
Peer reviewed version

Link to published version (if available): 10.1109/PAWR.2011.5725378

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
A 2GHz GaN Class-J Power Amplifier for Base Station Applications
K Mimis, K.A. Morris and J.P. McGeehan
University of Bristol, UK

1. INTRODUCTION

Need for reduction of base station power consumption while increasing QoS
- Power Amplifier is a major power consumer
- High order constellations are necessary
- Channel bandwidths keep increasing

Efficient Linear Wideband

2. CLASS-J THEORY

Class-J
- Recently introduced (2006)
- Complex fundamental impedance
- Reactive 2nd harmonic
 Continuous “design space”
- Multiple impedance pairs (Z_2\text{fo}, Z_2\text{2fo})
- Class-B / J / J* are specific sub-cases

3. METHODOLOGY – REALIZATION OF THE POWER AMPLIFIER

- Large signal transistor model
- Extrinsic parasitics and package model
- Intrinsic drain impedances given from theory
- No active harmonic load-pull
- No RF waveform probing
 1. Deep Class - AB biasing
 2. Determine appropriate load-line
 3. Intrinsic drain impedances based on theory
 4. 3rd output harmonic impedance
 5. Source-pull for efficiency/gain
 6. Observe intrinsic drain waveforms
 7. Design matching networks

- Distributed matching networks
- 2 harmonics controlled at the input, 3 at the output
- RT/Duroid 8550 substrate
- $E_r = 2.2$, $T = 787\text{mm}$
- Size: 13.5 x 6.5 cm
- Higher E_r will reduce size

4. PERFORMANCE

- 65% maximum PAE
- 40dBm output power
- Good back-off performance
- Low asymmetry up to 20MHz
- Low memory effects
- Facilitates linearization
- 60%+ efficiency over 140MHz
- 39-40dBm output power over band
- LTE and LTE-Advanced

5. CONCLUSIONS

- More freedom in PA design / No need for specific impedances
- Theory and extrinsic parasitic model is sufficient
- 3rd output harmonic impedance is important
- 65% PAE, over 70% drain efficiency, 40dBm output power
- Low memory effects
- Promising under ET/EER implementations