asserts that for every k ∈ N there

exists s = s0(k) such that all positive natural numbers can be written as a

sum of s positive integral k-th powers. Likewise, the problem of representing

a sufficiently large natural number n in the shape

n = xk1 + · · ·+ xks , (4.1.1)

with xi ∈ S, where S is a given subset of the integers, has also been studied

for particular cases. However, little has been written about Waring’s problem

when one considers specific sparse sets, and apart from the set of prime num-

bers, not much can be found on the literature. It is then rare to encounter

examples of sparse sets with a structure fundamentally different in nature in

which Waring’s problem along the lines of equation (4.1.1) is solvable.

For a general set A ⊂ N, denote by GA(k) the least positive integer s such

that for all sufficiently large natural numbers n, the equation (4.1.1) possesses

a solution with xi ∈ A. If such a number does not exist, define it as ∞. Let

α > 0 and consider sets Aα ⊂ N well distributed on arithmetic progressions

1This chapter is based on a submitted paper [112] by the author.
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and with the property that |Aα ∩ [1, N ]|� Nα. Then, on denoting

W (k, α) = sup
Aα

{
GAα(k)

}
,

one would hope to have W (k, α) <∞. In what follows we describe a particular

family of sets satisfying the above property for which we expect the previous

uniform bound to hold, but first we introduce, for convenience, some notation.

For fixed k, l, t ∈ N, let x = (x1, . . . , xt) ∈ Nt, consider the function Tt(x) =

xl1 + . . .+ xlt and take the set

Tt =
{
Tt(x) : x ∈ Nt

}
.

In this memoir we restrict our attention to the analysis of the solubility of

(4.1.1) for the choice S = Tt with t lying in the following two regimes:

(i) When t = C(k)l for any fixed integer-valued function satisfying

C(k) ≥ 1
2

log(k(k + 1)).

Work of Wooley [164] then yields the lower bound |Tt ∩ [1, N ]|� N1−β/k2 for

some constant β > 0. The reader may notice that once we fix k, the above

bound is uniform over the family of sets Tt, whence in view of the preceding

discussion we expect to have GTt(k) < GC(k) for all t in this regime with GC(k)

being a constant depending on k and C. As will be discussed afterwards, the

lower bound for the cardinality of the sets available is not strong enough to

prove such a statement, and we end up showing something weaker.

(ii) When t ≥ l
2

(
log l+ log(k(k+ 1)) + 2

)
then work of Wooley [164] yields

the stronger lower bound |Tt∩[1, N ]|� N1−γ/lk2 for some absolute constant γ >

0 at the cost of taking more variables. Were the sets Tt to have positive density,

the argument would be considerably simplified and a pedestrian approach of

the circle method would suffice. We use though the estimate available for the

cardinality of these sets to derive a bound for GTt(k) that only depends on k.

For the rest of the introduction we discuss each of the two regimes described

above and provide some motivation underlying their choice. As experts will

realise, an application of the Hardy-Littlewood method delivers the solubility

of (4.1.1) for S = Tt when t = C(k)l and s is large enough in terms of k and
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l. We denote by SC(k, l) the minimum s with such a property and consider

PC(k) = sup
l≥2

{
SC(k, l)

}
,

which does not necessarily have to be finite. We also define the constant

δr = exp(1− 2r/l) (4.1.2)

for each r ∈ N and note that then combining the corollary to Theorem 2.1

of Wooley [164] and a standard argument involving Cauchy’s inequality one

obtains the lower bound

|Tt ∩ [1, N ]| � N1−δt , (4.1.3)

where δt = exp
(
1 − 2C(k)

)
just depends on k. As previously mentioned, the

estimate (4.1.3) is uniform once we fix k, whence the discussion made above

motivates the following conjecture.

Conjecture 1. Let k ∈ N. There exists a positive integer-valued function

C : N→ N such that PC(k) <∞.

This conjecture seems to be out of reach with the methods available in the

literature for any value of k. However, in this paper we make some progress

by using an argument which permits us to prove a weaker version which we

describe next after introducing first some notation. For s ∈ N, the choice of t

described above and any r ≥ 0, consider the equation

n =
s∑
i=1

Tt(xi)
k +

r∑
i=1

xki , (4.1.4)

where xi ∈ Nt and xi ∈ N. Let SC(k, l, r) denote the minimum number such

that for s ≥ SC(k, l, r), the equation (4.1.4) has a solution for all sufficiently

large n and take

PC(k, r) = sup
l≥2
{SC(k, l, r)},

which, as before, does not necessarily have to be finite. We define RC(k) to be

the minimum r ≥ 0 such that PC(k, r) is finite. After the preceding discussion

we are now equipped to state the main theorem of the paper.
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Theorem 4.1.1. Let k ≥ 2 and consider any positive integer-valued function

C(k) with the property that

C(k) ≥ max
(
4, 1

2
log(k(k + 1)) + 3/2

)
.

Then one has the bound

RC(k) ≤ 4,

and for every r ≥ 4 one finds that PC(k, r) ≤ k2 +O(k). Moreover, RC(2) ≤ 2.

We should emphasize that one could obtain the more precise bound

PC(k, r) ≤ k(k + 1)

by introducing suitable weights in the exponential sums that we make use of

and exploiting the information provided by such sums on the major arc analy-

sis. We have omitted providing that discussion to make the exposition simpler.

The reader might as well want to observe that RC(k) = 0 is equivalent to Con-

jecture 1, whence the statement containing the relevant information in the

above theorem is the upper bound on RC(k). As was foreshadowed earlier in

the introduction, the approach taken herein further establishes a lower bound

in the number of representations of the expected size, the diminishing ranges

approach failing to achieve such an endeavour.

Let G(k) = GN(k) be the smallest number such that for all s ≥ G(k), every

large enough natural number can be written as a sum of s positive integral k-th

powers. Vinogradov [153], Karatsuba [86] and Vaughan [139] made progress

to achieve upper bounds for G(k), the best current one for large k being

G(k) ≤ k

(
log k + log log k + 2 +O

( log log k

log k

))
(4.1.5)

due to Wooley [167]. Note that as a consequence of this bound one trivially

has

RC(k) ≤ k
(

log k + log log k +O(1)
)
.

The reader then might want to observe that Theorem 4.1.1 improves this bound

substantially. It is also worth noting that if Conjecture 1 were true for any

fixed k, there would exist some s = s(k) with the property that for any l ≥ 2,
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every sufficiently big enough integer n would have a representation of the shape

n =
s∑
i=1

Tt(xi)
k

with xi ∈ Nt. Observe that the right side of the above equation would consist

of sums of Cl positive integral l-th powers gathered in groups and raised to

the power k for some constant C = C(k) > 0 depending on k. This problem

seems then even harder than the problem of proving that every sufficiently

large integer can be written as the sum of Cl positive integral l-th powers,

which would be a big breakthrough in view of (4.1.5).

Before describing the other regime for t analysed in the memoir, we note

that as a consequence of the aforementioned work on G(k), it follows that

whenever t ≥ t0(l) with

t0(l) =
l

2

(
log l + log log l + 2 + o(1)

)
(4.1.6)

then Tt has positive density, which greatly simplifies things (see, for example

Brüdern, Kawada and Wooley [20, Theorem 1.5]). With the current state of

knowledge, this turns out to be the threshold for which we can guarantee to

have a lower bound of the shape |Tt ∩ [1, N ]| � N1−ε. Therefore, for fixed

k and l large enough, the cardinality of the sets Al = Tξ0(k,l) ∩ [1, N ] with

ξ0(k, l) = dl/2
(

log l+log
(
k(k+1)

)
+2
)
e is not known to satisfy |Al| � N1−ε,

the best lower bound known being

|Al| � N1−1/k(k+1)le,

which is a consequence of (4.1.3).

Theorem 4.1.2. Let k, l ≥ 2 and take ξ ≥ ξ0(k, l) and s ≥ s0(k) with s0(k)

satisfying s0(k) = k2 +O(k). Then every sufficiently large n can be represented

as

n =
s∑
i=1

xki ,

where xi ∈ Tξ.

The reader may want to observe that even if the sets Tξ are not known

to satisfy the estimate |Tξ ∩ [1, N ]| � N1−ε, the bound on the number s of
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variables needed does not depend on l. This suggests that one should search

for ideas which don’t just make use of the polynomial structure of the sets

Tξ in order to prove such result. Experts in the area may also notice that

one could prove a weaker version of the theorem by combining Corollary 1.4

of Wooley [177] with a pointwise bound over the minor arcs derived from

Lemma 5.4 of Vaughan [141]. This strategy though would entail the restriction

s ≥ (3/2)k2 +O(k). We instead use a similar idea than the one we employ for

the minor arc treatment in the proof of Theorem 4.1.1 that avoids relying on

such pointwise bounds and enables us to win k(k + 1)/2 variables. It is worth

mentioning that one could also introduce suitable weights in the exponential

sum that we make use of to obtain a more precise error term in the expression

for s0(k).

Back to equation (4.1.1), the case when the set S is taken to be the prime

numbers has been of interest to many mathematicians. Among others, Hua

first ( [73], [74]) and then Thanigasalam ( [132], [133]), Kumchev [92], Kawada

and Wooley [88], and Kumchev and Wooley ( [93], [94]) have worked to give

upper bounds for H(k), where H(k) is defined as the minimum number such

that for every s ≥ H(k), the equation

n = pk1 + · · ·+ pks

has a solution for all sufficiently large n satisfying n ≡ s (mod K(k)), where

K(k) is a constant defined in terms ofK(k) to ensure appropiate local solubility

conditions (see [93] for a more precise definition of K(k)). We note that the

best current bound for large k is

H(k) ≤ (4k − 2) log k − (2 log 2− 1)k − 3

due to Kumchev and Wooley [94].

At the same time, some authors have been trying to find sparse sets with

minimum density such that the problem of representing every sufficiently large

positive number as a sum of k-th powers of elements of the set is still soluble

with strong upper bounds for the number of variables needed. This other

approach in Waring’s problem has been studied by Nathanson [103], where

he used the probabilistic method to prove that for all s ≥ G(k) + 1, there

exist sets A with card(A ∩ [1, N ]) ∼ cN1−1/s+ε such that (4.1.1) is soluble
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on A. The result was partially improved by Vu [154], when he showed under

the condition s ≥ k48k the existence of a set A ⊂ N with the property that

card(A ∩ [1, N ]) = Θ
(
Nk/s(logN)1/s

)
such that RA(n) � log n, where RA(n)

denotes the number of solutions of (4.1.1) with the variables lying in A. In

a subsequent paper, Wooley [170] proved the same result for s ≥ T (k) + 2,

where T (k) is bounded above by an explicit version of the right-hand side of

(4.1.5). However, though the size of the sets is near optimal, the arguments

used by the authors are probabilistic, so they don’t give a description of those

sets. Therefore, the approach of this paper might be the first one in which by

giving an explicit family of sets with similar density, one tries to find a uniform

bound for the number of variables needed to solve (4.1.1), as discussed at the

beginning of the introduction.

Theorems 4.1.1 and 4.1.2 are proved via the circle method, and the exposi-

tion is organised as follows. We bound a mean value via restriction estimates

in Section 4.2 and we expose the key argument which permits us to estimate

mean values of a suitable exponential sum over the minor arcs uniformly on l.

Section 4.3 is devoted to a brief study of the singular series. In Section 4.4 we

approximate the generating function for the problem over the major arcs. We

give an asymptotic formula for the integral of the product of some exponential

sums over the major arcs in Section 4.5 and we use it to complete the proof of

Theorem 4.1.1. We have included a small note in Section 4.6 that deals with

the case k = 2. In Section 4.7 we slightly modify the exponential sum taken

in Section 4.2 and use a similar argument to obtain a suitable estimate for the

contribution of the minor arcs in the setting of Theorem 4.1.2. We combine

such work with a standard major arc analysis to prove the theorem.

For the rest of the paper, we fix positive integers l ≥ 2 and k ≥ 2. For the

sake of simplicity concerning local solubility, we assume that t ≥ 4l, though

most of the results throughout the paper don’t require this restriction. For

ease of notation we also write T (x) instead of Tt(x). The main objective of

Theorem 4.1.1 is to prove a non-trivial uniformity bound for SC(k, l, r), and

thus we just focus our attention in large values of l in terms of k. As mentioned

above, even if we provide explicit bounds for PC(k, r) and C(k), the relevant

part of the result is the estimate on RC(k). For such purposes, we haven’t

included an investigation of the behaviour of PC(k, r) and C(k) for small k.
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4.2 Minor arc estimate

We will begin by displaying an upper bound for mean values of an exponential

sum which will be of later use in the analysis of the minor arcs in the setting of

both Theorems 4.1.1 and 4.1.2. This will be a straightfoward consequence of

the work of Wooley [177] on Vinogradov’s mean value theorem with weights.

Let r ∈ N, let Y > 0 be a real parameter and consider the set

Sr(Y ) =
{
xl1 + . . .+ xlr : xi ∈ A(Y, Y η), (1 ≤ i ≤ r)

}
, (4.2.1)

where

A(Y,R) = {n ∈ [1, Y ] ∩ N : p | n and p prime⇒ p ≤ R}

and η is a sufficiently small but positive parameter. Note that then the corol-

lary to Theorem 2.1 of Wooley [164] and a routine argument using Cauchy’s

inequality yield

|Sr(Y )| � Y l−lδr , (4.2.2)

where δr was defined in (4.1.2). In order to make further progress we need to

introduce first some notation. Let n be a positive integer and take X = n1/k

and P = X1/l. Define for α ∈ [0, 1) and α ∈ [0, 1)k the exponential sums

f
(
α,Sr(Y )

)
=

∑
x∈Sr(Y )

e(αxk), f
(
α,Sr(Y )

)
=

∑
x∈Sr(Y )

e(α1x+ . . .+αkx
k).

(4.2.3)

For future purposes in the analysis, we consider the mean value

J (k)
s,r (Y ) =

∫
[0,1)k

∣∣f(α,Sr(Y )
)∣∣2sdα, (4.2.4)

which by orthogonality counts the solutions to the system

xj1 + . . .+ xjs = xjs+1 + . . .+ xj2s (1 ≤ j ≤ k),

where xi ∈ Sr(Y ).

Proposition 4.2.1. Let s ≥ k(k + 1)/2. Then one has that

J (k)
s,r (Y )� |Sr(Y )|2sY −lk(k+1)/2+l∆r+ε,
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where ∆r = δrk(k + 1)/2.

Proof. Define the weights ax = 1 if x ∈ Sr(Y ) and 0 otherwise. Then, we can

rewrite f(α,Sr(Y )) as

f(α,Sr(Y )) =
∑
x≤rY l

axe(α1x+ . . .+ αkx
k).

Therefore, combining Corollary 1.4 of Wooley [177] with (4.2.2) and the trian-

gle inequality we obtain

J (k)
s,r (Y )� |Sr(Y )|2s|Sr(Y )|−k(k+1)/2Y ε � |Sr(Y )|2sY −lk(k+1)/2+l∆r+ε,

which yields the desired result.

Before introducing the main ingredients for the minor arc analysis, we

recall from the introduction that whenever t ≥ t0(l), where t0(l) was defined

in (4.1.6), then Tt has positive density. We deliberately avoid this situation by

considering l sufficiently large in terms of k. The difficulty of the Conjecture 1

then lies on the fact that Tt is not known to have positive density, and the best

lower bounds available on the cardinality of the set are not strong enough.

Moreover, any approach making use of the fact that Tt(x)k is a polynomial

of degree kl and applying a Weyl estimate for the corresponding exponential

sum or any multivariable version of Vinogradov’s Mean Value Theorem (see

Theorem 1.3 and Theorem 2.1 of [108]) would entail a restriction in the number

of variables that would depend on the degree of the polynomial.

We make though some progress by obtaining a uniform bound in l of a

suitable exponential sum over the minor arcs. Our argument here is motivated

by the treatment of Vaughan [141, Chapter 5], and it requires the estimate

in Proposition 4.2.1. For such purposes, we introduce first some notation.

Consider a positive integer-valued function C(k) and set

t = C(k)l, t1 = C(k)l − l.

We take the parameter

ϕk,t1 = 1− k(k + 1)δt1/2− e−1, (4.2.5)
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which for the sake of concision will be denoted by ϕk. Observe that whenever

C(k) satisfies the lower bound included in the hypothesis of Theorem 4.1.1

then one has ϕk ≥ 1/2− e−1 > 0. We also define the constants

C1 =
(
k(k + 1)2k+1tk1

)−1/lk
, C2 = min

(
(2lk)−1/l,

(
k(k + 1)2k+1lk

)−1/lk
)
.

(4.2.6)

and the natural numbers

P1 = bC1P c, P2 = bC2P c. (4.2.7)

For ease of notation, we denote St1(P1), and Sl(P2) by S1, and S2 respectively.

It is then convenient to define, for m ∈ S2, the exponential sums

fm(α) =
∑
x∈S1

e
(
α(x+m)k

)
and F(α) =

∑
m∈S2

fm(α).

In order to make further progress we make a Hardy-Littlewood dissection.

When 1 ≤ Q ≤ X we define the major arcs M(Q) to be the union of

M(a, q) =
{
α ∈ [0, 1) : |α− a/q| ≤ Q

qn

}
(4.2.8)

with 0 ≤ a ≤ q ≤ Q and (a, q) = 1. For the sake of brevity we write

M = M(X), N = M(P 1/2), P = M(logP )

and we take m = [0, 1) \M and n = [0, 1) \N to be the minor arcs.

Proposition 4.2.2. Let α ∈ m. Then one has

F(α)� |S1||S2|X−ϕk−1/k(k−1)+ε,

where ϕk−1 was defined in (4.2.5). Moreover, for s ≥ k(k+ 1)/2 we obtain the

mean value estimate∫
m

|F(α)|2sdα� |S1|2s|S2|2sX−k−ϕk+ε.

As experts will realise throughout the proof, one could obtain a similar

result for the analogous Vinogradov generating function by using ideas of the

proof of Theorem 5.2 of Vaughan [141]. We have ommited such analysis for
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the clarity of the exposition.

Proof. For every m ∈ S2 consider γ(m) = (γ1(m), . . . , γk−1(m)), where the

entries taken are

γj(m) = α

(
k

j

)
mk−j, (1 ≤ j ≤ k − 1). (4.2.9)

Observe that then for every x ∈ S1 one obtains the relation

α(x+m)k = ν(k−1)(x) · γ(m) + αxk + αmk,

where we adopted the notation ν(k−1)(x) = (x, . . . , xk−1). It is also convenient

to define for s ∈ N the set of (k − 1)-tuples of natural numbers

N =
{

(n1, . . . , nk−1) : 1 ≤ ni ≤ sX i, (1 ≤ i ≤ k − 1)
}
.

By using the above relation we find that

∑
m∈S2

|fm(α)|2s =
∑
m∈S2

∣∣∣ ∑
n∈N

a(n)e
(
n · γ(m)

)∣∣∣2, (4.2.10)

where on denoting

X (n) =
{

x ∈ Ss1 : xi1 + . . .+ xis = ni, (1 ≤ i ≤ k − 1)
}

the coefficient a(n) is defined as

a(n) =
∑

x∈X (n)

e
(
α(xk1 + . . .+ xks)

)
. (4.2.11)

We devote the rest of the proof to apply a version of the large sieve in-

equality (Lemma 5.3 of Vaughan [141]) to the right side of (4.2.10). For such

purpose, we shall consider the spacing modulo 1 of {γ(m)}m. Take x, y ∈ S2

with x 6= y. Note that in view of (4.2.6) then one has

x, y ≤ X/2k. (4.2.12)

Observe that applying Dirichlet’s approximation to each α ∈ m we obtain

138



a ∈ Z and q ∈ N with (a, q) = 1 such that 0 ≤ a ≤ q and

|α− a/q| ≤ q−1X1−k,

where X < q ≤ Xk−1. Note as well that by the choice of γj(m) in (4.2.9) we

find that

‖kα(x− y)‖ = ‖γk−1(x)− γk−1(y)‖.

Then by the above discussion we obtain the lower bound

‖kα(x− y)‖ ≥ ‖ka(x− y)/q‖ − (2q)−1X2−k.

Note that the only instance in which the first term on the right-hand side of

the above equation can be 0 is when y = x + nq(q, k)−1 for some n ∈ N with

n 6= 0. However, q(q, k)−1 ≥ X/k, which would contradict (4.2.12). Therefore,

by the preceding discussion we get

‖kα(x− y)‖ ≥ (2q)−1,

which delivers ‖γk−1(x)− γk−1(y)‖ � X−k+1 and provides the spacing condi-

tion that we were seeking to prove.

Applying Lemma 5.3 of Vaughan [141] to (4.2.10) we obtain the upper

bound ∑
m∈S2

|fm(α)|2s � Xk(k−1)/2
∑
n∈N

|a(n)|2. (4.2.13)

Note first that by bounding the coefficients a(n) trivially one gets∑
m∈S2

|fm(α)|2s � Xk(k−1)/2J
(k−1)
s,t1 (P1),

where J
(k−1)
s,t1 (P1) was defined in (4.2.4). Then combining the above equation

with an application of Cauchy’s inequality we obtain

F(α)2s � |S2|2s−1
∑
m∈S2

|fm(α)|2s � |S2|2s−1Xk(k−1)/2J
(k−1)
s,t1 (P1), (4.2.14)

and hence for s ≥ k(k − 1)/2 then Proposition 4.2.1 delivers

F(α)� |S1||S2|
(
Xδt1k(k−1)/2|S2|−1

)1/2s
Xε.
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Therefore, fixing s = k(k − 1)/2 and recalling (4.2.2) one gets

F(α)� |S1||S2|X−ϕk−1/k(k−1)+ε,

where ϕk−1 was defined in (4.2.5).

For the second claim of the proposition we combine (4.2.13) and Cauchy’s

inequality in the same way as in (4.2.14) and we integrate over m to get∫
m

|F(α)|2sdα� |S2|2s−1Xk(k−1)/2J
(k)
s,t1(P1).

An application of Proposition 4.2.1 and the estimate (4.2.2) to the above line

then yields, for s ≥ k(k + 1)/2, the bound∫
m

|F(α)|2sdα� |S1|2s||S2|2sX−k−ϕk+ε,

from where the second part of the proposition follows.

Observe that the argument just makes use of the fact that Tt = Tt1 + Tl,
where |Tt1 ∩ [1, N ]| and |Tl∩ [1, N ]| are appropriately large. Therefore, it could

also be applied to other problems for sets with a similar property that don’t

necessarily have a polynomial structure. We conclude the investigation of the

minor arcs by applying Weyl differencing to derive a bound for the exponential

sum

f(α) =
∑

Tt(z)≤P l
e(αTt(z)k), (4.2.15)

where in the above sum z ∈ Nt. For ease of notation, we avoid writing the

dependance on t. Note that then one can rewrite f(α) as

f(α) =
∑

x∈Nt−1

Px≥1

fx(α), where fx(α) =
∑

1≤x≤Px

e
(
αT (x, x)k

)
(4.2.16)

and where we took the parameter Px =
(
P l − Tt−1(x)

)1/l
.

Lemma 4.2.1. Let α ∈ [0, 1) and suppose that there exist a ∈ Z and q ∈ N
such that (a, q) = 1 and |α− a/q| ≤ q−2. Then

f(α)� P t+ε(q−1 + P−1 + qP−kl)21−kl .
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Proof. Observe that the polynomial T (x, x) is monic and of degree kl on x.

Note that the implicit constant in Weyl’s inequality (Vaughan [141, Lemma

2.4]) does not depend on the coefficients which are not the leading one. There-

fore, an application of such inequality to fx(α) delivers

fx(α)� P 1+ε
x

(
q−1 + P−1

x + qP−klx

)21−kl
,

which yields the above estimate by combining the bound Px ≤ P and (4.2.16).

4.3 Singular series

Throughout this section we will always assume that t ≥ 2l. Define for a ∈ Z
and q ∈ N with (a, q) = 1 the complete exponential sums

S(q, a) =
∑

1≤r≤q

eq
(
aT (r)k

)
and Sk(q, a) =

q∑
r=1

eq(ar
k). (4.3.1)

Note that by orthogonality we can express S(q, a) as

S(q, a) = q−1

q∑
u=1

Sl(q, u)tSk(q, a,−u),

where

Sk(q, a,−u) =

q∑
r=1

eq(ar
k − ur).

Because of the quasi-multiplicative structure of the exponential sum, we will

focus on the case q = ph, where p is a prime number. Then, with the above

notation one has that

S(ph, a) = p(t−1)hSk(p
h, a) + E(ph, a), (4.3.2)

where

E(ph, a) = p−h
ph−1∑
u=1

Sl(p
h, u)tSk(p

h, a,−u).
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We estimate E(ph, a) by using classical estimates for the sums Sl(p
h, u) and

Sk(p
h, a,−u). Applying then Theorems 4.2 and 7.1 of Vaughan [141] we obtain

E(ph, a)� p−h/k+ε

ph−1∑
u=1

pth(1−1/l)(u, ph)t/l � ph(t−1/k−t/l+1)+ε

h−1∑
d=0

pd(t/l−1)

� pht−h/k−(t/l−1)+ε. (4.3.3)

In order to provide more explicit bounds for the exponential sum S(q, a) it is

convenient to introduce first the multiplicative function wk(q) defined as

wk(p
uk+v) = p−u−1 when u ≥ 0 and 2 ≤ v ≤ k,

wk(p
uk+v) = kp−u−1/2 when u ≥ 0 and v = 1.

Then, by Lemma 3 of Vaughan [137] we obtain

q−1|Sk(q, a)| � wk(q), (4.3.4)

whence combining (4.3.2) and (4.3.3) with the quasi-multiplicative property of

S(q, a) we get

q−t|S(q, a)| � wk(q). (4.3.5)

For future purposes in the memoir, we note that by applying the definition of

wk(q) and multiplicativity then we obtain for Q > 0 and s ≥ max(4, k+ 1) the

bounds∑
q≤Q

wk(q)
2 ≤

∏
p≤Q

(
1 + C/p

)
� Qε,

∑
q≤Q

qwk(q)
s ≤

∏
p≤Q

(
1 + C/p

)
� Qε.

(4.3.6)

Before defining the singular series, we need to consider first the exponential

sum

W (q, a) =

q∑
r=1

(r,q)=1

eq(ar
k), (4.3.7)

where a ∈ Z and q ∈ N with (a, q) = 1. Here the reader might want to observe

that one can express the sum W (ph, a) in terms of Sk(p
h, a) and Sk(p

h−k, a),
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and hence one can deduce the estimate

ϕ(q)−1|W (q, a)| � wk(q) (4.3.8)

by just applying multiplicativity and the bound (4.3.4). In order to make

further progress, it is worth defining

Sn(q) =

q∑
a=1

(a,q)=1

(
q−tS(q, a)

)s(
q−1Sk(q, a)

)2(
ϕ(q)−1W (q, a)

)2
eq(−an).

We also consider for convenience the series

S(n) =
∞∑
q=0

Sn(q), σ(p) =
∞∑
h=0

Sn(ph), (4.3.9)

where p is a prime number. We can provide a more arithmetic description of

σ(p) by considering Cp = [1, ph]4 × [1, ph]st, defining the set

Mn(ph) =
{

(y,X) ∈ Cp : p - y1y2, n ≡
4∑
i=1

yki +
s∑
i=1

T (xi)
k (mod ph)

}
and introducing the counting function Mn(ph) = |Mn(ph)|. For each prime p

take τ ≥ 0 such that pτ‖k and

γ =

τ + 1, when p > 2 or when p = 2 and τ = 0,

τ + 2, when p = 2 and τ > 0.
(4.3.10)

Lemma 4.3.1. Suppose that s + 3 ≥ p
p−1

(
k, pτ (p − 1)

)
when γ = τ + 1, that

s + 3 ≥ 2τ+2 when γ = τ + 2 and k > 2, and that s ≥ 2 when p = k = 2.

Suppose as well that t ≥ 4l. Then one has Mn(pγ) > 0.

Proof. It is worth noting first that Lemma 2.15 of Vaughan [141] implies that

T (x) = xl1 + · · ·+ xlt ≡ m (mod pγ)

is soluble for all m ∈ N. The result follows then using the previous remark and

observing that under the conditions described above, the same lemma delivers
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a representation
3∑
i=1

yki +
s∑
i=1

zki ≡ n (mod pγ)

with p - y1.

Proposition 4.3.1. Let s ≥ max(1, k − 2). Then one has that

S(n) =
∏
p

σ(p), (4.3.11)

the singular series S(n) converges and S(n) � 1. Also, for Q > 0 we obtain

the estimate
Q∑
q=1

q1/k|Sn(q)| � Qε. (4.3.12)

Moreover, if s satisfies the conditions of Lemma 4.3.1 then S(n)� 1.

Proof. The application of (4.3.4), (4.3.5) and (4.3.8) delivers

Sn(ph)� phwk(p
h)s+4,

whence combining such bound with the definition of wk(q) we obtain the esti-

mates

∞∑
h=1

|Sn(ph)| � p−3/2,
∞∑
h=1

ph/k|Sn(ph)| � p−1. (4.3.13)

Therefore, by the multiplicative property of Sn(q) we get (4.3.11) and

Q∑
q=1

|Sn(q)| �
∏
p≤Q

(1 + Cp−3/2)� 1,

which delivers the upper bound for S(n). The estimate (4.3.12) follows in a

similar way.

Observe that expressing Sn(ph) as the difference of two complete exponen-

tial sums and using orthogonality we get

h∑
j=0

Sn(pj) = Mn(ph)p−h(st+1)ϕ(ph)−2. (4.3.14)
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We use Lemma 4.3.1 and the fact that if m with (m, p) = 1 is a k-th power

modulo pγ then it is also a k-th power modulo ph for h ≥ γ to obtain the

lower bound Mn(ph) ≥ p(st+3)(h−γ). Combining such lower bound with the

above expression and (4.3.9) we find that σ(p) ≥ p−γ(st+3). Therefore, by the

preceding discussion and equation (4.3.13) we get S(n)� 1.

We next define an analogous singular series that arises in the analysis of

the major arc contribution in Theorem 4.1.2. This series will be in nature

quite similar to S(n), so we will skip some details for the sake of brevity. For

such purposes, consider

S ′n(q) =

q∑
a=1

(a,q)=1

(
q−tS(q, a)

)s
eq(−an). (4.3.15)

Observe that using (4.3.5) then we have

S ′n(ph)� phwk(p
h)s. (4.3.16)

Moreover, for any prime p and h ∈ N and combining (4.3.2), (4.3.3), (4.3.4)

and (4.3.5) we can rewrite S ′n(ph) as

S ′n(ph) =

ph∑
a=1

(a,p)=1

(
p−hSk(p

h, a)
)s
eph(−an) + E(ph), (4.3.17)

where the first term is the analogous sum for the original Waring’s problem

and the error term satisfies

E(ph)� ph−h/k−(t/l−1)+εwk(p
h)s−1.

We define next the aforementioned series

S′(n) =
∞∑
q=0

S ′n(q), σ′(p) =
∞∑
h=0

S ′n(ph),

where p is a prime number. We can provide a more arithmetic description of
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σ′(p) by considering the set

M∗
n(ph) =

{
X ∈ [1, ph]st : p - x1,1, p - T (x1), n ≡

s∑
i=1

T (xi)
k (mod ph)

}
,

where x1 = (x1,1, . . . , x1,t), and taking the counting functionM∗
n(ph) = |M∗

n(ph)|.
For each prime p take τ1 ≥ 0 such that pτ1‖kl and ν = ν(p) = 2τ1 + 1. Before

stating the following lemma, recall (4.3.10).

Lemma 4.3.2. Suppose that s ≥ p
p−1

(
k, pτ (p − 1)

)
when γ = τ + 1, that

s ≥ 2τ+2 when γ = τ + 2 and k > 2, and that s ≥ 5 when p = k = 2. Suppose

as well that t ≥ 4l. Then one has M∗
n(pν) > 0.

Proof. It is worth noting first that since ν ≥ γ then Lemma 2.15 of Vaughan

[141] and the fact that if b ∈ N with (b, p) = 1 is a k-th power modulo pγ then

it is also a k-th power modulo pν imply that

T (x) = xl1 + · · ·+ xlt ≡ m (mod pν)

with p - x1 is soluble for all m ∈ N. The lemma follows using the previous

remarks and observing that under the conditions described above, Lemma

2.15 of Vaughan [141] delivers a representation

s∑
i=1

yki ≡ n (mod pν)

with p - y1.

Proposition 4.3.2. Let s ≥ max(5, k + 2). Then one has that

S′(n) =
∏
p

σ(p),

the singular series S′(n) converges and S′(n)� 1. Also, for Q > 0 we obtain

the estimate
Q∑
q=1

q1/k|S ′n(q)| � Qε. (4.3.18)

Moreover, if s satisfies the conditions of Lemma 4.3.2 then S′(n)� 1.
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Proof. Equation (4.3.16) and the multiplicativity of wk(q) yield

∞∑
h=1

|S ′n(ph)| � p−3/2,
∞∑
h=1

ph/k|S ′n(ph)| � p−1, (4.3.19)

which imply the convergence, the upper bound for the singular series and

(4.3.18). For obtaining the lower bound for S′(n) we observe that Lemma

4.3.2, an application of Hensel’s Lemma and the argument used to derive

(4.3.14) allow one to obtain σ′(p) ≥ p−ν(st−1), whence combining such estimate

with (4.3.19) we then get S′(n)� 1.

Scholars in the area will realise that one could use (4.3.17) and the bounds

available in the literature for the singular series in the original Waring’s prob-

lem (see [141, Theorem 4.5]) to obtain the estimate S′(n) � 1 for the range

s ≥ max(4, k + 1). One could also deduce (4.3.18) but with an extra factor of

nε in the right side of the bound for the same range (see [141, Lemma 4.8]).

4.4 Approximation of some exponential sum

over the major arcs

In this section we approximate f(α) on the major arcs by some auxiliary

function. For such purpose it is convenient to introduce first some notation.

Let α ∈ [0, 1) and a ∈ Z, q ∈ N with (a, q) = 1. Denote β = α − a/q and

consider the aforementioned function U(α, q, a) = ct,lq
−tS(q, a)u(β), where

u(β) = k−1

n∑
m=1

mt/kl−1e(βm), ct,l = Γ(1 + 1/l)tΓ(t/l)−1, (4.4.1)

and S(q, a) was defined in (4.3.1).

Proposition 4.4.1. Let q < P and α, a, q, β as above. Then one has

f(α) = U(α, q, a) +O
(
qP t−1(1 + n|β|)

)
.

Proof. Before embarking on our task, it is convenient to consider for each
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r ∈ Nt and r ∈ N the sums

Kr(β) =
∑

T (x)≤P l
x≡r (mod q)

e
(
βT (x)k

)
, Br(x) =

∑
0<z≤x

z≡r (mod q)

1.

Observe that by sorting the summation into arithmetic progressions modulo q

we find that

f(α) =
∑
r≤q

eq
(
aT (r)k

)
Kr(β). (4.4.2)

For each r ∈ Nt write r = (rt−1, rt), where rt−1 ∈ Nt−1. Then recalling the

definition of Px after (4.2.16) and using Abel’s summation formula we find

that

Kr(β) =
∑
x

Brt(Px)e
(
βT (x, Px)k

)
−
∑
x

∫ Px

0

∂

∂z
e
(
βT (x, z)k

)
Brt(z)dz,

where x ∈ Nt−1 runs over tuples satisfying Tt−1(x) ≤ P l − 1 and

x ≡ rt−1 (mod q).

Consequently, combining the formula Brt(x) = x/q +O(1) and an application

of integration by parts one gets

Kr(β) = q−1
∑
x

∫ Px

0

e
(
βT (x, z)k

)
dz +O

(
q−t+1P t−1(1 + n|β|)

)
.

We have included a brief discussion of the next step in the argument since

it involves a technical detail which was not required before. Note first that

Abel’s summation formula combined with the above equation yields

Kr(β) =q−1
∑
x

Brt−1(P(x,0))I(P(x,0))

− q−1
∑
x

∫ P(x,0)

0

∂I

∂zt−1

(zt−1)Brt−1(zt−1)dzt−1

+O
(
q−t+1P t−1(1 + n|β|)

)
,

where x ∈ Nt−2 runs over tuples satisfying Tt−2(x) ≤ P l with x ≡ rt−2 (mod q)
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and

I(zt−1) =

∫ Px,zt−1

0

e
(
βT (x, zt−1, zt)

k
)
dzt.

Observe that combining the Fundamental Theorem of Calculus and the ex-

changeability of derivation and integration we find that

∂

∂zt−1

I(zt−1)� ∂

∂zt−1

Px,zt−1 + n|β|,

whence another combination of the formula Brt−1(x) = x/q + O(1) and inte-

gration by parts yields

Kr(β) = q−2
∑
x

∫
C
e
(
βT (x, zt−1, zt)

k
)
dzt−1dzt +O

(
q−t+1P t−1(1 + n|β|)

)
,

where C is the set of pairs (zt−1, zt) ∈ R2
+ satisfying T (x, zt−1, zt) ≤ P l. We

repeat a similar argument for the rest of the variables to obtain

Kr(β) = q−tu1(β) +O
(
q−t+1P t−1(1 + n|β|)

)
, (4.4.3)

where u1(β) here denotes the integral version of u(β), which we define by

u1(β) =

∫
T (x)≤P l

e
(
βT (x)k

)
dx,

where x ∈ Rt
+. Observe that by several changes of variables, one can rewrite

u1(β) as

u1(β) = k−1l−t
∫ n

0

w1/k−1e(βw)

∫
X∈M

B(w,X)dXdw,

with

B(w,X) = x
1/l−1
1 · · ·x1/l−1

t−1 (w1/k − x1 − . . .− xt−1)1/l−1

andM⊂ Rt−1 is the corresponding set determined by the underlying inequal-

ities. Consequently, combining the formula for the Euler-Beta function and

subsequent changes of variables we get

u1(β) = ct,lu2(β), where u2(β) = k−1

∫ n

0

wt/kl−1e(βw)dw.

We devote the rest of the proof to compute the error term when we ap-
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proximate u2(β) by u(β). We believe that working with u(β) instead makes

the analysis a bit more transparent and less tedious. Consider the function

G(γ) =
∑

1≤y≤γ

yt/kl−1

and note that the Euler-Maclaurin formula (see Vaughan [141, (4.8)]) yields

G(γ) = klt−1γt/kl +O
(
Z(γ)

)
,

where Z(γ) = 1 + γt/kl−1. Observe that then Abel’s summation formula, inte-

gration by parts and the previous discussion yield

u(β) = lt−1nt/kle(βn)− 2πiβ

∫ n

0

lt−1γt/kle(βγ)dγ +O
(
Z(n)(1 + n|β|)

)
= u2(β) +O

(
Z(n)(1 + n|β|)

)
.

The lemma then follows combining the above approximation with (4.4.2) and

(4.4.3).

Note that the error term in the above proposition differs from the trivial

bound by a factor of Pq−1(1 +n|β|)−1, and this saving is gained by fixing t−1

variables in the expression for Kr(β) and using a one-dimensional argument.

The saving obtained in Proposition 4.4.1, however, is not enough for our choice

of the major arcs when l is large enough. Likewise, the possible approaches

involving the use of all of the variables don’t seem to improve the error term

substantially. We devote the rest of the section to provide an upper bound for

u(β).

Lemma 4.4.1. Let |β| ≤ 1/2. Then one has

u(β)� P t

(1 + n|β|)γk,l
,

where γk,l = min(1, t/kl).

Proof. When |β| ≤ n−1 one finds that

u(β)�
n∑

m=1

mt/kl−1 � P t,
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which yields the required bound for that particular range. When |β| > n−1

then denoting M = b|β|−1c, we observe that

M∑
m=1

mt/kl−1e(βm)� |β|−t/kl.

For the remaining range we combine partial summation and the monotonicity

of mt/kl−1 to obtain

n∑
m>M

mt/kl−1e(βm)� |β|−1
(
|β|1−t/kl + nt/kl−1

)
= |β|−t/kl + P t|β|−1n−1,

which delivers the required estimate.

4.5 Treatment of the major arcs and proof of

the main theorem

In this section we prune back to the narrower set P of major arcs and deduce

an asymptotic formula for the contribution of such set. In view of the weak

bound obtained in Proposition 4.4.1 and the discussion made after it we are

forced to introduce k-th powers of natural numbers and prime numbers, whose

behaviour is much better understood, to provide strong enough estimates over

M. For such purposes, it is convenient to present first some notation. Let

X1 = 2−1(2k)−1/(k−1)X.

Consider the exponential sums

g(α) =
∑

X1<x≤2X1

e(αxk), h(α) =
∑
p≤X

e(αpk),

the weighted sums

v(β) =
∑

Xk
1<x≤(2X1)k

k−1x1/k−1e(βx), w(β) =
∑

2≤x≤n

k−1x1/k−1(log x)−1e(βx),
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and the functions

V (α, q, a) = q−1Sk(q, a)v(β) and W (α, q, a) = ϕ(q)−1W (q, a)w(β),

where Sk(q, a) and W (q, a) were defined in (4.3.1) and (4.3.7) respectively. For

the sake of simplicity we further define the auxiliary functions

f ∗(α) = U(α, q, a), g∗(α) = V (α, q, a), h∗(α) = W (α, q, a) (4.5.1)

when α ∈ M(a, q) ⊂ M and f ∗(α) = g∗(α) = h∗(α) = 0 for α ∈ m. We

recall for convenience that U(α, q, a) was defined just before (4.4.1). Before

providing an asymptotic formula for the major arc contribution it is convenient

to consider for any set B ⊂ [0, 1) the integral

RB(n) =

∫
B

f(α)sg(α)2h(α)2e(−αn)dα,

and to define the singular integral as

J(n) =

∫ 1

0

u(β)sv(β)2w(β)2e(−βn)dβ.

Here the reader might want to observe that as a consequence of orthogonality

then J(n) equals∑
x1,...,x4,y1,...,ys

k−4−s(x1x2x3x4)1/k−1
(

log x3 log x4

)−1
y
t/kl−1
1 · · · yt/kl−1

s ,

where the sum is over x1, . . . , x4, y1, . . . , ys satisfying

x1 + . . .+ x4 + y1 + . . .+ ys = n

with

Xk
1 < x1, x2 ≤ (2X1)k, 2 ≤ x3, x4 ≤ n and 1 ≤ yj ≤ n (1 ≤ j ≤ s).

It is worth observing that then one obtains the lower bound

J(n)� P stX4n−1(log n)−2. (4.5.2)
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Proposition 4.5.1. Let s ≥ max(1, k − 2). One has that

RM(n) = S(n)J(n) +O
(
P stX4n−1(log n)−2−δ). (4.5.3)

Moreover, if s satisfies the hypothesis of Lemma 4.3.1 then

RM(n)� P stX4n−1(log n)−2.

Proof. Observe that Lemma 6.1 of Vaughan [141] for the choice of X1 made

yields that whenever α ∈M then

g(α)− g∗(α)� q1/2+ε. (4.5.4)

Likewise, Lemma 6.2 of Vaughan [141] delivers the bound

v(β)� X(1 + n|β|)−1,

whence combining such estimate with (4.3.4) we get

g∗(α)� wk(q)X(1 + n|β|)−1. (4.5.5)

It is also worth noting that for any q ≤ X, the number N(q) of pairs of primes

(p1, p2) with pk1 ≡ pk2 (mod q) and p1, p2 ≤ X satisfies

N(q)� X2(logX)−2q−1+ε.

Consequently, by orthogonality we find that

q∑
a=1

|h(a/q + β)|2 � X2(logX)−2qε. (4.5.6)

Combining the previous discussion with Lemma 4.2.1 we obtain

RM\N(n)� P st−2−lk+εX4n−1
(
1 +

∑
q≤X

wk(q)
2
)
� P st−δX4n−1,

where in the last step we applied (4.3.6). The reader might want to observe

that the bounds available for the exponential sums of k-th powers are robust

enough to enable us to prune back to a set of narrower major arcs. It becomes
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transparent that in view of the weak estimates for f(α) available whenever

α ∈M \N, the use of such Weyl sums in this setting seems inevitable. Before

moving on, it is convenient to observe that whenever α ∈ N then equations

(4.3.5), (4.4.1) and Proposition 4.4.1 deliver f(α) � wk(q)P
t. Likewise, ob-

serve that (4.5.4) and (4.5.5) yield the estimate g(α)� wk(q)X(1+n|β|)−1 for

the same range. Consequently, combining the previous discussion with (4.3.6)

and (4.5.6) we obtain

RN\P(n)� P stX4n−1(logP )−2
(
(logP )−1+ε

∑
q≤logP

qwk(q)
s+2 +

∑
q>logP

wk(q)
s+2
)

� P stX4n−1(logP )−2−δ.

In order to make further progress in the analysis, we note that

h(α) = W (α, q, a) +O(Xe−C1
√

logX)

for some C1 > 0, which is an immediate consequence of Lemma 7.15 of Hua

[73]. Observe as well that Proposition 4.4.1 delivers

f(α)s − f ∗(α)s � P st−1+ε

whenever α ∈ P. Combining these estimates with (4.5.4) we find that∫
P

∣∣f(α)sg(α)2h(α)2 − f ∗(α)sg∗(α)2h∗(α)2
∣∣dα� P stX4n−1e−C

√
logX .

Observe as well that (4.3.12) and the estimate for v(β) stated before (4.5.5)

deliver the bounds∑
q>Q

|Sn(q)| � Qε−1/k,

∫
|β|>(logP )q−1n−1

|v(β)|2dβ � X2n−1q(logP )−1

for any Q > 0 and q ≤ logP respectively. Consequently, the above estimates

and a change of variables yield∫
P

f ∗(α)sg∗(α)2h∗(α)2e(−αn)dα = S(n)J(n) +O
(
P stX4n−1(logP )−2−δ),

whence the preceding discussion and the pruning bounds for RM\N(n) and
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RN\P(n) deliver the main result of the proposition. The second part of the

proposition follows combining (4.5.2) with (4.5.3) and Proposition 4.3.1.

We now gather all the work done previously to prove Theorem 4.1.1 by

using the following quantitative version.

Proposition 4.5.2. Let s ≥ 4k − 3 and H = k(k + 1). Then, one has the

lower bound∫ 1

0

F(α)Hf(α)sg(α)2h(α)2e(−αn)dα� |S1|H |S2|HP stX4n−1(log n)−2.

Proof. It is worth observing that the estimate over the minor arcs on Propo-

sition 4.2.2 and the trivial bounds for f(α), g(α) and h(α) yield∫
m

|F(α)|H |f(α)|s|g(α)|2|h(α)|2dα� |S1|H |S2|HP stX4n−1−δ (4.5.7)

for some δ > 0. In order to compute the major arc contribution it is convenient

to define for each m ∈ N the counting function

Q(m) =
∣∣∣{(x,y) ∈ SH1 × SH2 : m =

H∑
i=1

(yi + zi)
k
}∣∣∣.

Observe that with the previous notation one finds that

F(α)H =
∑
m

Q(m)e(αm).

Moreover, using (4.2.6), (4.2.7) and the definitions of S1 and S2 described after

those equations we have Q(m) = 0 for m > n/2. Therefore, Proposition 4.5.1

yields∫
M

F(α)Hf(α)sg(α)2h(α)2e(−αn)dα =
∑
m≤n/2

Q(m)RM(n−m)

� |S1|H |S2|HP stX4n−1(log n)−2.

(4.5.8)

The combination of the equations (4.5.7) and (4.5.8) concludes the proof. Here

the reader might want to observe that the choices for C1 and C2 guarantee that

we get the expected lower bound.
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Proof of Theorem 4.1.1. Note that the integral in Proposition 4.5.2 counts

the number of solutions of equation (4.1.4) with certain multiplicities. Conse-

quently, for all r ≥ 4 we have

SC(k, l, r) ≤ k(k + 1) + 4k − 3,

which delivers the same bound for PC(k, r) and yields RC(k) ≤ 4. As experts

will realise, we could have avoided including the extra 4k−3 copies of f(α) by

introducing suitable weights for each of x and m in the definition of F(α) to

exploit the information given by such variables in the analysis of the singular

series. However, we have prioritised the simplicity of the exposition over the

preciseness of the upper bound for PC(k, r).

4.6 The case k = 2

We briefly sketch the proof for R4(2) ≤ 2. For the rest of the exposition then

we take t = 4l. Let

g(α) =
∑

X/2<x≤X

e(αx2),

and on recalling (4.2.3) consider the mean value∫ 1

0

|g(α)|2|f(α,St)|4dα,

which by orthogonality counts the solutions to the equation

x2
1 + y2

1 + y2
2 = x2

2 + y2
3 + y2

4

with X/2 ≤ xi ≤ X and yi ∈ St. Observe that by a divisor function argument,

the number of solutions of

y2
1 + y2

2 = y2
3 + y2

4

is O(nε|St|2), and hence the contribution of the subset of solutions satisfying

x1 = x2 is O(n1/2+ε|St|2). Likewise, the number of solutions of the above

equation with x1 6= x2 is O(nε|St|4), whence equation (4.2.2) and the above
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estimates deliver∫ 1

0

|g(α)|2|f(α,St)|4dα� n1/2+ε|St|2 + nε|St|4 � nε|St|4.

Define Mτ = M(P τ ) and mτ = [0, 1)\Mτ for some small enough τ > 0. Then,

combining the above estimate with Lemma 4.2.1 one gets∫
mτ

|f(α,St)|4|g(α)|2|f(α)|3dα� |St|4P 3t−δ.

The reader might want to observe that in order to ensure local solubility and

the convergence of the singular series, one should take 3 copies of f(α) instead

of just 2 since we only have two Weyl sums of degree 2 available. The rest of

the analysis of the major arcs is done using the estimates obtained throughout

the memoir. This argument then yields P4(2, 2) ≤ 7. As experts will realise,

one could prove the bound P4(2, 2) ≤ 5 by introducing suitable weights in the

definition of f(α,St) to simplify the singular series analysis and just use one

copy of f(α). We have avoided discussing such refinement here for the sake of

brevity.

4.7 Proof of Theorem 4.1.2

We combine the work of previous sections with slightly different ideas employed

in the minor arc analysis to give a proof of Theorem 4.1.2. We first introduce

an exponential sum restricted to elements in a convenient set that will provide

the saving needed for the minor arc contribution. On recalling the parameter

ξ0(k, l) defined before Theorem 4.1.2, we write ξ = ξ0(k, l) for ease of notation

and consider

ξ1 = ξ − 1, C3 =
(
2k+1k(k + 1)

)−1/kl
ξ
−1/l
1 .

Recalling (4.2.1) as well, take P3 = C3P and set S = Sξ1(P3). It is then

convenient to consider for P/2 ≤ p ≤ P prime the exponential sums

fp(α) =
∑
x∈S

e
(
α(x+ pl)k

)
and G(α) =

∑
P/2<p≤P

fp(α).
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Proposition 4.7.1. Let α ∈ [0, 1) and let M > 0 be a parameter with M ≤ P.

Denote by mM the set of α with the property that α = β+a/q with a ∈ Z, q ∈ N
and (a, q) = 1 satisfying |β| ≤ (2kqX)−1, q ≤ 2kX and such that whenever

q ≤M one has |β| ≥Mq−1n−1. Then for each α ∈ mM one gets

G(α)� |S|P 1+εM−1/k(k−1)Xδξ1/2,

where δξ1 was defined in (4.1.2). Moreover, for s ≥ k(k + 1)/2 we obtain the

mean value ∫
mM

|G(α)|2sdα� |S|2sP 2sM−1X−k+∆ξ1
+ε,

where ∆ξ1 = δξ1k(k + 1)/2.

Proof. Recalling the notation used in the proof of Proposition 4.2.2 we find

that ∑
P/2<p≤P

|fp(α)|2s =
∑

P/2<p≤P

∣∣∣ ∑
n∈N

a(n)e
(
n · γ(pl)

)∣∣∣2,
where N here denotes the set

X (n) =
{

x ∈ Ss : xi1 + . . .+ xis = ni (1 ≤ i ≤ k − 1)
}

and the coefficient a(n) is defined in the same way as in (4.2.11). We intro-

duce for further convenience the number q1 = q(q, k)−1. Before going into the

discussion for the spacing modulo 1 of {γ(pl)}p, the reader might find useful

to observe that for fixed h ∈ Z with (h, q1) = 1, the number of solutions L of

the congruence

xl ≡ h (mod q1)

satisfies L� qε1. Therefore, we can partition the primes into L classes Pj such

that for any pair of distinct primes p1, p2 ∈ Pj with pl1 ≡ pl2 (mod q1) then

p1 ≡ p2 (mod q1).

Next observe that by the choice of γ(pl) made in (4.2.9) we find that

‖kα(pl1 − pl2)‖ = ‖γk−1(pl1)− γk−1(pl2)‖.

Then using the hypothesis on |β| described above we obtain

‖kα(pl1 − pl2)‖ ≥ ‖ka(pl1 − pl2)/q‖ − 1

2
q−1 ≥ 1

2
q−1
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provided that p1 6≡ p2 (mod q1).

When q1 > P one cannot have pairs of distinct primes p1, p2 ∈ Pj with the

property p1 ≡ p2 (mod q1), whence we always have

‖γk−1(pl1)− γk−1(pl2)‖ � X−1. (4.7.1)

Whenever M/k < q1 ≤ P then we partition each of Pj into Lj classes Pj,i with

the property that no pair of distinct primes belonging to Pj,i are congruent

modulo q1 and with Lj satisfying the bound Lj � Pq−1
1 . Consequently, the

same argument leads to the estimate (4.7.1) for distinct p1, p2 ∈ Pj,i. Finally,

when q1 ≤ M/k one has q ≤ M , whence whenever p1 ≡ p2 (mod q1) then the

condition on β described in the proposition yields

‖γk−1(pl1)− γk−1(pl2)‖ = ‖kα(pl1 − pl2)‖ = |β||k(pl1 − pl2)| � P l−1Mn−1.

We combine Lemma 5.3 of Vaughan [141] and the above discussion to obtain

the upper bound∑
P/2<p≤P
p∈Pj

|fp(α)|2s � Xk(k−1)/2P (q +M)−1
∑
n∈N

|a(n)|2 (4.7.2)

for q in any of the ranges described above. Bounding the coefficients a(n)

trivially one gets∑
P/2<p≤P
p∈Pj

|fp(α)|2s � Xk(k−1)/2P (q +M)−1J
(k−1)
s,ξ1

(P3),

where J
(k−1)
s,ξ1

(P3) was defined in (4.2.4). Then combining the above equation

with an application of Cauchy’s inequality we get

|G(α)|2s � P 2s−1+ε
∑
j

∑
P/2<p≤P
p∈Pj

|fp(α)|2s � P 2s+εXk(k−1)/2M−1J
(k−1)
s,ξ1

(P3),

and hence for the choice s = k(k − 1)/2 then Proposition 4.2.1 delivers

G(α)� |S|P 1+εM−1/k(k−1)Xδξ1/2.

159



For the second claim of the proposition we combine (4.7.2) and Cauchy’s

inequality in the same way as above and we integrate over mM to obtain∫
mM

|G(α)|2sdα� P 2s+εM−1Xk(k−1)/2J
(k)
s,ξ1

(P3).

An application of Proposition 4.2.1 to the above line then yields∫
mM

|G(α)|2sdα� |S|2sP 2s+εM−1X−k+∆ξ1 ,

from where the second statement follows.

In the rest of the section we deliver a lower bound for the major arc contri-

bution. We will work with the auxiliary functions f(α), S ′n(q), u(β) and f ∗(α),

defined in (4.2.15), (4.3.15), (4.4.1) and (4.5.1) respectively but replacing ξ by

t whenever such parameters appear in any of the definitions. We have avoided

making such distinction in the notation explicit for the sake of simplicity. For

future purposes we define the singular integral as

J ′s(n) =

∫ 1/2

−1/2

u(β)se(−βn)dβ.

Lemma 4.7.1. Suppose that s ≥ 2. Then,

J ′s(n) = nsξ/kl−1
(
k−sΓ(ξ/kl)sΓ(sξ/kl)−1 +O

(
B(n)

))
,

where B(n) = n−1 + n−ξ/kl.

Proof. We will proceed by induction. We consider for convenience the function

φ(γ) = γξ/kl−1(n− γ)ξ/kl−1.

When s = 2 then orthogonality yields

J ′2(n) = k−2

n−1∑
m=1

φ(m) = k−2

∫ n

0

φ(γ)dγ +O
(
n2ξ/kl−1B(n)

)
= k−2Γ(ξ/kl)2Γ(2ξ/kl)−1n2ξ/kl−1 +O

(
n2ξ/kl−1B(n)

)
,

where we used the fact that φ(γ) has at most one stationary point on the
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interval (0, n). By using the inductive hypothesis we obtain

J ′s+1(n) =k−1

n−1∑
m=1

mξ/kl−1J ′s(n−m)

=k−s−1Γ(ξ/lk)sΓ(sξ/kl)−1

n−1∑
m=1

mξ/kl−1(n−m)sξ/kl−1

+O
(
n(s+1)ξ/kl−1B(n)

)
.

Applying the same argument we used for the case s = 2 we find that

n−1∑
m=1

mξ/kl−1(n−m)sξ/kl−1 = n(s+1)ξ/kl−1
(
λs +O

(
B(n)

))
,

where λs = Γ(sξ/kl)Γ(ξ/kl)Γ
(
(s + 1)ξ/kl

)−1
, whence combining the above

equations we obtain the desired result.

In order to make further progress it is convenient to consider the set of

major arcs Nι = M(P 1/2+ι), where M was defined in (4.2.8) and where we

take ι = 1/1000. Likewise, we define the minor arcs nι = [0, 1) \Nι. Note that

using equation (4.3.5) and Proposition 4.4.1 we obtain for α ∈ Nι the bound

f(α)s − f ∗(α)s � P sξ−s/2+sι + P ξ−1/2+ιwk(q)
s−1u(β)s−1.

Consequently, whenever s ≥ k + 2 then Lemma 4.4.1 gives∫
Nι

|f(α)s − f ∗(α)s|dα� P sξ−s/2+(s+2)ι+1n−1 + P sξ−1/2+ιn−1
∑

q≤P 1/2+ι

qwk(q)
s−1

� P sξ−δn−1,

where in the last step we used (4.3.6). Observe as well that (4.3.18) and Lemma

4.4.1 deliver the bounds∑
q>Q

|S ′n(q)| � Qε−1/k,

∫
|β|>P 1/2+ιq−1n−1

|u(β)|sdβ � P sξn−1qδP−δ(1/2+ι)

whenever s ≥ max(5, k + 2) for any Q > 0 and q ≤ P 1/2+ι respectively.
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Therefore, Lemma 4.7.1, the above estimates and a change of variables give∫
Nι

f(α)se(−αn)dα = Ck,l,ξn
sξ/kl−1S′(n) +O

(
nsξ/kl−1−δ), (4.7.3)

where Ck,l,ξ = k−scsξ,lΓ(ξ/lk)sΓ(sξ/kl)−1 and cξ,l was defined in (4.4.1). It

seems worth observing that when s ≥ 4k then Proposition 4.3.2 yields the

lower bound S′(n)� 1. Likewise, Proposition 4.7.1 delivers∫
nι

|G(α)|k(k+1)dα� |S|k(k+1)P k(k+1)−1/2−ιX−k+∆ξ1
+ε

� |S|k(k+1)P k(k+1)X−k−δ,

whence using (4.7.3) and the ideas of the proof of Proposition 4.5.2 to derive

a lower bound for the major arc contribution and combining such bound with

the above minor arc estimate we obtain∫ 1

0

G(α)k(k+1)f(α)se(−αn)dα� |S|k(k+1)P k(k+1)+sξ(logP )−k(k+1)n−1,

which concludes the proof of Theorem 4.1.2.
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Chapter 5

Mixed third moments of the

Riemann zeta function

5.1 Introduction

Investigations concerning the asymptotic evaluation of moments of L-functions

date back to the early work of Hardy-Littlewood (1918) establishing the second

moment of the Riemann zeta function (see, for instance Titchmarsh [134, The-

orem 7.3]), which was followed by the proof of an asymptotic formula for the

fourth moment due to Ingham [80]. In view of the above historical note and

for gaining preciseness in the upcoming discussion it seems worth defining, for

k ∈ N the moment

Mk(T ) =

∫ T

0

|ζ(1/2 + it)|2kdt.

Despite the efforts invested in the investigations pertaining to higher order mo-

ments to the end of establishing analogous evaluations, the extensive work done

in this direction has been thus far conjectural, the articles earlier mentioned

still comprising the only unconditionally proven formulae. Such examinations

were initiatied by Conrey-Gosh [26] in their paper concerning the asymptotic

evaluation of M3(T ), followed by a memoir of Conrey-Gonek [27] accomplishing

an analogous conjectural formula for the eighth moment, and were indepen-

dently culminated with the incorporation of Random Matrix theory to the

scene, which ultimately led to the asymptotic relation

Mk(T ) ∼ ckT (log T )k
2
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for precise explicit constants ck by Keating-Snaith [89], such an especulation

having been further refined in the work of Conrey et al. [25].

Little attention has been paid hirtherto to the problem of introducing fixed

coefficients in the imaginary parts of the zeta factors comprising the moments,

and we anticipate that such an endeavour will be the main object of study

in the rest of the thesis. For the sake of transparency it seems desirable to

present for positive real numbers a, b, c > 0 the mixed moment

Ia,b,c(T ) =

∫ T

0

ζ(1/2 + ait)ζ(1/2− bit)ζ(1/2− cit)dt. (5.1.1)

Investigating the above is partially motivated by the desire to examine a

broader set of examples in search of similar, or perhaps dissimilar but nonethe-

less interesting phenomena to that occuring in a recent paper of Conrey-

Keating (see [28]) in connection with the arithmetic stratification of subva-

rieties examined by Manin [44]. We have deferred the fourth mixed moment

analysis to a later occasion, it entailing some extra complications that have

not been surmounted by the author hirtherto.

We shall primarily focus on the integer coefficient case, albeit a result

concerning irrational coefficients will be presented. In the former case, it is

worth anticipating that the error terms obtained in the main theorem may be

substantially sharpened subjected to the validity of a weaker version of the

abc conjecture that we shall now describe.

Conjecture 2. Let a, b, c ∈ N be fixed natural numbers and n1, n2, n3 ∈ N.

Denote

D = na1 − nb2nc3.

Then, if D 6= 0 one has the lower bound

D � na1(n1n2n3)−1−ε,

where the implicit constant is universal and does not depend on the parameters

a, b, c.

The reader shall rest assured that a statement of the abc conjecture in

conjunction with a succint proof showing how to derive Conjecture 2 from

the aforementioned conjecture will comprise a short separate section in this
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chapter. Equipped with the above considerations, we have reached a position

from which to announce the main result of the present chapter.

Theorem 5.1.1. Let T > 0 and a, b, c ∈ N with the property that (a, b, c) = 1.

Then, whenever a < c ≤ b one has the asymptotic evaluation

Ia,b,c(T ) = σa,b,cT + Ea,b,c(T ),

where σa,b,c > 1 is a computable constant and

Ea,b,c(T )� T 1−1/2a+1/2c + T 3/4+a/4c.

If Conjecture 2 holds, the above error term may be refined to

Ea,b,c(T )�T 1/2+a/(a+c)+ε + T 5/4−c/4a

+ (log T )2
(
T 3/4 + T 3/4−a/4c+(a,c)/2c + T 3/4−a/4b+(a,b)/2b

)
. (5.1.2)

Describing the prolix history of upper and lower bounds of moments is

hardly the point of this introduction. Nonetheless, it has been thought per-

tinent to devote a few lines to such an endeavour for the sake of illustrat-

ing the exposition. Lower bounds of the shape Mk(T ) � T (log T )k
2

were

already established for integral k by Ramachandra [117], such a result be-

ing extended to positive rational numbers in the work of Heath-Brown [60]

and accomplished for real k ≥ 0 under the assumption of RH by Ramachan-

dra [116]. The history of upper bounds is somewhat more recent, the best un-

conditional result improving earlier work of many others accomplishing sharp

estimates of the shape Mk(T )� T (log T )k
2

for the range 0 ≤ k ≤ 2 by Heap-

Radziwill-Soundararajan [57], whence in particular the preceding discussion

yields M3/2(T ) � T (log T )9/4 unconditionally.

The reader might observe that in view of the above considerations it tran-

spires that under the above assumptions on the integer coefficients in Theorem

5.1.1 there is no power of log T factor in the main term and some cancelation

is exhibited. It is apparent that the instance when the coefficients at hand are

rational numbers may be easily reduced to the context of the above theorem

via a simple change of variables. It is also widely known in the community that

the functions ζ(1/2 + ait), ζ(1/2 + ibt) and ζ(1/2 + ict) with a, b, c ∈ R having

the property that a, b, c are linearly independent over Q are poorly correlated
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and barely see each other. Such a consideration may then lend credibility to

the belief that the integral (5.1.1) should exhibit substantially more cancel-

lation in the case when the corresponding coefficients satisfy the preceding

condition. Confirming and quantifying this belief is, inter alia, the purpose of

the upcoming theorem.

Theorem 5.1.2. Let T > 0 and a, b, c ∈ R be algebraic numbers linearly

independent over Q. Then one has

Ia,b,c(T ) ∼ T.

Considerations of space and time preclude us from providing an effective

bound of the error term underlying the preceding formula or exploring the

above problem whenever the coefficients are either linearly dependent but in

irrational ratio or trascendental numbers, but we nonetheless announce our

intention to return to these topics on a future occasion.

The approach which will be employed on this first chapter to prove Theorem

5.1.1 shall make use of the so-called approximate functional equation of the

Riemman zeta function for each of the factors involved in the integral at hand.

As experts may anticipate, such a procedure leaves one in the concomitant

situation of having to analyse eight integrals of twisted Dirichlet polynomials,

seven of which contain a twisting factor. In the investigation of the remaining

one, one then makes a distinction between the diagonal and the off-diagonal

contribution arising from such a term. It should be noted that the examination

of the diagonal one pertaining to the rational case shall not present any major

obstacles and will be of a more elementary number theoretic flavour.

On the contrary, the off-diagonal one will be somehow more problematic.

As experts may notice, having a decent control of such a contribution amounts

to understanding the number of solutions to the equation

nb2n
c
3 − na1 = D (5.1.3)

for a fixed (and possibly large) integer D ∈ Z, such an endeavour being quite

hard as shall be elucidated promptly. We should note first that as was previ-

ously observed in Conjecture 2, the assumption of the abc conjecture delivers

the lower bound

D � na−1−ε
1 (n2n3)−1.
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Such a robust estimate already improves the unconditional error terms ob-

tained herein, but does not suffice to enlarge the range of the parameters

a, b, c for which one may assure the validity of the corresponding asymptotic

formula with the set of tools employed in the present memoir.

As may become apparent shortly, it seems pertinent to draw the reader’s

attention to the work of scholars concerning gaps between perfect powers. We

should mention that in a series of papers, Sprindzuk [129], [130] on improving

upon work of Baker [2], showed that whenever n,m ∈ N are fixed then one has

|xn − ym| � (logX)δ(m,n), where X = max(xn, ym)

for some fixed δ(m,n) > 0. The above inequality then lends credibility to the

expectation that one may utilise the same circle of ideas involved in the proof of

such theorems to deduce analogous unconditional estimates for the difference

D in (5.1.3), but probably not better ones, such discussion being hardly the

purpose of this memoir. In view of the previous comments, it transpires that

the conditional bound (5.1.3) seems completely out of reach and illustrates

the difficulty of the problem at hand. It should be noted though that even

an improvement of the shape nτ1 for some small τ > 0 would hardly have an

impact in the corresponding error term. As noted above, it would certainly

not enlarge the range of the parameters a, b, c for which one can assure the

validity of the asymptotic formula at hand.

We will surmount the difficulties associated with the analysis of the off-

diagonal term by employing a trick, only valid for the range of parameters a <

c ≤ b considered herein, at the cost of unconditionally obtaining a relatively

weak error term which may be refined when one further assumes Conjecture

2.

The estimation process for rest of the integrals containing twisted factors

will amount to the delivery of bounds for oscillatory integrals of sufficient

strength. Those will present various different levels of complexity accord-

ingly, most of them essentially requiring a straighforward application of a basic

lemma only depending on the derivative of the argument of the integrand at

hand (see Titchmarsh [134, Lemma 4.2]). It may be worth noting that there

is a term whose analysis is slightly more elaborate and entails combining both

the aforementioned lemma and an analogous one depending instead on the

second derivative of the function at hand (see Titchmarsh [134, Lemma 4.4]).
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Likewise, there is an additional integral whose examination further requires

employing a stationary phase method type lemma of the strength of that of

Graham and Kolesnik [46, Lemma 3.4] for the purpose of exploiting the extra

cancellation stemming from some averaging process of the corresponding main

term when assuming Conjecture 2, which would have otherwise been missed

had we just applied the sequel of basic lemmata mentioned above.

A tedious intrincate analysis might have led one to obtain an asymptotic

formula for the diagonal contribution comprising lower order terms of the shape

of those at the end of (5.1.2) instead, such an approach hardly being the point

herein in view of the error terms stemming from the off-diagonal analysis. It

is nonetheless worth observing how the approach taken in this chapter ulti-

mately delivers formulas encapturing divisibility relations between the coeffi-

cients a, b, c.

The proof of Theorem 5.1.2 shares a large intersection with that of Theorem

5.1.1 and primarily differs from that of the latter in the simplicity of the

diagonal contribution, it being a consequence of a succint application of Baker’s

theorem on linear forms in logarithms. It should be noted that the analysis

pertaining to the off-diagonal contribution will be the essentially the same and

will ultimately deliver weaker error terms primarily because of the absence of a

spacing condition, as is the case in the integer setting. The examination of the

rest of the integrals will therefore be the same save for the instance in which

Conjecture 2 is further assumed in the integer case.

On a different note, we shall also include a theorem concerning the asymp-

totic evalution of the above integral whenever a = c < b. We should remark

that under such circumstances there is a slightly different behaviour underlying

the anticipated formula.

Theorem 5.1.3. Let a < b be positive integers satisfying (a, b) = 1. Then one

has the asymptotic formula

Ia,b,a(T ) ∼ ζ
(
(a+ b)/2

)
T log T.

As would have probably been anticipated by experts, the above formula

has an extra factor of log T , as opposed to the corresponding one cognate

to Theorem 5.1.1. In view of the difference in nature of both formulas, it

transpires that the set of techniques employed in the course of the proof of
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the latter theorem may not be applicable herein, the arguments utilised in this

new setting having their reliance on a more recondite framework of ideas.

It is worth mentioning nonetheless that many of the technical tedious argu-

ments underpinning the proof of both Theorem 5.1.1 and the previous one will

share common ground, whence the bulk of work that has to be done for this

new result shall be considerably reduced. The analysis of the diagonal term

appertaining to the corresponding integral without twisting factor, though

slightly different in nature, shall be analysed as is customary via a conven-

tional parametrization of the underlying diophantine equation and shall not

present any major obstacle. It is then the examination of the off-diagonal one

which departs from the analysis in the previous setting and exhibits some nov-

elty in its treatment, the estimates ultimately obtained having their reliance

on an astute application of Roth’s theorem in diophantine approximation in

conjunction with an intrincate analysis.

As may be apparent at first glance, the ineffectiveness of the error term in

the asymptotic formula at hand comes from the ineffectiveness in Roth’s theo-

rem. Nonetheless, we feel obliged to remark that the corresponding exponent

of 2 + ε in the alluded theorem shall play a crucial role in the argument to

the extent that analogous versions containing effective information about the

corresponding constant thereof at the cost of increasing the aforementioned

exponent at hand shall not find success when applied herein. It may be worth

announcing that the assumption of Conjecture 2 would not have strengthen

our result, and find it noteworthy that Roth’s theorem ultimately delivers the

same conclusion than that obtained on the aforementioned assumption of the

abc-conjecture in this context.

For the sake of improving the exposition of ideas it has been thought per-

tinent to divide our line of argumentation into several lemmata. We begin our

journey by presenting some preliminary manoeuvres which shall be employed

throughout the entire chapter. Shortly after we succintly show how one may

easily derive Conjecture 2 from the abc-conjecture. It seems convenient to men-

tion that in Section 5.4 we reduce the problem at hand to that of computing a

sum of eight integrals of products of various twisted Dirichlet polynomials. As

we anticipated earlier, each of the integrals may exhibit a different behaviour.

For the purpose of describing our ideas in a rather succinct manner, it seems

desirable to organise the computations by gathering each of the integrals that
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present similar behaviour into groups and analysing those in various different

lemmata accordingly. To the end of not providing the definitions of such inte-

grals all at once and avoiding killing the reader’s patience, it has been thought

preferable to define those right before stating each of the lemma concerning

their analysis. Section 5.5 is then devoted to the analysis of the diagonal and

off-diagonal contribution arising from the term contaning no twisting factor,

both for the integer case and for the instance when the coefficients are lin-

early independent over Q. In Section 5.6 we essentially apply the most basic

lemma for bounding oscillatory integrals to four of the terms involved in the

formula at hand. In contrast, the analysis of the integral performed in Sec-

tion 5.7 departs from the preceding one in that the stationary phase method

is instead utilised in conjunction with a more sophisticated process to obtain

conditional stronger bounds, the unconditonal examination of such an integral

only requiring the application of basic lemmata. The investigation of the cor-

responding integrals in Section 5.8 only has its reliance on the aforementioned

basic lemmata, but nonetheless ends up being somewhat more intrincate and

elaborated. The section at hand concludes with the proof of Theorems 5.1.1

and 5.1.2, and Theorem 5.1.3 is discussed and proved in Section 5.9.

5.2 Preliminary lemmata

As a prelude to the analysis of integrals of unimodular functions, it has been

thought convenient to include a sequel of lemmata concerning the estimation

of such integrals which shall be employed henceforth throughout the memoir,

and these we now describe.

Lemma 5.2.1. Let F (x) be a real differentiable function with the property

that F ′(x) is monotonic and either F ′(x) > m > 0 or F ′(x) < −m < 0 in the

interval [α, β]. Then one has ∫ β

α

eiF (x)dx ≤ 4

m
.

Proof. See Titchmarsh [134, Lemma 4.2].

Lemma 5.2.2. Let F (x) and G(x) be real differentiable functions with the

property that G(x)/F ′(x) is monotonic and either F ′(x)/G(x) ≥ m > 0 or
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F ′(x)/G(x) ≤ −m < 0 in the interval [α, β]. Then one has∫ β

α

G(x)eiF (x)dx ≤ 4

m
.

Proof. See Titchmarsh [134, Lemma 4.3].

Lemma 5.2.3. Let F (x) be a real and twice differentiable function with the

property that either F ′′(x) ≥ r > 0 or F ′′(x) ≤ −r < 0 in the interval [α, β].

Then one has ∫ β

α

eiF (x)dx ≤ 8√
r
.

Proof. See Titchmarsh [134, Lemma 4.4].

Lemma 5.2.4. Let F (x) be a real function satisfying the conditions of the

previous lemma and let G(x) be a differentiable function with the property that

G(x)/F ′(x) is monotonic and |G(x)| ≤M . Then,∫ β

α

G(x)eiF (x)dx ≤ 8M√
r
.

Proof. See Titchmarsh [134, Lemma 4.5].

Lemma 5.2.5. Let g(x) be a real function with four derivatives in the interval

[α, β]. Suppose that in addition |g′′(x)| ≥ λ2 > 0 and that there exists some

x0 ∈ [α, β] with the property that g′(x0) = 0. Finally, assume that there exist

constants λ3 and λ4 for which

|g(3)(x)| ≤ λ3, |g(4)(x)| ≤ λ4

with x ∈ [α, β]. Then

∫ β

α

eig(x)dx =
√

2π
eiπ/4+ig(x0)

|g′′(x0)|1/2
+O(R1 +R2),

where

R1 = min
( 1

λ2(x0 − α)
, λ
−1/2
2

)
+ min

( 1

λ2(β − x0)
, λ
−1/2
2

)
and

R2 = (β − α)λ4λ
−2
2 + (β − α)λ2

3λ
−3
2 .
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Proof. See Graham and Kolesnik [46, Lemma 3.4].

It also seems appropiate to consider the function

χ(s) = 2s−1πs sec(sπ/2)Γ(s)−1, (5.2.1)

which as the reader may notice plays a role in the functional equation of ζ(s).

For the integrals containing a twisting factor, the following basic standard

technical lemma concerning the asymptotic expansion of the function χ(s)

will be required.

Lemma 5.2.6. Let s ∈ C. Then, whenever −π+ δ < arg(s) < π− δ for some

fixed δ > 0 one has

χ(s) =
(2π

s

)s−1/2 es

2 cos(sπ/2)

(
1 +O(|s|−1)

)
. (5.2.2)

Consequently, for t > 0 one further has

χ(1/2 + it) =
(2π

t

)it
eit+iπ/4

(
1 +O

(1

t

))
and

χ(1/2− it) =
(2π

t

)−it
e−it−iπ/4

(
1 +O

(1

t

))
as t→∞.

Proof. We recall Stirling’s formula (see [158, Chaps. 12 and 13]), which estab-

lishes the asymptotic relation

log Γ(s) = (s− 1/2) log s− s+
1

2
log 2π +O(|s|−1)

for the range described at the beginning of the statement of the lemma. It

therefore transpires that

Γ(s) =
(s
e

)s(2π

s

)1/2(
1 +O(|s|−1)

)
,

which then yields (5.2.2). In order to compute the second formula it might be

convenient to observe first that

(1/2 + it)−it = e−it log t+πt/2−1/2
(
1 +O(t−1)

)
,
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and that
1

cos
(
(1/2 + it)π/2

) = 2eiπ/4−tπ/2
(
1 +O(t−1)

)
.

Therefore, the above equations in conjunction with (5.2.2) for the choice s =

1/2 + it yields the second statement at hand. The third one is deduced in a

similar way.

5.3 A weak version of the abc-conjecture

As was foreshadowed in the former introduction, giving a short account of why

the classical abc-conjecture implies Conjecture 2 is the purpose of the present

note. To this end, it seems worth stating first such a well-known conjecture.

Conjecture 3. [abc conjecture] Given ε > 0 there exists a constant Cε with

the property that for every triple of pairwise coprime integers (a, b, c) satisfying

a+ b = c, one has that

max(|a|, |b|, |c|) ≤ Cε

( ∏
p|(abc)

p
)1+ε

.

Lemma 5.3.1. Let a, b, c ∈ N be fixed. If Conjecture 3 holds then one has the

inequality

|na1 − nb2nc3| � na−1−ε
1 n−1

2 n−1
3 , n1, n2, n3 ∈ N

whenever the absolute value in the left side of the above equation is non-zero.

Proof. We write

D = na1 − nb2nc3

for convenience and take

λ = gcd(D,na1, n
b
2n

c
3).

Observe that then the triple

(N1, N2, N3) = (na1λ
−1, nb2n

c
3λ
−1, Dλ−1)
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comprises pairwise disjoint integers, whence an application of Conjecture 3

delivers the inequality

N1 ≤ max(N1, N2, |N3|)�
( ∏
p|(N1N2N3)

p
)1+ε

.

It may be worth observing that∏
p|(N1N2N3)

p�
∏

p|(na1nb2nc3Dλ−1)

p =
∏

p|(n1n2n3Dλ−1)

p� n1n2n3|D|λ−1,

whence a combination of the above equations yields the desired conclusion.

5.4 Initial manoeuvres

As was outlined above, we will demonstrate how the problem at hand shall

be reduced to that of computing integrals of products of twisted Dirichlet

polynomials, but before accomplishing such an endeavour it is desirable to

define first

D(s) =
∑

n≤
√
t/2π

1

ns
, (5.4.1)

where s is a complex variable, and

P (t) = D(1/2 + it) + χ(1/2 + it)D(1/2− it) (5.4.2)

for t ∈ R, where χ(s) was defined in (5.2.1).

Lemma 5.4.1. With the above notation, one has

Ia,b,c(T ) =

∫ T

0

P (at)P (−bt)P (−ct)dt+O
(
T 3/4(log T )

)
. (5.4.3)

Proof. We begin by using first the approximate functional equation for the

Riemann Zeta function (see Titchmarsh [134, (4.12.4)]), namely

ζ(1/2 + it) = P (t) +O(t−1/4).
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For the sake of simplicity we further define for n ∈ Z the function

ζn(t) = ζ(1/2 + nit).

By using the above approximation formula one readily sees that

Ia,b,c(T ) =

∫ T

0

P (at)P (−bt)P (−ct)dt+ E(T ),

where the error term E(T ) in the above line satisfies

E(T )� T 1/4 + E1(T ) + E2(T ),

and the terms E1(T ) and E2(T ) are defined by the relations

E1(T ) =

∫ T

1

t−1/2
(
|ζa(t)|+ |ζ−b(t)|+ |ζ−c(t)|

)
dt

and

E2(T ) =

∫ T

1

t−1/4
(
|ζa(t)||ζ−b(t)|+ |ζa(t)||ζ−c(t)|+ |ζ−b(t)||ζ−c(t)|

)
dt.

We use Cauchy’s inequality in conjunction with the asymptotic formula for

the second moment of the Riemman Zeta function (see, for instance Titch-

marsh [134, Theorem 7.3]) to obtain

E1(T )� (log T )1/2
(∫ T

0

|ζ(1/2 + it)|2
)1/2

� T 1/2 log T.

Likewise, integration by parts combined with another application of Cauchy’s

inequality and the aforementioned formula delivers

E2(T )� 1 + T−1/4

∫ T

0

|ζ(1/2 + it)|2 +

∫ T

1

t−5/4

∫ t

0

|ζ(1/2 + is)|2dsdt

� T 3/4 log T +

∫ T

1

t−1/4 log tdt� T 3/4(log T ).

The combination of the above estimates yields the desired result.

In view of the above lemma it transpires that establishing the asymptotic

evaluation which we seek to deliver amounts to compute eight integrals of
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products of twisted Dirichlet polynomials. To the end of not providing the

definitions of such integrals all at once it has been thought preferable to de-

fine those right before stating each of the lemma concerning their analysis.

Nonetheless, we content ourselves by mentioning that we shall write the inte-

gral in (5.4.3) as a sum of six terms, and thus obtain

Ia,b,c(T ) =
6∑
j=1

Ij(T ) +O
(
T 3/4(log T )

)
. (5.4.4)

We also find it desirable anticipating that both I2(T ) and I6(T ) will be the

sum of two integrals both of them symmetric on b and c, the analysis of which

shall not utilise the fact that b ≥ c. As will become apparent shortly, those

terms will depend on a, b, c, but we won’t make such a dependence explicit on

the notation for the sake of concision.

5.5 Diagonal and off-diagonal contribution of

the non-twisted term

As the heading suggests, we devote this section to the analysis of the integral

that contains no twisted factor. It will become apparent that such a term

will both provide the main contribution to the asymptotic formula at hand

and will containt the recalcitrant character of the play earlier mentioned in

the introduction. In order to make progress in such an endeavour, it has

been thought pertinent to introduce first some notation which will be used

henceforth. We write n to denote a triple (n1, n2, n3) ∈ N3, and we consider

the variables

n′1 = n1/
√
a, n′2 = n2/

√
b, n′3 = n3/

√
c, (5.5.1)

and the parameters

Nn = 2πmax(n′21 , n
′2
2 , n

′2
3 ) and Pn = n1n2n3.

We also define for further convenience

T1 = T/2π
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and write

Ba,b,c =
{
n ∈ N3 : n1 ≤

√
aT1, n2 ≤

√
bT1, n3 ≤

√
cT1

}
. (5.5.2)

We consider the aforementioned integral

I1(T ) =

∫ T

0

D(1/2 + ait)D(1/2− bit)D(1/2− cit)dt

=
∑

n∈Ba,b,c

P−1/2
n

∫ T

Nn

(nb2nc3
na1

)it
dt.

We make a distinction between the diagonal contribution, which will amount

to the contribution of triples with the property that na1 = nb2n
c
3, and the off-

diagonal one to obtain

I1(T ) = J1(T ) + J2(T ), (5.5.3)

where in the above equation one has

J1(T ) =
∑

n∈Ba,b,c
na1=nb2n

c
3

(T −Nn)P−1/2
n , J2(T ) =

∑
n∈Ba,b,c
na1 6=nb2nc3

P−1/2
n

∫ T

Nn

(nb2nc3
na1

)it
dt.

(5.5.4)

For ease of notation we may omit writing n ∈ Ba,b,c in the subscripts of the

sums throughout the rest of the chapter. We further recall that the present

section shall focus on the instance when

a < c ≤ b. (5.5.5)

The following proposition will be devoted to the estimation of J2(T ) for the

general case of positive real coefficients.

Lemma 5.5.1. With the above notation one has that

J2(T ) = o(T ).

Proof. As will be apparent shortly, it may seem appropiate to define, for con-

venience, the number

Nb,c = bnb/a2 n
c/a
3 c

for each tuple (n2, n3). We split the corresponding sum into the case when n1
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differs from Nb,c by at least 2, in which case we shall simply integrate and apply

the triangle inequality, and the instance when n1 is close to Nb,c to obtain

J2(T )� J2,1(T ) + J2,2(T ),

where

J2,1(T ) =
∑

|n1−Nb,c|>1

P−1/2
n |log

(
na1/n

b
2n

c
3

)
|−1 (5.5.6)

and

J2,2(T ) =
∑
n2,n3

|n1−Nb,c|≤1

P−1/2
n

∣∣∣ ∫ T

Nn

eit log(nb2n
c
3/n

a
1)dt
∣∣∣. (5.5.7)

We should remark that in the above summation we omitted writing the con-

dition na1 6= nb2n
c
3 for the sake of concission, and take this as an opportunity

to announce that henceforth we shall avoid writing such a restriction in every

sum cognate to the off-diagonal contribution. The reader may find it worth

observing that whenever n1 � Nb,c then

|log
(
nb2n

c
3/n

a
1

)
| � |n

b
2n

c
3 − na1|
nb2n

c
3

and |log
(
nb2n

c
3/n

a
1

)
| � |n

b/a
2 n

c/a
3 − n1|

n
b/a
2 n

c/a
3

.

(5.5.8)

It then transpires that in view of the above relation one may deduce the

estimate

∑
Nb,c/2≤n1<2Nb,c
|n1−Nb,c|>1

n
−1/2
1

|log
(
nb2n

c
3/n

a
1

)
|
�

∑
1<|r|≤Nb,c

N
1/2
b,c

|nb/a2 n
c/a
3 −Nb,c − r|

�
∑

1≤r≤Nb,c

N
1/2
b,c

r
� N

1/2
b,c log T. (5.5.9)

It seems appropiate to denote J2,1,1(T ) the contribution to J2,1(T ) of tuples

in the range considered in the above line. Then, the preceding equation in
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conjuntion with (5.5.6) delivers

J2,1,1(T )� (log T )
∑

nb2n
c
3�Ta/2

n
−1/2
2 n

−1/2
3 N

1/2
b,c

� (log T )
∑

nb2n
c
3�Ta/2

n
−1/2+b/2a
2 n

−1/2+c/2a
3

� T 1/4+a/4b(log T )
∑

n3�Ta/2c
n
−1/2−c/2b
3 � (log T )T 1/4+a/4c � T 3/4,

wherein we used (5.5.5). The reader may also find it worth noting that

whenever n1 is outside of the range considered above then it transpires that

|log
(
na1/n

b
2n

c
3

)
| ≥ K > 0 for some positive constant K, and hence the contribu-

tion of these cases will amount to O(T 3/4). Therefore, the preceding discussion

yields

J2,1(T )� T 3/4. (5.5.10)

We next shift our focus to the analysis of J2,2(T ), it being convenient to

introduce first for each number r ∈ {−1, 0, 1} the sums

J2,2,r(T ) =
∑

n2≤
√
bT1

n3≤
√
cT1

(n2n3)−1/2(Nb,c + r)−1/2
∣∣∣ ∫ T

Nn

eit log
(
nb2n

c
3/(Nb,c+r)

a
)
dt
∣∣∣.

(5.5.11)

We introduce a large but fixed parameter M > 0 and divide the range of

summation to obtain

J2,2,r(T )� F1,r,M(T ) + F2,r,M(T ),

where the above terms are defined by means of the formulas

F1,r,M(T ) =
∑

n2,n3≤M

n
−1/2−b/2a
2 n

−1/2−c/2a
3

1

|log
(
nb2n

c
3/(Nb,c + r)a

)
|
,

and

F2,r,M(T ) = T
∑

max(n2,n3)>M

n
−1/2−b/2a
2 n

−1/2−c/2a
3 .

The reader may find it useful to observe that by summing over n2 and n3
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accordingly, one obtains

F2,r,M(T )� TM1/2−c/2a.

Moreover, it transpires that F1,r,M(T ) does not depend on T , whence there

exists a constant C(M) with the property that

F1,r,M(T ) ≤ C(M).

The preceding discussion then yields

J2,2(T )� TM1/2−c/2a + C(M),

whence on fixing M and letting T →∞ one readily sees that

lim
T→∞

|J2,2(T )|
T

�M1/2−c/2a.

We recall the reader of the condition a < c and let M → ∞ to the end of

deriving the expression J2,2(T ) = o(T ), which in conjunction with the above

analysis yields the desired result.

Lemma 5.5.2. If a, b, c ∈ N the bound

J2(T )� T 3/4 + T 1+1/2c−1/2a

holds unconditionally. If one assumes Conjecture 2 then one further has

J2(T )� T 1/4+3a/4c+ε.

Proof. As a prelude to our discussion we begin by anticipating that we shall

make use of the analysis pertaining to J2,1(T ) in the above lemma and modify

that of J2,2(T ) to the end of deriving sharper estimates under the above as-

sumptions. We divide the range of summation in (5.5.11) in accordance with

(5.5.8) to obtain

J2,2,r(T )� F1(T ) + F2(T ),
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where the above terms are defined by means of the formulas

F1(T ) =
∑

nb2n
c
3≤T

n
b−1/2−b/2a
2 n

c−1/2−c/2a
3 ,

and

F2(T ) = T
∑

nb2n
c
3>T

n
−1/2−b/2a
2 n

−1/2−c/2a
3 .

It may be worth clarifying that in the above analysis we bounded the integral

in (5.5.11) by the inverse of the corresponding logarithm and applied (5.5.8)

subsequently in conjunction with the fact that

|nb2nc3 − na1| ≥ 1,

the same integral appertaining to the second range of summation being esti-

mated by the length of the interval of integration.

Summing over n2 first yields

F1(T )� T 1+1/2b−1/2a
∑

n3≤T 1/c

n
−1/2−c/2b
3 � T 1+1/2c−1/2a.

Likewise, an analogous computation in the same spirit reveals that

F2(T )� T 1+1/2b−1/2a
∑

n3≤T 1/c

n
−1/2−c/2b
3 + T

∑
nc3>T

n
−1/2−c/2a
3 � T 1+1/2c−1/2a,

thus yielding the bound

J2,2,r(T )� T 1+1/2c−1/2a,

whence the above estimate in conjunction with (5.5.7) delivers

J2,2(T )� T 1+1/2c−1/2a,

as desired.

Before making further progress in the proof, some observations shall be

addressed. We find it convenient to draw the reader’s attention to the above

inequalities and point out that the assumption a < min(b, c) was crucially

utilised therein, an analogue argument not being applicable in other circum-
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stances. It is also worth noting that if a = 1 then we may obtain a sharper

estimate which would ultimately deliver an error term O(T 1/4+1/4c) by making

use of the corresponding inequality nb2n
c
3 � T 1/2 in the above setting, such a

refinement not having any impact whatsoever in the overall error term of the

lemma at hand.

The reader may notice that if we further assume Conjecture 2 we can

improve the error term arising from the estimation of J2,2(T ) substantially. To

this end it seems appropiate to note first that such a conjecture yields

∣∣nb2nc3 − (Nb,c + r)a
∣∣� Na−1−ε

b,c n−1
2 n−1

3 , r ∈ {−1, 0, 1}.

We use the previous estimate and (5.5.8) to obtain the bound

∣∣ log
(
(Nb,c + r)a/nb2n

c
3)
∣∣−1 � (Nb,cn2n3)1+ε, r ∈ {−1, 0, 1},

and insert it in (5.5.7) to get

J2,2(T )� T ε
∑

nb2n
c
3�Ta/2

n
1/2+b/2a
2 n

1/2+c/2a
3 � T 1/4+3a/4c+ε

∑
n2�Ta/2b

n
1/2−3b/2c
2

� T 1/4+3a/4c+ε,

as desired, and wherein the above line we used the inequality

1/2− 3b/2c ≤ −1

stemming from (5.5.5).

Equipped with the estimate provided by the above lemma we have ascended

to a position from which to obtain an asymptotic formula for I1(T ) in the

integer case, and this we now provide. It should be noted that this will amount

to computing the contribution stemming from the diagonal term, and thus

requires performing an analysis of a different nature.

Proposition 5.5.1. Let a, b, c ∈ N satisfying (a, b, c) = 1. On recalling

(5.5.4), one has

J1(T ) = σa,b,cT +O
(
(log T )2(T 3/4 + T 3/4−a/4c+(a,c)/2c + T 3/4−a/4b+(a,b)/2b)

)
,
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where σa,b,c > 1 is an explicit constant which shall be defined shortly. Therefore,

the asymptotic formula

I1(T ) = σa,b,cT +R(T ),

where

R(T )� T 1+1/2c−1/2a + (log T )2
(
T 3/4 + T 3/4−a/4c+(a,c)/2c + T 3/4−a/4b+(a,b)/2b

)
,

holds unconditionally . If one further assumes Conjecture 2 then the summand

T 1+1/2c−1/2a in the above error term may be replaced by T 1/4+3a/4c+ε.

Proof. It seems worth recalling (5.5.3) and writing

J1(T ) = σa,b,cT − J3(T )− J4(T ),

where we define

J3(T ) = T
∑

na1=nb2n
c
3

max(n′1,n
′
2,n
′
3)>
√
T1

P−1/2
n , J4(T ) =

∑
n∈Ba,b,c
na1=nb2n

c
3

NnP
−1/2
n , (5.5.12)

wherein the constant σa,b,c is defined by means of the formula

σa,b,c =
∑

na1=nb2n
c
3

P−1/2
n . (5.5.13)

The reader shall rest assured that the convergence of the above series will be

justified promptly. It appears at first glance that a straight substitution of the

identity n1 = n
b/a
2 n

c/a
3 into the corresponding equations thereof already delivers

error terms of the shape O(T 3/4+a/4c). Nonetheless, it seems appropiate to

remark that such an approach does not further exploit the property of the

product nb2n
c
3 at hand being a perfect a-th power. To remedy this situation

and obtain an estimate superior to that stemming from the aforementioned

cheap analysis, say of the shapeO
(
T 3/4(log T )2

)
, it has been thought preferable

to parametrize the equation at hand in a suitable manner, and this we now

describe.
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To this end, some notation will be required. We write

a2 = a/(a, b), b2 = b/(a, b), (5.5.14)

a3 = a/(a, c), c3 = c/(a, c), A =
a

(a, b)(a, c)
.

It might be worth noting that the property of the parameter A being an integer

stems from the coprimality condition (a, b, c) = 1. We begin by analysing first

the instance when a2 6= 1 6= a3. The main idea underlying the parametrization

process will have its reliance on the classification of the divisors d|n2 (and

similarly for n3) according to whether the number db shall or not be a perfect

a-th power. It may be appropiate to momentarily pause our explanation and

clarify that such a condition amounts to the number d being a perfect a2-th

power. If instead d does not satisfy such a priviledge, some divisibility relation

between both d and n3 should then hold, and exploiting such a dependence

among the divisors of both n2 and n3 shall ultimately lead to sharper estimates.

In order to put these ideas into effect we begin by writing, as we may,

n2 = ra22

a2−1∏
u=1

duu, n3 = ra33

a3−1∏
v=1

f vv ,

where du and fv denote squarefree numbers with the property that (du1 , du2) =

1 whenever u1 6= u2 and similarly for fv. In view of the above definitions, we

find it convenient to note that a - ub whenever 1 ≤ u ≤ a2 − 1. It might

as well be noteworthy to observe that for fixed u satisfying the above line of

inequalities, there is a unique solution to the congruence

ub+ αuc ≡ 0 (mod a), 1 ≤ αu ≤ a3 − 1.

By the preceding discussion it transpires that for fixed u then there is some

1 ≤ v ≤ a3 − 1 satisfying fv = du with v = αu as above, a concomitant aspect

of the coprimality condition (a, b, c) = 1 being that (a, c)|u and (a, b)|αu. The

reader may find it desirable to observe that an analogous argument may be

employed to deduce, for v, the existance of some 1 ≤ u ≤ a2 − 1 with the

property that du = fv. Therefore, we have thus far reached a position from

which to assure that one may parametrize the triples satisfying the equation
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at hand by means of the relations

n1 = rb22 r
c3
3 Pd, n2 = ra22

A−1∏
j=1

d
j(a,c)
j , n3 = ra33

A−1∏
j=1

d
αj(a,b)
j , (5.5.15)

where we defined for convenience

Pd =
A−1∏
j=1

d
(bj(a,c)+cαj(a,b))/a
j , Md =

A−1∏
j=1

d
j(a,c)+αj(a,b)
j , (5.5.16)

the latter parameter being introduced for prompt convenience and wherein

jb2 + αjc3 ≡ 0 (mod A), 1 ≤ j ≤ A− 1, 1 ≤ αj ≤ A− 1.

Combining the above equations one then finds that

σa,b,c =
∑
r2,r3

r
−(a2+b2)/2
2 r

−(a3+c3)/2
3

∑
d

P
−1/2
d M

−1/2
d ,

where d runs over the tuples described above, the convergence of the series

being justified by the inequalities a2+b2 ≥ 3 and a3+c3 ≥ 3 in conjunction with

the fact that the exponents cognate to the corresponding factors dj involved

in the above sum are smaller than or equal to −2.

We will first analyse the term J3(T ). It might be worth noting that in view

of (5.5.5) and the underlying equation satisfied by the triple n then one has

n′1 = max(n′1, n
′
2, n

′
3), whence in the analysis of J3(T ) it is always the case that

n1 >
√
aT1. We then plug the above parametrization into (5.5.12) and sum

over r2 first to obtain

J3(T ) =T
∑

r
b2
2 r

c3
3 Pd≥

√
aT1

r
−(a2+b2)/2
2 r

−(a3+c3)/2
3 P

−1/2
d M

−1/2
d

�T 3/4−a2/4b2+1/2b2
∑

r
c3
3 Pd≤

√
aT1

P
−1/b2+a2/2b2
d r

−a3/2+c3a2/2b2−c3/b2
3 M

−1/2
d

+ T
∑

r
c3
3 Pd≥

√
aT1

r
−(a3+c3)/2
3 P

−1/2
d M

−1/2
d . (5.5.17)

In order to bound the first summand, which we denote by J3,1(T ) for con-
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venience, it might be worth considering first the case when

−a3/2 + c3a2/2b2 − c3/b2 > −1. (5.5.18)

Under such circumstances, it transpires that

J3,1(T )� T 3/4−a3/4c3+1/2c3
∑

Pd≤
√
aT1

P
−1/c3+a3/2c3
d M

−1/2
d . (5.5.19)

The reader may find it desirable to observe that the exponent of the factor d1

involved in the term M
−1/2
d is at most −1, the exponents appertaining to the

rest of the factors being at most −3/2. It also seems appropiate to note that

in the above sum then

P
−1/c3+a3/2c3
d � 1 + T−1/2c3+a3/4c3 .

It shall be noted that the previous estimate encompasses the cases when the

exponent cognate to the term of the left side is both non-negative and negative.

The preceding discussion then yields

J3,1(T )� T 3/4−a/4c+1/2c3(log T ) + T 3/4(log T ). (5.5.20)

If, on the contrary, condition (5.5.18) does not hold then

J3,1(T )� T 3/4−a2/4b2+1/2b2(log T )
∑

Pd≤
√
aT1

P
−1/b2+a2/2b2
d M

−1/2
d ,

and an argument reminiscent of the above yields

J3,1(T )� T 3/4(log T )2 + T 3/4−a/4b+1/2b2(log T )2. (5.5.21)

It might be pertinent to clarify that the extra factor of (log T ) has been added

to encompass the case when the left side of (5.5.18) is −1 as well.

Likewise, we denote by J3,2(T ) to the second summand of (5.5.17). An
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analogous argument to the one employed to bound J3,1(T ) then reveals that

J3,2(T )�T 3/4−a3/4c3+1/2c3
∑

Pd≤
√
aT1

P
−1/c3+a3/2c3
d M

−1/2
d

+ T
∑

Pd≥
√
aT1

P
−1/2
d M

−1/2
d .

It seems appropiate to note that in the first summand of the above equation

one has

P
−1/c3+a3/2c3
d � 1 + T−1/2c3+a3/4c3 ,

whilst in the second one it transpires that

P
−1/2
d � T−1/4.

Therefore, the above observations in conjunction with the discussion following

(5.5.19) yield the bound

J3,2(T )� T 3/4(log T ) + T 3/4−a/4c+1/2c3(log T ),

a combination of the preceding estimates delivering

J3(T )� T 3/4(log T )2+T 3/4−a/4c+1/2c3(log T )+T 3/4−a/4b+1/2b2(log T )2 (5.5.22)

as desired.

We next focus our attention on the term J4(T ) in (5.5.12). We shall use the

parametrization employed in the analysis of J3(T ) herein as well, and announce

that the argument on this occasion will be morally equivalent. Then, as was

noted above, one necessarily has that the tuples involved in the sum in the

definition of J4(T ) have the property that n1 ≥ max(n2, n3), whence

J4(T )�
∑

r
b2
2 r

c3
3 Pd≤

√
aT1

r
(3b2−a2)/2
2 r

(3c3−a3)/2
3 P

3/2
d M

−1/2
d ,
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Summing over r2 first we find that

J4(T )� T 3/4−a2/4b2+1/2b2
∑

r
c3
3 Pd≤

√
aT1

r
a2c3/2b2−c3/b2−a3/2
3 P

a2/2b2−1/b2
d M

−1/2
d

= J3,1(T ),

where the reader may find it useful to recall that J3,1(T ) denoted the first

summand in the equation (5.5.17). Consequently, (5.5.20) in conjunction with

(5.5.21) and the above line of inequalities yields

J4(T )� T 3/4(log T )2 + T 3/4−a/4b+1/2b2(log T )2 + T 3/4−a/4c+1/2c3(log T ),

as required, and concludes the proof thereof.

If instead either a2 = 1 or a3 = 1 then the parametrization of the underlying

equation will then be

n2 = ra22 , n3 = ra33 ,

whence an insightful inspection of the above proof reveals that one may follow

the same argument to reach an analogous conclusion.

We complete this section with an application of Baker’s theorem on linear

forms in logarithms to discard the existence of non-trivial diagonal solutions

of the underlying equation whenever the coefficients are linearly independent

over Q, thereby delivering the conclusion I1(T ) ∼ T for such cases.

Proposition 5.5.2. Let a, b, c ∈ R \ {0} be algebraic numbers linearly inde-

pendent over Q. Then there are no solutions to the equation

na1 = nb2n
c
3, n1, n2, n3 ∈ N, (n1, n2, n3) 6= (1, 1, 1). (5.5.23)

Consequently, one has that

I1(T ) ∼ T.

Proof. The second statement follows from the first by recalling (5.5.3) and

(5.5.4) and noting that then

J1(T ) = T − 2π,
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which in conjunction with Lemma 5.5.1 delivers the desired result.

We shift our focus to the first assertion then and begin by assuming the

existence of a triple (n1, n2, n3) with the above property. In particular, this en-

tails the linearly dependence of log n1, log n2, log n3 and 2πi over the algebraic

numbers. Therefore, an application of Baker’s theorem already establishes

the linearly dependence over Q, which in turn yields the existence of rational

numbers r1, r2, r3 ∈ Q satisfying

nr11 = nr22 n
r3
3 .

We may assume without loss of generality that r1 6= 0. Moreover, an exami-

nation of (5.5.23) and the preceding equation reveals that

(n2, n3) 6= (1, 1). (5.5.24)

Therefore, combining both of the equations then delivers the relation

n
b/a−r2/r1
2 n

c/a−r3/r1
3 = 1. (5.5.25)

It seems pertinent to observe that in view of the linear independence over the

rationals of the coefficients a, b, c then the exponents in the above line are non-

zero. It therefore transpires by (5.5.24) and the preceding observation that

then

n2 6= 1 6= n3.

We apply, as we may, Baker’s theorem again to obtain a rational number

r4 ∈ Q having the property

nr42 = n3.

Combining the above line with that of (5.5.25) yields an equality between the

corresponding exponents, namely,

b+ cr4 =
(r4r3 + r2

r1

)
a,

which contradicts the linear independence of the coefficients.
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5.6 Simple bounds for integrals of unimodular

functions

The following lines will be devoted to provide estimates for some of the integrals

involved in the main term of (5.4.4) and pertaining to both Theorems 5.1.1,

5.1.2 and 5.1.3 via a straightforward application of Lemma 5.2.1. The results

in this section shall be obtained for positive real coefficients a, b, c > 0. For

the purpose of making further progress it seems appropiate to define, for pairs

of positive real numbers r, s > 0 the integral

Y2,r,s(T ) =

∫ 1

0

D(1/2 + ait)D(1/2 + irt)D(1/2− ist)χ(1/2− irt)dt.

Equipped with this definition we consider

I2(T ) = Y2,b,c(T ) + Y2,c,b(T ). (5.6.1)

Likewise, we further define the pairs of functions

f3(t) = D(1/2 + ait)

and

f4(t) = χ(1/2 + ait)D(1/2− ait),

and the integral

Ij(T ) =

∫ T

0

D(1/2+bit)D(1/2+cit)χ(1/2−bit)χ(1/2−cit)fj(t)dt, j ∈ {3, 4}.

We should note that in the next sequel of lemmata we further assume that

a ≤ c for future use despite not being required for the proof of Theorems 5.1.1

and 5.1.2.

Lemma 5.6.1. Let a, r, s > 0 be real numbers with the property that min(r, s) ≥
a. Then

Y2,r,s(T )� T 3/4(log T ).

Moreover, whenever a ≤ c ≤ b one has

max
(
I2(T ), I3(T ), I4(T )

)
� T 3/4(log T ).
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Proof. We begin our proof by analysing first Y2,r,s(T ). We use the approxima-

tion formula for χ(1/2 − rit) contained in Lemma 5.2.6 to express the above

integral as

Y2,r,s(T ) = e−iπ/4
∑

n∈Ba,r,s

P−1/2
n

∫ T

Nn

eiF2(t)dt+O(T 3/4 log T ),

where the function F2(t) is defined by

F2(t) = rt log rt− rt(log 2π + 1)− t log(na1n
r
2/n

s
3).

It also seems appropiate to differentiate the above function and recall (5.5.1)

to obtain

F ′2(t) = r log t+
s

2
log s− a

2
log a+

r

2
log r − r log 2π − log(n′a1 n

′r
2 /n

′s
3 ).

The reader may find it useful to observe that then F ′2(t) is an increasing func-

tion. In view of the fact that r ≥ a, it then transpires that

F ′2(Nn) ≥(r − a) log
(

max(n′1, n
′
2, n

′
3)
)

+
r

2
log r − a

2
log a,

whence by monotonicity the same holds in the interval [Nn, T ]. Note that for

triples (n1, n2, n3) bounded by a fixed constant then the corresponding contri-

bution to Y2,r,s(T ) would then be O(T 1/2) by Lemma 5.2.3. For triples with

one of the components being large enough then an application of Lemma 5.2.1

suffices to deduce that the cognate integral is O(1). The preceding discussion

yields

Y2,r,s(T )� T 3/4 log T +
∑

n∈Ba,r,s

P−1/2
n � T 3/4 log T,

which delivers the first part of the statement. It might be worth noting that

recalling (5.6.1) and applying the estimates for Y2,b,c(T ) and Y2,c,b(T ) obtained

herein one gets

I2(T )� T 3/4(log T ).

As earlier mentioned, the term I3(T ) will exhibit a similar behaviour,

whence in the interest of not repeating ourselves we will try to be as expe-

ditious as possible. We employ the approximation formula in Lemma 5.2.6 to
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obtain

I3(T ) = −i
∑

n∈Ba,b,c

P−1/2
n

∫ T

Nn

eiF3(t)dt+O(T 3/4 log T ),

where the function F3(t) is defined by the equation

F3(t) = bt log bt+ ct log ct− (b+ c)t(log 2π + 1)− t log(na1n
b
2n

c
3).

As was noted above, it might be convenient to compute its derivative

F ′3(t) = (b+ c) log t+ b log b+ c log c− (b+ c) log 2π − log(na1n
b
2n

c
3).

We observe that then F ′3(t) is monotonic and

F ′3(Nn) ≥ (b+ c− a) log
(

max(n′1, n
′
2, n

′
3)
)

+
b

2
log b+

c

2
log c− a

2
log a

in the interval of integration at hand, wherein the reader may find it useful to

recall (5.5.1), whence in a similar fashion as above, Lemmata 5.2.1 and 5.2.3

yield

I3(T )� T 3/4 log T.

In order to estimate I4(T ) we use as customary the corresponding approx-

imation formulae in Lemma 5.2.6 to obtain

I4(T ) = e−iπ/4
∑

n∈Ba,b,c

P−1/2
n

∫ T

Nn

eiF4(t)dt+O(T 3/4 log T ),

where the function F4(t) is defined by

F4(t) = bt log bt+ ct log ct− at log at− (b+ c− a)t(log 2π+ 1)− t log(nb2n
c
3/n

a
1),

and its derivative,

F ′4(t) = (b+c−a) log t+b log b+c log c−a log a−(b+c−a) log 2π−log(nb2n
c
3/n

a
1).

We observe that then F ′4(t) is monotonic and

F ′4(Nn) ≥ (b+c−2a) log
(

max(n′1, n
′
2, n

′
3)
)
+a log n′1+

b

2
log b+

c

2
log c− a

2
log a,
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whence Lemmata 5.2.1 and 5.2.3 then yield

I4(T )� T 3/4 log T,

as desired.

5.7 A refinement assuming Conjecture 2 via

the stationary phase method

The investigation of the integral I5(T ), which shall be defined promptly, is

slightly more intrincate and different in nature from the previous ones. It seems

appropiate to assure the reader that the analysis involved in this section will

be both unconditional and conditional, as opposed to what the above heading

may have probably suggested. By proceeding in a routinary manner we shall

ascend to a position from which an application of Lemmata 5.2.1 and 5.2.3 will

already suffice to obtain sufficiently strong unconditional bounds. Nonetheless,

an estimate superior to that obtained in the unconditional analysis can be

pursued via the stationary phase method if one further assumes Conjecture 2,

and this we have included in the discussion. We consider then, for convenience

I5(T ) =

∫ T

0

D(1/2− ait)D(1/2− bit)D(1/2− cit)χ(1/2 + ait)dt,

and gather the unconditional work done concerning the estimation of such a

term in the following lemma.

Lemma 5.7.1. Let a ≤ c ≤ b with a, b, c ∈ R+ and let I5(T ) be defined as

above. Then the estimate

I5(T )� T 3/4+a/4c

holds unconditionally.

Proof. We begin the discussion by employing as customary Lemma 5.2.6 to

approximate χ(1/2 + ait) and express the above term as

I5(T ) = eiπ/4
∑

n∈Ba,b,c

P−1/2
n

∫ T

Nn

eiF5(t)dt+O(T 3/4 log T ), (5.7.1)
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where the function F5(t) is defined by the relation

F5(t) = −at log at+ at(log 2π + 1) + t log(na1n
b
2n

c
3).

We find it desirable to compute its derivative

F ′5(t) = −a log t− a log a+ a log 2π + log(na1n
b
2n

c
3), (5.7.2)

whence on denoting cn = 2πn1n
b/a
2 n

c/a
3 /a it transpires that F ′5(cn) = 0. We

apply Lemmata 5.2.1 and 5.2.3 in conjunction with Lemma 5.2.5 to the integral

in (5.7.1) to obtain

I5(T ) =2πia−1
∑

Nn≤cn≤T

n
b/2a−1/2
2 n

c/2a−1/2
3 e(n1n

b/a
2 n

c/a
3 /a) (5.7.3)

+O
( ∑
Nn/2≤cn≤2Nn

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

))
+O

( ∑
T/2≤cn≤2T

P−1/2
n min

(
|F ′5(T )|−1, T 1/2

))
+O(T 3/4).

The reader shall rest assured that further details about such an application

will be delivered promptly. It may first be useful to observe that in the pre-

ceding lines we implicitly applied Lemma 5.2.5 for the range 2Nn ≤ cn ≤ T/2

to the integral ∫ 2cn

cn/2

eiF5(t)dt

and estimate the remaining parts of the integral in (5.7.1) employing Lemma

5.2.1. Observe that then the error term arising from such remaining parts

is O(1). Likewise, if Nn ≤ cn < 2Nn and cn ≤ T/2 then Lemma 5.2.5 is

applied with the choices α = Nn and β = 2cn. If instead T/2 < cn ≤ T and

2Nn ≤ cn then the latter lemma shall be employed by taking α = cn/2 and

β = T . If on the contrary one has 4Nn > T then α = Nn and β = T will

suffice to obtain the desired result. Finally, whenever either Nn/2 ≤ cn < Nn

or T < cn ≤ 2T then a combination of both Lemmata 5.2.1 and 5.2.3 will

provide a contribution which will be absorbed in the error term of the above

equation.

We focus our attention on the main term of (5.7.3), which we denote by
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P (T ). By bounding the exponential sum on P (T ) trivially we then find that

P (T )�
∑

n
b/a
2 n

c/a
3 �T

n
b/2a−1/2
2 n

c/2a−1/2
3 min

(
T 1/2, Tn

−b/a
2 n

−c/a
3

)
� P1(T ) + P2(T ),

where

P1(T ) = T 1/2
∑

n
b/a
2 n

c/a
3 ≤

√
cT1

n
b/2a−1/2
2 n

c/2a−1/2
3 ,

and

P2(T ) = T
∑

n
b/a
2 n

c/a
3 >

√
cT1

n
−b/2a−1/2
2 n

−c/2a−1/2
3 .

We shall begin our investigation examining first P1(T ). Summing over n3 we

obtain

P1(T )� T 3/4+a/4c
∑

n2≤(cT1)a/2b

n
−1/2−b/2c
2 � T 3/4+a/4c. (5.7.4)

Likewise, by summing first over n2 for convenience in the equation defining

P2(T ) we have

P2(T )� T
∑

n
c/a
3 >

√
cT1

n
−c/2a−1/2
3 + T 3/4+a/4b

∑
n
c/a
3 ≤

√
cT1

n
−1/2−c/2b
3 � T 3/4+a/4c.

(5.7.5)

It is worth noting that whenever a = c then one always has n3 ≤
√
cT1,

whence in this particular instance there is no first summand on the right side

of the above equation. We find it desirable to stress that this is the only point

in the proof wherein the fact that a = c could have added an extra factor of

log T had we not made a suitable division of the sum pertaining to P (T ), the

rest of the arguments in the proof being valid for both of the situations at

hand.

The reader may observe that the above argument could have been employed

after a straight application of Lemmata 5.2.1 and 5.2.3. We invoked Lemma

5.2.5 herein because one may obtain non-trivial cancellation when averaging

over the triples n if one further assumes Conjecture 2, and this will be pursued

in a subsequent lemma.

In order to bound the first error term in (5.7.3), we find it convenient to

denote Ei(T ) to the contribution to the sum in the aforementioned error term
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of tuples satifying n′i = max(n′1, n
′
2, n

′
3) respectively for each 1 ≤ i ≤ 3. It

seems appropiate to begin our discussion analysing E1(T ). To this end we

define, for each (n2, n3), the parameter N1 = n
b/a
2 n

c/a
3 . We note for further use

that using this notation then the range of summation Nn/2 ≤ cn ≤ 2Nn in

the first error term of (5.7.3) is equivalent to n1/2 ≤ N1 ≤ 2n1, and that on

recalling (5.7.2) one has that

F ′5(Nn) = a logN1 − a log n1.

We apply the same argument as the one deployed in (5.5.9) and the subsequent

equations to deduce

∑
N1/2≤n1≤2N1

|n1−N1|>1

n
−1/2
1

|log
(
N1/n1

)
|
�

∑
1≤r≤N1

N
1/2
1

r
� N

1/2
1 logN1.

We note that min
(
|F ′5(Nn)|−1, N

1/2
n

)
� N

1/2
1 if |n1 − N1| ≤ 1 and combine

such an observation with the preceding discussion to obtain∑
n2,n3

∑
N1/2≤n1≤2N1

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

)
� (log T )

∑
N1≤2

√
aT1

n
−1/2
2 n

−1/2
3 N

1/2
1 � T 1/4(log T )

∑
n2≤
√
bT1

n3≤
√
cT1

n
−1/2
2 n

−1/2
3

� T 3/4(log T ).

The reader may note that for n1 outside of the range considered above then

|F ′5(Nn)|−1 � 1, whence the contribution to the above sum arising from such

tuples is O(T 3/4), and hence

E1(T )� T 3/4 log T.

We next focus on the term E2(T ). It seems appropiate to observe first that

when b ≥ 2a then in view of (5.7.2) one has

F ′5(Nn) = log(na1n
b−2a
2 nc3) + a log(b/a).

It therefore transpires that whenever either n1 or n3 are sufficiently large then
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one may bound such a contribution to E2(T ) by O(T 3/4), the instance when

both of the entries are bounded being estimated by means of the trivial ob-

servation N
1/2
n � T 1/2, which in turns yields the bound O(T 3/4) for such a

contribution. Suffices it then to consider the case b < 2a. To this end it seems

worth defining for each (n1, n3) the parameter

N2 = n
a/(2a−b)
1 n

c/(2a−b)
3 (b/a)a/(2a−b).

We write C = 2a/(2a−b) and denote

IN2 = [C−1N2, CN2],

the assertion that n2 ∈ IN2 being then equivalent to the inequalities

Nn/2 ≤ cn ≤ 2Nn.

We now apply the same argument as above to get the estimate∑
n1,n3

∑
n2∈IN2
|n2−N2|>1

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

)
� (log T )

∑
N2�

√
T

n
−1/2
1 n

−1/2
3 N

1/2
2 � T 3/4(log T ). (5.7.6)

The reader may find it worth observing that the restriction on N2 in the above

inequality stems from the fact that

N2 � n2 ≤
√
bT1.

Again, whenever n2 is outside of this range then |F ′5(Nn)|−1 � 1, whence

by the preceding discussion we get

E2(T )� T 3/4 log T.

The term E3(T ) is analogous to E2(T ), whence a similar analysis delivers

E3(T )� T 3/4(log T ).

We finally analyse the last error term in (5.7.3), and find it desirable to
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announce that the nature of the discussion will not be dissimilar to the pre-

ceding one. We begin by noting for convenience that whenever T/2 ≤ cn ≤ 2T

then T 1/2 � n
b/a
2 n

c/a
3 � T. We consider Λ1 = aT1n

−b/a
2 n

−c/a
3 and observe as is

customary that the inequality T/2 ≤ cn ≤ 2T is equivalent to

Λ1/2 ≤ n1 ≤ 2Λ1.

It transpires that for each pair (n2, n3) then the same arguments utilised on

previous occasions deliver

∑
Λ1/2≤n1≤2Λ1

|n1−Λ1|>1

n
−1/2
1 |F ′5(T )|−1 �

∑
0<r≤Λ1

Λ
1/2
1

r
� Λ

1/2
1 (log T ).

We also note, for convenience, that

n
−1/2
1 min

(
|F ′5(T )|−1, T 1/2

)
� T 1/2Λ

−1/2
1

when |n1−Λ1| ≤ 1. Then, combining the above discussion with the observation

that the constraint n1 ≤
√
aT1 and the condition |n1−Λ1| ≤ 1 yields Λ1 � T 1/2

and Λ
1/2
1 � T 1/2Λ

−1/2
1 , we obtain∑

n2,n3

n
−1/2
2 n

−1/2
3

∑
Λ1/2≤n1≤2Λ1

n
−1/2
1 min

(
|F ′5(T )|−1, T 1/2

)
� T 1/2(log T )

∑
nb2n

c
3�Ta

n
−1/2
2 n

−1/2
3 Λ

−1/2
1

� (log T )
∑

nb2n
c
3�Ta

n
−1/2+b/2a
2 n

−1/2+c/2a
3 � (log T )T 1/2+a/2b

∑
n3≤
√
cT1

n
−1/2−c/2b
3

� T 3/4+(2a−c)/4b(log T )2 � T 3/4+a/4c.

The preceding discussion in conjunction with (5.7.4) and (5.7.5) then delivers

the desired conclusions.

Lemma 5.7.2. Let a, b, c ∈ N with the property that a < c ≤ b and let I5(T )

be defined as above. Assuming Conjecture 2 one further has

I5(T )�T 3/4(log T )2 + T 3/4+(2a−c)/4b(log T )2 + T 3/4−a/4b+1/2b2(log T )2

+ T 3/4−a/4c+1/2c3(log T ) + T 1/2+a/(a+c)+ε.
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Proof. We should note that the analysis of I5(T ) under the assumption of

Conjecture 2 will follow the same line of argumentation as in the above lemma,

the only difference in the proof having its reliance on the analysis of the main

term P (T ) in (5.7.3), and this we now pursue.

We denote for convenience by M1(T ) to the contribution to the main term

P (T ) of tuples with the property that n
b/a
2 n

c/a
3 /a is not an integer. Likewise, let

K1(T ) be the contribution of tuples for which n
b/a
2 n

c/a
3 /a is a natural number.

Note first that the sum over n1 is a sum of a geometric progression, whence

M1(T )�
∑

n
b/a
2 n

c/a
3 �T

n
b/2a−1/2
2 n

c/2a−1/2
3 min

(∥∥∥a−1n
b/a
2 n

c/a
3

∥∥∥−1

,
T

n
b/a
2 n

c/a
3

)
.

In order to progress in the estimation it might be worth considering a natural

number Mb,c with the property that

|nb2nc3 −Ma
b,c|

is minimised. We denote for further convenience D = nb2n
c
3 −Ma

b,c. Then one

may apply the mean value theorem to obtain∥∥∥nb/a2 n
c/a
3

∥∥∥ = |(Ma
b,c +D)1/a −Mb,c| � DM1−a

b,c ,

whence the inequality

|D| �Ma−1−ε
b,c (n2n3)−1,

which in turn is a consequence of Conjecture 2, yields the estimate

|(Ma
b,c +D)1/a −Mb,c| � (n2n3)−1−ε,

which delivers ∥∥∥a−1n
b/a
2 n

c/a
3

∥∥∥−1

� (n2n3)1+ε.

Combining (5.7.3) and the preceding discussion one gets

M1(T )�
∑

n
b/a
2 n

c/a
3 �T1

n
b/2a−1/2
2 n

c/2a−1/2
3 min

(
(n2n3)1+ε,

T

n
b/a
2 n

c/a
3

)
.

We shall divide the sum into parts for convenience. We denote by M1,1(T )
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to the contribution to M1(T ) of tuples satisfying na+b
2 na+c

3 ≤ T a. Then one has

that

M1,1(T )� T ε
∑

na+b2 na+c3 ≤Ta
n

1/2+b/2a
2 n

1/2+c/2a
3

� T (b+3a)/2(a+b)+ε
∑

n3≤Ta/(a+c)
n
−(a+c)/(a+b)
3 � T 1/2+a/(a+c)+ε.

Likewise, let M1,2(T ) denote the contribution to M1(T ) of tuples with the

property that T a < na+b
2 na+c

3 . Then one readily sees that

M1,2(T )� T
∑

Ta<na+b2 na+c3

n
−1/2−b/2a
2 n

−1/2−c/2a
3

� T 1+(a−b)/2(a+b)
∑

n3≤Ta/(a+c)
n
−(a+c)/(a+b)
3 + T

∑
Ta/(a+c)<n3

n
−1/2−c/2a
3

� T 1/2+a/(a+c).

Next we turn to analyse the term K1(T ) and write for convenience

K1(T ) = K1,1(T ) +K1,2(T ),

where K1,1(T ) is defined as the corresponding sum over the tuples satisfying

n
b/a
2 n

c/a
3 ≤ aT

1/2
1 , and in K1,2(T ) we sum over tuples with the property that

n
b/a
2 n

c/a
3 > aT

1/2
1 . Then in view of (5.7.3) one has

K1,1(T )� T 1/2
∑

(an1)a=nb2n
c
3

n1≤
√
T1

n
1/2
1 n

−1/2
2 n

−1/2
3 .

The reader may find it useful to recall (5.5.14) and note that we have reached

a position from which to utilise the parametrization (5.5.15), whence following

an analogous argument of the flavour of those displayed therein enables one to

obtain

K1,1(T )� T 1/2
∑

r
b2
2 r

c3
3 Pd≤a

√
T1

r
(b2−a2)/2
2 r

(c3−a3)/2
3 P

1/2
d M

−1/2
d ,
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Summing over r2 first we find that

K1,1(T )� T 3/4−a2/4b2+1/2b2
∑

r
c3
3 Pd≤a

√
T1

r
a2c3/2b2−c3/b2−a3/2
3 P

a2/2b2−1/b2
d M

−1/2
d

� J3,1(a3T ),

wherein we recall to the reader that J3,1(T ) was defined as the first summand

in the last line of inequalities in (5.5.17). Consequently, (5.5.20) in conjunction

with (5.5.21) and the preceding equation yields

K1,1(T )� T 3/4(log T )2 + T 3/4−a/4b+1/2b2(log T )2 + T 3/4−a/4c+1/2c3(log T ),

as required.

Likewise, one has that

K1,2(T )� T
∑

(an1)a=nb2n
c
3

n1>
√
T1

n
−1/2
1 n

−1/2
2 n

−1/2
3 � J3(T ),

where J3(T ) was defined in (5.5.12). Consequently, combining (5.5.22) and the

preceding line delivers

K1,2(T )� T 3/4(log T )2 + T 3/4−a/4c+1/2c3(log T ) + T 3/4−a/4b+1/2b2(log T )2

and

P (T )�T 1/2+a/(a+c)+ε + T 3/4(log T )2 + T 3/4−a/4c+1/2c3(log T )

+ T 3/4−a/4b+1/2b2(log T )2.

The desired result will follow combining the above estimates with the ones

from Lemma 5.7.1.
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5.8 An intermediate estimate and proof of The-

orem 5.1.1

We find it desirable to note, as was anticipated in the introduction of the chap-

ter, that the difficulty of the analysis of the terms I6(T ), which shall be defined

shortly, may be regarded in between that of I5(T ) and the one performed in

Lemma 5.6.1. Whislt Lemma 5.6.1 essentially required a straighforward ap-

plication of Lemma 5.2.1, the examination of I5(T ) entailed employing a sta-

tionary phase method type lemma of the strength of that of Lemma 5.2.5 for

the purpose of exploiting the extra cancellation stemming from the averaging

of the main term when assuming Conjecture 2. In contrast, the application

of Lemmata 5.2.1 and 5.2.3, as shall be shewn promptly, will already suffice

to obtain a suitable bound for the term I6(T ). Without further delay, we an-

nounce that the results in this section shall be obtained under the assumption

a, b, c ∈ R+ and define I6(T ) by means of the sum

I6(T ) = Y6,b,c(T ) + Y6,c,b(T ), (5.8.1)

where for tuples (r, s) ∈ R2
+ the above summands are

Y6,r,s(T ) =

∫ T

0

D(1/2−ait)D(1/2+rit)D(1/2−sit)χ(1/2+ait)χ(1/2−rit)dt.

Lemma 5.8.1. Let r, s ∈ R2
+ such that r > a and s ≥ a. Then one has

Y6,r,s(T )� T 5/4−r/4a(log T )τ + T 3/4(log T ),

wherein τ = 1 if s = a and τ = 0 if s > a. In particular, it transpires that

I6(T )� T 5/4−c/4a + T 3/4(log T )

whenever a < c ≤ b.

Proof. The approximation formulae for χ(1/2−rit) and χ(1/2+ait) in Lemma

5.2.6 then yield

Y6,r,s(T ) =
∑

n∈Ba,b,c

P−1/2
n

∫ T

Nn

eiF6(t)dt+O(T 3/4 log T ), (5.8.2)
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where the function F6(t) is defined by

F6(t) = (r− a)t log t+ rt log r− at log a− (r− a)t(log 2π+ 1) + t log(na1n
s
3/n

r
2),

and its derivative,

F ′6(t) = (r − a) log t+ r log r − a log a− (r − a) log 2π + log(na1n
s
3/n

r
2).

We may discard first the case Nn = 2πn2
1/a, since then

F ′6(Nn) ≥ (r − a) log n′1 + s log n′3

and a customary application of Lemmata 5.2.1 and 5.2.3 would yield the con-

clusion that the contribution to (5.8.2) corresponding to tuples satisfying such

a condition is O(T 3/4). If instead Nn = 2πn2
3/s then

F ′6(Nn) ≥ (r + s− 2a) log n′3 + a log n′1,

and an analogous application of Lemmata 5.2.1 and 5.2.3 would imply that that

the contribution to (5.8.2) corresponding to tuples satisfying such a condition

is O(T 3/4).

If Nn = 2πn2
2/r and r ≥ 2a then an analogous argument reveals that

F ′6(Nn) ≥ log(na1n
s
3) + a log(r/a).

The analysis when a < r < 2a requires some extra reasoning. We define for

convenience the parameter cn = 2π
(
aar−rnr2n

−a
1 n−s3

)1/(r−a)
, which the reader

may check that satisfies F ′6(cn) = 0. It seems worth noting that applying

Lemma 5.2.3 one may deduce that the integral over [Nn, T ] ∩ [cn/2, 2cn] is

O(c
1/2
n ). Likewise, the integral over the complement of the latter intersection

in [Nn, T ] would then be O(1) by Lemma 5.2.1. It may also seems appropiate

to remark that were the previous intersection non-empty then one would have

cn � T,

which would in turn imply the inequality

n2 ≤ Cn
a/r
1 n

s/r
3 T 1−a/r (5.8.3)
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for some constant C > 0. We find it desirable to denote by M6(T ) to the contri-

bution of such intersections to Y6,r,s(T ). We further divide such a contribution

into the one corresponding to tuples with the property that

C1n
a/r
1 n

s/r
3 ≤ T a/r−1/2, (5.8.4)

where C1 = C(2π)1/2, which will be denoted by M6,1(T ), and M6,2(T ), that

shall denote the contribution stemming from the complement of such tuples,

the set of which will be denoted by means of the letter J2. For the sake of

concision we write J1 to denote the set of tuples satisfying the inequalities

(5.8.3) and (5.8.4). One then has

M6,1(T )�
∑
n∈J1

P−1/2
n c1/2

n �
∑
n∈J1

n
−1/2−a/2(r−a)
1 n

−1/2+r/2(r−a)
2 n

−1/2−s/2(r−a)
3

� T 1−a/2r
∑

na1n
s
3�Ta−r/2

n
−1/2+a/2r
1 n

−1/2+s/2r
3

� T 1−a/2r+(2a−r)(a+r)/4ar
∑

n3≤
√
cT1

n
−1/2−s/2a
3 � T 5/4−r/4a(log T )τ ,

where τ was defined in the statement of the lemma. The reader should find it

worth noting that in the second line we employed the inequality (5.8.3) when

summing over n2.

The analysis of M6,2(T ), though similar in nature, will depart from the

previous procedure in that we will instead utilise the bound n2 ≤
√
bT1 in due

course. We thus obtain

M6,2(T )�
∑
n∈J2

P−1/2
n c1/2

n �
∑
n∈J2

n
−1/2−a/2(r−a)
1 n

−1/2+r/2(r−a)
2 n

−1/2−s/2(r−a)
3

�T 1/4+r/4(r−a)
∑

na1n
s
3�Ta−r/2

n
−1/2−a/2(r−a)
1 n

−1/2−s/2(r−a)
3 .

It seems appropiate to remark that in the above lines we utilised the fact that

by definition the tuples in J2 satisfy (5.8.3) and the converse of the inequality

(5.8.4). Therefore, summing over n1 in the second line of inequalities and
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recalling the assumption 2a > r one gets

M6,2(T )�T 5/4−r/4a
∑

n3�T (2a−r)/2s

n
−1/2−s/2a
3

+ T 1/4+r/4(r−a)
∑

ns3�Ta−r/2
n
−1/2−s/2(r−a)
3

�T 5/4−r/4a(log T )τ + T 3/4+(2a−r)/4s.

The reader may find it worth observing that in view of the aforementioned

assumption, it transpires that

r − a < a ≤ s,

whence the exponent of n3 in the above sum is smaller than −1, such an remark

justifying the subsequent line of argumentation thereof. We pause our analysis

to examine and compare the bounds already obtained. It may be worth noting

that

3/4 + (2a− r)/4s = (2a− r)/4s+ r/4a− 1/2 + 5/4− r/4a

=
r(s− a)− 2a(s− a)

4as
+ 5/4− r/4a ≤ 5/4− r/4a,

where we used the fact that r < 2a and s ≥ a. The preceding estimates then

yield the bounds

max
(
M6,1(T ),M6,2(T )

)
� T 5/4−r/4a(log T )τ ,

as desired. The second statement follows by recalling (5.8.1) and applying the

result obtained above for Y6,b,c(T ) and Y6,c,b(T ).

Proof of Theorem 5.1.1. After the prolix discussion held above, it just

suffices to complete the proof by observing that the theorem at hand will

follow combining Proposition 5.5.1 with Lemmata 5.4.1, 5.6.1, 5.7.1, 5.7.2 and

5.8.1 and equation (5.4.4). It might be worth noting that

5/4− c/4a = 1/2− c/4a− a/4c+ 3/4 + a/4c

= −(c− a)2/4ac+ 3/4 + a/4c < 3/4 + a/4c.
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Therefore, it transpires that the error term T 3/4+a/4c stemming from Lemma

5.7.1 dominates over that of T 5/4−c/4a arising after an application of Lemma

5.8.1. Likewise, the reader may find it useful to observe that

1/4 + 3a/4c < 1/2 + a/(a+ c)

whenever a < c, whence the term T 1/2+a/(a+c)+ε dominates over T 1/4+3a/4c+ε,

the latter arising after an application of Proposition 5.5.1 under the assumption

of Conjecture 2.

Proof of Theorem 5.1.2. We depart from the proof of the above theorem

in that we employ Proposition 5.5.2 instead of Proposition 5.5.1, the rest of

the argument being analogous save the absence of the necessity in the use of

Lemma 5.7.2.

5.9 An application of Roth’s theorem on dio-

phantine approximation

As was previously mentioned, the prelude of the examination of Ia,b,a(T ) will

comprise the same strategy of approximating each of the zeta factors individ-

ually. It should be noted that the majority of the integrals arising from that

departure has already been investigated in previous sections. We thus shall

devote this new section to succintly discuss the ones that exhibit a different be-

haviour and find it desirable to announce that the arguments employed herein

are dissimilar to those appertaining to the analysis of Theorem 5.1.1. For the

sake of concision we shall not give account of the details cognate to arguments

already presented in the course of the proof of Theorem 5.1.1 and thus refer

the reader to previous discussions involving those. We begin our journey as is

customary with the formula

Ia,b,a(T ) =
6∑
j=1

Ij(T ) +O
(
T 3/4(log T )

)
(5.9.1)

in (5.4.4), wherein the Ij(T ) were defined at the beginning of each of the above

corresponding sections. We recall (5.5.2) and obtain as in (5.5.3) the identity

I1(T ) = Sa,b(T )T + J2(T )− J4(T ), (5.9.2)
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where

Sa,b(T ) =
∑

n∈Ba,b,a
na1=nb2n

a
3

P−1/2
n , J4(T ) =

∑
n∈Ba,b,a
na1=nb2n

a
3

NnP
−1/2
n ,

and

J2(T ) =
∑

n∈Ba,b,a
na1 6=nb2na3

P−1/2
n

∫ T

Nn

(nb2na3
na1

)it
dt.

Lemma 5.9.1. With the above notation one has

I1(T ) =
ζ
(
(a+ b)/2

)
2

T log T + J2(T ) +O(T ).

Proof. We begin the discussion by observing that the solutions of the under-

lying equation in both Sa,b(T ) and J4(T ) can be parametrized by means of the

expressions

n1 = m3m
b
2, n2 = ma

2, n3 = m3.

Making use of the above we obtain

Sa,b(T ) =
∑

mb2m3≤
√
aT1

m−1
3 m

−(a+b)/2
2 =

log T

2

∑
m2≤(aT1)1/2b

m
−(a+b)/2
2

+O(1)− b
∑

m2≤(aT1)1/2b

(logm2)m
−(a+b)/2
2 ,

which then yields

Sa.b(T ) =
ζ
(
(a+ b)/2

)
2

log T +O(1).

Likewise, we employ the parametrization at hand in the way alluded above to

get

J4(T )�
∑

m3mb2≤
√
aT1

m
(3b−a)/2
2 m3 � T 3/4+1/2b−a/4b

∑
m3≤

√
aT1

m
−1/2−1/b+a/2b
3 � T.

Combining the preceding equations with (5.9.2) delivers the desired result and

completes the proof.

The reader may have noticed that one could have further refined the above

analysis to obtain lower order terms in the asymptotic formula at hand. As
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may become apparent shortly, these improvements though would have been

wrought in vain due to the poor understanding of J2(T ) that we have.

Lemma 5.9.2. One has that

J2(T ) = o(T log T ).

Proof. It seems pertinent to define, for each tuple (n2, n3) for which n
b/a
2 n3 is

not an integer, the number Nb,a = bnb/a2 n3c, and on recalling (5.5.6) and (5.5.7)

we write, as was done therein,

J2(T ) = J2,1(T ) + J2,2(T ).

We find it worth alluding to (5.5.10) to the end of obtaining the bound

J2,1(T )� T 3/4.

In order to analyse J2,2(T ) we observe first that

J2,2(T )�
∑
n2,n3

|n1−Nb,a|≤1

n
−1/2−b/2a
2 n−1

3

∣∣∣ ∫ T

Nn

eit log(nb2n
a
3/n

a
1)dt
∣∣∣. (5.9.3)

We also note that Roth’s theorem on rational approximation [119] implies

that for each pair (n2, n3) with the property that n
b/a
2 is not an integer and for

every fixed ε > 0 then the inequality∣∣∣nb/a2 n3 −Nb,a

∣∣∣ ≥ C ′(ε, n2)

n1+ε
3

(5.9.4)

holds, where C ′(ε, n2) only depends on ε and n2. Therefore, the above estimate

in conjunction with (5.5.8) delivers the lower bound

∣∣ log
(
nb2n

a
3/N

a
b,a

)∣∣ ≥ C(ε, n2)

n2+ε
3

. (5.9.5)

The reader may observe that the same inequalities hold whenever Nb,a ± 1 is

replaced by Nb,a as well. For the purpose of organising our argument rather

neatly it seems pertinent to denote L1(T ) the contribution to J2,2(T ) of tuples

satisfying C(ε, n2)−1n2+ε
3 ≤ T . Likewise, we write L2(T ) for the contribution
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of tuples with the property that C(ε, n2)−1n2+ε
3 > T. Then by the preceding

discussion it transpires that

L1(T )�
∑

C(ε,n2)−1n2+ε
3 ≤T

C(ε, n2)−1n
−1/2−b/2a
2 n1+ε

3 � T
∑

n2≤
√
bT1

n
−1/2−b/2a
2 � T,

where we estimated the integral in (5.9.3) by the inverse of the corresponding

logarithm and (5.9.5).

In order to make further progress we find it desirable to introduce the

parameter N , which the reader should think of as being large but fixed. We

also write

Cε(N) = min
1≤n2≤N

C(ε, n2)

for further convenience. We then estimate the integral on the right side of

(5.9.3) by the trivial bound T and thus obtain

L2(T )� T
∑

C(ε,n2)−1n2+ε
3 >T

n
−1/2−b/2a
2 n−1

3 � T
(
L2,1(T ) + L2,2(T )

)
,

where

L2,1(T ) =
∑
n2≥N

n3≤
√
aT1

n
−1/2−b/2a
2 n−1

3 and L2,2(T ) =
∑

(Cε(N)T )1/(2+ε)≤n3≤
√
aT1

n−1
3 .

By summing over n2 and n3 we obtain the bound

L2,1(T )� N1/2−b/2a log T (5.9.6)

Likewise, for fixed 0 < ε ≤ 1 one finds that

L2,2(T )� ε log T + logCε(N). (5.9.7)

It is of great importance to emphasize that the implicit constants cognate

to the above bounds for L2,1(T ) and L2,2(T ) do not depend on neither ε nor

N . We also find it desirable to observe that in view of the estimation process

appertaining to L2,2(T ) in conjunction with a careful perusal of the underlying

argument underpinning the choice of the above cutoff parameters, it transpires

that the presence of the exponent 2 + ε in (5.9.4) played a crucial roll, as was
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pointed out in the introduction. Therefore, by the preceding discussion we

obtain for any fixed ε > 0 the estimate

lim
T→∞

|J2(T )|
T log T

� ε+N1/2−b/2a.

Consequently, letting N → ∞ and ε → 0 in the above line and recalling that

a < b we obtain the desired result.

As was previously alluded to in the introduction, we take this as an op-

portunity to draw the reader’s attention to the estimates (5.9.6) and (5.9.7)

for the purpose of emphasizing on the fact that the ineffectiveness in Roth’s

theorem with respect to both ε and n2 is then transferred to the ineffectiveness

of the error term cognate to the asymptotic formula deduced herein.

For the purpose of ascending to a position from which to complete the proof,

we find it desirable to combine the above lemmata to the end of obtaining the

equation

I1(T ) =
1

2
ζ
(
(a+ b)/2

)
T log T + o(T log T ),

and remind the reader that the analysis of the terms Ii(T ) for 2 ≤ i ≤ 5 in

Lemmata 5.6.1 and 5.7.2 was performed under the assumption that a ≤ c.

The application of those then yields

5∑
i=2

|Ii(T )| � T.

It is worth noting that the largest contribution is stemming from the estimate

cognate to I5(T ). We finally use the observation that

χ(1/2 + ait)χ(1/2− ait) = 1

to deduce that

Y6,a,b(T ) =

∫ T

0

D(1/2− ait)D(1/2− bit)D(1/2 + ait)dt = I1(T ),

where Y6,a,b(T ) was defined right before Lemma 5.8.1. We also employ such a

lemma to obtain the estimate

Y6,b,a(T )� T 5/4−b/4a(log T ) + T 3/4(log T ),
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and find it adecquate to recall for further purposes the equations (5.9.1) and

I6(T ) = Y6,a,b(T ) + Y6,b,a(T )

presented in (5.8.1). The combination of the above estimates and identities

then delivers the required asymptotic formula for Ia,b,a(T ) and completes the

proof of Theorem 5.1.3.
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Chapter 6

Mixed moments of the Riemann

zeta function. A smooth

approach

6.1 Introduction

The prolixity in the discussion appertaining to the previous chapter as a con-

sequence of the approach chosen comprising the perusal of eight integrals,

several of which exhibiting dissimilar behaviour, may have made the experi-

enced reader wonder about the posibility of using an analogous approximation

functional equation for the product

ζ(1/2 + iat)ζ(1/2− ibt)ζ(1/2− ict) (6.1.1)

similar in vein to that utilised by Heath-Brown [59], such an avenue having the

potential to possibly circumvent those recalcitrant computations. Exploring

these circle of ideas is, inter alia, the main purpose of this chapter. For such

purposes it seems convenient first to draw the reader’s attention back to the

definition of Ia,b,c(T ) stated in (5.1.1).

Theorem 6.1.1. Let T > 0. Then, whenever a < c ≤ b and 4a < b + c for

fixed coefficients a, b, c ∈ N one has the formula

Ia,b,c(T ) = σa,b,cT + Ea,b,c(T ),
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where σa,b,c was defined in (5.5.13) and the corresponding error term satisfies

when c < b the bound

Ea,b,c(T )� T 1−1/2a+1/2c + T 3/4(log T )4 + T 3/4+(2a−c)/2(b−c), (6.1.2)

the corresponding implicit constant only depending on a, b, c. If b = c, the term

T 3/4+(2a−c)/2(b−c) may be omitted from the above. If Conjecture 2 is assumed

then one further has

Ea,b,c(T )� min(T 1/2+a/(a+c)+ε, T 1−1/2a+1/2c) + T 3/4(log T )4 + T 3/4+(2a−c)/2(b−c)

whenever c < b, an analogous estimate holding without the term T 3/4+(2a−c)/2(b−c)

if b = c.

In view of the above statements and that of Theorem 5.1.1 it transpires

that the novel error term introduced herein shall be inferior to the one per-

taining to the latter theorem whenever the corresponding coefficients lie in

certain ranges at the sacrifice of losing the validity of the asymptotic formula

for other ranges, such an observation being the main reason for including this

other approach in our memoir. It also seems worth announcing that the ap-

plication of the approximate functional equation derived herein reduces the

problem to computing only two integrals, as opposed to the situation in the

previous chapter, it therefore diminishing the number of integrals to examine

and partially alleviating the work at the cost of increasing the difficulty of

such integrals. We draw the reader’s attention back to (6.1.2) to the end of

anticipating that the summand

T 3/4+(2a−c)/2(b−c) (6.1.3)

therein stems from the application of the stationary phase method to the

twisted integral in conjunction with an estimation of the main term arising

from such an application by means of van der Corput’s methods. As opposed

to what one may have initially thought, it is a noteworthy feature that the

application of van der Corput’s estimate enables one to bound the main con-

tribution by the term (6.1.3), such an estimate being esentially optimal to the

effect that the error terms cognate to the asymptotic evaluation delivered by

the stationary phase method are naturally bounded by an analogous quantity.
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We remind the reader that in the preceding chapter the triples arising af-

ter the application of the approximate functional equation to each of the zeta

functions lied in the cube [1,
√
T1]3. In contrast, we anticipate that the corre-

sponding triples (n1, n2, n3) when approximating the product of zeta functions

will only be required to satisfy an inequality of the type

n1n2n3 � T 3/2.

The excess of variables in comparison to the previous approach facilitates the

examination pertaining to the residual terms stemming from the diagonal con-

tribution, the corresponding bounds for such terms being of the requisite pre-

cision, at the cost of increasing the difficulty of the analysis of the integral

containing a twisting factor and ultimately impairing the range pertaining to

the coefficients a, b, c for which the asymptotic formula at hand holds.

We find it desirable to draw the reader’s attention back to Section 5.9 of

Chapter 5 to the end of remarking the necessary proviso that the variable n2

underlying the analysis satisfied a bound of the shape

n2 �
√
T

for the corresponding argument be applicable. It then transpires that the

approach that shall be pursued in the upcoming chapter would lead one to

a position from which to estimate an analogous sum to those arising in the

aforementioned section with the corresponding variables satisfying the prop-

erty that

n2
2n

1+b/a
3 � T 3/2,

the underlying ideas of the proof of Theorem 5.1.3 being of no longer utility.

In order to prepare the ground for the customary analysis pertaining to the

perusal of the diagonal and off-diagonal contribution and that of the twisted

integral, an intrincate process comprising the use of Cauchy residue theorem

in conjunction with succesive applications of Stirling’s formula has to be per-

formed to the end of accomplishing the approximate functional equation. It

seems desirable to draw the reader’s attention to Heath-Brown’s seminal pa-

per [59] and anticipate that in the setting herein some extra terms in the

corresponding auxiliary functions involved in the complex analysis arguments
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arise as a consequence of the loss of symmetry when considering arbitrary

coefficients a, b, c, such complications being easily surmounted. We should

nonetheless point out that a condition pertaining to the coefficients shall be

imposed to the end of bounding the corresponding residues appropiately, such

a constraint only excluding a small handful of cases which by no means affects

the range considered in Theorem 6.1.1.

Once the approximate functional equation is established, there are some

additional terms which arise in the analysis, the contribution of the corre-

sponding integrals of such terms ultimately being of a small size. Nonetheless,

those terms shall not be estimated pointwise, such a cheap approach leading

otherwise to undesirably large bounds. Instead, we estimate them on aver-

age by means of oscillatory integral lemmata, and for the purpose of reaching

a position from which to apply those, a verification of the monotonicity of

some auxiliary function has to be performed. It is worth clarifying to the in-

terested reader that our treatment to overcome such difficulties departs from

that of Heath-Brown [59] in that we employ an estimate involving both the

second derivative of the phase function comprising the twisting factor of the

aforementioned additional term twisted by

(nb2nc3
na1

)it
(6.1.4)

and a pointwise bound for the corresponding weight function. The treatment

of Heath-Brown instead entailed integrating by parts the analogous product

and utilised the pointwise bounds of the additional term, such an approach

in our context diverting one to the undesirable position of encountering sums

containing the factor ∣∣∣ log
(nb2nc3
na1

)∣∣∣−1

,

for which we have a poor understanding. It then transpires that the phase

of (6.1.4) vanishes when taking the second derivative, such an observation

comprising the genesis of the success in the approach taken herein.

It seems worth observing that the analysis of the contribution stemming

from the main term in the approximate functional equation in the classical

fourth moment setting (see [59]) makes an elegant use of the underlying sym-

metry to exhibit further cancellation when integrating such a term twisted
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by (m
n

)it
.

In the absence of such a property herein, our analysis will comprise a careful

examination of the corresponding phases that will eventually lead to a division

of the corresponding tuples depending on the size of the phases, such intrin-

cate process being ultimately culminated with a routinary application of an

oscillatory integral estimate.

The structure of the chapter is organised as follows: Section 6.2 is devoted

to a prolix discussion concerning the approximate functional equation pertain-

ing to (6.1.1). In Section 6.3 we analyse the monotonicity of a certain class

of functions to the end of preparing the ground for an application of oscilla-

tory integral estimates of a certain type at various points in the chapter. The

diagonal contribution stemming from the non-twisted integral is computed in

Section 6.4, the examination of which largely benefits from the earlier work

done in the previous chapter. Section 6.5 is devoted to the analysis of the

off-diagonal contribution and combines a diophantine approximation perspec-

tive, in the spirit to that of Lemma 5.5.2, with a more analytic one involving

oscillatory integral estimates and complex analytic ideas in conjunction with

simple combinatorial arguments. The discussion concerning various residual

terms which arises from the contribution of the twisted integral in Section 6.6

utilises many of the ideas from its preceding section. The chapter concludes in

Section 6.7 with an application of the stationary phase method to evaluate the

twisted integral, a prolix intrincate examination of the error terms stemming

from such an application and an estimate of the corresponding main term by

means of van der Corput’s methods.

6.2 The approximate functional equation

We begin by furnishing ourselves with a lemma which essentially follows Heath-

Brown’s approach [59] for computing the fourth moment of the Riemann Zeta

function and shall ultimately provide the approximate functional equation to

which we alluded in the introduction. As was earlier anticipated, the main

result herein concerns the mixed third moment. Nevertheless, it has been

thought preferable to present the lemma in wider generality for the purpose

of preparing the ground for subsequent work. It should be noted then that
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the analysis embodied in the following discussion encompasses mixed k-th

moments.

Before providing a rather precise formulation of such a result we find it

convenient to define for each natural number k ≥ 2 the subset Ak ⊂ (R\{0})k

of tuples a = (a1, . . . , ak) satisfying the inequalities

a2
j >

π

4

(
− ξaaj +

k∑
l=1

|al| −
∑
l

|al − aj|
)
, (1 ≤ j ≤ k) (6.2.1)

where in the above line the number ξa is defined by means of the formula

ξa =
∑
al>0

1−
∑
al<0

1. (6.2.2)

For simplicity of the exposition it has been thought adequate to introduce the

parameters

Ia =
k∑
l=1

1

al
, Pa =

k∏
j=1

aj, (6.2.3)

which may not be of great theoretical relevance but might be worth considering

nonetheless. For each tuple of natural numbers n = (n1, . . . , nk) we further

denote

Pn =
k∏
j=1

nj, La(n) =
k∏
j=1

n
−aj
j .

We find it desirable to consider the product of gamma functions

Pa(t) =
k∏
j=1

Γ
(
1/2(1/2 + iajt)

)
,

which shall make its appearance in the course of the discussion concerning

the approximate functional equation due to the concomitant aspect of the

gamma function playing a role in the corresponding functional equation for

the Riemman zeta function. Likewise, we further define

Gm(z, t) = π−k/4Pa(t)−1

k∏
j=1

Γ
(1

2

(1

2
+(−1)m+1iajt+z

))
, m = 1, 2. (6.2.4)

It may also seem appropiate to recall (6.2.2) and introduce the smoothing
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factor which gives rise to the title of this chapter

H(z, t) = ez
2/t−iξaπz/4, (6.2.5)

as shall be demonstrated promptly.

Lemma 6.2.1. Let a ∈ Ak. Then one has that

k∏
j=1

ζ(1/2 + iajt) =
∑
n

P−1/2
n I(Pn, t) +O(t−2), (6.2.6)

wherein n runs over triples of natural numbers, the function I(Pn, t) at hand

is defined by means of the equation

I(Pn, t) = La(n)itI1(Pn, t) + La(n)−itI2(Pn, t),

the terms I1(x, t) and I2(x, t) for x ∈ R being

Im(x, t) =
1

2πi

∫ 1+i∞

1−i∞
Gm(z, t)

(
πk/2x)−zH

(
(−1)m+1z, t

)dz
z
.

Proof. We define, for convenience, the meromorphic function

fa(w) = π−kw/2
k∏
j=1

Γ
(
1/2(w + iajt)

)
ζ(w + iajt)

with poles at w = −iajt and w = 1 − iajt in the region Re(w) ≥ −3/2. For

ease of notation it has been thought preferable to denote henceforth fa(w)

by f(w). As shall be elucidated promptly, we find it relevant to consider the

integrals

Mm(t) =
1

2πi

∫ (−1)m+1+i∞

(−1)m+1−i∞
f(1/2 + z)H(z, t)

dz

z
, m = 1, 2.

The reader may find it useful to observe that when s ∈ R then an application

of the functional equation for the Riemann zeta function yields

f(−1/2 + is) = π−k(3/2−is)/2
k∏
j=1

Γ
(
1/2(3/2− is− iajt)

)
ζ(3/2− is− iajt),
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whence on defining the function

Y (z, t) = π−k/4π−kz/2
k∏
j=1

Γ
(
1/2(1/2− iajt+ z)

)
ζ(1/2− iajt+ z)

and making a change of variables accordingly, it transpires that

M2(t) = − 1

2πi

∫ 1+i∞

1−i∞
Y (z, t)H(−z, t)dz

z
. (6.2.7)

As a prelude to our discussion it seems pertinent to note that one may

utilise the convergence of the series cognate to the Riemann zeta function at

Re(z) = 3/2 in conjunction with (6.2.4) to deduce

M1(t) = π−k/4Pa(t)
∑
n

P−1/2
n La(n)itI1(Pn, t) (6.2.8)

and

M2(t) = −π−k/4Pa(t)
∑
n

P−1/2
n La(n)−itI2(Pn, t). (6.2.9)

It then transpires that an application of Cauchy’s residue theorem already

delivers the formula

M1(t)−M2(t) = f(1/2) +
1

2πi

2k∑
m=1

∫
Cm
f(1/2 + z)H(z, t)

dz

z
,

wherein the above equation Cm denotes a circular path of radius t−1 around

each of the poles of f(1/2 + w). We have thus reach a position from which to

derive the desired result subject to the estimation of the contribution of the

remaining residues, and this we now perform. We employ Stirling’s series (see

Whittaker and Watson [158, §13.6]), namely

log Γ(z) = (z−1/2) log z−z+
1

2
log(2π)+

N∑
r=1

crz
1−2r +O(|z|−1−2N), (6.2.10)

where cr are fixed coefficients andN ∈ N, to the end of observing that whenever

the pole at hand pertaining to the function f(1/2 +w) is either w = 1/2− iajt
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or w = −1/2− iajt one may deduce the bound

f(1/2 + w)� tCe−Cjπt/4

in the corresponding contour cognate to the aforementioned poles, with C

being a positive constant depending on the tuple a and

Cj =
∑
l

|al − aj|.

Likewise, under the same circumstances the estimate

H(z, t)� e−a
2
j t−ξaπajt/4

holds on the same contour, whence the preceding discussion then yields

f(1/2) = M1(t)−M2(t) +O(tC max
j
e−a

2
j t−ξaπajt/4−Cjπt/4). (6.2.11)

It therefore remains to divide the above equation by the product of gamma

factors π−k/4Pa(t), a concomitant requisite being the estimation of the inverse

of such a product, and this we achieve by means of a routine application of

Stirling’s formula. To this end, it might be worth considering

Ca =
k∑
l=1

|al|,

for convenience, and note that as was already anticipated, Stirling’s formula

then yields

Pa(t)−1 � eπCat/4.

We then divide both sides of (6.2.11) by the product Pa(t) and combine it with

equations (6.2.8) and (6.2.9) to the end of obtaining

k∏
j=1

ζ(1/2 + iajt) =
∑
n

P−1/2
n I

(
Pn, t

)
+ E(t),

where in the above equation the corresponding error term E(t) satisfies

E(t)� tC max
j
e−a

2
j t−ξaπajt/4+(Ca−Cj)πt/4.
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We find it desirable to note that we made use of (6.2.7) to derive the previous

equation, and find it appropiate to remark that in view of the condition (6.2.1),

it transpires that

E(t)� e−Kt

for some constant K > 0. The preceding remark then, in conjunction with the

above formula delivers the desired result.

For the purpose of progressing in the proof, it seems pertinent to present the

following technical lemma, the main idea latent in the corresponding analysis

having its reliance on a routine application of Stirling’s formula to prepare the

ground for the integration over t. We find it worth anticipating that such a

lemma will be reminiscent of the previous one, and note that we shall merely

confine ourselves to decomposing the integrand involved in the expression for

Im(Pn, t) into a main term and a secondary term which shall not be treated as

an error term but whose contribution after integrating over t shall be residual.

Before embarking ourselves in such an endeavour, it may be convenient to

define

A(x, t) = P 1/2
a (t/2π)k/2/x (6.2.12)

and to remind the reader of the definition of Ak right above (6.2.1) and Ia in

(6.2.3).

Lemma 6.2.2. Let k ≥ 2 and a = (a1, . . . , ak) ∈ Ak. Then there exist

constants ci(u, v) ∈ C with i = 1, 2 for which

k∏
j=1

ζ(1/2 + iajt) =
∑
n

P−1/2
n K(n, t) +O(t−1),

where in the above equation the function K(n, t) is defined by means of the

relation

K(n, t) = La(n)itK1(Pn, t) + La(n)−itK2(Pn, t),

the alluded terms K1(x, t) and K2(x, t) for x ∈ R+ being

K1(x, t) =
1

2πi

∫ 1+∞

1−i∞
A(x, t)zF1(z, t)

(
1 +

∑
u,v

c1(u, v)zut−v
)dz
z
,
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and

K2(x, t) =
ψ(t)

2πi

∫ 1+i∞

1−i∞
A(x, t)zF2(z, t)

(
1 +

∑
u,v

c2(u, v)zut−v
)dz
z
,

where the functions Fm(z, t) and ψ(t) are defined as

F1(z, t) = ez
2/t−iIaz2/4t, F2(z, t) = ez

2/t+iIaz2/4t, ψ(t) = eξaπi/4−iga(t),

(6.2.13)

and the function ga(t) is defined by means of the formula

ga(t) =
k∑
j=1

ajt
(

log(|aj|t/2)− 1
)
. (6.2.14)

Moreover, in the above sums the parameters (u, v) run over the tuples satisfying

1 ≤ u ≤ 3v/2 and 1 ≤ v ≤ 2(k + 5) with the property that if u ≥ v + 1 then

v ≥ 2.

Proof. We observe that in view of Lemma 6.2.1 it transpires that showing the

validity of the above asymptotic evaluation amounts to proving that

Im(x, t)−Km(x, t)� x−1t−2, m = 1, 2, (6.2.15)

since then the corresponding error term that arises when substituting Im(Pn, t)

by Km(Pn, t) in (6.2.6) will be bounded above by

t−2
∑
n

P−3/2
n � t−2.

It may be worth analysing first I1(x, t). For such matters it seems conve-

nient to introduce the parameters β = z/2, αj = iajt/2 and γj = 1/4 + αj for

each j. We shall henceforth assume that Re(z) = 1 and confine ourselves first

to the analysis of the function G1(z, t) when |Im(z)| ≤ t1/2 log t. It appears at

first glance that a customary application of Stirling’s formula (6.2.10) with the
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choice N = dk/4 + 3/4e delivers

log Γ(γj + β)− log Γ(γj) =β log γj + (γj + β − 1/2) log
(
1 + β/γj

)
− β +

N∑
r=1

cr
(
(γj + β)1−2r − γ1−2r

j

)
+O(t−1−2N).

The reader may notice that an application of the Taylor expansion of both

log(1 + w) and (1 + w)−1 reveals that the above equation equals

log Γ(γj + β)− log Γ(γj) = β log γj +
β2

2γj
+
∑
u,v

c′′′1 (u, v)βuγ−vj +O(t−5/2−k/2),

(6.2.16)

wherein the above sum (u, v) run over the tuples satisfying 1 ≤ u ≤ v + 1 and

1 ≤ v ≤ k+ 5 with the property that if u ≥ v+ 1 then v ≥ 2, and c′′′1 (u, v) are

fixed coefficients. The reader may observe that the rest of the terms stemming

from the application of the Taylor expansion thereof may be absorved into the

error term therein.

It also seems pertinent to note that a routine application of Taylor expan-

sions yields

γ−nj = α−nj + α−nj

∞∑
m=1

k1,mα
−m
j

and

log γj = logαj +
∞∑
m=1

k2,mα
−m
j ,

wherein k1,m, k2,m ∈ R denote as is customary fixed coefficients. These expres-

sions in conjunction with the above equation and the definitions for β and γj

earlier described then enable one to express the right side of (6.2.16) as

z

2

(
log(|aj|t/2) + isgn(aj)π/2

)
− i z

2

4taj
+
∑
u,v

c′′1(u, v)zuα−vj +O(t−5/2−k/2),

where herein (u, v) runs over the collection of tuples earlier described, and

c′′1(u, v) denote fixed real coefficients. Therefore, by recalling (6.2.4) and sum-
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ming over j we obtain

logG1(z, t) =
z

2
log
(

(t/2)k
k∏
j=1

|aj|
)

+ ziπξa/4− i
Ia
4t
z2 +

∑
u,v

c′1(u, v)zu(it)−v

+O(t−5/2−k/2),

whence raising the above equation to the power e then yields

G1(z, t) =
(

(t/2)k/2
k∏
j=1

|aj|1/2
)z
eiπξaz/4−iIaz

2/(4t)

×
(

1 +
∑
u,v

c1(u, v)zut−v +O(t−5/2−k/2)
)
,

and where (u, v) lies in the range described right after (6.2.14). We should note

that both c′1(u, v) and c1(u, v) in the above equations denote fixed coefficients.

By the preceding discussion in conjunction with (6.2.13) we thus obtain

(πk/2x)−zG1(z, t)H(z, t)z−1 =A(x, t)zF1(z, t)z−1
(

1 +
∑
u,v

c1(u, v)zut−v
)

+O
(
x−1t−5/2|z|−1e|IaIm(z)|/2t−(Im(z))2/t

)
,

(6.2.17)

wherein the reader may find it desirable to recall the definition (6.2.5). By

integrating the above equation over the segment [1− it1/2 log t, 1 + it1/2 log t],

it transpires that the contribution C1(x, t) stemming from the error term will

satisfy

C1(x, t)� x−1t−2. (6.2.18)

In order to ascend to a position from which to obtain the desired approxima-

tion, it seems pertinent to investigate the function G1(z, t) at hand whenever

|Im(z)| > t1/2 log t. For ease of notation we denote y = Im(z), and apply

(6.2.10) on the range |y| > t1/2 log t to obtain

log Γ(γj + β)− log Γ(γj) =(γj + β) log(γj + β)− γj log(γj)

− β − 1/2 log(1 + β/γj) +O(1),
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whence taking real parts in the above expression yields

log|Γ(γj + β)| − log|Γ(γj)| =−
π

4
(ajt+ y)sgn(ajt+ y) +

π

4
ajt · sgn(aj)

+O
(

log(t+ |y|)
)
.

It might be worth noting that on recalling (6.2.4) it follows that

log|G1(z, t)| =
k∑
j=1

log|Γ(γj + β)| − log|Γ(γj)|,

whence in the interest of deriving an estimate of an appropiate precision it

seems pertinent to show the inequality

−
k∑
j=1

|ajt+ y|+
k∑
j=1

|ajt|+ ξay ≤ 0.

The reader may observe that such a bound follows from the estimates

−
∑
aj>0

|ajt+y|+
∑
aj>0

ajt+y
∑
aj>0

1 ≤ 0, −
∑
aj<0

|ajt+y|−
∑
aj<0

ajt−y
∑
aj<0

1 ≤ 0,

which in turn are an immediate consequence of the triangle inequality. There-

fore, combining the previous bounds we find that

|G1(z, t)| � (yt)Ce−πξay/4

for some constant C > 0. Such an estimate in conjunction with the definition

(6.2.5) yields

(πk/2x)−zG1(z, t)H(z, t)z−1 � x−1(yt)Ce−y
2/t.

It then transpires at first glance that whenever |y| > t1/2 log t the right side of

the above equation is then O(x−1t−2). Likewise, by recalling (6.2.12) one may

deduce under the same circumstances that

A(x, t)zF1(z, t)z−1
(
1 +

∑
u,v

c1(u, v)zut−v
)
� x−1(yt)Ce|yIa|/(2t)−y

2/t.

We integrate (6.2.17) over the line Re(z) = 1 and utilise (6.2.18) in conjunction
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with the above inequalities to obtain (6.2.15) for the case m = 1, as desired.

In order to make progress in our endeavour we shall next examine the

term I2(x, t), and announce that its analysis, though not dissimilar, will be

slightly more intrincate. We shall henceforth assume that Re(z) = 1 as is

customary and investigate first the instance when |Im(z)| ≤ t1/2 log t. A routine

application of the formula (6.2.10) with the choice N = dk/4+3/4e then yields

log Γ
(1

4
− αj + β

)
− log Γ

(1

4
+ αj

)
=
(
− 1

4
− αj + β

)
log
(1

4
− αj + β

)
−
(
− 1

4
+ αj

)
log
(1

4
+ αj

)
+ 2αj − β

+
N∑
r=1

cr

((1

4
− αj + β

)1−2r

−
(1

4
+ αj

)1−2r)
+O(t−1−2N).

Observe that then following an analogous argument we obtain that the

above formula equals

h(αj) + z log(−αj)/2 + i
z2

4ajt
+
∑
u,v

c′2(u, v)βuα−vj +O(t−5/2−k/2), (6.2.19)

where as above (u, v) runs over the range earlier described for the discussion

pertaining to G1(x, t), the coefficients c′2(u, v) are some fixed complex numbers

and the function h(α) is defined by means of the relation

h(α) = −
(1

4
+ α

)
log
(1

4
− α

)
−
(
α− 1

4

)
log
(1

4
+ α

)
+ 2α. (6.2.20)

It seems pertinent to observe first that by definition one has

log(−αj) = log(|aj|t/2)− isgn(aj)π/2.

Consequently, it transpires that by recalling (6.2.4) and (6.2.12), summing the

formula (6.2.19) over j and taking exponentials in the equation at hand then

one obtains the approximation

(πk/2x)−zG2(z, t) =A(x, t)zeφ(t)−iπξaz/4+iIaz2/(4t) ×
(

1 +
∑
u,v

c2(u, v)zut−v

+O(t−5/2−k/2)
)
,
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wherein we wrote

φ(t) =
k∑
j=1

h(αj)

for the sake of concision. Therefore, multiplying both sides of the equation at

hand by H(−z, t)z−1 and recalling (6.2.13) we obtain

(πk/2x)−zG2(z, t)H(−z, t)z−1 =eφ(t)A(x, t)zF2(z, t)z−1
(
1 +

∑
u,v

c2(u, v)zut−v
)

+O
(
x−1t−5/2|z|−1e|Iay|/2t−y

2/t
)
, (6.2.21)

where we remind the reader of the notation y = Im(z) and the definition

(6.2.5). By integrating the above equation over the segment

[1− it1/2 log t, 1 + it1/2 log t],

it transpires that the contribution C2(x, t) stemming from the error term will

satisfy

C2(x, t)� x−1t−2. (6.2.22)

To the end of further progressing in the proof and before analysing the case

|Im(z)| > t1/2(log t) it seems desirable to shew the estimate

|ψ(t)− eφ(t)| � t−1, (6.2.23)

and this we now describe. To this end it may as well be worth noting that a

customary application of the Taylor expansion of log(1 + w) in (6.2.20) then

yields

h(α) = −
(1

4
+ α

)
log(−α)−

(
α− 1

4

)
logα + 2α +

∑
v≥1

kvα
−v

for some real coefficients kv. Therefore, on substituting α by αj in the above

formula we get

h(αj) = isgn(aj)π/4− iajt
(

log(|aj|t/2)− 1
)

+O(t−1),

whence summing over j the above equation and taking exponentials delivers

(6.2.23).

227



It might be worth shifting our focus to the case |y| > t1/2 log t. We employ

as is customary Stirling’s formula (6.2.10) and subsequently take real parts to

obtain

log|Γ(1/4− αj + β)| − log|Γ(1/4 + αj)| =−
π

4
|y − ajt|+

π

4
|aj|t

+O
(

log(t+ |y|)
)
.

As was noted in the analogous analysis, it seems convenient to establish the

inequality

−
k∑
j=1

|y − ajt|+ t

k∑
j=1

|aj| − ξay ≤ 0

to the end of deriving suitable bounds for the function G2(z, t). The latter

shall then follow in a similar manner as above by summing both sides of the

inequalities

−
∑
aj>0

|y− ajt|+ t
∑
aj>0

aj −
∑
aj>0

y ≤ 0, −
∑
aj<0

|y− ajt| − t
∑
aj<0

aj +
∑
aj<0

y ≤ 0,

that in turn hold via a routine application of the triangle inequality, an imme-

diate consequence of which being that

|G2(z, t)| � (yt)Ceπξay/4,

wherein the above line C > 0 denotes a fixed constant. Therefore, the previous

bound in conjunction with the definition (6.2.5) delivers

(πk/2x)−zG2(z, t)H(−z, t)z−1 � x−1(yt)Ce−y
2/t,

whence for |y| > t1/2 log t the left side of the above equation is then O(x−1t−2).

Likewise, an analogous argument reveals that

A(x, t)zez
2/t+iIaz2/(4t)z−1

(
1 +

∑
u,v

c2(u, v)zut−v
)
� x−1(yt)Ce|yIa|/(2t)−y

2/t.

We integrate (6.2.21) over the line Re(z) = 1 and utilise (6.2.22) in conjunction

with the above inequalities to obtain (6.2.15) for the casem = 2, as desired.

As a prelude to the examination of the diagonal and off-diagonal solutions
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when integrating the approximate functional equation derived above, it seems

desirable to prepare the ground for such an endeavour by succintly discussing

basic estimates and approximations pertaining to the objects introduced in

the previous analysis. To this end we recall the reader of (6.2.12), denote

henceforth ψ1(t) = 1 and ψ2(t) = ψ(t) and write

Km(x, t) = ψm(t)
(
Jm(x, t) +

∑
u,v

cm(u, v)Km,u,v(x, t)
)
, m = 1, 2, (6.2.24)

wherein

Km,u,v(x, t) =
1

2πi

∫ 1+i∞

1−i∞
A(x, t)zFm(z, t)zu−1t−vdz, (6.2.25)

and

Jm(x, t) = Km,0,0(x, t),

where on the above line the range of summation taken was earlier described

right after (6.2.14). It may also seem worth anticipating the necessity of in-

troducing beforehand the parameters

αa =
1

8 + I2
a

, Ca = αa
(
1− αa(1 + I2

a/8)
)

=
7αa

8
, (6.2.26)

wherein the reader might find it useful to recall (6.2.3).

Lemma 6.2.3. Let (u, v) lie on the range described above. Then it follows

that

Km,u,v(x, t)� tu/2−ve−Cat(logA(x,t))2/2, m = 1, 2

and

Jm(x, t)� log t (6.2.27)

whenever | logA(x, t)| � t−1/2 log t. Likewise, one has

Jm(x, t) = H(x, t) +O
(
e−Cat(logA(x,t))2

)
if |logA(x, t)| � t−1/2, wherein the function H(x, t) is defined by means of the

relations H(x, t) = 1 if A(x, t) > 1 and H(x, t) = 0 if A(x, t) < 1.

The reader may note that we shall make use of the above lemma after

integrating over t, whence an analogous formula whenever A(x, t) = 1 shall
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not be required, the latter condition corresponding to a single point once x is

fixed, but nonetheless find it desirable to mention for the sake of completeness

that an estimate of the shape (6.2.27) could have been deduced thereof.

Proof. For the sake of concision, it has been thought preferable to omit hence-

forth the dependence on x and t in A(x, t) and just write A. We denote first

for convenience y = Im(z), recall the definition (6.2.13) and observe that when

Re(z) = −αat(logA) one has

AzFm(z, t)zu−1t−v � t−v
(
|t logA|u−1 + yu−1

)
ef(y)−y2/2t,

where

f(y) = (−αa + α2
a)t(logA)2 + αa|y(logA)||Ia|/2− y2/2t.

We find it pertinent to observe that the maximum value of the function f(y)

at hand is −Cat(logA)2, the constant Ca > 0 defined above being positive,

whence

AzFm(z, t)zu−1t−v � t−v
(
|t logA|u−1 + yu−1

)
e−Cat(logA)2−y2/2t. (6.2.28)

It seems desirable to note first that by differentiating, if needed, one has

yde−y
2/2t � td/2 and |t logA|de−Cat(logA)2/2 � td/2 (6.2.29)

for every d > 0. Consequently, integrating on both sides in the preceding

inequality over the line Re(z) = −αat(logA) and making use of the above

bounds for the choice d = u− 1 it follows that

∫ −αat(logA)+i∞

−αat(logA)−i∞
AzFm(z, t)zu−1t−vdz �tu/2−v−1/2e−Cat(logA)2/2

∫ ∞
−∞

e−y
2/2tdy

+ t−ve−Cat(logA)2
∫ ∞
−∞

yu−1e−y
2/2tdy,

whence a change of variables in the above integrals enables one to conclude

that the integral on the left side is O(tu/2−ve−Cat(logA)2/2). It is convenient to

observe as well that the integrand in the definition of Km,u,v(x, t) is an entire
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function, whence we can move the line of integration to Re(z) = −αat(logA)

and use the above estimate to obtain

Km,u,v(x, t)� tu/2−ve−Cat(logA)2/2.

The analysis pertaining to Jm(x, t) shall not be totally dissimilar to the

previous one, whence in the interest of curtailing our exposition it has been

thought preferable to avoid repeating ourselves. We observe first that when

Re(z) = 1 and |logA| � t−1/2(log t) then

AzFm(z, t)z−1 � Ae|Iay|/(2t)−y
2/2t

1 + |y|
� e|Iay|/(2t)−y

2/2t

1 + |y|
, (6.2.30)

whence utilising the above bound and integrating accordingly we deduce

Jm(x, t)� log t,

as desired.

By following an analogous argument to that utilised above it transpires

that whenever |logA| � t−1/2 then in the line Re(z) = −αa(logA)t one has

the estimate

AzFm(z, t)z−1 � e−Cat(logA)2−y2/2t

|t logA|+ |y|
. (6.2.31)

Therefore, integrating on both sides of the above estimate over the line at

hand yields∫ −αat(logA)+i∞

−αat(logA)−i∞
AzFm(z, t)z−1dz � t−1/2

∫ ∞
−∞

e−Cat(logA)2−y2/2tdy

� e−Cat(logA)2 .

It is worth noting that whenever A > 1 then −αat(logA) < 0, whence

under such circumstances the function on the left side of the above equation

has a single pole at z = 0 in the region between the lines Re(z) = 1 and Re(z) =

−αat(logA) of residue 1. If, on the contrary A < 1 then the aforementioned

function does not possess a pole in such a region. Consequently, the preceding

discussion in conjunction with the above estimate yields for |logA| � t−1/2
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the expression

Jm(x, t) = Hm(x, t) +O
(
e−Cat(logA)2

)
,

which in turn completes the proof.

6.3 Verification of the piecewise monotonicity

As shall be elucidated shortly afterwards, the analysis of both the off-diagonal

contribution pertainig to the non-twisted integral and the one cognate to the

twisted one shall comprise investigations of oscillatory integrals which shall

ultimately be bounded by means of Lemma 5.2.4. To this end it has been

thought pertinent to present beforehand a technical lemma that shall prepare

the ground for such an application. We shall in particular be concerned herein

about the perusal of the monotonicity of an auxiliary function cognate to the

integrals at hand, it giving rise to the above heading. For such purposes it is

convenient to introduce first

GC(t, y) = t−v(c1(logA)t+ iy)u−1ec2(logA)2t+c3(logA)y−y2/t,

where we remind the reader of the definition (6.2.12) for A = A(x, t), and

what shall shortly play the role of the phase of the corresponding unimodular

function, which we define by means of

FC,m(t, y) = c4y logA+c5(logA)2t+c6y
2/t+εmt logLa(n)−ym(t), m = 1, 2

wherein the above coefficients cj 6= 0 are non-zero real numbers, the parameter

εm = (−1)m+1 and ym(t) is defined, on recalling (6.2.14), by

y1(t) ≡ 0, y2(t) = ga(t) (6.3.1)

As will become apparent to the reader promptly, we further impose the con-

dition

c5 6= a− b− c. (6.3.2)

Lemma 6.3.1. With the above notation, we assume that t ∈ [T/2, T ], that

the variable y satisfies |y| ≤ t1/2(log t) and that |logA| � t−1/2(log t). Then it
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transpires that for fixed y the numbers N1(y) and N2(y) of zeros of

d

dt

(
Re
(
GC(t, y)

)
F ′C,m(t, y)

)
,

d

dt

(
Im
(
GC(t, y)

)
F ′C,m(t, y)

)
(6.3.3)

respectively have the property that

max(N1(y), N2(y)) ≤ u+ 1.

It shall be noted that any analogous bound not depending on y or t would

have been sufficient for our purposes. Nonetheless, the preciseness inherent

in such an estimate was obtained with no extra effort, it being pertinent to

provide such a refinement in our exposition.

Proof. For the sake of concision, it has been thought preferable to focus our

analysis on the investigation of N1(y) and leave that of N2(y), since the under-

lying arguments are identical. We find it useful to observe first that the zeros

of the derivative of the function at hand will also be solutions of the equation

Re
(
G′C(t, y)F ′C,m(t, y)−GC(t, y)F ′′C,m(t, y)

)
= 0. (6.3.4)

We also denote for further convenience by

P (t, y) = Re
(
(c1(logA)t+ iy)u−1

)
= (c1t logA)u−1 − (c1t logA)u−3y2 + . . .

and

E(t) = ec2(logA)2t+c3(logA)y−y2/t,

and note that

P ′(t, y) = c1(u− 1)tu−2(logA)u−2(logA+ 3/2)− . . .

if u 6= 1 and P ′(t, y) = 0 otherwise. In order to present the computations in a

concise manner, it may seem desirable to anticipate that

F ′C,m(t, y) = 3c4y/2t+ 3c5 logA+ c5(logA)2 − c6y
2/t2 + εm logLa(n)− y′m(t).
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Motivated by such remarks we denote

D1(t, y) = tvE(t)−1Re
(
G′C(t, y)F ′C,m(t, y)

)
and

D2(t, y) = tvE(t)−1Re
(
GC(t, y)F ′′C,m(t, y)

)
,

and observe that with the above notation one has

D1(t, y) =
(
P (t, y)

(
3c2 logA+ c2(logA)2 + 3c3y/2t+ y2/t2

)
− vt−1P (t, y) + P ′(t, y)

)
× F ′C,m(t, y) (6.3.5)

and

D2(t, y) = P (t, y)
(
− 3c4y/2t

2 + 9c5/2t+ 3c5(logA)/t+ 2c6y
2/t3 − y′′m(t)

)
.

As may become apparent shortly, it seems worth defining

D(t, y) = D1(t, y)−D2(t, y). (6.3.6)

It then transpires that the solutions of the equation (6.3.4) will satisfy

D(t, y) = 0.

The genesis of the principle underlying our approach will have its reliance

on finding a positive integer n not depending on y having the property that

the n-th derivative of D(t, y) does not have any zeros. Succesive applications

of Rolle’s theorem will then enable us to conclude that the function at hand

has at most n zeros, as desired. The rest of the discussion will be devoted to

finding such an integer.

Consideration of space preclude us from exhibiting a more transparent ex-

position of the details latent in the ensuing analysis. We therefore content

ourselves to merely note that an insightful inspection of the above equation in

conjunction with the inequalities stated at the beginning of the lemma involv-

ing t and y reveals that in order to obtain the main term after differentiating u

or u+1 times one should remove the power of (logA) factors of the summands

having the largest power of t and not containing any power of y in such a
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process.

We begin our discussion by noting for further purposes that

∂

∂u+1t

(
D2(t, y)

)
� t−3. (6.3.7)

We have reached a position in the proof from which distinguishing betweenm =

1 and m = 2 becomes essential. If m = 1 then it seems pertinent to suppose

first that |log
(
La(n)

)
| ≤ δ for some small enough constant δ independent on

t and y. On recalling that |logA| � t−1/2(log t) and |y| ≤ t1/2(log t) it then

traspires that under such an assumption one has

∂

∂u+1t

(
D1(t, y)

)
= 9cu−1

1 c2c5

(3

2

)u+1

(u+ 1)!t−2 +O(δt−2) +O
(
t−5/2 log t

)
.

The reader may find it worth observing that the main term thereof arises after

differentiating the term 9cu−1
1 c2c5t

u−1(logA)u+1 embeeded in (6.3.5), the first

error term stemming from the contribution of the (u+ 1)-th derivative of the

term 3cu−1
1 c2t

u−1(logA)u log
(
La(n)

)
. The preceding discussion thus enables

one to conclude that under the assumptions earlier described, D(u+1)(t, y) does

not vanish, as desired.

If instead, |log
(
La(n)

)
| > δ then we differentiate u times and obtain

∂

∂ut

(
D1(t, y)

)
= 3cu−1

1 c2

(3

2

)u
u!t−1 log

(
La(n)

)
+O(t−3/2 log t),

wherein the first summand above, which dominates over the second one in view

of the preceding assumption, arises from the contribution of the u-th derivative

of the term 3cu−1
1 c2t

u−1(logA)u log
(
La(n)

)
.

The framework when m = 2, though not dissimilar in treatment, shall ex-

hibit a slight different behaviour, the corresponding approach employed herein

thus necessitating a reappraisal of the underlying arguments. We define

g2(t) = − logLa(n)− y′2(t),

take δ > 0 to be a sufficiently small fixed constant and introduce for further

convenience the sets

Dδ =
{
t ∈ [T/2, T ] : |g2(t)| ≤ δ

}
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and

Eδ =
{
t ∈ [T/2, T ] : |g2(t)| > δ

}
.

We find it desirable to note that in view of the monotonicity of g2(t) the set

Dδ, if non-empty, is an interval, the analogous set Eδ comprising at most two

intervals. It then transpires that on recalling (6.3.1) then whenever t ∈ Dδ one

has

∂

∂u+1t

(
D1(t, y)

)
=3cu−1

1 c2

(3

2

)u
(u+ 1)!(c5 + b+ c− a)t−2 +O(δt−2)

+O(t−5/2 log t). (6.3.8)

It should be noted that in the above equation the main term arises from the

contribution of the (u+1)-th derivative of 9cu−1
1 c2c5t

u−1(logA)u+1 plus the left

side of the formula

∂

∂u+1t

(
3cu−1

1 c2t
u−1(logA)ug2(t)

)
=3cu−1

1 c2

(3

2

)u
(u+ 1)!y′′2(t)t−1

+O(δt−2) +O(t−5/2 log t),

which in turn is a consequence of an application of the product rule in con-

junction with the assumptions on t and A earlier stated. The reader may find

it worth observing that the first term on the right side of (6.3.8) is genuinely

a main term as a consequence of the condition (6.3.2).

If on the contrary t ∈ Eδ then on differentiating (6.3.5) u times it follows

that
∂

∂ut

(
D1(t, y)

)
= 3cu−1

1 c2

(3

2

)u
u!g2(t)t−1 +O(t−3/2 log t).

Combining (6.3.6) with (6.3.7) and the preceding discussion, the reader may

note then that we have therefore dissected the interval [T/2, T ] into a union

of at most three intervals in which either D(u)(t, y) or D(u+1)(t, y) does not

vanish. Consequently, subsequent applications of Rolle’s theorem accordingly

enables one to deduce that under the assumptions made above, the function

D(t, y) vanishes at most u+ 1 times, as desired.

The same approach for the analysis pertaining to the second function in

(6.3.3), which as was earlier anticipated shall not be deeply discussed herein,

is still valid to deliver the same conclusions. The main term thereof will arise
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after differentiating either u− 1 or u times accordingly the summand

cu−2
1 ytu−2(logA)u−1

(
9c2c5 logA+ 3c2(εm logLa(n)− y′m(t))

)
,

the presence of the factor y above not giving rise to any recalcitrant situations

whatsoever.

6.4 Asymptotic evaluation of the non-twisted

term. The diagonal contribution

We have now ascended to a position from which to integrate the approximate

functional equation obtained above, and this we shall describe shortly. We

shall henceforth denote a = (a,−b,−c), wherein the above entries are those

appertaining to Theorem 6.1.1 and satisfy a < c ≤ b. It seems worth noting

that under the assumptions of such a theorem, the tuple a satisfies the required

inequalities (6.2.1) necessitated to ascend to a position from which to apply

Lemma 6.2.2. We then utilise the aforementioned lemma and integrate over

[0, T ] to obtain

Ia,b,c(T ) = I1(T ) + I2(T ) +O
(

log T
)
, (6.4.1)

where

Im(T ) =
∑
n

P−1/2
n

∫ T

0

La(n)(−1)m+1itKm

(
Pn, t

)
dt, m = 1, 2.

We feel the urge to anticipate that the above integrals are not related

to the integals I1(T ) and I2(T ) in the previous chapter, the adoption of the

same notation stemming from a lack of alphabetic symbols. It seems desirable

to clarify that the error term in the above formula arises as a consequence of

decomposing the interval [0, T ] into [0, 1) and [1, T ] and integrating accordingly.

We also make a distinction, as is customary, between the diagonal and the off-

diagonal contribution and write

I1(T ) = I1,1(T ) + I1,2(T ), (6.4.2)
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where

I1,1(T ) =
∑

na1=nb2n
c
3

(n1n2n3)−1/2

∫ T

0

La(n)itK1

(
Pn, t

)
dt

and

I1,2(T ) =
∑

na1 6=nb2nc3

(n1n2n3)−1/2

∫ T

0

La(n)itK1

(
Pn, t

)
dt.

The following lemma will convey the asymptotic evaluation of the diagonal

contribution I1,1(T ), and this we now describe, but not before recalling for the

reader the definition (5.5.13).

Lemma 6.4.1. With the above notation one has

I1,1(T ) = σa,b,cT +O(T 11/20+ε).

It shall be noted that the above error term could have been refined, such

an improvement having been wrought in vain in view of the error terms apper-

taining to both the off-diagonal contribution and the contribution stemming

from the twisted integral which shall be made explicit shortly after the present

discussion.

Proof. On recalling (6.2.24) and the bound Km,u,v(Pn, t)� t−1/2 latent in the

conclusions of Lemma 6.2.3 we first note that the contribution to the integral

arising from the terms K1,u,v(Pn, t) in the decomposition cognate to K1(Pn, t)

is bounded above by

∑
na1=nb2n

c
3

(n1n2n3)−1/2

∫ T

0

t−1/2dt�
∑
n2,n3

n
−1/2−b/2a
2 n

−1/2−c/2a
3

∫ T

0

t−1/2dt

� T 1/2. (6.4.3)

It may also seem pertinent to define for further convenience in the memoir

the parameters

τn = 2π(n1n2n3)2/3P−1/3
a , T2 =

P
1/3
a

2π
T. (6.4.4)

It is then worth observing that employing this notation and making the choice
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x = n1n2n3 in (6.2.12) one has A(x, t) = (t/τn)3/2, whence whenever

(t− τn)/t ≤ t−1/2 log t

it appears at first glance that

2

3
logA = (t− τn)/t+O

(
t−1(log t)2

)
. (6.4.5)

Then combining (6.2.24) and (6.4.3) one gets

I1,1(T ) =
∑

na1=nb2n
c
3

P−1/2
n

∫
|t−τn|≥t1/2(log t)

J1(Pn, t)dt

+
∑

na1=nb2n
c
3

P−1/2
n

∫
|t−τn|<t1/2(log t)

J1(Pn, t)dt+O(T 1/2),

wherein we omitted writing the endpoints 0 and T in the above integrals for

the sake of concision. The reader may note that an application of Lemma

6.2.3 in conjunction with the procedure employed to derive (6.4.3) enables one

to infer that the second summand on the above equation is O
(
T 1/2(log T )2

)
.

Likewise, it may be worth observing that whenever |t − τn| ≥ t1/2(log t) then

|logA| � t−1/2(log t), a subsequent application of Lemma 6.2.3 thus delivering

I1,1(T ) =
∑

na1=nb2n
c
3

P−1/2
n

∫
|t−τn|≥t1/2(log t)

H(Pn, t)dt+O
(
T 1/2(log T )2

)
,

whence the definitions of H(x, t) and τn combined with the aforementioned

argument utilised to obtain (6.4.3) then yield

I1,1(T ) =
∑

na1=nb2n
c
3

n1n2n3≤T 3/2
2

P−1/2
n (T − τn) +O

(
T 1/2(log T )2

)
.

We will then rewrite the above equation as

I1,1(T ) = σa,b,cT − A1(T )− A3(T ) +O
(
T 1/2(log T )2

)
,

239



where we denote

A1(T ) =
∑

n1n2n3≤T 3/2
2

na1=nb2n
c
3

τnP
−1/2
n , A3(T ) = T

∑
na1=nb2n

c
3

n1n2n3>T
3/2
2

P−1/2
n , (6.4.6)

and where the constant σa,b,c was defined in (5.5.13). We find it pertinent

to recall equation (5.5.14) for further convenience and to draw the reader’s

attention to the parametrization of the underlying equation at hand described

in (5.5.15). It may also be desirable to bring the parameters Pd and Md,

defined in (5.5.16), back to the discussion. In a similar fashion as therein and

summing over r2 first we find that

A3(T )�T
∑

r
a2+b2
2 r

a3+c3
3 MdPd>T

3/2
2

r
−(a2+b2)/2
2 r

−(a3+c3)/2
3 (PdMd)

−1/2

�T 1/4+3/2(a2+b2)
∑

r
a3+c3
3 PdMd≤T

3/2
2

r
−(a3+c3)/(a2+b2)
3 (PdMd)

−1/(a2+b2)

+ T
∑

r
a3+c3
3 PdMd>T

3/2
2

r
−(a3+c3)/2
3 (PdMd)

−1/2. (6.4.7)

In order to bound the first term A3,1(T ) in the above equation we sum over

r3 to get

A3,1(T )�T 1/4+3/2(a3+c3)
∑

PdMd≤T
3/2
2

(PdMd)
−1/(a3+c3)

+ T 1/4+3/2(a2+b2)(log T )
∑

PdMd≤T
3/2
2

(PdMd)
−1/(a2+b2), (6.4.8)

where we encompassed both the instances when the coefficient of r3 in A3,1(T )

is smaller or greater than −1. The reader may find it desirable to observe that

in view of (5.5.16) the exponents appertaining to the square-free factors dj in
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the product PdMd are at least 5. Consequently, the preceding discussion yields

A3,1(T )�T 1/4+3/2(a3+c3)
∑

m≤T 3/10
2

τA−1(m)m−5/(a3+c3)

+ T 1/4+3/2(a2+b2)(log T )
∑

m≤T 3/10
2

τA−1(m)m−5/(a2+b2) � T 11/20+ε,

(6.4.9)

wherein τA−1(m) denotes the number of representations of m as a product

of A − 1 factors. Likewise, we denote by A3,2(T ) to the second summand of

(6.4.7). An analogous argument reveals that

A3,2(T )� T 1/4+3/2(a3+c3)
∑

PdMd≤T
3/2
2

(PdMd)
−1/(a3+c3) + T

∑
PdMd≥T

3/2
2

(PdMd)
−1/2.

The reader may note that the estimate obtained in the course of bounding

A3,1(T ) may be utilised herein to enable one to estimate the first term in the

above line by O(T 11/20+ε). In the interest of analysing the second one at hand

rather efficiently we find it pertinent to relabell the subindices of the factors

cognate to the product in the above equation so that

PdMd =
A−1∏
j=1

d
βj
j ,

wherein the corresponding exponents satisfy βj ≤ βj+1 for 1 ≤ j ≤ A− 1, the

parameter A being defined in (5.5.14). It then transpires that by summing

over d1 first one has

T
∑

PdMd≥T
3/2
2

(PdMd)
−1/2 =T

∑
d
β1
1 ···d

βA−1
A−1 ≥T

3/2
2

d
−β1/2
1 · · · d−βA−1/2

A−1

�T 1/4+3/2β1
∑

d
β2
2 ···d

βA−1
A−1 ≤T

3/2
2

d
−β2/β1
2 · · · d−βA−1/β1

A−1

+ T
∑

d
β2
2 ···d

βA−1
A−1 ≥T

3/2
2

d
−β2/2
2 · · · d−βA−1/2

A−1 .

The reader may observe that an iteration of the above argument then de-
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livers the estimate

T
∑

PdMd≥T
3/2
2

(PdMd)
−1/2 � T 1/4+3/2β1+ε � T 11/20+ε,

wherein we utilised the fact that β1 ≥ 5 mentioned above. It might be worth

mentioning for the sake of transparency that the extra ε herein stems from the

not so recalcitrant instance of some of the exponents at hand being equal.

In order to analyse the term A1(T ) defined in (6.4.6) we allude to the

parametrization (5.5.15) again to the end of obtaining

A1(T )�
∑

r
a2+b2
2 r

a3+c3
3 PdMd≤T

3/2
2

r
(a2+b2)/6
2 r

(a3+c3)/6
3 (MdPd)

1/6.

By summing subsequently over r2 and r3 we get

A1(T )�T 1/4+3/2(a2+b2)
∑

r
a3+c3
3 PdMd≤T

3/2
2

r
−(a3+c3)/(a2+b2)
3 (PdMd)

−1/(a2+b2)

�T 1/4+3/2(a3+c3)
∑

PdMd≤T
3/2
2

(PdMd)
−1/(a3+c3)

+ T 1/4+3/2(a2+b2)(log T )
∑

PdMd≤T
3/2
2

(PdMd)
−1/(a2+b2).

The reader may observe that the terms in the last line of the above equation

appeared in (6.4.8) and were already estimated in (6.4.9). Therefore, the same

argument delivers

A1(T )� T 11/20+ε,

as desired.
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6.5 Off-diagonal contribution of the non-twisted

term

We now focus our attention on the term I1,2(T ). We find it appropiate to

consider

J1,u,v(T ) =
∑
n

na1 6=nb2nc3

P−1/2
n

∫ T

0

La(n)itK1,u,v

(
Pn, t

)
dt, (6.5.1)

where we remind the reader that Km,u,v(Pn, t) was defined right after (6.2.24).

It may be worth introducing the analogous sum

J1,2(T ) =
∑
n

na1 6=nb2nc3

P−1/2
n

∫ T

0

La(n)itJ1(Pn, t)dt

and observe that equipped with this notation we have reached a position from

which to write I1,2(T ) by making use of (6.2.24) in a rather concise manner,

say

I1,2(T ) = J1,2(T ) +
∑
u,v

c1(u, v)J1,u,v(T ), (6.5.2)

where (u, v) runs over the range described right after (6.2.14). As the reader

may already anticipate in view of the conclusions derived in Lemma 6.2.3, the

integrals K1,u,v(Pn, t) satisfy a bound of the shape O(t−1/2), such a pointwise

estimate not being of the requisite precision if one ought to employ such a

bound when integrating over t. Instead, we depart from that trivial approach

in that further cancellation shall be exploited by means of oscillatory integral

estimates in conjunction with the same framework of ideas underlying the

proof of the aforementioned bound pertaining to K1,u,v(Pn, T ).

Lemma 6.5.1. For (u, v) in the range to which we alluded above one has

J1,u,v(T )� T 3/4(log T )4.

Proof. As was previously done in the course of the proof of Lemma 6.2.3, we

move the line of integration to Re(z) = −αat(logA) and thus get

K1,u,v(Pn, t) =

∫ ∞
−∞

G(t, y)eiF1(t,y)dy,
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wherein the above line the corresponding function G(t, y) is defined by means

of the formula

G(t, y) = t−v(−αa(logA)t+ iy)u−1e(α2
a−αa)(logA)2t−αaIa(logA)y/2−y2/t

and the phase of the unimodular function is

F1(t, y) = (1− 2αa)(logA)y − Iaα2
a(logA)2t/4 + Iay

2/4t.

As may become apparent shortly, it has been thought preferable to make a

dyadic dissection of the corresponding interval over which we shall integrate.

The reader may find it useful to observe that in view of the above estimates

and the argument preceding (6.2.28) if needed, it appears at first glimpse that

the function G(t, y) exhibits an exponential decay whenever |y| � t1/2(log t),

whence∫ T

T/2

La(n)itK1,u,v(Pn, t)dt =

∫ T

T/2

∫ T 1/2(log T )

−T 1/2(log T )

G(t, y)eiF (t,y)dydt+O(1),

where

F (t, y) = F1(t, y) + t log(La(n)).

In order to reach the position from which to make use of suitable oscillatory

integral estimates it seems desirable noting first that an application of (6.2.28)

in conjunction with (6.2.29) for the choice d = u− 1 yields

G(t, y)� t−v(−α|logA|t+ |y|)u−1e−Cat(logA)2−y2/2t

� tu/2−v−1/2e−Cat(logA)2/2 � t−1e−Cat(logA)2/2. (6.5.3)

In view of the ensuing discussion it transpires that one may assume the con-

dition |logA| � t−1/2(log t), since otherwise the corresponding contribution

to the integral at hand would be absorbed by the error term thereof, such an

assumption further delivering the constraint

Pn � T 3/2. (6.5.4)

We shift our focus to the analysis of the phase pertaining to the unimodular

function comprising the integrand of the above integral. A routine computation
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in conjunction with the above condition and the assumption |y| � t1/2 log t

then reveals that

∂2

∂2t
F (t, y) = −9

8
Iaα

2
at
−1 +O

(
t−3/2(log t)

)
,

which then yields ∣∣∣ ∂2

∂2t
F (t, y)

∣∣∣� t−1. (6.5.5)

As the reader may have already anticipated, we are preparing the ground

for an application of Lemma 5.2.4. To complete such an endeavour, it thus

remains noting that on recalling (6.2.3) and (6.2.26) one has that

|Ia|α2
a/4 ≤

3

256a
, (6.5.6)

whence it transpires that then −Iaα2
a/4 6= a−b−c, which in turn ensures that

condition (6.3.2) is satisfied. Therefore, the ensuing discussion in conjunction

with an application of both Lemmata 5.2.4 and 6.3.1 and equations (6.5.3) and

(6.5.5) delivers

∫ T 1/2(log T )

−T 1/2(log T )

∫ T

T/2

G(t, y)eiF (t,y)dtdy � T−1/2

∫ T 1/2(log T )

−T 1/2(log T )

dy

� log T,

whence an interchange of the order of integration combined with a dyadic

argument yields ∫ T

0

La(n)itK1,u,v(Pn, t)dt� (log T )2.

The reader may also observe that∑
Pn≤CT 3/2

P−1/2
n � T 3/4(log T )2, (6.5.7)

for any constant C > 0, whence recalling (6.5.4) and combining the above

equations delivers

J1,u,v(T )� T 3/4(log T )4.
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In order to make progress in the proof of the theorem at hand, it seems

pertinent to shift our focus to the corresponding analysis of the contribution

arising from J1,2(T ). We find it worth anticipating that a dyadic argument

shall be required henceforth. We also announce that in view of the conclusion

of Lemma 6.2.3 it transpires that such an investigation shall necessitate a

separate discussion for both the contribution stemming from the set of t that

are close to τn and the one comprising t which are not, the analysis of which

shall have its reliance on a different framework of ideas. For such purposes we

consider, for convenience, the sets

Sn =
{
t ∈ [T/2, T ] : |t− τn| ≤ T 1/2 log T

}
, (6.5.8)

S ′n =
{
t ∈ [T/2, T ] : |t− τn| > T 1/2 log T

}
. (6.5.9)

We also find it worth writing

∑
n

na1 6=nb2nc3

P−1/2
n

∫ T

T/2

La(n)itJ1(Pn, t)dt = JSn(T ) + JS′n(T ), (6.5.10)

where in the preceding line the summands involved therein are defined by

means of the formulas

JS(T ) =
∑
n

na1 6=nb2nc3

P−1/2
n IS(T ) (6.5.11)

with the term IS(T ) being

IS(T ) =

∫
S
La(n)itJ1(Pn, t)dt (6.5.12)

for the sets S = Sn,S ′n. We shall focus our attention first on the term JSn(T ).

As was discussed above, we find it worth warning the reader that an application

of the trivial bound

ISn(T )� T 1/2(log T )2

shall not be of the sufficient strength required. Instead further cancellation

shall be obtained as is customary by means of oscillatory integral estimates.
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Lemma 6.5.2. With the above notation, one has

JSn(T )� T 3/4(log T )4.

Proof. As a prelude to our discussion we begin as is customary by furnishing

ourselves with some notation. As was previously denoted in the preceding

chapter, for tuples n2 = (n2, n3) we consider

Nb,c = bnb/a2 n
c/a
3 c. (6.5.13)

We find it worth writing for each triple n = (n1,n2) the first entry by means

of n1 = Nb,c + r for some r ∈ Z. We shall henceforth write Sn2,r and τn2,r to

denote Sn and τn respectively. It may also seem pertinent to introduce, as

shall be elucidated promptly, the functions

G1(t, y) = e(logA)+1/t+Iay/2t−y2/t(1 + iy)−1 (6.5.14)

and

Fn2,r(t, y) = y(logA) + 2y/t− Ia/4t+ Iay
2/4t+ t log

(
La(n)

)
.

We note first for further use that whenever t ∈ Sn then |logA| � t−1/2(log t),

whence

G1(t, y)� 1

1 + |y|
. (6.5.15)

In view of the above equations, it is apparent that for fixed y, the zeros of

the function
d

dt

(
G1(t, y)F ′n2,r

(t, y)−1
)

may also be zeros of a function

P1

(
t, y, log(La(n))

)
,

wherein P1(z1, z2, z3) is a polynomial of degree smaller than C for some uni-

versal constant C > 0. It therefore transpires that when thinking of y and

n as being fixed then subsequent applications of Rolle’s theorem enables one

to partition the set of integration into a bounded number of intervals (not

depending on y) in which G1(t, y)F ′n2,r
(t, y)−1 is monotonic.
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By recalling (6.5.12) and in view of the decay exhibited by G1(t, y) with

respect to y in (6.5.14), one has that

ISn(T ) =

∫
Sn

∫ T 1/2 log T

−T 1/2 log T

G1(t, y)eiFn2,r(t,y)dydt+O(T−2).

We may suppose that Sn 6= ø, since if not no further work would be required.

It might be convenient to observe first that whenever y and t lie in the set of

integration at hand then it follows that

F ′n2,r
(t, y) =

3

2
y/t+ log(La(n)) +O

(
t−1(log t)2

)
. (6.5.16)

We also derive, but not before recalling first the definition of La(n), the

formula

F ′n2,r
(t, y) =

3

2
y/t+ log

(
nb2n

c
3/(Nb,c + r)a

)
+O

(
t−1(log t)2

)
=

3

2
y/t+ log

(
nb2n

c
3/N

a
b,c

)
− a log(1 + r/Nb,c) +O

(
t−1(log t)2

)
.

We further write, for convenience,

Hn2(t, y) = F ′n2,r
(t, y) + a log(1 + r/Nb,c),

a careful examination of which reveals that it does not depend on r. The reader

may find it useful to recall the definition of Sn2,r and τn2,r right after (6.5.13)

and observe that for fixed n2, given r1, r2 ∈ Z satisfying |r1|, |r2| ≤ Nb,c/2 and

t1 ∈ Sn2,r1 and t2 ∈ Sn2,r2 then it transpires that

|Hn2(t1, y)−Hn2(t2, y)| � T−1/2 log T,

the above implicit constant not depending on r1, r2, and in turn implies that

the cardinality of the set R1 comprising integers |r| ≤ Nb,c/2 with the property

that |F ′n2,r
(t, y)| ≤ N−1

b,c for some t ∈ Sn2,r satisfies the bound

|R1| � Nb,cT
−1/2(log T ) + 1.

For these cases, a succint application of the trivial bound T 1/2(log T )2, it in

turn stemming, inter alia, from the bound (6.5.15), to the integral at hand
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already suffices to bound the contribution arising from the aforementioned set

by ∑
na+b2 na+c3 �T 3a/2

∑
r∈R1

n
−1/2
2 n

−1/2
3 (Nb,c + r)−1/2ISn(T )

�(log T )3
∑

na+b2 na+c3 �T 3a/2

n
−1/2
2 n

−1/2
3 N

1/2
b,c

+ T 1/2(log T )2
∑

na+b2 na+c3 �T 3a/2

n
−1/2
2 n

−1/2
3 N

−1/2
b,c

�T 3/4(log T )3
∑

n3�T 3a/(2(a+c))

n−1
3 � T 3/4(log T )4.

Moreover, on denoting R2 to the set of numbers r with the property that

|F ′n2,r
(t, y)| > N−1

b,c for each t ∈ Sn2,r one further has

∑
r∈R2

|F ′n2,r
(t, y)|−1 � Nb,c

∑
|r|≤Nb,c/2

1

r
� Nb,c log T

for fixed t. Therefore, the preceding discussion in conjunction with Lemma

5.2.2 and equations (6.5.15) and the subsequent analysis delivers∑
na+b2 na+c3 �T 3a/2

∑
r∈R2

n
−1/2
2 n

−1/2
3 (Nb,c + r)−1/2ISn(T )

� (log T )2
∑

na+b2 na+c3 �T 3a/2

n
−1/2
2 n

−1/2
3 N

1/2
b,c � T 3/4(log T )2

∑
n3�T 3a/(2(a+c))

n−1
3

� T 3/4(log T )3.

We find it desirable to remark that for integers with the property that

|r| > Nb,c/2 one then further has |log(La(n))| � 1, an immediate consequence

of which being when applied in conjunction with the observation that the rest

of the summands in (6.5.16) are O(T−1/2 log T ) that then

|F ′n2,r
(t, y)| � 1.

Therefore, combining the previous discussion with another application of Lemma

5.2.2 and the analysis following (6.5.15) we derive that such a contribution is

249



bounded above by a constant times

(log T )
∑
n2,n3

∑
|r|>Nb,c/2

n
−1/2
2 n

−1/2
3 (Nb,c + r)−1/2 � T 3/4(log T )3.

We shift our focus to the analysis of the term JS′n(T ) and announce that its

investigation shall have its reliance on another framework of ideas more aligned

with that of the off-diagonal analysis of the non-twisted term pertaining to the

approach taken in the previous chapter.

Lemma 6.5.3. On recalling (6.5.11) one then has

JS′n(T )� T 1+1/2c−1/2a + T 3/4(log T )2.

Moreover,

J1,2(T )� T 1+1/2c−1/2a + T 3/4(log T )4

and

I1,2(T )� T 1+1/2c−1/2a + T 3/4(log T )4.

Proof. As a prelude to the upcoming discussion, it should be noted, but not

before recalling (6.5.10), that under the assumption of the first statement in

conjunction with Lemma 6.5.2 one has

∑
n

na1 6=nb2nc3

P−1/2
n

∫ T

T/2

La(n)itJ1(Pn, t)dt� T 1+1/2c−1/2a + T 3/4(log T )4,

from where the second statement follows after an application of the latter and

a dyadic decomposition argument. Moreover, the third one is an immediate

consequence of a combination of the second one, equation (6.5.2) and Lemma

6.5.1.

It therefore transpires that fulfilling the commitment at hand will amount

to accomplishing the first statement of the lemma, and this we now address. To

this end, we first observe that an application of Lemma 6.2.3 to the integrand

pertaining to IS′n(T ) delivers

IS′n(T ) =

∫
S′n∩[τn,T ]

La(n)itdt+O(T−2)� 1

|log
(
La(n)

)
|

+ T−2.
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As above, we split the corresponding sum into three parts. First, following

the previous approach and recalling (6.5.13) we write n1 = Nb,c + r for r 6= 0

and observe that whenever 1 < |r| ≤ Nb,c/2 then

∣∣ log(La(n))
∣∣−1 �

Na
b,c

|(Nb,c + r)a − nb2nc3|
� Nb,c

|r|
. (6.5.17)

It may be appropiate to denote JS′n,1(T ) the contribution to JS′n(T ) stemming

from tuples satisfying |n1 −Nb,c| > 1, and thus write

JS′n(T ) = JS′n,1(T ) + JS′n,2(T ), (6.5.18)

wherein JS′n,2(T ) denotes the corresponding contribution arising from the in-

stances when |n1 − Nb,c| ≤ 1. Summing over 1 < |r| ≤ Nb,c, combining the

above equations and utilising the same estimates as above then delivers

JS′n,1(T )�
∑

na+b2 na+c3 �T 3a/2

∑
1<|r|≤Nb,c/2

n
−1/2
2 n

−1/2
3 (Nb,c + r)−1/2IS′n(T )

�
∑

na+b2 na+c3 �T 3a/2

n
−1/2
2 n

−1/2
3 N

1/2
b,c

∑
1<|r|≤Nb,c/2

1

r
� T 3/4(log T )2.

(6.5.19)

Likewise, it may be worth observing that whenever |r| > Nb,c/2 then one

has |log
(
La(n)

)
|−1 � 1, the contribution stemming from triples satisfying

such a property being bounded above by∑
n1n2n3�T 3/2

n
−1/2
1 n

−1/2
2 n

−1/2
3 � T 3/4(log T )2.

Thus it only remains to bound the contribution to JS′n(T ) stemming from

triples satisfying |n1 − Nb,c| ≤ 1 and this we now discuss. To this end, it is

worth noting that whenever n1 = Nb,c then one may assume that n
b/a
2 n

c/a
3 is

not an integer, since otherwise

na1 = nb2n
c
3,

a tuple with such a property then pertaining to the diagonal contribution

already discussed.
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It may also be desirable to observe in view of (6.5.17) that

∣∣ log
(
nb2n

c
3/(Nb,c + r)a

)∣∣−1 � nb2n
c
3

|(Nb,c + r)a − nb2nc3|
, (6.5.20)

and in fact the above line could be further stated by means of an asymptotic

formula, such a refinement being of no utility herein. The reader may observe

that the above discussion then assures that the denominator involved in the

previous line shall not be zero. It also seems pertinent to observe for further

purposes that
nb2n

c
3

|(Nb,c + r)a − nb2nc3|
≤ nb2n

c
3, (6.5.21)

which in turn follows from the denominator in the above function being a

non-zero integer. We further write for each r ∈ {−1, 0, 1} the contribution

JS′n,2,r(T ) =
∑

na+b2 na+c3 �T 3a/2

(n2n3)−1/2(Nb,c + r)−1/2
∣∣∣ ∫
S′n
eit log(nb2n

c
3/(Nb,c+r)

a)dt
∣∣∣.

(6.5.22)

We divide the range of summation in the above line in accordance with the

previous ensuing discussion and utilise (6.5.21) to obtain

JS′n,2,r(T )� FS′n,1(T ) + FS′n,2(T ),

where the above terms are defined by

FS′n,1(T ) =
∑

nb2n
c
3≤T

n
b−1/2−b/2a
2 n

c−1/2−c/2a
3 ,

and

FS′n,2(T ) = T
∑

nb2n
c
3>T

n
−1/2−b/2a
2 n

−1/2−c/2a
3 .

It may be worth clarifying that in the above analysis we bounded the

integral in (6.5.22) by means of the inverse of the corresponding logarithm in

conjunction with an application of (6.5.21), the same integral appertaining to

the second range of summation being estimated by the length of the interval

252



of integration. Summing over n2 first yields

FS′n,1(T )� T 1+1/2b−1/2a
∑

n3≤T 1/c

n
−1/2−c/2b
3 � T 1+1/2c−1/2a.

Likewise, an analogous computation in the same spirit reveals that

FS′n,2(T )� T 1+1/2b−1/2a
∑

n3≤T 1/c

n
−1/2−c/2b
3 + T

∑
nc3>T

n
−1/2−c/2a
3 � T 1+1/2c−1/2a,

thus yielding the bound

JS′n,2(T )� T 1+1/2c−1/2a,

whence the above estimate in conjunction with that of (6.5.18) and (6.5.19)

delivers the desired result. As was previously addressed in the above chapter,

we draw the reader’s attention to the above inequalities and point out that the

assumption a < min(b, c) was crucially utilised therein, an analogous argument

not being applicable in other circumstances.

Lemma 6.5.4. In the above context, if one further assumes Conjecture 2 it

then follows that

JS′n(T )� T 1/2+a/(a+c)+ε + T 3/4(log T )2.

Consequently,

J1,2(T )� T 1/2+a/(a+c)+ε + T 3/4(log T )4

and

I1,2(T )� T 1/2+a/(a+c)+ε + T 3/4(log T )4.

Proof. We begin the discussion by noting that under the assumption of the first

statement, then the second one follows as in the previous lemma by combining

the latter with Lemma 6.5.2 and a dyadic decomposition process. Likewise, it

transpires that the third one is an immediate consequence of a combination of

the second one and Lemma 6.5.1.

It thus remains to accomplish the first statement of the lemma, and this

we now address. The underlying idea of such a refinement with respect to the
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analogous unconditional lemma has its reliance on a substantial improvement

of the error term pertaining to JS′n,2(T ) defined in (6.5.18). It seems worth

embarking on such an endeavour by first noting that for every r ∈ {−1, 0, 1}
the aforementioned conjecture yields

nb2n
c
3 − (Nb,c + r)a � (Nb,c + r)a−1n−1−ε

2 n−1−ε
3 . (6.5.23)

We use the previous estimates and (6.5.20) to obtain the bound

|log((Nb,c + r)a/nb2n
c
3)|−1 � (Nb,cn2n3)1+ε,

such a bound being the genesis of the departure from the unconditional ap-

proach. Then, combining the above estimates, dividing the range of summation

in concordance with the above analysis and recalling (6.5.22) one obtains

JS′n,2(T )� T εM1(T ) +M2(T ),

where in the above estimate the terms M1(T ) and M2(T ) are defined by means

of the sums

M1(T ) =
∑

na+b2 na+c3 ≤Ta

n
1/2+b/2a
2 n

1/2+c/2a
3

and

M2(T ) = T
∑

na+b2 na+c3 >Ta

n
−1/2−b/2a
2 n

−1/2−c/2a
3 .

The reader may find it useful to observe that by summing first over n2 one

gets

M1(T )� T 1/2+a/(a+b)
∑

n3≤Ta/(a+c)
n
−(a+c)/(a+b)
3 � T 1/2+a/(a+c).

Likewise, an analogous computation in a similar manner delivers

M2(T )� T 1/2+a/(a+b)
∑

n3≤Ta/(a+c)
n
−(a+c)/(a+b)
3 + T

∑
n3>Ta/(a+c)

n
−1/2−c/2a
3

� T 1/2+a/(a+c).

The above discussion then yields

JS′n,2(T )� T 1/2+a/(a+c)+ε,
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which combined with (6.5.18) and (6.5.19) then leads to the desired bound

recorded in the first statement of the lemma.

6.6 Residual terms arising from the twisted

integral analysis

The prelude to the analysis of I2(T ) will be very similar in nature to that of

I1,2(T ), the departing from the course of the discussion cognate to the latter

term being discussed in the upcoming subsection. The investigations presented

herein will not comprise novel ideas and shall be concerned with the estimation

of the terms J2,u,v(T ), the analysis of which shall be reminiscent to that of

Lemma 6.5.1, and a succint discussion about the contribution stemming from

the set Sn in the spirit of that of Lemma 6.5.2. We find it appropiate to recall

(6.2.25) and consider, as was done in (6.5.1), the sum

J2,u,v(T ) =
∑
n

P−1/2
n

∫ T

0

ψ(t)La(n)−itK2,u,v

(
Pn, t

)
dt.

It may be worth introducing the analogous sum

J2,1(T ) =
∑
n

P−1/2
n

∫ T

0

ψ(t)La(n)−itJ2(Pn, t)dt (6.6.1)

and observe that equipped with this notation we have reached a position from

which to write I2(T ) by making use of (6.2.24) in a rather concise manner, say

I2(T ) = J2,1(T ) +
∑
u,v

c2(u, v)J2,u,v(T ).

Lemma 6.6.1. With the above notation, one has

J2,u,v(T )� T 3/4(log T )4.

Proof. As was previously noted in the preface of this section, we utilise the fact

that the integrand in the definition of K2,u,v(T ) is an entire function to move,

in the same spirit as that of the proof of Lemma 6.2.3, the line of integration
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to Re(z) = −αat(logA) and thus get

K2,u,v(Pn, t) =

∫ ∞
−∞

G2(t, y)eiF2,1(t,y)dy,

wherein the function G2(t, y) at hand is defined by means of the formula

G2(t, y) = t−v(−αa(logA)t+ iy)u−1e(α2
a−αa)(logA)2t+αaIa(logA)y/2−y2/t

and the phase of the corresponding unimodular function will then be

F2,1(t, y) = y logA+ 2αa(logA)y + Iaα
2
a(logA)2t/4− Iay2/4t.

The reader may find it useful to observe that∫ T

T/2

ψ(t)La(n)−itK2,u,v(Pn, t)dt =

∫ T

T/2

∫ T 1/2(log T )

−T 1/2(log T )

G2(t, y)eiF2(t,y)dydt

+O(T−2),

where

F2(t, y) = F2,1(t, y)− t log(La(n))− ga(t) + ξaπi/4,

where we remind the reader of (6.2.14). It is worth noting that then by em-

ploying (6.2.28) and (6.2.29) in a similar fashion as was previously done in

Lemma 6.5.2, one obtains

G2(t, y)� t−v(−αa|logA|t+ |y|)u−1e−Cat(logA)2−y2/2t

� tu/2−v−1/2e−Cat(logA)2/2 � t−1e−Cat(logA)2/2. (6.6.2)

In view of the above estimates it transpires that we may assume |y| � t1/2 log t

and |logA| � t−1/2(log t), since otherwise the contribution to the integral

would be negligible. Observe that the latter condition further implies

Pn � T 3/2. (6.6.3)

Similarly, as shall become apparent shortly, it may be worth observing that

under the above constraints then one has

∂2

∂2t
F2(t, y) =

9

8
Iaα

2
at
−1 +O(t−3/2 log t).
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We also find it convenient to observe that an analogous argument to that

utilised in Lemma 6.5.1 transports us to a position from which to assure that

the derivative of G2(t, y)/F ′2(t, y) with respect to t vanishes in at most O(1)

points. This can indeed be achieved by noting in view of (6.5.6) that condition

(6.3.2) is satisfied, whence an application of Lemma 6.3.1 delivers the ensuing

conclusion. Therefore, interchanging the order of integration and combining

the above discussion with Lemma 5.2.4 and (6.6.2) we obtain

∫ T

T/2

∫ T 1/2(log T )

−T 1/2(log T )

G2(t, y)eiF2(t,y)dtdy �
∫ T 1/2(log T )

−T 1/2(log T )

T−1/2dy

� log T.

We conclude the lemma by interchanging the order of integration in con-

junction with a customary dyadic argument that shall ultimately lead to the

bound ∫ T

0

ψ(t)La(n)−itK2,u,v(Pn, t)dt� (log T )2.

Consequently, combining the above equations with (6.5.7) and (6.6.3) delivers

J2,u,v(T )� T 3/4(log T )4.

In order to make progress in the proof, it seems pertinent to shift our focus

to the contribution to I2(T ) stemming from the term J2,1(T ). We find it worth

anticipating that a dyadic argument shall be required henceforth. To this end,

we thus write

∑
n

P−1/2
n

∫ T

T/2

ψ(t)La(n)−itJ2(Pn, t)dt = JψSn(T ) + JψS′n(T ), (6.6.4)

wherein the above line the terms on the right side are defined by means of

JψS (T ) =
∑
n

P−1/2
n IψS (T ) (6.6.5)

with

IψS (T ) =

∫
S
ψ(t)La(n)−itJ2(Pn, t)dt
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for the sets S = Sn,S ′n, which the reader may find it helpful to recall that

those were defined in (6.5.8) and (6.5.9). Before providing an explicit bound

for the sum JψSn(T ) it has been thought pertinent to present first a technical

lemma that shall be used on several occasions in subsequent analysis. To this

end, we find it worth introducing for further use, but not before recalling the

definition of ga(t) described in (6.2.14), the function

Gn(t) = −t logLa(n)− ga(t). (6.6.6)

Lemma 6.6.2. Let (tn)n be any sequence of real numbers having the property

that tn ∈ Sn, and assume that 4a < b+c. Suppose that (Hn(t))n is a collection

of functions with the property that

Hn(t) = G′n(t) +O(t−1/2 log t) (6.6.7)

for t ∈ [T/2, T ], the above implicit constant not depending on n. Then one

has that ∑
τn�T

P−1/2
n min(|Hn(tn)|−1, T 1/2)� T 3/4(log T )3

whenever b > c. If b = c then an analogous estimate holds with T 3/4(log T )2

replacing the term in the right side of the bound.

Proof. We shall denote henceforth for convenience by W (T ) to the left side of

the above equation. The reader may find it useful to note that then

G′n(t) = a log n1−b log n2−c log n3 +(b+c−a) log t+log
( bbcc

aa2b+c−a

)
. (6.6.8)

As shall be elucidated shortly, the evaluation of the above function at the

point τn shall play a not insignificant role in the course of the investigation

cognate to this lemma. It has then been thought pertinent to recall (6.4.4)

and compute such an evaluation beforehand, say

G′n(τn) =
(2b+ 2c+ a

3

)
log n1 +

(2c− b− 2a

3

)
log n2 +

(2b− c− 2a

3

)
log n3

+ logKa, (6.6.9)
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wherein

logKa =(b+ c− a) log π −
(b+ c+ 2a

3

)
log a+

(2b− c+ a

3

)
log b

+
(2c− b+ a

3

)
log c.

We also note for further use that it is apparent in view of (6.6.7) and (6.6.8)

in conjunction with the fact that tn ∈ Sn that

Hn(tn) = G′n(τn) +O(T−1/2 log T ), (6.6.10)

the above implicit constant being independent of n.

It may be worth noting that in view of the assumptions on a, b, c earlier

made in the statement of the lemma, whenever 2c > b+2a then the correspond-

ing coefficients of the logarithmic summands in (6.6.9) are strictly positive. It

then transpires that whenever either n1, n2 or n3 are sufficiently large then

|G′n(τn)| � 1 in the interval of integration, the corresponding contribution

to W (T ) appertaining to such tuples being O
(
T 3/4(log T )2

)
by (6.5.7) and

(6.6.10). If instead each of the entries are bounded, an application of the triv-

ial observation min
(
|Hn(tn)|−1, T 1/2

)
� T 1/2 enables one to deduce that such

a contribution is O(T 1/2). The reader may notice that the instance b = c is

encompassed in this more general framework.

It has been thought pertinent to devote a few lines to the not entirely re-

calcitrant situation for which b = 2c − 2a. To this end, we draw the reader’s

attention to (6.6.9) and note that the coefficients in front of log n1 and log n3

are positive. In view of such an observation, it transpires that whenever either

n1 or n3 are sufficiently big one has the bound |G′n(τn)| � 1, an applica-

tion of which, in conjunction with (6.5.7) and (6.6.10) enables one to esti-

mate the corresponding contribution to W (T ) appertaining to such tuples by

O(T 3/4(log T )2). If instead both n1 and n3 are bounded then it is apparent

that

logKa = 3(c− a) log π − c log a+ (c− a) log 2(c− a) + a log c.

We find it desirable to focus our attention on the second part of the above

equation pertaining to the summands not involving π and observe that in

view of the fact that c > 2a as a consequence of both the assumptions on the
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statement of the lemma and the aforementioned equality between a, b, c, it is

apparent that

−c log a+ (c− a) log 2(c− a) + a log c ≥ −c log a+ (c− a) log 2a+ a log c

= a(log c− log a) + (c− a) log 2 > 0.

Combining the above lines of inequalities with (6.6.9) delivers the bound

|G′n(τn)| � 1, which in conjunction with (6.5.7) and (6.6.10) and the ensuing

discussion yields

W (T )�
∑
τn�T

P−1/2
n � T 3/4(log T )2

under such assumptions.

We shall henceforth assume 2c < b+2a throughout the rest of the discussion

devoted to the investigation of W (T ). As a prelude to the aforementioned pe-

rusal, it seems worth anticipating that the manoeuvres which shall be deployed

in due course shall not be dissimilar to those already presented throughout the

rest of the chapter. To this end we introduce, for fixed (n1, n3), the parameter

N2 =
(
K3
an

2b+2c+a
1 n2b−c−2a

3

)1/(b+2a−2c)
. (6.6.11)

It has also been thought appropiate to define, for each triple (n1, n2, n3)

with n1 = (n1, n3) the number r = n2−N2, which may not be an integer, and

write for ease of notation Hn1,r(t), Gn1,r(t), tn1,r and τn1,r to denote Hn(t),

Gn(t), tn and τn respectively. By recalling (6.6.9) it then transpires that

G′n1,r
(τn1,r) =

(2b+ 2c+ a

3

)
log n1 +

(2c− b− 2a

3

)
log(N2 + r)

+
(2b− c− 2a

3

)
log n3 + logKa,

whence utilising the fact that (6.6.9) vanishes when substituting n2 = N2 and

combining it with (6.6.10) one may deduce

Hn1,r(tn1,r) =
2c− b− 2a

3
log(1 + r/N2) +O(T−1/2 log T ).

We denote as is customary by G1 to the set of integers |r| ≤ N2/2 having

the property that |Hn1,r(tn1,r)| ≤ N−1
2 . In view of the uniformity in the above

error term with respect to r, as was assumed in the statement of the lemma,
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it then transpires that

|G1| � N2T
−1/2(log T ) + 1,

the contribution toW (T ) stemming from the corresponding tuples being bounded

above by∑
n1N2n3�T 3/2

∑
r∈G1

n
−1/2
1 N

−1/2
2 n

−1/2
3 min

(
|Hn1,r(tn1,r)|−1, T 1/2

)
� W1(T )+W2(T ),

wherein

W1(T ) = (log T )
∑

n1N2n3�T 3/2

n
−1/2
1 N

1/2
2 n

−1/2
3

and

W2(T ) = T 1/2
∑

n1N2n3�T 3/2

n
−1/2
1 N

−1/2
2 n

−1/2
3 .

As a prelude to our analysis of the preceding terms, it seems worth noting that

the tuples involved in the above sums satisfy

n
1/2
1 N

1/2
2 n

1/2
3 � T 3/4. (6.6.12)

We utilise such an estimate to obtain

W1(T )� T 3/4(log T )
∑

n1N2n3�T 3/2

n−1
1 n−1

3 � T 3/4(log T )3.

In order to bound W2(T ) we define first, for convenience, the exponents

α1 =
3b+ 3a

b+ 2a− 2c
, α3 =

3b− 3c

b+ 2a− 2c
,

we remind the reader of (6.6.11) and employ (6.6.12) to obtain

W2(T )� T−1/4
∑

n
α1
1 n

α3
3 �T 3/2

1� T 3/2α3−1/4
∑

n1�T 3/2α1

n
−α1/α3

1

� T 3/2α3−1/4 = T 3/4+(2a−b)/2(b−c) � T 3/4,

wherein we used the fact that b > 2a stemming from the inequality b+ c > 4a.

It thus remains to analyse the contribution of the set G2 comprising in-
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tegers |r| ≤ N2/2 having the property that |Hn1,r(tn1,r)|> N−1
2 . Under such

circumstances, it transpires that∑
n1N2n3�T 3/2

∑
r∈G2

n
−1/2
1 N

−1/2
2 n

−1/2
3 min

(
|Hn1,r(tn1,r)|−1, T 1/2

)
�

∑
n1N2n3�T 3/2

n
−1/2
1 N

1/2
2 n

−1/2
3

∑
r∈G2

1

r
� T 3/4(log T )

∑
n1N2n3�T 3/2

n−1
2 n−1

3

� T 3/4(log T )3,

wherein we routinarily utilised (6.6.12), which completes the proof.

We are now equipped to expeditiously analyse JψSn(T ), which we remind

the reader that was defined in (6.6.5).

Lemma 6.6.3. Assume that 4a < b+ c. Whenever c < b one has that

JψSn(T )� T 3/4(log T )4.

If b = c one instead has the bound JψSn(T )� T 3/4(log T )3.

Proof. We find it convenient to prepare the ground for our analysis by denoting

G3(t, y) = e(logA)+1/t−Iay/2t−y2/t(1 + iy)−1,

it being convenient to note for further purposes that such a function satisfies

G3(t, y)� 1

1 + |y|
. (6.6.13)

It also seems reasonable to introduce for n the corresponding phase appertain-

ing to the unimodular function involved in the integral at hand

F1,n(t, y) = y(logA) + 2y/t+ Ia/4t− Iay2/4t+Gn(t), (6.6.14)

wherein Gn(t) was defined in (6.6.6). In view of the decay exhibited by the

function G3(t, y) in conjunction with (6.2.25) and (6.6.5) it then transpires

that

IψSn(T ) =

∫
Sn

∫ T 1/2 log T

−T 1/2 log T

G3(t, y)eiF1,n(t,y)dydt+O(T−2).
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The analysis of the piecewise monotonicity of the corresponding auxiliary

function shall not be dissimilar to that described in Lemma 6.5.2. It seems

worth noting for such purposes that it is apparent that for fixed y, the zeros

of the function
d

dt

(
G3(t, y)/F ′1,n(t, y)

)
are also zeros of a function

P2(t, log t, y, log(La(n))),

wherein P2(z1, z2, z3, z4) is a polynomial of universally bounded degree linear in

z2. It therefore transpires that by differentiating the above a sufficiently large

universally bounded number of times, the corresponding terms containing a

factor of (log t) may eventually disappear, the zeros of the resulting expression

further being zeros of a polynomial in t and y of bounded degree. Therefore,

subsequent applications of Rolle’s theorem enable one to partition the set of

integration into a universally bounded number of intervals having the property

that G3(t, y)/F ′1,n(t, y) is monotonic on each of them.

We may suppose that Sn 6= ø, since if not no further work would be re-

quired. We also find it desirable to recall (6.4.5) to the end of noting that

whenever t ∈ Sn, as is the case herein, one has that |logA| � T−1/2 log T. It

then seems worth recalling (6.6.14) and observing that if |y| ≤ T 1/2(log T ) one

has

F ′1,n(t, y) = G′n(t) +O
(
t−1/2(log t)

)
,

the corresponding implicit constant not depending on n. The reader may

notice that we have merely prepared the ground for an application of both the

above lemma and the oscillatory integral estimates ones. Before proceeding

in such a way it is convenient to denote as we may by tn to the real number

sn ∈ Sn having the property that |F ′1,n(sn)| is minimum in Sn, the existence

of such a number being assured by the compactness of the set Sn. Therefore,

combining Lemmata 5.2.2 and 5.2.4 with (6.6.13) and Lemma 6.6.2 for the

choice Hn(t) = F ′1,n(t) one may deduce that

JψSn(T )� (log T )
∑
τn�T

P−1/2
n min(|Hn(tn)|−1, T 1/2)� T 3/4(log T )4
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if c < b, the bound

JψSn(T )� T 3/4(log T )3

replacing the above for the case b = c.

6.7 The stationary phase method and van der

Corput’s estimates

As was earlier anticipated, the departing in the analysis of I2(T ) from the

course of the discussion cognate to the term I1,2(T ) presented above has its

genesis on the necessity of an application of the stationary phase method as

a consequence of the presence of the twisting factor to which we previously

alluded. The remainder of the discussion in this chapter shall thus be devoted

to the analysis of JψS′n(T ). The latter shall essentially differ from that of pre-

vious sections in that the derivative of the phase function pertaining to the

corresponding integral at hand may vanish. To this end, an application of

Lemma 5.2.5 in conjunction with classical van der Corput’s estimates and an

intrincate analysis shall be required.

For such purposes we first apply Lemma 6.2.3 to obtain

IψS′n(T ) =

∫
S′n∩[τn,T ]

ψ(t)La(n)−itdt+O(T−2)

= eiπξa/4
∫
S′n∩[τn,T ]

eiGn(t)dt+O(T−2), (6.7.1)

wherein Gn(t) was defined in (6.6.6) and τn ≤ T . As is customary, the zero of

the derivative of the phase function at hand shall play a prominent role in the

discussion, whence it seems worth recalling (6.6.8) and recording for further

use that on writing

cn =
(nb2nc3
na1

)1/(b+c−a)

Ca, with Ca = 2
( aa

bbcc

)1/(b+c−a)

, (6.7.2)

one then has G′n(cn) = 0. We also find it desirable to note, as may become
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apparent shortly, that

Gn(cn) = −(b+ c− a)cn,

and define for convenience G1(cn) by means of

G1(cn) = Gn(cn) + (ξa + 1)π/4. (6.7.3)

We shall provide an asymptotic evaluation of the term JψS′n(T ) defined in

(6.6.5), but before embarking in such an endeavour it seems desirable to write

Tn = max(T/2, τn + T 1/2 log T )

and observe that equipped with this notation we have reached a position from

which to legitimately write

S ′n ∩ [τn, T ] = [Tn, T ],

it sufficing to assume that τn + T 1/2 log T ≤ T since otherwise S ′n = ø and we

would be done. The following note shall succintly discard the case b = c from

our analysis.

Lemma 6.7.1. Assume that 2a < b and b = c. Then it transpires that

JψS′n(T )� T 3/4(log T ).

Proof. We recall (6.6.8) to the end of observing that whenever t ∈ [T/2, T ]

and Pn � T 3/2 it follows that

G′n(t) ≥ (2b− a) log t+ log
( b2b

aa22b−a

)
− b log(n2n3)

≥ (b/2− a) log t− C

for some constant C > 0. It therefore transpires that G′n(t) � log t in the

interval at hand, whence by Lemma 5.2.1 one has

IψS′n(T )� (log T )−1,
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which combined with (6.5.7) and (6.6.5) delivers

JψS′n(T )�
∑

Pn�T 3/2

P−1/2
n IψS′n(T )� (log T )−1

∑
Pn�T 3/2

P−1/2
n � T 3/4(log T ),

as desired.

Lemma 6.7.2. Assume that 4a < b+ c and b > c. One then has that

JψS′n(T ) =(b+ c− a)1/2
√

2π
∑

Tn≤cn≤T
τn≤T

P−1/2
n c1/2

n eiG1(cn)

+O
(
T 3/4(log T )3

)
.

Proof. We shall omit henceforth writing the condition τn ≤ T for the sake of

simplicity. We begin our discussion by summing equation (6.7.1) over tuples

n and applying Lemmata 5.2.1 and 5.2.3 in conjunction with Lemma 5.2.5 to

obtain

JψS′n(T ) =(b+ c− a)1/2
√

2π
∑

Tn≤cn≤T

P−1/2
n c1/2

n eiG1(cn)

+O
( ∑
Tn/2≤cn≤2Tn

P−1/2
n min

(
|G′n(Tn)|−1, T 1/2

n

))
+O

( ∑
T/2≤cn≤2T

P−1/2
n min

(
|G′n(T )|−1, T 1/2

))
+O

(
T 3/4(log T )2

)
,

(6.7.4)

whence it transpires that proving the result at hand amounts to estimating

the above error terms. The reader shall rest assured that further details about

such an application will be delivered promptly, those nonetheless having been

essentially delivered in Lemma 5.7.1 of the previous chapter. It may first

be useful to observe that in the preceding lines we implicitly applied Lemma

5.2.5 for the tuples satisfying Tn ≤ cn ≤ T . Similarly, we further utilised

Lemma 5.2.1 and 5.2.3 whenever either Tn/2 ≤ cn ≤ Tn or T < cn ≤ 2T ,

the contribution stemming from such tuples being absorbed accordingly by

the above error terms. If instead the parameter cn does not belong to any of

these ranges, we employed Lemma 5.2.1 to estimate the integrals appertaining

to tuples satisfying such a condition by O(1), an immediate application of

(6.5.7) when summing over such tuples thus bounding the latter contribution
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by O
(
T 3/4(log T )2

)
.

We shift our attention first to the investigation of the first error term in the

above formula, and find it convenient, as shall become transparent promptly,

writing ∑
Tn/2≤cn≤2Tn

P−1/2
n min

(
|G′n(Tn)|−1, T 1/2

n

)
= Y1(T ) + Y2(T ),

wherein

Y1(T ) =
∑

Tn/2≤cn≤2Tn
τn+T 1/2 log T≥T/2

P−1/2
n min

(
|G′n(Tn)|−1, T 1/2

n

)
and

Y2(T ) =
∑

Tn/2≤cn≤2Tn
τn+T 1/2 log T<T/2

P−1/2
n min

(
|G′n(Tn)|−1, T 1/2

n

)
.

We begin our discussion by analysing first Y1(T ). It seems worth noting that

under the constraints imposed in the sum cognate to such a term and on

recalling (6.5.8), one may infer that Tn = τn + T 1/2 log T ∈ Sn. We have

therefore reached a position from which to apply Lemma 6.6.2 for the choice

Hn(t) = G′n(t), namely

Y1(T )�
∑
τn�T

P−1/2
n min

(
|G′n(Tn)|−1, T 1/2

n

)
� T 3/4(log T )3

for both b > c and b = c.

The analysis of Y2(T ) shall be reminiscent in nature to the preceding one,

the corresponding error terms derived being essentially equal to the earlier

obtained ones. As was previously done, we recall (6.7.2) and define for fixed

(n1, n3) and further convenience the parameter

NT = (T/2)(b+c−a)/bC−(b+c−a)/b
a n

a/b
1 n

−c/b
3 . (6.7.5)

It may be worth observing that then

a log n1 − b logNT − c log n3 + (b+ c− a) log(T/2) + log
( bbcc

aa2b+c−a

)
= 0.

Therefore, on introducing for each n2 ∈ N the real number r = n2 − NT ,
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recalling to the reader of (6.6.8) and using the above line, it transpires that

then

G′n(T/2) =a log n1 − b log(NT + r)− c log n3 + (b+ c− a) log(T/2)

+ log
( bbcc

aa2b+c−a

)
= −b log(1 + r/NT ). (6.7.6)

We find it desirable to note for further use that in view of the constraints

in the tuples pertaining to the sum involved in the definition of Y2(T ) it is

apparent that Tn = T/2, the underlying inequality cognate to cn thus being

equivalent to

T/4 ≤ cn ≤ T,

which may in turn be rephrased by means of the bounds

2−(b+c−a)/bNT ≤ n2 ≤ 2(b+c−a)/bNT .

We denote for simplicity by INT to the above interval.

To the end of providing an exhaustive account of the whole picture, it has

been thought pertinent to discuss first the instances for which |n2 −NT | > 1,

and herein a simple application of (6.7.6) already delivers

∑
|n2−NT |>1
n2∈INT

n
−1/2
2

|G′n(T/2)|
�

∑
0<r≤NT

N
1/2
T

r
� N

1/2
T logNT . (6.7.7)

We use the trivial bound min
(
|G′n(T/2)|−1, T 1/2

)
� T 1/2 if |n2−NT | ≤ 1 and

combine such an observation with the preceding discussion to obtain

Y2(T )� Y2,1(T ) + Y2,2(T ),

where

Y2,1(T ) =
∑

n1NTn3�T 3/2

n
−1/2
1 n

−1/2
3

∑
0<r≤NT

N
1/2
T

r

and

Y2,2(T ) = T 1/2
∑

n1NTn3�T 3/2

(n1NTn3)−1/2.

The line of attack to follow herein shall not be dissimilar to the one employed
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in the underlying analysis of Y1(T ). In order to estimate Y2,1(T ) it might be

worth noting as is customary that (n1NTn3)1/2 � T 3/4, whence

Y2,1(T )� (log T )
∑

n1NTn3�T 3/2

n
−1/2
1 N

1/2
T n

−1/2
3

� T 3/4(log T )
∑

n1NTn3�T 3/2

n−1
1 n−1

3 � T 3/4(log T )3.

We shift our focus to the perusal of Y2,2(T ) and observe after recalling

(6.7.5) to the reader that

Y2,2(T )� T (a−c)/2b
∑

na+b1 nb−c3 �T (b−2c+2a)/2

n
−1/2−a/2b
1 n

−1/2+c/2b
3 .

It may be worth observing that if b ≤ 2c − 2a then the above term is trivial.

For the rest of the instances we sum over n1 first to obtain

Y2,2(T )� T−1/4+(b−2c+2a)/2(a+b)
∑

nb−c3 �T (b−2c+2a)/2

n
−(b−c)/(a+b)
3 ,

an analogous argument summing over n3 thus yielding

Y2,2(T )� T−1/4+(b−2c+2a)/2(b−c) = T 3/4+(2a−b)/2(b−c),

as desired. The combination of the estimates obtained above for the terms

Y1(T ) and Y2(T ) in conjunction with the observation that under the constraints

in the statement of the lemma one has b > 2a then enables one to deduce

Y (T )� T 3/4(log T )3.

The analysis of the second error term appertaining to (6.7.4) shall be com-

pletely identical to the one cognate to Y2(T ) earlier exposed, whence in the

interest of curtailing our discussion it has been thought preferable to succintly

indicate that the proof of the analogous estimate for the term at hand would

follow by replacing T by T/2 in (6.7.5), (6.7.6) and (6.7.7), such an observa-

tion in conjunction with the above conclusion thus completing the proof of the

lemma at hand.

The rest of the discussion in this chapter shall be devoted to the investi-

269



gation of the main term cognate to the formula earlier obtained in the above

lemma, an application of van der Corput’s second derivative test being suf-

ficient to exploit further cancellation and derive satisfactory enough upper

bounds for the exponential sum at hand.

Lemma 6.7.3. Whenever 4a < b+ c and c < b one has that∑
Tn≤cn≤T
τn≤T

P−1/2
n c1/2

n eiG1(cn) � T 3/4+(2a−c)/2(b−c) + T 3/4(log T )2,

Moreover, it follows that

JψS′n(T )� T 3/4+(2a−c)/2(b−c) + T 3/4(log T )3

and

I2(T )� T 3/4+(2a−c)/2(b−c) + T 3/4(log T )4.

If instead b = c then

I2(T )� T 3/4(log T )4.

Proof. We begin as customary by elucidating how to deduce the latter state-

ments pertaining to the instance c < b assuming the first one. We note first

that one may obtain the second estimate after combining the one earlier as-

sumed with Lemma 6.7.2, an immediate application of such an estimate in

conjunction with equation (6.6.4) and Lemma 6.6.3 thereby delivering the

bound

∑
n

P−1/2
n

∫ T

T/2

ψ(t)La(n)−itJ2(Pn, t)dt� T 3/4+(2a−c)/2(b−c) + T 3/4(log T )4.

Therefore, summing over dyadic intervals and recalling to the reader of (6.6.1)

it transpires that then

J1,2(T )� T 3/4+(2a−c)/2(b−c) + T 3/4(log T )4,

which, combined with Lemma 6.6.1 yields the third statement, as desired. If

b = c then the statement follows by combining Lemmata 6.6.1, 6.6.3 and 6.7.1

with a dyadic decomposition argument.

We shall shift therefore our focus to the analysis of the first estimate
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recorded above. To this end it seems adequate to note first that Tn � T ,

whence in view of the definition (6.7.2) it transpires that under the above

constraints one has

n2 � T (b+c−a)/bn
a/b
1 n

−c/b
3 .

We find it worth observing that the ensuing condition in conjunction with the

inequality τn ≤ T delivers the restriction

na+b
1 nb−c3 � T (b−2c+2a)/2.

It then transpires that we may assume b ≥ 2c− 2a, since otherwise the above

inequality would not hold for any tuple. In order to prepare the terrain for

a succint application of the aforementioned van der Corput’s estimates, some

notation is required. We thus denote

γ1 = a/(b+ c− a), γ2 = b/(b+ c− a), γ3 = c/(b+ c− a).

We sum first over n2 and apply van der Corput’s second derivative test [134,

Theorem 5.9], but not before recalling to the reader of (6.7.3), to obtain∑
Tn≤cn≤T

P−1/2
n c1/2

n eiG1(cn) � S1(T ) + S2(T ),

where

S1(T ) =
∑

na+b1 nb−c3 �T (b−2c+2a)/2

(
T (b+c−a)/bn

a/b
1 n

−c/b
3

)−1/2+γ2
n
−1/2−γ1
1 n

−1/2+γ3
3

and

S2(T ) =
∑

na+b1 nb−c3 �T (b−2c+2a)/2

n
−1/2
1 n

−1/2
3

(
T (b+c−a)/bn

a/b
1 n

−c/b
3

)1/2

.

It is apparent that the tuples pertaining to the above sums satisfy the inequal-

ity

n
1/2
1 n

1/2
3

(
T (b+c−a)/bn

a/b
1 n

−c/b
3

)1/2

� T 3/4,
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which in turn delivers, as is customary, the corresponding bounds

S2(T )� T 3/4
∑

na+b1 nb−c3 �T (b−2c+2a)/2

n−1
1 n−1

3 � T 3/4(log T )2.

We shall shift our focus next to the investigation of S1(T ) and anticipate

that its analysis shall be surprisingly reminiscent to that cognate to Y2,2(T ) in

the above lemma. By rearranging terms and summing over n1 one readily sees

that

S1(T ) = T (b−c+a)/2b
∑

na+b1 nb−c3 �T (b−2c+2a)/2

n
−1/2−a/2b
1 n

−1/2+c/2b
3

� T 1/4+(b−2c+2a)/2(a+b)
∑

nb−c3 �T (b−2c+2a)/2

n
−(b−c)/(a+b)
3 .

Proceeding in a similar manner by summing over n3 then yields

S1(T )� T 1/4+(b−2c+2a)/2(b−c) = T 3/4+(2a−c)/2(b−c),

as desired.

It seems apparent that we have reached a position from which to easily

combine the work done in the chapter to prove Theorem 6.1.1, and this we

now describe.

Proof of Theorem 6.1.1. On combining equations (6.4.1) and (6.4.2) with

Lemma 6.4.1 and both Lemmata 6.5.3 and 6.5.4 it transpires that the contri-

bution stemming from the non-twisted integral satisfies

I1(T ) = σa,b,cT +O
(
T 3/4(log T )4

)
+B(T ),

wherein the term B(T ) has the property that

B(T )� T 1−1/2a+1/2c

unconditionally and

B(T )� T 1/2+a/(a+c)+ε

under the assumption of Conjecture 2. Consequently, the above equation in
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conjunction with Lemma 6.7.3 delivers

Ia,b,c(T ) = σa,b,cT +O
(
T 3/4(log T )4 + T 3/4+(2a−c)/2(b−c))+B(T ),

whenever c < b, an analogous formula holding by omitting the error term

T 3/4+(2a−c)/2(b−c) in the above equation if b = c, as desired.
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Chapter 7

Lower order terms appertaining

to mixed moments

7.1 Introduction

The extensive work appertaining to the sharpening of the asymptotic formula

associated to both the second and the fourth moment of the Riemann zeta

function, such examinations being initiated first by Hardy-Littlewood (see, for

instance Titchmarsh [134, Theorem 7.3]) and Ingham [80] respectively, may

belong to the not so numerous group of unconditional investigations concerning

moments of L-functions which ultimately led to establishing the validity of the

latter comprising extra lower order terms. In view of such an observation and

for the sake of transparency it seems worth defining, for k ∈ N the moment

Mk(T ) =

∫ T

0

|ζ(1/2 + it)|2kdt

and note first that after the work of many, the first one to pursue such an

avenue being Titchmarsh, the formula

M1(T ) = T log(T/2π) + (2γ − 1)T + E1(T )

holds with E1(T ) satisfying bounds of the shape E1(T ) � T∆ for some fixed

∆ > 0, the sharpest of which follows after work of Bourgain and Watt and

may be taken to be ∆ = 1515/4816 + ε.

In the same vein, investigations of Heath-Brown [59], which were eventu-
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ally refined by those of Zavorotnyi [178] and Ivic-Motohashi [82], led to the

analogous formula

M2(T ) = TP4

(
log T

)
+ E2(T ),

where P4(x) denotes a quartic polynomial, and the best known bound for the

error term is E2(T )� T 2/3+ε. It should nonetheless be noted for the purpose

of merely illustrating the present introduction that further conjectural exam-

inations pertaining to higher order moments have been pursued by Conrey-

Farmer-Keating-Rubinstein-Snaith [25] by bringing into use random-matrix

theory utensils, thereby delivering analogous conclusions of the shape

Mk(T ) = TPk2
(

log T
)

+O(T 1/2+ε)

for k ≥ 3, wherein Pk2(x) is a degree-k2 polynomial.

Hirtherto the asymptotic evaluations presented herein comprised lower or-

der terms differing by a factor of a power of log T to the size of the main one,

such a consideration raising the question of whether analogous formulas for

moments of L-functions for which the sizes of the lower order terms differ from

that of the main one by a power of T instead may be accomplished. To remedy

the lack of such formulas in the literature and incorporate a new one to such a

bizarre collection is, inter alia, the purpose of the present chapter. Stating the

main result of our perusal rather promptly precludes us from providing a not at

all prolix historical discussion concerning the appearance of such rare formulas

in the literature, which shall be deferred to a later point in the introduction.

We define for convenience what will be the main object of study in the

present chapter, namely

I(T ) =

∫ T

0

ζ(1/2 + 2it)ζ(1/2− it)2dt, (7.1.1)

and anticipate the main theorem concerning its asymptotic evaluation.

Theorem 7.1.1. For T > 0 one has the asymptotic formula

I(T ) = c1T + c2T
7/8 +O

(
T 3/4(log T )3

)
,
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where the constants c1, c2 are defined by means of the equations

c1 =
ζ(3/2)3

2ζ(3)
(3− i),

and

c2 =
32(2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1i.

Investigations of moments leading to formulas containing such lower error

terms date back to the seminal work of Diaconu, Goldfeld and Hoffstein [36]

involving the use of multiple Dirichlet series in problems concerning moments

of L-functions. To further describe rather precisely their achievements therein

cognate to our considerations in the present memoir, it seems desirable to

introduce for r ∈ N the moment of the family of quadratic L-functions

Mr(D) =
∑

0<d<D

L
(1

2
, χd
)r

(7.1.2)

over the real primitive Dirichlet characters.

Before accomplishing such an endeavour, it has been thought preferable

to give account of the main results and conjectures akin to the above object.

We should note first that succesful investigations were initiated by Jutila [84],

who unconditionally provided an asymptotic evaluation for the cases r = 1

and r = 2, the formula for r = 1 further containing a main term of the

shape DP1(logD) with P1(x) being a linear polynomial. A few years later,

precise conjectures about the asymptotics pertaining to (7.1.2) were provided

by means of Random Matrix theory models (see [89]), such formulations being

further refined by Conrey et al. [25] and taking the shape

Mr(D) = DPr(r+1)/2(logD) + Er(D), (7.1.3)

wherein Pr(r+1)/2(x) is a completely explicit polynomial of degree r(r + 1)/2

and Er(D) = or(D).

Soundararajan’s influential paper [127] was the first instance in the liter-

ature for which an unconditional asymptotic formula for r = 3 was provided,

it taking the shape (7.1.3) with E3(D) = O(D11/12+ε). Nonetheless, as earlier

foreshadowed, the aforementioned work of Diaconu, Goldfeld and Hoffstein [36]

in 2003, which in turn sharpened the above error term, and that of Zhang [179]
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further conjectured the presence of a lower order term of the shape cD3/4 in

the corresponding formula. This speculation was ultimately confirmed by the

work of Diaconu and Whitehead [38] at the sacrifice of introducing a weight

function, thereby providing such a lower term only for a smooth version of

(7.1.2). It shall be noted for the purpose of illustrating the exposition that an

analogous formula has been obtained by the first author earlier mentioned [35]

in the function field setting.

Such considerations have been generalised and formally written down in

recent work of Diaconu and Twiss [37], leading to the conjectural asymptotic

formulae

Mr(D) =
N∑
n=1

D1/2+1/2nQn,r(logD) +O(D(1+θ)/2),

wherein N ≥ 1, the parameter θ satisfies the property that (N + 1)−1 < θ <

N−1 and Qn,r(x) denotes a polynomial. Moreover, it should be noted that

the aforementioned prediction and the corresponding results earlier mentioned

whenever r = 3 concerning the lower order terms are delivered via multiple

Dirichlet series arguments, the random matrix theoretic models failing to de-

tect such terms.

We shift our focus to the main result of this chapter and anticipate that

an approximate functional equation for both ζ(1/2− it) and ζ(1/2 + 2it) will

be utilised, thereby reducing the problem to that of computing integrals of

twisted Dirichlet polynomials. Experts may recognise the necessity of approx-

imating ζ(1/2−it) rather than employing the approximate functional equation

appertaining to ζ(1/2−it)2 due to Hardy-Littlewood [53], the latter ultimately

delivering an error term larger than the main term in the formula of the main

theorem in the chapter.

The aforementioned lower order term c2T
7/8 that is obtained herein arises

from the diagonal contribution appertaining to both the non-twisted integral

and a twisted integral very similar in vein in conjunction with the contribution

cognate to two twisted integrals that exhibit dissimilar behaviours. Whislt the

former is derived by means of a parametrization of the underlying equation

combined with a careful analysis, the latter necessitates an application of a

version of the stationary phase method of the requisite precision in conjunction

with a sharp perusal of the corresponding exponential sum stemming from

such an application. We draw the reader’s attention to Chapter 6 to the end of

277



recalling that therein we were confronted with exponential sums that were only

amenable to applications of van der Corput’s type estimates, thus delivering

only upper bounds for such sums. The treatment herein departs from that of

that chapter in that explicit asymptotic control over the aforementioned sums

may be achieved due to their inherent simpleness, such a gift stemming from

the simplicity of the coefficients pertaining to the mixed moment at hand.

The structure of the chapter is organised as follows: In Section 7.2 we pro-

vide a somewhat novel approach to the stationary phase method at the cost

of imposing certain restrictions, thereby deriving error terms of the requisite

precision for our purposes but which by no means beat those stemming from

the work of Graham and Kolesnik [46, Lemma 3.4]. Section 7.3 is devoted to

the endeavour of the approximation of the mixed moment by a sum of inte-

grals of twisted Dirichlet polynomials. The diagonal and off-diagonal analysis

pertaining to the non-twisted integral in conjunction with the perusal of a

twisted integral exhibiting a similar behaviour is performed in Section 7.4. In

a different vein, Section 7.5 comprises routinary estimates of oscillatory inte-

grals making use of standard lemmata which entail no difficulty. Section 7.6

is devoted to the examination of the integrals for which the stationary phase

method is required in conjunction with an examination of the exponential

sum stemming from such an application, it providing a more number theoretic

flavour to the discussion, and ultimately leads to the proof of Theorem 7.1.1.

7.2 The stationary phase method

As was discussed above, we shall shortly provide the reader with yet another

somewhat novel discussion pertaining to the stationary phase method. We feel

the urge to anticipate that the error terms derived herein are not of a smaller

size than those cognate to earlier versions of such a method when applied

to the corresponding oscillatory integrals which we eventually encounter in

the present memoir, the main reason behind the author’s motivation to work

on such endeavours stemming largely on his lack of awareness of the historic

developments apposite to the problem when the latter encountered integrals

of such a shape. Nonetheless, it has been thought pertinent to illustrate the

exposition with the aforementioned version of the method for the purpose of

both providing a not completely analogous approach to the problem at hand

278



and with the hope that the result derived herein may be applicable in other

contexts, the bounds for the error terms appertaining to such applications

potentially being superior to those stemming from earlier versions. We find

it desirable to anticipate that Section 7.6 shall comprise an application of

the version derived herein, the use of Lemma 5.2.5 having nonetheless been

sufficient to obtain error terms of the required precision. Experts may recognise

the resemblance between the beginning of the proofs of both Lemma 4.6 of

Titchmarsh [134] and that of the present lemma, the departing in the course

of it having its genesis on the use of a higher order Taylor approximation.

Lemma 7.2.1. Let F (x) be a real function with derivatives up to order k for

k ≥ 4 on an interval (α, β), and satisfying

0 < λ2 ≤ F ′′(x) < Aλ2 (7.2.1)

where λ2 > 0 and A > 0 is some fixed constant, and

|F (k)(x)| ≤ λk

for λk > 0 on x ∈ (α, β). We denote for further convenience the parameter

δ =
(
λ2λk

)−1/(k+2)
. We suppose that there exists some c ∈ [α, β] for which

F ′(c) = 0 and with the property that for every 3 ≤ j ≤ k then

δ|F (j)(c)|
j

≤ η|F (j−1)(c)|, (7.2.2)

where η > 0 is a universally small enough constant. Then one obtains∫ β

α

eiF (x)dx =
√

2π
eiπ/4+iF (c)

|F ′′(c)|1/2
+O

(
kδ−1λ−1

2 )

+O
(

min
(
|F ′(α)|−1, λ

−1/2
2

))
+O

(
min

(
|F ′(β)|−1, λ

−1/2
2

))
,

(7.2.3)

wherein the implicit constants are universal. Moreover, suppose that either

F ′′(c)F (4)(c) ≤ C1F
′′′(c)2 or F ′′(c)F (4)(c) ≥ C2F

′′′(c)2 (7.2.4)

for some parameters C1 < 5/3 and C2 > 5/3. Then one obtains (7.2.3) without

the k factor in the first error term. If on the contrary F ′(x) does not vanish
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on [α, β] then (7.2.3) holds without the leading term and the first error term.

Proof. As a prelude to our discussion it shall be noted that under the latter

circumstances the formula follows after an succint application of both Lem-

mata 5.2.1 and 5.2.3. If such a condition does not hold then there exists

some c ∈ [α, β] satisfying F ′(c) = 0, the positivity of the second derivative

stated at the beginning of the proposition assuring the uniqueness of such a

zero. It seems pertinent to consider first the case α + δ ≤ c ≤ β − δ, the

complementary situation being deferred in view of its simplicity, as shall be

elucidated promptly. We then divide the range of integration of the above

integral accordingly, and this we now describe.

It is worth observing first that the monotonicity of F ′(x) stemming from

(7.2.1) and Lemma 5.2.1 yield∫ β

c+δ

eiF (x)dx� 1

|F ′(c+ δ)|
� 1

δλ2

,

where in the last step we employed the mean value theorem in conjunction

with (7.2.1) and the fact that F ′(c) = 0. As the reader may anticipate, a not

dissimilar argument enables one to deduce that the contribution pertaining to

the interval [α, c− δ] to the integral in (7.2.3) delivers the same error term to

the formula at hand.

The remainder of the discussion shall be devoted to the contribution cog-

nate to the remaining interval, the analysis of which being more intrincate, as

may have already been anticipated by the reader, and relying on a more sophis-

ticated framework of ideas. We find it worth beginning such an investigation

by employing the Taylor expansion of F (x) to obtain∫ c+δ

c−δ
eiF (x)dx =

∫ c+δ

c−δ
eiPk−1(x)dx+

∫ c+δ

c−δ
O
(
λk(x− c)k

)
dx,

where the polynomial Pk−1(x) is defined by means of the formula

Pk−1(x) = F (c) + (x− c)F ′(c) + . . .+
F (k−1)(c)

(k − 1)!
(x− c)k−1.

Utilising the fact that F ′(c) = 0 and recalling the definition of δ established in
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the statement of the lemma we then find that∫ c+δ

c−δ
eiF (x)dx = eiF (c)

∫ c+δ

c−δ
eiu(x)dx+O

(
δ−1λ−1

2 ), (7.2.5)

where in the above formula the function u(x) denotes

u(x) =
F ′′(c)

2
(x− c)2 + . . .+

F (k−1)(c)

(k − 1)!
(x− c)k−1. (7.2.6)

It is convenient to observe for further purposes that in view of the posi-

tivity of F ′′(c) and the bounds (7.2.2), the leading term in the corresponding

expressions for u(x) and u′(x) dominates over the remaining ones, meaning

u(x) =
F ′′(c)

2
(x−c)2 +Ec,1(x) and u′(x) = F ′′(c)(x−c)+Ec,2(x), (7.2.7)

wherein the terms Ec,1(x) and Ec,2(x) satisfy the bounds

Ec,1(x) ≤
k−3∑
j=1

ηj|F ′′(c)|(x− c)2 � η|F ′′(c)|(x− c)2 (7.2.8)

and

Ec,2(x) ≤
k−3∑
j=1

ηj|F ′′(c)(x− c)| � η|F ′′(c)(x− c)|,

whence it transpires that taking η small enough assures u′(x) > 0 for x ∈
(c, c+δ) and u′(x) < 0 whenever x ∈ (c−δ, c). Such a property, in conjunction

with an application of the Inverse function theorem enables one to establish

the existence of a differentiable function x(u) whenever u ∈ (0, u(c − δ)) ∪(
0, u(c+ δ)

)
with the property that

u =
F ′′(c)

2
(x(u)−c)2+. . .+

F (k−1)(c)

(k − 1)!
(x(u)−c)k−1, x′(u) =

1

u′
(
x(u)

) , (7.2.9)

the latter property further implying that x′(u) > 0 in
(
0, u(c+δ)

)
and x′(u) < 0

in (0, u(c− δ)).
For the purpose of obtaining a main term in the desired formula it seems

pertinent, as shall be ellucidated promptly, to make the change of variables
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u = u(x) in order to obtain∫ c+δ

c

eiu(x)dx =

∫ u(c+δ)

0

eiu

u′(x)
du, where u′(x) =

∂u

∂x
(x(u)), (7.2.10)

and similarly ∫ c

c−δ
eiu(x)dx = −

∫ u(c−δ)

0

eiu

u′(x)
du. (7.2.11)

We shall henceforth consider u to be a variable lying on the interval
(
0, u(c+δ)

)
and think of x(u) as being a function on u, it being desirable to abbreviate

x = x(u) at times for the clarity of the exposition. We also denote

u′′(x) =
∂2u

∂x2

(
x(u)

)
.

In the course of the approximation pertaining to the above integrals the

function

G(u) =
1

u′(x)
− 1√

2F ′′(c)u
(7.2.12)

shall play a prominent role. It then seems worth noting that by taking common

denominator and multiplicating by the conjugate in the above expression one

then has

G(u) =
2F ′′(c)u− u′(x)2

u′(x)
√

2F ′′(c)u
(√

2F ′′(c)u+ u′(x)
)

We draw the reader’s attention to the bounds (7.2.2) and the identity (7.2.9)

for the purpose of establishing the approximations

u(x) =
F ′′(c)

2
(x− c)2 +

F ′′′(c)

6
(x− c)3

(
1 + ∆1(u)

)
,

u′(x) = F ′′(c)(x− c) +
F ′′′(c)

2
(x− c)2

(
1 + ∆2(u)

)
,

wherein ∆i(u) are functions satisfying the bound ∆i(u)� η, the corrrespond-

ing derivative being taken only with respect to the variable x. Consequently,

inserting the above formulas or those in (7.2.7) accordingly into the expression

deduced for the function G(u) delivers

G(u) =
−2

3
F ′′(c)F ′′′(c)(x− c)3(1 + ∆′(u))

2F ′′(c)3(x− c)3(1 + ∆′′(u))
,
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for some functions ∆′(u),∆′′(u)� η, which then delivers

G(u) = − F ′′′(c)

3F ′′(c)2
(1 + ∆(u)), (7.2.13)

where as is customary the function ∆(u) here has the property that |∆(u)| � η.

The above discussion implicitly establishes, when thinking of c as being

fixed and u as a variable, that G(u) behaves as a constant, it therefore being

desirable to examine its monotonicity for the purpose of deriving suitable es-

timates for the integral of such a function twisted by the factor eiu. To this

end we compute G′(u) by means of equation (7.2.9) and (7.2.12) to obtain

G′(u) =
−u′′(x)

u′(x)3
+

1√
8F ′′(c)u3

=
u′(x)3 − u′′(x)

√
8F ′′(c)u3

u′(x)3
√

8F ′′(c)u3
. (7.2.14)

The reader might find it useful to observe that the zeros of G′(u) satisfy

u′(x)6 − 8u′′(x)2F ′′(c)u(x)3 = 0, (7.2.15)

which may be regarded as a polynomial equation in the variable x(u) of degree

at most 6k− 12. We write for convenience the list u1, . . . , uN of zeros of G′(u)

and note that the preceding argument yields

N ≤ 6k − 12.

Recalling to the reader of equations (7.2.1) and (7.2.2), integrating by parts

and applying (7.2.13) delivers

∫ u(c+δ)

0

G(u)eiudu =
N−1∑
j=1

∫ uj+1

uj

G(u)eiudu� k|F ′′′(c)||F ′′(c)|−2 � kδ−1λ−1
2 ,

wherein we employed the monotonicity of the function G(u) inside the intervals

of integration of each of the above integrals.

On the interval (0, u(c−δ)) it is convenient to consider instead the function

G1(u) =
1

u′(x)
+

1√
2F ′′(c)u

,
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since on this occasion u′(x) < 0. The analysis to deduce the formula

G1(u) = − F ′′′(c)

3F ′′(c)2

(
1 + ∆(u)

)
and the monotonicity of the function at hand is completely analogous to the

one pertaining to the interval (0, u(c+ δ)), whence in the interest of curtailing

the exposition it has been thought preferable not to provide further details to

the end of avoiding unnecessary repetition. Therefore, recalling (7.2.12) and

combining the previous discussion with (7.2.10) it follows that∫ c+δ

c

eiu(x)dx =
1√

2F ′′(c)

∫ u(c+δ)

0

eiu√
u
du+

∫ u(c+δ)

0

G(u)eiudu

=
1√

2F ′′(c)

∫ u(c+δ)

0

eiu√
u
du+O(kδ−1λ−1

2 ),

an analogous argument recalling insted (7.2.11) delivering∫ c

c−δ
eiu(x)dx =

1√
2F ′′(c)

∫ u(c−δ)

0

eiu√
u
du−

∫ u(c−δ)

0

G1(u)eiudu

=
1√

2F ′′(c)

∫ u(c−δ)

0

eiu√
u
du+O(kδ−1λ−1

2 ).

As shall be elucidated promptly, it may also seem convenient to note that an

application of (7.2.7) in conjunction with (7.2.8) and the monotonicity of the

function u−1/2 then yields∫ u(c+δ)

0

eiu√
u
du =

∫ ∞
0

eiu√
u
du−

∫ ∞
u(c+δ)

eiu√
u
du = eiπ/4

√
π +O(δ−1λ

−1/2
2 ),

and similarly ∫ u(c−δ)

0

eiu√
u
du = eiπ/4

√
π +O(δ−1λ

−1/2
2 ).

Combining the above equations it follows then that∫ c+δ

c−δ
eiu(x)dx =

(2π)1/2eiπ/4

|F ′′(c)|1/2
+O(kδ−1λ−1

2 ), (7.2.16)

which delivers the desired result.

To conclude the proof it thus remains to briefly discuss the deferred case
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β − δ < c. Under such circumstances we utilise the same analysis as above

with the peculiarity of necessitating to bound the remaining integral over the

interval [β, c+ δ], which we now describe. We write∫ c+δ

β

eiF (x)dx = eiF (c)

∫ c+δ

β

eiu(x)dx+O(δ−1λ−1
2 ),

as in (7.2.5), and observe that on recalling (7.2.7) and combining Lemmata

5.2.1 and 5.2.3 with the mean value theorem it transpires that∫ c+δ

β

eiu(x)dx� min
( 1

(β − c)λ2

, λ
−1/2
2

)
� min

(
|F ′(β)|−1, λ

−1/2
2

)
.

The previous bound in conjunction with (7.2.16) then provides the desired

conclusion. It shall be noted that an analogous computation for the case

c− δ < a may lead one to obtain an analogous conclusion, thereby completing

the proof of the lemma in the instance when only (7.2.2) is assumed.

We shall shift our focus to the analysis of the integral at hand under the

assumption (7.2.4), and begin by noting first that an application of the bounds

(7.2.2) then yields

u(x) =
F ′′(c)

2
(x− c)2 +

F ′′′(c)

3!
(x− c)3 +

F (4)(c)

4!
(x− c)4 + Ec,4(x),

wherein the error term in the above expression satisfies

Ec,4(x)� η|F (4)(c)|(x− c)4.

Likewise, on differentiating (7.2.6) and utilising the aforementioned bounds

one has

u′(x) = F ′′(c)(x− c) +
F ′′′(c)

2
(x− c)2 +

F (4)(c)

3!
(x− c)3 + Ec,5(x),

and similarly

u′′(x) = F ′′(c) + F ′′′(c)(x− c) +
F (4)(c)

2
(x− c)2 + Ec,6(x),
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wherein the above error terms satisfy the estimates

Ec,5(x)� η|F (4)(c)|(x− c)3, Ec,6(x)� η|F (4)(c)|(x− c)2.

We shall depart from the earlier approach in that a careful perusal of the

equation (7.2.15) in conjunction with the assumption (7.2.4) will enable us to

accomplish the monotonicity of G(u) in the whole interval at hand, thereby

saving the extra k factor in the corresponding error term. To this end, it seems

worth noting that the above formula pertaining to u′(x) and a rather tedious

computation delivers the expression

u′(x)6 =F ′′(c)6(x− c)6 + 3F ′′(c)5F ′′′(c)(x− c)7

+
(
F ′′(c)5F (4)(c) +

15

4
F ′′(c)4F ′′′(c)2

)
(x− c)8 +G(x),

where the function G(x) satisfies the bound

G(x)� ηF ′′(c)4
(
|F ′′(c)||F (4)(c)|+ F

′′′
(c)2
)
(x− c)8

for some small enough constant η. Similarly, one can find that

8u′′(x)2F ′′(c)u(x)3 =F ′′(c)6(x− c)6 + 3F ′′(c)5F ′′′(c)(x− c)7

+
(5

4
F ′′(c)5F (4)(c) +

10

3
F ′′(c)4F ′′′(c)2

)
(x− c)8 +H(x),

where the function H(x) satisfies the above bound pertaining to G(x). Con-

sequently, combining the previous equations it transpires that

u′(x)6 − 8u′′(x)2F ′′(c)u(x)3 =
F ′′(c)4

4

(
− F ′′(c)F (4)(c) +

5

3
F ′′′(c)2

)
(x− c)8

+G(x)−H(x).

On recalling condition (7.2.4) one readily deduces that either

u′(x)6 − 8u′′(x)2F ′′(c)u(x)3 ≥ c1F
′′(c)4F ′′′(c)2(x− c)8

or

u′(x)6 − 8u′′(x)2F ′′(c)u(x)3 ≤ −c2F
′′(c)4F ′′′(c)2(x− c)8

for positive constants c1, c2 > 0. Therefore, by the preceding discussion in
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conjunction with (7.2.14) and a continuity argument we observe that either

G′(u) < 0 for all u ∈ (0, u(c + δ)) or G′(u) > 0, thereby concluding the

monotonicity of G(u) in the interval at hand. We find it desirable to note

that an analogous process, up to a change of sign, can be applied to derive

the monotonicity in the interval (0, u(c − δ)) of the function G1(u). Thus

combining (7.2.13) with integration by parts and (7.2.2) we deduce∫ u(c+δ)

0

G(u)eiudu� |F ′′′(c)||F ′′(c)|−2 � δ−1λ−1
2 ,

the analogous estimate holding when taking instead G1(u) and the interval

(0, u(c − δ)) in the above equation. Therefore, the same procedure delivers

equation (7.2.16) with an error term of O(δ−1λ−1
2 ) instead, and the discussion

following the aforementioned equation yields the desired result.

7.3 Initial manoeuvres

We begin our exposition by preparing the ground for the computation of the

mixed moment at hand. As may become transparent shortly, it seems desirable

to introduce minor changes in the ranges of the Dirichlet polynomials pertain-

ing to the approximate functional equation cognate to the factor ζ(1/2 + 2it),

such choices being in concordance with the underlying equation satisfied by

the corresponding variables. To this end we define for convenience

Dj(s) =
∑
n≤xj

1

ns
s = 1/2 + it, j = 0, 1, 2,

wherein

x0 =
√
t/2π, x1 =

√
t/4π, x2 =

√
t/π.

We find it pertinent to anticipate the necessity of considering the approximate

functional equation (see Titchmarsh [134, (4.12.4)])

ζ(1/2 + 2it) = P1(t) +O(t−1/4),
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wherein the main term P1(t) in the above expression is defined by means of

the equation

P1(t) = D1(1/2 + 2it) + χ(1/2 + 2it)D2(1/2− 2it).

It seems desirable to draw the reader’s attention to the difference in length

of the above polynomials, such a consideration being suitable to simplify the

exposition. We also find it convenient to recall the reader of the definition

P (t) = D(1/2 + it) + χ(1/2 + it)D(1/2− it)

presented in (5.4.2), wherein D(s) denotes D0(s), and remind that the afore-

mentioned approximate functional equation yields

ζ(1/2 + it) = P (t) +O(t−1/4).

The bulk of the work pertaining to the mixed moment at hand shall com-

prise intrincate computations akin to diagonal and off-diagonal analysis in

conjunction with estimates of oscillatory integrals, it being nonetheless worth

starting the discussion by combining the above approximate functional equa-

tions to the end of reducing the problem to that of examining integrals of

twisted Dirichlet polynomials.

Lemma 7.3.1. With the above notation one then has that

I(T ) =

∫ T

0

P1(t)P (−t)2dt+O(T 3/4 log T ).

Proof. We find it worth beginning our analysis by noting that by inserting the

above approximate functional equations into (7.1.1) one readily sees that

I(T ) =

∫ T

0

P1(t)P (−t)2dt+ E(T ), wherein E(T )� T 1/4 + E1(T ) + E2(T )

(7.3.1)

and the error terms E1(T ) and E2(T ) satisfy the bounds

E1(T )�
∫ T

0

(
t−1/2|ζ(1/2 + 2it)|+ t−1/2|ζ(1/2− it)|

)
dt
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and

E2(T )�
∫ T

0

(
t−1/4|ζ(1/2 + 2it)|2 + t−1/4|ζ(1/2− it)|2

)
dt.

We use Cauchy’s inequality and the asymptotic formula for the second moment

of the Riemman Zeta function (see, for instance Titchmarsh [134, Theorem

7.3]) to obtain

E1(T )� (log T )1/2
(∫ 2T

0

|ζ(1/2 + it)|2
)1/2

� T 1/2 log T.

Likewise, it transpires that an application of integration by parts in conjunction

with the aforementioned asymptotic evaluation for the second moment of the

Riemman Zeta function delivers

E2(T )� T 3/4 log T +

∫ 2T

0

t−1/4 log t� T 3/4 log T,

which completes the proof in view of (7.3.1).

The rest of the investigation pertaining to the integral at hand shall be

devoted to analyse the main term in (7.3.1). The reader may note that by

expanding the product inside the integral and using the expressions for P (t)

and P1(t) we obtain

I(T ) =
6∑

m=1

Im(T ), (7.3.2)

wherein Im(T ) are integrals of twisted Dirichlet polynomials which shall be

introduced in the course of the discussion.

7.4 Diagonal and non-diagonal contribution of

the non-twisted integrals

We introduce, for convenience, the parameter

T1 = T/2π, (7.4.1)

and anticipate its abundant presence throughout the chapter. We honour the

heading of the section at hand and introduce the main character which shall
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be analysed herein, namely

I1(T ) =

∫ T

0

D1(1/2 + 2it)D(1/2− it)2dt =
∑
n≤
√
T1

P−1/2
n

∫ T

Nn

(n2n3

n2
1

)it
dt,

wherein henceforth in considerations pertaining to such an analysis we write

Nn = 2πmax(n2
1, n

2
2, n

2
3) and Pn = n1n2n3. (7.4.2)

The reader may also find it useful to recall the definition of D(s) in (5.4.1). It

also has been thought desirable to foreshadow that we might henceforth omit

writing the restriction

n ≤
√
T1 (7.4.3)

cognate to the corresponding sums for the sake of concission.

We shall make as is customary a distinction between triples satisfying the

equation n2
1 = n2n3 and the ones having the property that such an equation

does not hold to obtain

I1(T ) = H1(T ) +O
(
H2(T )

)
,

wherein

H1(T ) =
∑
n≤
√
T1

n2
1=n2n3

(T −Nn)P−1/2
n , H2(T ) =

∑
n≤
√
T1

n2
1 6=n2n3

P−1/2
n |log

(
n2

1/n2n3

)
|−1.

The context herein shall be dissimilar to the ones pertaining to the analy-

sis in previous chapters in that the off-diagonal term does not present ma-

jor complications, a routinary argument delivering an estimate of the shape

O
(
T 3/4(log T )2) for such a contribution, and this we now describe.

Lemma 7.4.1. With the above notation one has

H2(T )� T 3/4(log T )2.

Proof. We write for convenience by W1(T ) to the contribution to H2(T ) arising

from tuples with the property that |n2n3−n2
1| ≤ n2

1/2, the corresponding term

W2(T ) denoting the contribution stemming from the complementary tuples.

By observing that the logarithm in the formula pertaining to W2(T ) satisfies
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|log(n2n3/n
2
1)| � 1, it then transpires that

W2(T )�
∑
n≤
√
T1

P−1/2
n � T 3/4.

We shift our focus to the perusal of the term W1(T ) and begin by noting that

the change of variables n2
1 − n2n3 = r whenever n2n3 < n2

1 or n2n3 − n2
1 = r

when n2n3 > n2
1 in conjunction with the observation that

|log(n2n3/n
2
1)| � r

n2
1

for tuples cognate to W1(T ) transports us to a position from which to derive

the estimate

W1(T )�
∑

n1≤
√
T1

n
1/2
1

∑
0<|r|≤n2

1/2

d(n2
1 + r)/|r|.

It seems desirable to observe that an application of summation by parts in

conjunction with classical asymptotic results concerning divisor sums enables

one to deduce ∑
0<r≤n2

1/2

d(n2
1 + (−1)mr)/r � (log T )2, m = 1, 2,

from where the bound

W1(T )� T 3/4(log T )2

follows routinarily.

The remainder of the discussion shall be devoted to the investigation of the

diagonal contribution.

Lemma 7.4.2. With the above notation one has

H1(T ) =
ζ(3/2)3

ζ(3)
T − 32 · (2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8 +O

(
T 3/4(log T )

)
.

Moreover,

I1(T ) =
ζ(3/2)3

ζ(3)
T − 32 · (2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8 +O

(
T 3/4(log T )2

)
.

Proof. In view of the above lemma, it is apparent that showing the first asymp-
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totic formula shall be sufficient to prove the lemma at hand. For such purposes

it seems desirable to recall (7.4.1) and write

H1(T ) = σ1T −G1(T )−G2(T ), (7.4.4)

where we denote

G1(T ) = T
∑

max(n1,n2,n3)>
√
T1

n2
1=n2n3

P−1/2
n , G2(T ) =

∑
n≤
√
T1

n2
1=n2n3

NnP
−1/2
n (7.4.5)

and where the constant σ1 is defined by means of the multidimensional series

σ1 =
∑

n2
1=n2n3

P−1/2
n . (7.4.6)

In order to progress in the analysis we begin by observing as customary

that one may parametrize the underlying equation n2
1 = n2n3 by means of

n1 = λm2m3, n2 = λm2
2, n3 = λm2

3, (7.4.7)

where m2,m3 ∈ N and λ is a square-free number. For ease of notation it

seems desirable to clarify that henceforth whenever λ appears in any sum it

will denote a square-free number in the corresponding range.

It seems worth noting first that for tuples satisfying the underlying equation

it transpires then that if n1 ≥ max(n2, n3) then the equalities n1 = n2 = n3

hold, the contribution to G1(T ) stemming from this particular diagonal case

being bounded above by

T
∑

n1>
√
T1

n
−3/2
1 � T 3/4.

The symmetry with respect to n2 and n3 in conjunction with the parametriza-

tion at hand and the fact that if n2 = n3 then n1 = n2 = n3 enables one to

deduce the equation

G1(T ) = 2T
∑

λm2
2>
√
T1

m2>m3

λ−3/2m
−3/2
2 m

−3/2
3 +O(T 3/4),
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from where it follows by summing over m3 that

G1(T ) = 2ζ(3/2)T
∑

λm2
2>
√
T1

λ−3/2m
−3/2
2 +O

(
T

∑
λm2

2>
√
T1

λ−3/2m−2
2

)
+O(T 3/4).

The reader may find it useful to observe that by a routinary procedure it

transpires that∑
λm2

2>
√
T1

λ−3/2m−2
2 � T−1/4

∑
λ≤
√
T1

λ−1 +
∑
λ>
√
T1

λ−3/2 � T−1/4 log T. (7.4.8)

Moreover, it seems appropiate to note that an analogous argument applied

to the main term in the above equation pertaining to G1(T ) enables one to

deduce∑
λm2

2>
√
T1

λ−3/2m
−3/2
2 =2T

−1/8
1

∑
λ≤
√
T1

λ−5/4 + ζ(3/2)
∑
λ>
√
T1

λ−3/2

+O
(
T−3/8

∑
λ≤
√
T1

λ−3/4
)

= 2T
−1/8
1 σ2 +O(T−1/4),

where we wrote

σ2 =
∞∑
λ=1

λ square-free

λ−5/4. (7.4.9)

The reader may find it convenient to note that we used the fact that in the

first equation the tail of the series pertaining to the main term is O(T−1/8).

Moreover, it transpires that

σ2 =
∞∑
λ=1

∑
d2|λ

λ−5/4µ(d) =
∞∑
m=1

m−5/4

∞∑
d=1

µ(d)d−5/2 = ζ(5/4)ζ(5/2)−1. (7.4.10)

Inserting the above formulas into the equation cognate to G1(T ) and combining

the result obtained with (7.4.8) one readily sees that

G1(T ) = 4(2π)1/8ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8 +O(T 3/4 log T ).

Before proceeding with the examination of the remaining term it seems

worth computing the precise value of σ1, defined in (7.4.6), by an analogue

procedure to that deployed in the course of the evaluation of σ2. To this end
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we employ the parametrization utilised above to show that

σ1 =
∑
m2,m3

λ square-free

m
−3/2
2 m

−3/2
3 λ−3/2 =

∑
m2,m3,λ

m
−3/2
2 m

−3/2
3 λ−3/2

∑
d2|λ

µ(d)

=
∞∑

m2=1

m
−3/2
2

∞∑
m3=1

m
−3/2
3

∞∑
d=1

µ(d)d−3

∞∑
m=1

m−3/2 = ζ(3/2)3ζ(3)−1.

We next shift our focus to the analysis of G2(T ), and begin by noting as

above that for tuples satisfying the underlying equation it transpires that if

n1 ≥ max(n2, n3) one then has the equality n1 = n2 = n3, the contribution to

G2(T ) stemming from this particular diagonal case being bounded above by∑
n1≤
√
T1

n
1/2
1 � T 3/4.

It is apparent that whenever n2 = n3 it also follows that n1 = n2 = n3, whence

recalling (7.4.5) and in view of the ensuing discussion and the symmetry with

respect to n2 and n3 we deduce the formula

G2(T ) = 4π
∑

m2<m3

λm2
3≤
√
T1

m
5/2
3 λ1/2m

−3/2
2 +O(T 3/4),

where we recall to the reader that λ is square-free. Summing over m2 then

delivers the expression

G2(T ) = 4πζ(3/2)
∑

λm2
3≤
√
T1

m
5/2
3 λ1/2+O

( ∑
λm2

3≤
√
T1

m2
3λ

1/2
)

+O(T 3/4). (7.4.11)

It is worth noting that by omitting the square-free condition pertaining to

the variable λ in the error term cognate to the above formula and summing

accordingly it transpires that∑
λm2

3≤
√
T1

m2
3λ

1/2 � T 3/4
∑

m3≤T 1/4
1

m−1
3 � T 3/4 log T.

For the purpose of making further progress in the proof, it seems desirable

to denote G2,1(T ) to the main term of (7.4.11), and observe that when summing
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over m3 one finds that

G2,1(T ) =
8π

7
ζ(3/2)T

7/8
1

∑
λ≤
√
T1

λ square-free

λ−5/4 +O
(
T 5/8

∑
λ≤
√
T1

λ−3/4
)
.

=
4 · (2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8 +O(T 3/4),

wherein we used (7.4.9) and (7.4.10). Therefore, by the preceding discussion

and (7.4.4) we obtain the asymptotic formula

H1(T ) =
ζ(3/2)3

ζ(3)
T − 32 · (2π)1/8

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8 +O(T 3/4 log T ),

which completes the first part of the analysis appertaining to the section at

hand.

In order to make further progress in the proof of the main theorem, it seems

worth introducing the integral I2(T ), namely

I2(T ) =

∫ T

0

χ(1/2 + 2it)χ(1/2− it)2D2(1/2− 2it)D(1/2 + it)2dt,

and find it worth anticipating its resemblance to I1(T ), it being possible to

recycle some of the computations already presented.

Lemma 7.4.3. With the above notation one has that

I2(T ) =

√
2ζ(3/2)3e−iπ/4

2ζ(3)
T − 16

√
2 · (2π)1/8e−iπ/4

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8

+O
(
T 3/4(log T )2

)
.

Proof. We employ Lemma 5.2.6 as is customary to observe that one may ex-

press the above integral by means of the formula

I2(T ) = e−iπ/4
∑

n1≤
√

2T/π

n2,n3≤
√
T1

P−1/2
n

∫ T

Nn,2

eiF2(t)dt+O(T 3/4 log T ),

wherein

Nn,2 = 2πmax(n2
1/4, n

2
2, n

2
3) (7.4.12)
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and the phase function F2(t) in the preceding equation is defined as

F2(t) =− 2t log 2t+ 2t
(

log(2π) + 1
)

+ 2t log t− 2t
(

log(2π) + 1
)

+ t log(n2
1/n2n3) = t log(n2

1/4n2n3).

Therefore, an analogous computation yields

I2(T ) = H2,1(T ) +H2,2(T ),

wherein

H2,1(T ) = e−iπ/4
∑

n1≤
√

2T/π

n2
1=4n2n3

P−1/2
n (T −Nn,2)

with n2, n3 ≤
√
T1, and

H2,2(T )�
∑

n1≤
√

2T/π

n2
1 6=4n2n3

P
−1/2
n

|log(n2
1/4n2n3)|

.

The reader may observe first that following an analogous procedure to that

utilised in the course of the estimate pertaining to H2(T ) enables one to deduce

the bound H2,2(T ) � T 3/4(log T )2. Moreover, making the change of variables

n′1 = n1/2, as we may, in the sum cognate to H2,1(T ) and applying Lemma

7.4.2 leads one to the expression

H2,1(T ) =e−iπ/4
H1(T )√

2

=e−iπ/4
√

2ζ(3/2)3

2ζ(3)
T − 16

√
2 · (2π)1/8e−iπ/4

7
ζ(3/2)ζ(5/4)ζ(5/2)−1T 7/8

+O(T 3/4 log T ).

Therefore, the above equation in conjunction with the previous discussion

completes the proof of the lemma.
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7.5 Routine estimates for twisted integrals

The analysis of the integrals discussed in this section shall not present any

major obstacle and will make use of both Lemmata 5.2.1 and 5.2.3. For the

purpose of not elongating the exposition it seems desirable to introduce one of

the main characters of the section promptly, namely

I3(T ) =

∫ T

0

χ(1/2 + 2it)D2(1/2− 2it)D(1/2− it)2dt.

Lemma 7.5.1. With the above notation one has

I3(T )� T 3/4 log T.

Proof. It seems desirable to begin our discussion by combining both the ap-

proximation formula stemming from Lemma 5.2.6 and the above definition for

I3(T ), but not before recalling (7.4.12), to the end of obtaining

I3(T ) = eiπ/4
∑

n1≤
√

2T/π

n2,n3≤
√
T1

P−1/2
n

∫ T

Nn,2

eiF3(t)dt+O(T 3/4 log T ),

wherein the phase function F3(t) is defined by means of the expression

F3(t) = −2t log 2t+ 2t(log 2π + 1) + t(log n2
1n2n3).

The experience in previous chapters may convince the reader of the convenience

of computing the derivative

F ′3(t) = −2 log t+ log(n2
1n2n3π

2).

It seems worth observing that whenever n1 > max(2n2, 2n3) then it fol-

lows that F ′3(Nn,2) = log
(
4n2n3/n

2
1), and hence |F ′3(t)| � log(n1/2n2) in the

interval at hand. In view of the previous remark it is apparent that whenever

n1 > 4n2 then |F ′3(t)| � 1, whence an application of Lemma 5.2.1 enables one

to deduce that the contribution stemming from such tuples to the above sum
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does not exceed, up to a constant,∑
n≤
√
T1

P−1/2
n � T 3/4.

For the remaining tuples, namely those satisfying 2n2 < n1 ≤ 4n2 then the

contribution is bounded above, up to a constant, by

∑
n2,n3≤

√
T1

n
−1/2
3

∑
0<r≤2n2

1

r
� T 3/4(log T ),

as desired.

If instead n2 ≥ max(n1/2, n3) and n2 > n1/2 then it transpires that

F ′3(t) ≤ −2 log(2n2/n1)

in the interval of integration. The contribution stemming from tuples satisfying

n2 > n1 may be bounded via a routinary argument by O(T 3/4). If instead one

has n1 ≥ n2 then it is apparent that another application of Lemma 5.2.1 in

conjunction with the change of variables 2n2 = n1 + r enables one to deduce

the estimate

∑
n2,n3≤

√
T1

n2≤n1<2n2

P
−1/2
n

log(2n2/n1)
�

∑
n1,n3≤

√
T1

0<r≤2
√
T1

n
−1/2
3

r
� T 3/4 log T.

Finally, for the remaining tuples satisfying n2 ≥ n3 and 2n2 = n1 we merely

observe that it is always the case that F ′′(t) ≤ −2T−1 in the interval of in-

tegration, whence an application of Lemma 5.2.3 leads to the conclusion that

the contribution of these triples does not exceed, up to a constant,

T 1/2
∑

n1,n3≤
√
T1

n−1
1 n

−1/2
3 � T 3/4 log T.

It is convenient to observe that the roles of n2 and n3 are symmetric, such

an observation combined with the above analysis thus delivering a similar

conclusion for tuples satisfying n3 ≥ max(n1/2, n2) and procluding us from

devoting more space in such a nuance. Consequently, the preceding discussion
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leads to the bound

I3(T )� T 3/4 log T,

as desired.

For the purpose of making progress towards the desired objective, it seems

worth considering the integral

I4(T ) =

∫ T

0

χ(1/2− it)2D1(1/2 + 2it)D(1/2 + it)2dt.

The reader shall rest assured that the analysis cognate to such an integral

will largely make use of the work previously done pertaining to I3(T ), and

convincing the reader of such a statement shall become our main priority in

the following lines.

Lemma 7.5.2. With the above notation it transpires that

I4(T )� T 3/4 log T.

Proof. We begin as is customary by utilising Lemma 5.2.6 to derive

I4(T ) = −i
∑
n≤
√
T1

P−1/2
n

∫ T

Nn

eiF4(t)dt+O(T 3/4 log T ),

where we recall the reader of (7.4.2) and define the phase function F4(t) by

means of the expression

F4(t) = 2t log t− t
(
2 log(2π) + 2 + log(n2

1n2n3)
)
.

For further purposes that shall be ellucidated promptly, we find it convenient

to compute its derivative

F ′4(t) = 2 log t− log
(
(2π)2n2

1n2n3

)
.

The analysis of this term is quite similar to the previous one, whence con-

sideration of space and avoidance of repetition proclude us from providing

all of the details pertaining to the computations deployed. It seems worth

noting first that whenever n1 ≥ max(n2, n3) with n1 > n2 then it transpires

that F ′4(t) ≥ log(n1/n2) in the corresponding interval of integration, and the
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contribution of such triples to I4(T ) will then be bounded above by

∑
n2<n1

P
−1/2
n

|log(n1/n2)|
� T 3/4 +

∑
r≤
√
T1

n1,n3≤
√
T1

n
−1/2
3

r
� T 3/4 log T.

The reader may find it useful to note that in the above estimates we implic-

itly divided as is customary the range of summation into the tuples for which

|n1−n2| ≥ n1/2, in which case |log(n1/n2)| � 1 and the corresponding contri-

bution is O(T 3/4), and the complementary tuples, for which making a change

of variables r = n1−n2 leads one to the desired conclusion. It seems convenient

to remark that the roles of n2 and n3 are symmetric in this context, whence

an analogous argument may be applicable to derive a similar conclusion when

interchanging n2 and n3 above.

If instead n2 ≥ max(n1, n3) with n2 > min(n1, n3) then it transpires that

F ′4(t) ≥ log
(
n2/min(n1, n3)

)
on the interval of integration, and a similar ar-

gument applies, an analogous argument enabling one to derive the same con-

clusion when interchanging the roles of n2 and n3 in the preceding discussion.

Finally, whenever n1 = n2 = n3 then F ′′4 (t) ≥ 2T−1 and Lemma 5.2.3 allows

one to bound, up to a constant, such a contribution by means of the term

T 1/2
∑

n1≤
√
T1

n
−3/2
1 � T 1/2.

Combining the previous bounds yields the estimate

I4(T )� T 3/4 log T,

as desired.

7.6 Application of the stationary phase method

The upcoming discussion shall comprise the perusal of two oscillatory inte-

grals, the computation of which shall have their reliance on an application of

the stationary phase method in conjunction with an elementary but somewhat

intrincate analysis of the exponential sum which arises after such an applica-

tion. We also found it appropiate to illustrate the exposition herein with an
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explicit application of the version of the stationary phase method developed

in earlier sections to the aforementioned oscillatory integrals. It shall further

be noted as above that some of the calculations made in the course of the

investigation pertaining to one of the integrals shall find their application in

the analysis of the other one, thereby simplifying significantly the exposition.

Without further delay, we present to the reader the term

I5(T ) = 2

∫ T

0

D1(1/2 + 2it)D(1/2− it)D(1/2 + it)χ(1/2− it)dt,

and the phase function F5(t), which is defined by means of the formula

F5(t) = t log t− t(log 2π + 1 + log(n2
1n2/n3)), (7.6.1)

and introduce for reasons that shall become apparent shortly the parameter

cn = 2πn2
1n2n

−1
3 (7.6.2)

Lemma 7.6.1. With the above notation one has that

I5(T ) = 4π
∑

Nn/2π≤n2
1n2/n3≤T1

n3<min(n1,n2)

n
1/2
1 n−1

3 eiF5(cn) +O
(
T 3/4(log T )3

)
.

Proof. A customary application of the approximation formula in Lemma 5.2.6

delivers

I5(T ) = 2e−iπ/4
∑

ni≤
√
T1

P−1/2
n

∫ T

Nn

eiF5(t)dt+O(T 3/4 log T ). (7.6.3)

It shall be useful for future purposes to consider the derivative of the phase

function

F ′5(t) = log t− log(2π)− log(n2
1n2/n3),

whence on recalling (7.6.2) it transpires that F ′(cn) = 0.

It is worth observing first that in the not so recalcitrant situation in which

the tuples satisfy the inequality n3 > min(n1, n2) it is apparent that

F ′5(t) ≥ log
(
n3/min(n1, n2)

)
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in the corresponding interval of integration, whence an application of Lemma

5.2.1 in conjunction with such an observation enables one to bound that con-

tribution above, up to a constant, by

∑
n1≤
√
T1

n
−1/2
1

∑
n2<n3

1

n
1/2
2 n

1/2
3 log(n3/n2)

.

The reader may observe that the contribution of tuples satisfying n1 < n3 is

bounded by the above sum with n1 and n2 interchanged. It seems convenient

to note as is customary that the contribution to the above sum of tuples for

which 2n2 ≤ n3 is O(T 3/4). For the remaining part one has that

∑
n1≤
√
T1

n
−1/2
1

∑
n3/2<n2<n3

1

n
1/2
2 n

1/2
3 log(n3/n2)

� T 1/4
∑

n2≤
√
T

n−1
2

∑
0<r≤n2

n2

r

� T 3/4 log T. (7.6.4)

We shall devote the remainder of the analysis to discuss the treatment of

tuples satisfying n3 ≤ min(n1, n2). The purpose of the subsequent analysis will

be to ensure that the conditions required to apply Lemma 7.2.1 are satisfied.

To this end, it transpires that one may assume that

Nn/2 ≤ cn ≤ 2T, (7.6.5)

since otherwise a customary application of Lemma 5.2.1 would yield that the

corresponding contribution to I5(T ) is O(T 3/4). We first observe, for further

convenience, that if cn/2 ≤ t ≤ 2cn then for any k ≥ 2 one has

|F (k)
5 (t)| ≤ λk, where λk = 2k−1c1−k

n (k − 2)!

and

λ2 ≤ |F ′′5 (t)| ≤ 4λ2, where λ2 = (2cn)−1.

We draw the reader’s attention back to the notation of the statement of

Lemma 7.2.1 and observe that then it transpires that

δ =
( 22−kckn

(k − 2)!

)1/(k+2)

.

As shall be ellucidated shortly, it seems desirable to make the choice k = log T
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and observe that for every 2 ≤ j ≤ k − 1 one finds that

δ|F (j+1)
5 (cn)| = δc−jn (j − 1)! = c−j+k/(k+2)

n

2(2−k)/(k+2)(j − 1)!(
(k − 2)!

)1/(k+2)

and

(j + 1)|F (j)
5 (cn)| = (j + 1)(j − 2)!c1−j

n .

Combining the above equations with Stirling’s formula and (7.6.5) one readily

sees that

δ|F (j+1)
5 (cn)|(j + 1)−1|F (j)

5 (cn)|−1 � 1

k
= (log T )−1,

whence (7.2.2) holds for T sufficiently large. Likewise, it transpires that

F ′′5 (cn)F
(4)
5 (cn) = 2F ′′′5 (cn)2, which then delivers condition (7.2.4). The reader

may find it useful to observe that a further application of Stirling’s formula

and (7.6.5) enables one to deduce the estimates

λ−1
2 δ−1 � kc2/(log T+2)

n � log T.

Equipped with the above considerations we have reached a position from

which to apply Lemma 7.2.1, which in turn delivers

I5(T ) =4π
∑

Nn/2π≤n2
1n2/n3≤T1

n3≤min(n1,n2)

n
1/2
1 n−1

3 eiF5(cn)

+O
( ∑
Nn/2≤cn≤2Nn

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

))
+O

( ∑
T/2≤cn≤2T

P−1/2
n min

(
|F ′5(T )|−1, T 1/2

))
+O

(
T 3/4 log T

)
.

(7.6.6)

The reader shall rest assured that further details about such an applica-

tion will be delivered promptly. It may first be useful to observe that in the

preceding lines we implicitly applied the aforementioned lemma for the range

2Nn ≤ cn ≤ T/2 to the integral ∫ 2cn

cn/2

eiF5(t)dt
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and estimate the remaining parts of the integral in (7.6.3) via an application

of Lemma 5.2.1. The same paragraph presented right after (5.7.3) to justify

the aforementioned formula shall be applicable herein to discuss the validity

of such an application in this context, whence in the interest of curtailing the

discussion we refer the reader to that earlier explanation.

We shift our attention to the analysis of the error terms pertaining to the

equation (7.6.6), and begin by examining first the tuples satisfying

n1 ≥ max(n2, n3), (7.6.7)

in which case 2πn2
1 = Nn. It is worth noting that under such circumstances

then

F ′5(Nn) = log(n3/n2),

whence ∑
n1≥max(n2,n3)

n
−1/2
1

∑
n3<n2≤2n3

n
−1/2
2 n

−1/2
3

1

log(n2/n3)
� T 3/4(log T ),

wherein we used the same procedure as the one employed in (7.6.4). It seems

worth anticipating that we shall utilise the bound

min
(
|F ′5(Nn)|−1, N1/2

n

)
≤ N1/2

n

for the slightly more recalcitrant situation in which n2 = n3, and observe that∑
n1,n2≤

√
T1

n
−1/2
1 n−1

2 N1/2
n �

∑
n1,n2≤

√
T1

n
1/2
1 n−1

2 � T 3/4(log T ),

whence combining both estimates delivers∑
Nn/2≤cn≤2Nn

n1≥max(n2,n3)

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

)
� T 3/4(log T ).

The reader may note as is customary that the contribution stemming from tu-

ples outside of the ranges previously examined and satisfying (7.6.7) is O(T 3/4)

in view of the fact that such tuples have the property that |log(n3/n2)| � 1.

The rest of the investigation cognate to such an error term shall be devoted
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to the examination of the contribution arising from triples with the property

that n2 ≥ n1 ≥ n3. Under such circumstances, it transpires that

F ′5(Nn) = log(n2n3/n
2
1).

We observe that the condition Nn/2 ≤ cn ≤ 2Nn is now equivalent to the

inequalities
n2n3

2
≤ n2

1 ≤ 2n2n3.

As may become apparent shortly, it seems worth utilising a routinary argument

to deduce∑
n2n3/2≤n2

1≤2n2n3

n2
1 6=n2n3

P−1/2
n

1

|log(n2n3/n2
1)|
�

∑
n1≤
√
T1

n
−3/2
1

∑
−n2

1/2≤r≤n2
1

r 6=0

d(n2
1 + r)

log((n2
1 + r)/n2

1)

�
∑

n1≤
√
T1

n
1/2
1

∑
0<|r|≤n2

1

d(n2
1 + r)

|r|
� T 3/4(log T )2.

Likewise, whenever n2
1 = n2n3 then on observing that Nn = 2πn2

2 it then

transpires that∑
n2,n3≤

√
T1

n
−3/4
2 n

−3/4
3 N1/2

n �
∑

n2,n3≤
√
T1

n
1/4
2 n

−3/4
3 � T 3/4,

whence combining both estimates delivers∑
Nn/2≤cn≤2Nn
n3≤n1≤n2

P−1/2
n min

(
|F ′5(Nn)|−1, N1/2

n

)
� T 3/4(log T )2,

which completes the perusal of the first error term cognate to (7.6.6).

In order to make further progress in the lemma we shall examine the second

error term pertaining to the equation (7.6.6). We define for further convenience

the parameter Λ1 =
(
T1n3/n2

)1/2
for each (n2, n3), and find it worth observing

for further use that on recalling (7.6.2) then the range of summation described

by means of the inequalities T/2 ≤ cn ≤ 2T is equivalent to

Λ1/
√

2 ≤ n1 ≤
√

2Λ1.
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We apply the same argument as above to deduce that

∑
n2,n3≤

√
T1

∑
|n1−Λ1|>1

Λ1/
√

2≤n1≤
√

2Λ1

P
−1/2
n

|F ′5(T )|
�

∑
n2,n3≤

√
T1

n
−1/2
2 n

−1/2
3

∑
0<r≤Λ1

Λ
1/2
1

r

� T 1/4(log T )
∑

n2,n3≤
√
T1

n
−3/4
2 n

−1/4
3

� T 3/4 log T.

Likewise, if |n1 − Λ1| ≤ 1 it seems worth anticipating that the trivial bound

min
(
|F ′5(T )|−1, T 1/2

)
� T 1/2

will already suffice to obtain the estimate∑
n2,n3≤

√
T1

∑
|n1−Λ1|≤1

P−1/2
n min(|F ′5(T )|−1, T 1/2)

� T 1/2
∑

n2,n3≤
√
T1

∑
|n1−Λ1|≤1

n
−1/2
2 n

−1/2
3 Λ

−1/2
1

� T 1/4
∑

n2,n3≤
√
T1

n
−1/4
2 n

−3/4
3 � T 3/4.

The combination of the above bounds then yields∑
T/2≤cn≤2T

P−1/2
n min

(
|F ′5(T )|−1, T 1/2

)
� T 3/4 log T

and completes the examination of the error terms cognate to the equation

(7.6.6).

In order to make further progress in the section we find convenient to

shift our focus to the investigation of the main term in (7.6.6), the analysis

of which shall have a more number theoretic flavour. As was earlier outlined

in the introduction, the simplicity of the exponential sum comprising such a

main term, which in turn stems from the simplicity in the coefficients involved

in the mixed moment at hand, shall enable us to depart from earlier treat-

ments in previous chapters in that an explicit asymptotic evaluation shall be

achieved, thereby precluding us from the necessity of applying van der Cor-

put’s estimates. Such an advantage therefore enables one to incorporate lower
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order terms to the main asymptotic formula of the chapter, as opposed to the

situations previously encountered in the memoir.

Lemma 7.6.2. One has that∑
Nn/2π≤n2

1n2/n3≤T1
n3≤min(n1,n2)

n
1/2
1 n−1

3 eiF5(cn) =
16ζ(3/2)ζ(5/4)

7ζ(5/2)
T

7/8
1 +O

(
T 3/4(log T )3

)
.

Moreover,

I5(T ) =
32 · (2π)1/8ζ(3/2)ζ(5/4)

7ζ(5/2)
T 7/8 +O

(
T 3/4(log T )3

)
.

Proof. It is apparent at first glance that under the assumption of the first

equation then the second follows after an application of Lemma 7.6.1. We find

it worth putting ideas into effect by observing first that

F5(cn) = −2πn2
1n2n

−1
3 .

Therefore, by summing over n2 and applying orthogonality in the main term

of the equation (7.6.6) it transpires that∑
Nn/2π≤n2

1n2/n3≤T1
n3≤min(n1,n2)

n
1/2
1 n−1

3 eiF5(cn) = S1(T ) + S2(T ),

where we divided the range of summation according to the divisibility of n2
1

by n3 to obtain

S1(T ) =
∑

Nn/2π≤n2
1n2/n3≤T1

n3|n2
1

n
1/2
1 n−1

3 (7.6.8)

and

S2(T ) =
∑

Nn/2π≤n2
1n2/n3≤T1

n3-n2
1

n
1/2
1 n−1

3 eiF5(cn),

wherein we omitted for ease of notation writing n3 ≤ min(n1, n2).

It seems worth noting first that summing over n2 in the above equation

then yields

S2(T )�
∑
n3-n2

1

n
1/2
1 n−1

3

∥∥∥∥n2
1

n3

∥∥∥∥−1

.
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As shall be ellucidated shortly, it transpires that for the purpose of analysing

the above sum rather precisely, another parametrization encoding the divisi-

bility relations between n2
1 and n3 shall be required. To this end we take the

tuple n1, n3 and denote by q the largest natural number with the property

that q | n1 and q2 | n3. The reader may note that on writing n1 = qn′1 and

n3 = q2n′3 it is apparent at first glance that λ = (n′1, n
′
3) is square-free, since

otherwise we would be contradicting the maximality of q, an analogous reason

further delivering the coprimality condition (λ, n′3λ
−1) = 1. In view of the

ensuing discussion and on writing n′1 = λm1 and n′3 = λm3 we find that then

n1 = qλm1, n3 = q2λm3,

wherein (m1,m3) = (λ,m3) = 1. We make use of the parametrization deduced

in the preceding discussion to obtain the bound

S2(T )�
∑

λm3≤
√
T1

(λ,m3)=1

λ−1/2m−1
3

∑
(m3,m1)=1

m1λ≤
√
T1

m
1/2
1

∥∥∥∥λm2
1

m3

∥∥∥∥−1 ∞∑
q=1

q−3/2

�
∑

m3λ≤
√
T1

(λ,m3)=1

λ−1/2m−1
3

∑
m1λ≤

√
T1

(m3,m1)=1

m
1/2
1

∥∥∥∥λm2
1

m3

∥∥∥∥−1

. (7.6.9)

Under such circumstances, the reader may find it useful to note that for fixed

m1,m3 there are at most d(m3) solutions to the congruence

m2
1 ≡ m′21 (mod m3)

with (m1,m3) = (m′1,m3) = 1, such a bound arising as a consequence of

the remainder theorem in conjunction with the fact that there are at most 2

solutions of such a congruence modulo an odd prime power. In view of the

above observation it seems convenient to divide for fixed λ and m3 the range

of summation for m1 into intervals of length m3, namely

[0, λ−1
√
T1] =

( J(m3,λ)⋃
j=1

[(j − 1)m3, jm3]
)
∪ IJ(m3,λ)+1,
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wherein the cardinality of the last interval satisfies |IJ(m3,λ)+1| ≤ m3 and

J(m3, λ) =
⌊
(m3λ)−1

√
T1

⌋
.

Equipped with such a dissection it is worth noting first that for fixed j it

is apparent that

∑
m1∈[(j−1)m3,jm3]

m
1/2
1

∥∥∥∥λm2
1

m3

∥∥∥∥−1

� d(m3)m
3/2
3 j1/2

m3∑
r=1

1

r
� j1/2d(m3)m

3/2
3 log T.

We have thus reached a position from which to succintly deduce an estimate

for S2(T ) of the requisite precision by simply summing the above equation over

j ≤ J(m3, λ) + 1 and inserting such a line of estimates in (7.6.9) to obtain

S2(T )� (log T )
∑

m3λ≤
√
T1

λ−1/2d(m3)m
1/2
3

J(m3,λ)+1∑
j=1

j1/2

� (log T )
∑

m3λ≤
√
T1

λ−1/2d(m3)m
1/2
3 J(m3, λ)3/2

� T 3/4(log T )
∑

m3λ≤
√
T1

λ−2d(m3)m−1
3 � T 3/4(log T )3, (7.6.10)

as desired.

We shall shift our attention to the term S1(T ), but not before anticipating

that for the sake of simplicity, we will avoid henceforth writing the condition

n3 | n2
1 in the corresponding sums. To this end, it seems worth noting that

the underlying restrictions on the tuples pertaining to the sum in S1(T ) are

equivalent to the conditions

n2n3 ≤ n2
1, n2

1n2 ≤ T1n3, n3 ≤ min(n1, n2), n1, n2 ≤
√
T1. (7.6.11)

We divide the sum accordingly into tuples depending on whether n2
1 < n3

√
T1

holds or does not hold to find that

S1(T ) = U1(T ) + U2(T )− U3(T ) +O
(
U4(T )

)
,
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where

U1(T ) =
∑

n2
1<n3

√
T1

n3≤n1

n
5/2
1 n−2

3 , U2(T ) = T1

∑
n3
√
T1≤n2

1
n3≤n1

n
−3/2
1

and

U3(T ) =
∑
n2<n3

n
1/2
1 n−1

3 , U4(T ) =
∑

n1,n3≤
√
T1

n
1/2
1 n−1

3 ,

wherein U3(T ) the triples also satisfy all but the third condition in (7.6.11).

We employ the parametrization introduced in (7.4.7) to obtain the estimate

U3(T )�
∑

n1,n3≤
√
T1

n
1/2
1 �

∑
λm1m2≤

√
T1

λ1/2m
1/2
2 m

1/2
3 � T 3/4

∑
m2m3≤

√
T1

(m2m3)−1

� T 3/4(log T )2. (7.6.12)

Likewise, it transpires that

U4(T )�
∑

λm2m3≤
√
T1

λ−1/2m
1/2
2 m

−3/2
3 � T 3/4

∑
λ≤
√
T1

λ−2 � T 3/4.

The reader may observe that the same parametrization inserted on this

occasion in the expression for U1(T ) enables one to deduce

U1(T ) =
∑

m2
2λ<
√
T1

m3≤m2

λ1/2m
5/2
2 m

−3/2
3 ,

wherein we recall to the reader that λ runs over square-free numbers. We sum

over m3 in the above expression to obtain∑
m2

2λ<
√
T1

m3≤m2

λ1/2m
5/2
2 m

−3/2
3 = ζ(3/2)

∑
m2

2λ<
√
T1

λ1/2m
5/2
2 +O

( ∑
m2

2λ≤
√
T1

λ1/2m2
2

)
.

It seems desirable to note that the error term in the preceding equation is

O(T 3/4(log T )). Likewise, summing over m2 in the main term of the above

formula yields

∑
m2

2λ<
√
T1

λ1/2m
5/2
2 =

2

7
T

7/8
1

∑
λ<
√
T1

λ−5/4 +O
( ∑
λ≤
√
T1

λ1/2
(
T 1/4λ−1/2

)5/2
)
.
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We find it worth remarking that in the above equation the error term is

O(T 3/4), a routinary argument enabling one to bound the tail of the series

cognate to the main term of such an equation by O(T−1/8). By recalling that

λ runs over the square-free numbers in conjunction with the preceding discus-

sion and (7.4.10) it then transpires that

∑
m2

2λ<
√
T1

λ1/2m
5/2
2 =

2ζ(5/4)

7ζ(5/2)
T

7/8
1 +O(T 3/4),

which in turn yields

U1(T ) =
2ζ(5/4)ζ(3/2)

7ζ(5/2)
T

7/8
1 +O

(
T 3/4(log T )

)
. (7.6.13)

In order to make progress in the proof of the lemma we find it convenient

to focus our attention in the analysis of U2(T ). To this end it seems desirable

to observe that the use of the aforementioned parametrization delivers

U2(T ) = T1

∑
m2,m3,λ

λ−3/2m
−3/2
2 m

−3/2
3 ,

wherein the above triples satisfy the conditions√
T1 ≤ λm2

2, m3 ≤ m2 λm2
3 ≤

√
T1, λm2m3 ≤

√
T1,

the last two stemming from the customary inequality (7.4.3). We note that

the underlying conditions on the parameters earlier described are equivalent

to the collection of inequalities

T
1/4
1

λ1/2
≤ m2 ≤

√
T1

λm3

, λm2
3 ≤

√
T1.
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Equipped with such an observation one readily deduces that∑
√
T1≤λm2

2

λm2m3≤
√
T1

m2
3λ≤
√
T1

λ−3/2m
−3/2
2 m

−3/2
3 =

∑
T

1/4
1 λ−1/2≤m2

λm2
3≤
√
T1

λ−3/2m
−3/2
2 m

−3/2
3

−
∑

√
T1λ−1m−1

3 <m2

λm2
3≤
√
T1

λ−3/2m
−3/2
2 m

−3/2
3 . (7.6.14)

We sum over m2 in the second summand of the above equation to get∑
√
T1λ−1m−1

3 <m2

λm2
3≤
√
T1

λ−3/2m
−3/2
2 m

−3/2
3 � T−1/4

∑
λm2

3≤
√
T1

λ−1m−1
3 � T−1/4(log T )2.

It might also seem desirable to note that when summing over m2 in the main

term of (7.6.14) we obtain the asymptotic relation∑
T

1/4
1 λ−1/2≤m2

λm2
3≤
√
T1

λ−3/2m
−3/2
2 m

−3/2
3 =2T

−1/8
1

∑
λm2

3≤
√
T1

λ−5/4m
−3/2
3

+O
(
T−3/8

∑
λm2

3≤
√
T1

λ−3/4m
−3/2
3

)
.

By summing over both m3 and λ one may find that the error term in

the above equation is O(T−1/4). To complete the evaluation of U2(T ) it thus

remains to analyse the sum cognate to the above main term, say

∑
λm2

3≤
√
T1

λ−5/4m
−3/2
3 = ζ(3/2)

∞∑
λ=1

λ square-free

λ−5/4 +O
( ∑
λm2

3>
√
T1

λ−5/4m
−3/2
3

)
.

One then clearly deduces that the error term is bounded above by a constant

times

T−1/8
∑
λ≤
√
T1

λ−1 +
∑
λ>
√
T1

λ−5/4 � T−1/8(log T ),

which in conjunction with a customary evaluation of the above series yields∑
λm2

3≤
√
T1

λ−5/4m
−3/2
3 = ζ(3/2)ζ(5/4)ζ(5/2)−1 + T−1/8(log T ).
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Consequently, the preceding discussion delivers

U2(T ) = 2ζ(3/2)ζ(5/4)ζ(5/2)−1T
7/8
1 +O(T 3/4(log T )2),

whence combining such an equation with (7.6.12) and (7.6.13) yields

S1(T ) =
16ζ(3/2)ζ(5/4)

7ζ(5/2)
T

7/8
1 +O(T 3/4(log T )2). (7.6.15)

In order to finish the proof it suffices to combine the above formula with

(7.6.10).

For the purpose of completing the discussion it seems desirable to consider

the final term

I6(T ) = 2

∫ T

0

D(1/2− it)D(1/2 + it)D2(1/2− 2it)χ(1/2− it)χ(1/2 + 2it)dt.

Lemma 7.6.3. One has that

I6(T ) =
16 · (2π)1/8

√
2

7ζ(5/2)
eiπ/4ζ(3/2)ζ(5/4)T 7/8 +O

(
T 3/4(log T )3

)
.

Proof. We begin the proof by recalling (7.4.12) and employing the approxima-

tion formula found in Lemma 5.2.6 to obtain

I6(T ) = 2
∑

n1≤2
√
T1

n2,n3≤
√
T1

P−1/2
n

∫ T

Nn,2

eiF6(t)dt+O(T 3/4 log T ), (7.6.16)

wherein the phase function is defined by means of the expression

F6(t) = −2t log 2t+ t log t+ t(log 2π + 1 + log(n2
1n2/n3)).

The reader may observe that then on recalling (7.6.1) it transpires that

F6(t) = −F5(t)− t log 4.

Thus on writing dn = 2πn2
1n2/4n3 then one readily sees that F ′6(dn) = 0 and

that

F6(dn) = 2πn2
1n2/4n3. (7.6.17)
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An insightful inspection of the proof of Lemma 7.6.1 in the course of the

estimation of the error terms reveals that the only property utilised therein

pertaining to the number n1 being an integer was the spacing condition in N.

It therefore transpires that upon making the change of variables n′1 = n1/2

in the analysis of the corresponding error terms herein we can reproduce the

same proof to the end of deriving the equation

I6(T ) = 2πeiπ/4
∑

n3≤min(n1/2,n2)
n2
1n2/4n3≤T1

n
1/2
1 n−1

3 eiF6(dn) +O
(
T 3/4(log T )2

)
, (7.6.18)

wherein the tuples in the above sum are subjected to the same constraints as

in the sum in (7.6.16). It seems convenient to write, as was previously done,

the sum M6(T ) in the above expression by means of the formula

M6(T ) = V1(T ) + V2(T ),

wherein

V1(T ) =
∑

n2
1n2/4n3≤T1

4n3|n2
1

n
1/2
1 n−1

3

and

V2(T ) =
∑

n2
1n2/4n3≤T1

4n3-n2
1

n
1/2
1 n−1

3 eiF6(dn),

where we omitted for ease of notation writing n3 ≤ min(n1/2, n2).

We find it desirable to observe first that on recalling (7.6.17) one has

V2(T )�
∑

4n3-n2
1

n
1/2
1 n−1

3

∥∥∥∥ n2
1

4n3

∥∥∥∥−1

.

The reader may note that another insightful perusal of the analysis pertaining

to S2(T ) found right after (7.6.8) reveals that the same argument deployed

therein may be still valid when replacing n3 by 4n3, thus delivering

V2(T )� T 3/4(log T )3.

Yet another insightful examination of the term V1(T ) might suggest that
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on making the change of variables n′1 = n1/2, as we may, and recalling (7.6.8)

to the reader, it transpires that

V1(T ) =
√

2S1(T ).

Therefore, on combining the above identity with the asymptotic evaluation

(7.6.15) one obtains

V1(T ) =
16
√

2ζ(3/2)ζ(5/4)

7ζ(5/2)
T

7/8
1 +O(T 3/4(log T )2),

which in conjunction with the preceding discussion and (7.6.18) delivers

I6(T ) =
16
√

2(2π)1/8

7ζ(5/2)
eiπ/4ζ(3/2)ζ(5/4)T 7/8 +O

(
T 3/4(log T )3

)
,

as desired.

Proof of Theorem 7.1.1 We have now reached a position from which to

expeditiously complete the proof of Theorem 7.1.1 by means of the combination

of equation (7.3.2) with Lemmata 7.3.1, 7.4.2, 7.4.3, 7.5.1, 7.5.2, 7.6.2 and

7.6.3.
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[21] J. Brüdern and T. D. Wooley. Waring’s problem for cubes and smooth

Weyl sums. Proc. London Math. Soc. (3) 82 (2001), no. 1, 89–109.
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