Throughput and Coverage Performance for IEEE 802.11ad
Millimeter-Wave WPANs

Xiaoyi Zhu*, Angela Doufexi*, and Taskin Kocak†

*Department of Electrical and Electronic Engineering, University of Bristol, UK
†Department of Computer Engineering, Bahcesehir University, Turkey

Introduction

- The 60 GHz millimeter-wave wireless technology is getting increasing attention, and several task groups are making standardization efforts;
- IEEE 802.11ad published its first draft in May 2010, and it is built on the existing WLANs, which already have a strong market presence;
- The space-time block coding (STBC) is employed to our PHY simulator to enhance the throughput and coverage.

Physical Layer Performance

The OFDM mode is designed for high performance applications on frequency selective channels. A MIMO 2×2 STBC architecture is adopted to provide transmit and receive diversity. This scheme uses a transmission matrix \(\begin{bmatrix} x_1 & x_2 \end{bmatrix} \).

The 60 GHz channel models are generated in typical conference room scenario in both LOS and NLOS. Different degrees of correlation are considered for MIMO channel: 0.1 (low), 0.5 (medium), 0.9 (high).

Medium Access Control Layer Performance

The MAC throughput is determined by the amount of information bits exchanged between the transceivers, and the duration needed for successfully delivering the information. Sources of overhead include gap time, preamble, header, and acknowledgment (ACK) frames.

- Imm-ACK is sent out after a short inter frame space.
- Dly-ACK allows the Tx to send multiple frames, and the ACKs are grouped into a single ACK.
- Blk-ACK is used for acknowledging each subframe (SF) in the aggregated frame.
- Blk-NAK only acknowledges the error SFs in the aggregated frame.

Conclusion

- Applying MIMO 2×2 STBC can maintain the high peak throughput and also enhance the transmission coverage significantly;
- Frame aggregation and Blk-ACK / Blk-NAK could increase the MAC throughput greatly;
- The maximum MAC throughput decreases due to the overheads, but can be improved by choosing an optimum PHY packet size.

Acknowledgment

The authors would like to express their sincere appreciation to Blu-Wireless Technology for technical input, and also want to acknowledge the financial support provided by ClearSpeed Technology Ltd and Great Western Research (GWR).