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Abstract 

This paper focusses on dietary approaches to control intramuscular fat deposition to increase 

beneficial omega-3 polyunsaturated fatty acids (PUFA) and conjugated linoleic acid content, 

and reduce saturated fatty acids in beef.  Trans-fatty acids in beef lipids are considered, along 

with relationships between lipids in beef and colour shelf-life and sensory attributes. Ruminal 

lipolysis and biohydrogenation limit the ability to improve beef lipids. Feeding omega-3 rich 

forage increases linolenic acid and long-chain PUFA in beef lipids, an effect increased by 

ruminally-protecting lipids.  Increasing beef PUFA can alter flavour characteristics and shelf-

life.  Antioxidants, particularly α-tocopherol, stabilise high concentrations of muscle PUFA; 

however, additional antioxidants are required.  Currently, the concentration of long-chain 

omega-3 PUFA achieved in beef lipids (except animals fed ruminally-protected lipids) falls 

below the limit considered by some authorities to be labelled as a source of omega-3 PUFA.  

The mechanisms regulating fatty acid isomer distribution in bovine tissues remain 

unclear.Further enhancement of beef lipids requires greater understanding of ruminal 

biohydrogenation. 

 

Keywords: Beef; Nutrition; Meat quality; Fatty acids; Health 
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1. Introduction 

The nutritional value is an important contributor to the overall quality of meat.  

Consumers are increasingly aware of the relationships between diet, health and well-being 

resulting in choices of foods which are healthier and more nutritous (Hocquette, Botreau, et 

al., 2012; Verbeke, et al., 2010).Intramuscular fat level, fatty acid composition, and along 

with the biological value of the protein, trace elements and vitamins, are key factors 

contributing to nutritional value(Wyness, 2013).  Considerable attention has been given to 

enhancing beneficial fatty acids in meat and milk (Givens, 2010; Salter, 2013; Scollan, 

Hocquette, et al., 2006; Shingfield, Bonnet, & Scollan, 2013).  Much of this research seeks to 

support the guidelines for fat intake by the World Health Organization (WHO;(World Health 

Organisation, 2003)).  The WHO (2003)recommended that total fat, saturated fatty acids 

(SFA), n-6 polyunsaturated fatty acids (PUFA), n-3 PUFA and trans fatty acids should 

contribute < 15-30, < 10, < 5-8, < 1-2 and < 1 % of total energy intake, respectively. A recent 

meta-analysis of epidemiological studies has called into question the evidence that supports the 

association between SFA and cardiovascular disease (CVD) (Siri-Tarino, Sun, Hu, & Krauss, 

2010a).  Emphasis has been placed on reducing the intake of SFA (considered to be associated 

with increased cholesterol) and increasing the intake of omega-3 PUFA, and indeed 

epidemiological and clinical data support a beneficial effect of substituting SFA with PUFA, as 

opposed to substitution with carbohydrate (Siri-Tarino, Sun, Hu, & Krauss, 2010b). The 

beneficial effects of the longer chain n-3 PUFA, eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA; 22:6n-3) in reducing the risk of cardiovascular disease, cancer 

and type-2 diabetes, and their critical roles for proper brain function, visual development in 

the foetus and for maintenance of neural and visual tissues throughout life are well 

recognised(Barceló-Coblijn & Murphy, 2009; Lopez-Huertas, 2010; Russo, 2009; 

Simopoulos, 1991). 
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Intramuscular fat in muscle of mature beef consists proportionally on average of 0.45 

- 0.48 as SFA, 0.35 – 0.45 monounsaturated fatty acids (MUFA) and up to 0.05 PUFA, 

respectively.  The polyunsaturated : saturated fatty acid (P:S) ratio for beef is typically low at 

around 0.1 except for very lean animals (<1% intramuscular fat) where P:S ratios are much 

higher ~ 0.5-0.7 (Scollan, Hocquette, et al., 2006).  The n-6:n-3 ratio for beef is beneficially 

low (usually < 3), reflecting the significant amounts of desirable n-3 PUFA, particularly α-

linolenic acid  (18:3n-3)but also EPA, docosapentaenoic acid (DPA; 22:5n-3) and DHA.  Beef 

and other ruminant products are important dietary sources of conjugated linoleic acid (CLA) 

of which the most prominent is cis-9,trans-11 isomer, which has been identified to contain a 

range of health promoting beneficial properties(Salter, 2013).  Beef lipids also contain trans-

fatty acids (TFA) of which the most dominant is trans-11 18:1 (vaccenic acid).  There is 

much interest in TFA produced by ruminants (rTFA) with emphasis on potential protective 

effect against development of coronary heart diseases, as distinct to industrial trans fatty 

acids (iTFA) (Salter, 2013; Wang, Jacome-Sosa, & Proctor, 2012).Hence considerable effort 

has been devoted to improving the fatty acid composition of beef. 

This paper reviews recent progress in the field including the important relationships 

between lipids and components of meat quality such as colour shelf life and sensory attributes.  

Although genetics does influence intramuscular fat deposition and fatty acid 

composition(Hocquette, et al., 2010), this paper is focused on the nutritional influences on 

muscle lipids, as it is the major contributory factor(De Smet, Raes, & Demeyer, 2004).  

Reference is also made to recent research in vitamin and antioxidant content of beef. 

2. Strategies to influence intramuscular fat deposition 

Whereas intramuscular fat level is associated with juiciness, flavour, tenderness and 

overall liking (Jeremiah, Dugan, Aalhus, & Gibson, 2003; O'Quinn, et al., 2012), it might be 
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considered as prejudicial for human health since WHO recommendationsare to reduce fat 

consumption(World Health Organisation, 2003). Therefore, different strategies were 

developed to reduce intramuscular fat level by genetic or nutritional factors. 

Certain genotypes, for example, double-muscled genotypes, have been characterised 

by an altered metabolic and endocrine status associated with a reduced fat mass in the carcass 

and an orientation of muscle metabolism towards the glycolytic type (Hocquette, et al., 

2010). Similarly, a high muscle growth potential induced by genetic selection is associated 

with a reduced fat mass in the carcass and a switch of muscle fibres towards the glycolytic 

type with less intramuscular fat level (Hocquette, Cassar-Malek, et al., 2012). However, from 

studies on differential expression of genes associated with muscle growth, it seems that genes 

involved in muscle mass development probably differ from those implicated in the control of 

fat deposition (Bernard, Cassar-Malek, Renand, & Hocquette, 2009)suggesting that the 

biological mechanisms governing muscle growth and fat deposition are different. Other 

authors consider that intramuscular fat deposition is closely linked to muscle growth since 

both processes are physiologically in competition for nutrient use(Pethick, Barendse, 

Hocquette, Thompson, & Wang, 2007; Pethick, Harper, & Oddy, 2004). Indeed, 

intramuscular fat is deposited at a lower rate than muscle growth during the first periods of 

postnatal life when average daily gain is the highest. On the other hand, intramuscular fat is 

deposited at a greater rate than muscle growth rate when average daily gain of animals is 

reduced, i.e. when animals get older. In this period (corresponding to the finishing period), 

intramuscular fat level inevitably increases since less nutrients are used for muscle growth 

(reviews from (Pethick, et al., 2007; Pethick, et al., 2004)). 

Concerning the nutritional control of fat deposition, de novo synthesis of fatty acids in 

intramuscular adipocytes probably occurs mainly from glucose and less from acetate, as in 

other fat tissues of the carcass (reviewed by (Smith, et al., 2009)). Therefore, it has been 
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hypothesized that diets that promote glucose supply to the muscle might increase 

intramuscular fat deposition, while limiting fat deposition in external fat tissues of the 

carcass. A higher glucose supply to muscles may be achieved by maximising fermentation in 

the rumen to produce gluconeogenic precursors (propionate) or by increasing starch digestion 

(releasing glucose) in the small intestine. One way to achieve this is a high level of food 

processing in order to maximise the accessibility of dietary starch during digestion (Rowe, 

Choct, & Pethick, 1999). In terms of biological mechanisms, not only may higher glucose 

delivery to intramuscular adipocytes be important, but also the increased levels of circulating 

insulin, due to a higher glucose supply which is known to stimulate lipogenesis. All these 

mechanisms may explain why grain feeding promotes more intramuscular fat deposition than 

grass finishing (reviewed by (Pethick, et al., 2004)). 

 

3. Strategies to influence the fatty acid composition of beef 

It is generally acknowledged that genetic factors have a smaller influence than dietary 

factors on the fatty acid composition of beef (De Smet, et al., 2004).  Nevertheless, even 

though breed differences are generally small they do reflect differences in underlying gene 

expression or activities of enzymes involved in fatty acid synthesis, and therefore warrant 

consideration.  For example, stearoyl CoA desaturase (delta-9-desaturase) mRNA expression 

level was related to MUFA percentage in Holstein Japanese Black cattle and a single 

nucleotide polymorphism (SNP) in Japanese Black cattle which contributed to higher MUFA 

percentage and lower melting point in intramuscular fat has been described(Taniguchi, 

Mannen, et al., 2004; Taniguchi, Utsugi, et al., 2004). Advances in technology and 

knowledge of the bovine genome have resulted in the identification of several SNP related to 

fatty acid metabolism in the bovine and the potential for targeted selection of animals with a 
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particular fatty acid phenotype is increasing (for detailed discussion see (Shingfield, et al., 

2013)). 

As discussed by Scollan et al.(Scollan, Hocquette, et al., 2006), the content of SFA 

and MUFA increase faster than the content of PUFA with increasing fatness and so the 

relative proportion of PUFA and the P:S ratio decrease.  Hence lean and late maturing breeds 

will have a higher P:S ratio than earlymaturing breeds when slaughtered at the same carcass 

weight (Raes, de Smet, & Demeyer, 2001). 

The potential to alter the fatty acid composition of bovine muscle by nutrition is 

determined to a large extent by ruminal biohydrogenation of dietary lipids. Durand and co-

workers (Durand, Scislowski, Gruffat, Chilliard, & Bauchart, 2005)demonstrated the ability 

to markedly increase the concentration of n-3 PUFA in beef muscle when 18:3n-3  (as linseed 

oil was) infused directly into the small intestine, thereby by-passing the rumen. This strategy 

increased the concentration of 18:3n-3 in total lipid from 26.3 to 176.5 mg/100 g muscle.  

More recently, Fortin et al. (Fortin, et al., 2010)reported that abomasal infusion of fish oil (40 

g/kg dry matter intake) increased the concentration of EPA in muscle phospholipids from 4.4 

in the control animals to 13.9 g/100g in the infused animals. The corresponding data for DHA 

were 0.69 and 3.9 g/100g. The on-going challenge is to achieve these levels of enrichment by 

dietary means without decreasing meat shelf-life (see below). Such changes in fatty acid 

composition could possibly alter flavour, but this could be an opportunity to create new 

markets as well as a challenge to existing markets. Subsequent to the review of Scollan et 

al.(Scollan, Hocquette, et al., 2006), the impact of altering the composition of the ration for 

cattle per se on the fatty acid composition of muscle has been further reviewed (Nuernberg, 

2009; Palmquist, 2009; Shingfield, et al., 2013). This review will focus on very recent reports 

on this topic and typical responses are noted in Table 1. 
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4. Forages and the fatty acid composition of beef 

Forages such as grass and clover contain a high proportion (50-75%) of their total 

fatty acids as α-linolenic acid (Dewhurst, Shingfield, Lee, & Scollan, 2006), which is the 

building block of the n-3 series of essential fatty acids and elongation and desaturation of α-

linolenic acid results in the synthesis of EPA and DHA. In temperate climates, grass, either 

grazed or conserved, is usually the cheapest form of cattle feed. In addition, concerns about 

the long term sustainability of sources of long chain n-3 PUFA such as fish oil in particular, 

have provided an impetus for examining more sustainable sources of these essential fatty 

acids, such as forage. In addition to the above reviews, the impact of inclusion of pasture 

specifically in the ration of beef cattle on the fatty acid composition of beef has been 

reviewed (Daley, Abbott, Doyle, Nader, & Larson, 2010; Moloney, Fievez, Martin, Nute, & 

Richardson, 2008; Morgan, Huws, & Scollan, 2012). The findings of the large number of 

studies now available are generally consistent. Thus, feeding fresh grass compared to 

concentrates, results in higher concentrations of n-3 PUFA in muscle lipids, both in the 

triacylglycerol and phospholipid fractions. Argentine beef was reported to contain 15 and 4 

mg EPA/100g and 12 and 6 mg DHA/100g beef for pasture and feedlot beef, respectively 

(Garcia, et al., 2008), while beef from the United States was reported to contain 8 and 4 mg 

EPA/100g and 1.49 and 1.46 mg DHA/100g, for pasture and concentrate-fed steers, 

respectively (Leheska, et al., 2008). Feeding steers concentrates for 2 months prior to 

slaughter subsequent to grazing, decreased the proportion of n-3 PUFA (and increased the 

proportion of n-6 PUFA) in muscle (Aldai, et al., 2011). Feeding forage compared to 

concentrates during the finishing period is frequently associated with a decrease in the 

concentration of SFA and an increase in the concentration of MUFA in muscle (Shingfield, et 

al., 2013). This conclusion needs to be interpreted with caution given the earlier comments 

about the effect of fatness per se on the fatty acid composition of beef, and since cattle 
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finished on concentrates ad libitum are generally fatter than similar animals finished on 

forage-based diets when slaughtered at the same time. 

With regard to the type of forage, the fatty acid composition of muscle from cattle that 

grazed alfalfa, pearl millet or a mixed pasture of bluegrass, orchardgrass, tall fescue and 

white clover before slaughter was largely similar but the concentration of 18:3n-3 was 

highest for steers grazing alfalfa (Duckett, Neel, Lewis, Fontenot, & Clapham, 2013)(Table 

1). A similar finding was reported by Moloney et al. (Moloney, McGilloway, & French, 

2007)for steers grazing a white clover–rich pasture compared to a perennial ryegrass pasture 

before slaughter. In contrast, Dierking et al. (Dierking, Kallenbach, & Grun, 2010) observed 

no difference in the fatty acid composition of muscle from steers that grazed tall fescue, tall 

fescue/red clover-rich pasture or alfalfa before slaughter. There is increasing interest in cattle 

production from botanically diverse pastures but there is a paucity of information on the fatty 

acid composition of beef produced from such pastures. Fraser et al. (Fraser, et al., 2007) 

reported that inclusion of a period of grazing a molina caerulea(purple moor grass) 

dominated semi-natural pasture increased the proportion of n-3 PUFA in muscle lipids.  A 

review by Moloney et al. (Moloney, et al., 2008) considered studies that compared grazing of 

a ryegrass pasture with unimproved saltmarsh pasture (Whittington, Dunn, Nute, Richardson, 

& Wood, 2006),grazing of ryegrass pasture with a botanically diverse pasture (Lourenco, 

Van Ranst, De Smet, Raes, & Fievez, 2007), grazing of a lowland pasture with a mountain 

pasture (Adnoy, et al., 2005), andindoor feeding of ryegrass silage with botanically diverse 

silage from natural, unfertilised grassland (Lourenco, De Smet, Raes, & Fievez, 2007). In this 

review, a general tendency for an increase in n-3 and total PUFA proportions in 

intramuscular fat was observed for the botanical diverse pastures compared to the perennial 

ryegrass/lowland pastures.  For a comprehensive review of this topic the reader is referred to 

Lourenço et al. (Lourenco, Van Ranst, Vlaeminck, De Smet, & Fievez, 2008). 
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Table 1.  Effect of forage type, oil supplementation and ruminally protected lipid supplements on the total fatty acids (mg/100g muscle) and the 

fatty acid composition of beef muscle (g/kg fatty acids)  
 Sex Total  14:0 16:0 18:0 18:1n-9 18:2n-6 18:3n-3 20:5n-3 22:5n-3 22:6n-3 Reference 

 Forage  

             

Pasture Bulls 547  6.0 158 159 189 145.5 34.7 10.2 13.0 0.9 (Aldai, et al., 2011) 

1-month concentrate after pasture Bulls 813 10.9 184 147 202 130.5 22.1  9.2 11.5 0.7  

2-month concentrate after pasture Bulls 1055 13.6 210 153 232 113.0 13.4  7.3  8.9 0.8  

             

Mixed pasture Steers 2150 23.6 250 170 328 25.9 11.7 5.4 8.5 0.9 (Duckett, et al., 

2013) 

Alfalfa Steers 2060 25.3 257 168 323 28.5 13.2 6.0 9.1 1.0  

Red clover silage Steers 2250 24.0 256 167 339 22.7 19.6 4.9 7.6 0.7  

             

 Oil supplementation  

             

Grass silage  Steers 3179 NR   845 425 1123 47 29 17 NR 3.3 (Kim, Richardson, 

Gibson, & Scollan, 

2011)
1
 

Grass silage + echium oil (low) Steers 4090 NR 1127 576 1378 52 31 16 NR 3.3  

Grass silage + echium oil (high) 

 

Steers 

 

4075 NR 1108 541 1358 54 32 15 NR 2.7  

Grass silage + linseed oil (high 

 

Steers 3385 NR  890 474 1117 50 31 17 NR 3.4  

Hay Steers 5680 27.5 266 113 380 26.0 5.1 2.4 4.4 NA (Nassu, et al., 2011) 

Hay + linseed Steers 5875 27.8 234 117 347 24.0 12.2 2.7 4.0 NA  

Barley silage Steers 6772 27.5 260 114 406 21.0 3.1 1.3 3.0 NA  

Barley silage + linseed Steers 6413 28.0 236 119 386 21.2 10.6 2.3 3.6 NA  

    

  Ruminally protected oils  

 

Grass silage 

 

Steers 

 

2551 

 

NR 

 

665 

 

325 

 

880 

 

56.7 

 

26.9 

 

14.3 

 

NR 

 

2.4 

(Kim, Richardson, 

Lee, Gibson, & 

Scollan, 2010)
1 

Grass silage + plant extract (low) Steers 2501 NR 623 332 850 70.2 38.3 16.1 NR 2.3  

Grass silage + plant extract (high) 

 

Steers 2433 NR 596 339 794 72.7 41.3 18.3 NR 2.8  

Control Heifers 2870
†
 86.6 730 283 937 80.4 13.3 13.0 NR 3.4 (Dunne, et al., 

2011)
1
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Protected fish oil (275 g/d) Heifers 3890
†
 132 953 388 1083 82.0 27.9 52.3 NR 15.4  

1
 Individual fatty acids mg/100g muscle; 

†
 intramuscular fat chemically determined; NR= not reported 
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 Generally levels of n-3 PUFA are higher in muscle from cattle fed on fresh compared 

to conserved grass, and increase with the amount of pasture consumed and the length of time 

on pasture (Scollan, Costa, et al., 2006). Replacing grass silage with a mixture of grass and 

red clover silage increased the deposition of n-3 PUFA in muscle of finishing cattle but this 

did not result in an increase in EPA and DHA (Lee, Evans, Nute, Richardson, & Scollan, 

2009), while replacing grass silage with either whole crop wheat silage or maize silage 

decreased the deposition of n-3 PUFA in muscle from finishing cattle (Moloney, Mooney, 

Kerry, Stanton, & O'Kiely, 2013). 

 

5. Supplementary lipids and the fatty acid composition of beef 

5.1. Unprotected lipids 

The main sources of supplementary fatty acids in ruminant rations are plant oils, 

oilseeds, fish oil, marine algae and fat supplements (Woods & Fearon, 2009). Since dietary 

inclusion of fatty acids must be restricted (to 60 g/kg dry matter consumed, approx.) to avoid 

impairment of rumen function, the capacity to manipulate the fatty acid composition by use 

of ruminally-available fatty acids is limited. Despite ruminal biohydrogenation, a proportion 

of dietary PUFA bypasses the rumen intact and is absorbed and deposited in body fat 

(Shingfield, et al., 2013). The effect of dietary supplementation with plant oils has also been 

recently reviewed by Ladiera and co-workers(Ladeira, Machado Neto, Chizzotti, Oliveira, & 

Chalfun Junior, 2012). In general, supplementation with linseed/linseed oil or flaxseed (rich 

in 18:3n-3) can increase the concentration of 18:3n-3 in tissue with an associated desirable 

decrease in the n-6:n-3 PUFA. Similarly, sunflower seed or sunflower oil (rich in 18:2n-6) 

can increase the concentration of 18:2n-6 in tissue but with an associated undesirable increase 

in the n-6:n-3 PUFA ratio. Dietary inclusion of 18:3n-3 generally also increases the 

concentration of EPA and the concentration of DHA in some (Herdmann, Martin, Nuernberg, 
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Dannenberger, & Nuernberg, 2010) but not all (e.g. (Corazzin, Bovolenta, Sepulcri, & 

Piasentier, 2013; Juarez, et al., 2011)) studies. Kim et al. (Kim, et al., 2011)found that 

supplementation of grass silage with echium oil, a source of stearidonic acid (18:4n-3) did 

not increase the concentrations of EFA and DHA in bovine muscle. There seems to be little 

evidence of a basal forage by supplementary PUFA interaction with regard to the 

concentrations of n-3 PUFA in muscle lipids (eg. (Nassu, et al., 2011), Table 1). 

Supplementation with PUFA generally causes a modest but statistically significant decrease 

in SFA proportion and in particular the C16:0 proportion of intramuscular lipids (Moloney, 

2011). 

Dietary inclusion of fish oil (rich in both the long-chain n-3 PUFA) can increase their 

concentration in beef and the increase is dependent on the level of dietary inclusion (Noci, 

Monahan, Scollan, & Moloney, 2007; Scollan, et al., 2001). Muscle from cattle fed fish oil 

does not generally reach the concentrations defined by EFSA (European Food Safety 

Authority, 2009) to permit labelling as a “source” of n-3 PUFA (see final conclusion section). 

While the supplementation strategies described above can cause sizeable changes in the n-

6:n-3 PUFA ratio, they generally do not increase the P:S ratio in the meat above the 0.1-0.15 

normally observed.  

 

5.2. Protected lipids 

For practical exploitation of the capacity of muscle to deposit n-3 PUFA, methods to 

protect dietary lipids from ruminal degradation are under on-going investigation. A variety of 

procedures have been explored including the use of intact oilseeds, heat/chemical treatment 

of intact/processed oilseeds, chemical treatment of oils to form calcium soaps or amides, 

emulsification/encapsulation of oils with protein and subsequent chemical protection (Gulati, 
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Garg, & Scott, 2005).  Physical treatment methods do not greatly change the proportional loss 

of dietary PUFA but can increase the total amount of PUFA escaping from the rumen when 

cattle are fed PUFA-supplemented rations (Jenkins & Bridges, 2007). Using the latter 

technology above, Scollan and co-workers(Scollan, et al., 2004)showed that a protected plant 

oil supplement with n-6: n-3 PUFA ratio of 1:1 decreased the n-6: n-3 PUFA ratio in muscle 

(from 3.59 to 1.88) while maintaining the high P: S ratio.  No effect was observed on the 

concentration of DHA.  Ruminal protection of fish oil using this technology however, 

increased the concentration of EPA and DHA in tissue but had little effect on the P: S ratio 

and improved the n-6:n-3 PUFA ratio only at the highest level fed (Richardson, Hallett, et al., 

2004).This may reflect the inclusion of 100 g unprotected fish oil in all treatments. Moloney 

et al. (Moloney, Shingfield, & Dunne, 2011)reported that long term (17 months) 

supplementation of beef cattle with a similar product increased the proportion of EPA and 

DHA in muscle phospholipids from 2.51 and 0.45 to 8.89 and 2.79 g/100g fatty acids, 

respectively, compared to an unsupplemented group. 

While this technology seems the most effective protection strategy to date, it has not 

been used on a commercial scale and involves formaldehyde, the use of which may not be 

permitted by some regulatory authorities. Development of alternative protection technologies 

is continuing. Hence, fish oil encapsulated in a pH sensitive matrix which remained intact at 

rumen pH but which was broken down at the lower pH in the abomasum thereby releasing 

the fish oil for digestion, was used by Dunne et al. (Dunne, et al., 2011). This strategy also 

achieved a 3-fold increase in EPA but a smaller (2-fold) increase in DHA in comparison to 

the 3.5-fold increases observed by Richardson et al. (Richardson, Hallett, et al., 2004), 

probably because the fish oil contained relatively less DHA. Recent reports on the efficacy of 

a whey protein gel complex to ruminally protect PUFA is also encouraging in this regard 

(Carroll, DePeters, & Rosenberg, 2006; van Vuuren, van Wikselaar, van Riel, Klop, 
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&Bastiaans, 2010). Similarly, Kronberg et al. (Kronberg, et al., 2013)reported that a 

supplement of flaxseed treated with a proprietary and formaldehyde-free process increased 

muscle 18:3n-3 and EPA proportion in muscle from forage-fed lambs compared to similar 

lambs fed a supplement of untreated flaxseed. This finding was not confirmed when the 

supplement was fed to cattle offered a high concentrate ration, which most likely reflects the 

different basal ration in both studies rather than the protection itself. Oliveira et al.(Oliveira, 

et al., 2012) reported an increase in 18:2n-6 in bovine muscle when soyabean oil was 

replaced by a commercial product based on calcium salts of soyabean oil. An experimental 

version of this process applied to linseed oil however, did not protect 18:3n-3from ruminal 

biohydrogenation(Oliveira, et al., 2012). Noci et al. (Noci, Monahan, & Moloney, 

2011)reported that forming an amide derivative of camelina oil (a mixture of 18:2n-6and 

18:3n-3) increased the concentration of both fatty acids in lamb muscle compared to muscle 

from lambs offered camelina oil but this technology has not been evaluated in cattle. Kim et 

al. (Kim, et al., 2010)recently reported that supplementing grass silage–fed cattle with a lipid-

rich plant extract did not enhance the concentration of 18:3n-3, EPA and DHA in muscle 

(Table 1) indicating that the preparation of this extract did not result in ruminal protection. 

As discussed previously, the long-chain n-3 PUFA are incorporated mainly into 

membrane phospholipids and are not incorporated into triacylglycerols to any important 

extent in ruminants. This provides the opportunity to manipulate intramuscular fatty acid 

composition of ruminant meat without large increases in fatness per se.  Since the 

concentrations of EPA and DHA in fish oil are dependent on the species of fish and 

represent, at most, 25% of fish oil fatty acids, with the rest often being rich in SFA (Givens, 

et al., 2000), a prudent future strategy would be to concentrate these fatty acids prior to 

ruminal protection. An alternative approach is to use algae that are enriched in long-chain n-3 

PUFA during culture. The recent report by Angulo et al. (Angulo, et al., 2012) of a marked 
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enrichment in the proportion of DHA in muscle lipids from lactating cows supplemented with 

DHA-rich algae (0.06 vs. 0.3 g/100g fatty acids for a saturated fat and a linseed/DHA-algae 

supplemented, respectively) merit further study. 

 

5.3. Conjugated linoleic- and trans-18:1 fatty acid isomers 

Biohydrogenation of dietary PUFA by the rumen microbial system results in a broad 

range of intermediates being formed, such as monounsaturated cis- and trans- fatty acids (cis- 

and trans-18:1) and CLA isomers. Also, conjugated linolenic acids (CLnA) biosynthesized in 

the rumen were reported to have anti-obesity and anti-carcinogenic effects(Buccioni, 

Decandia, Minieri, Molle, & Cabiddu, 2012; Koba, et al., 2007). Understanding the 

mechanisms underlying the biosynthesis of single CLAand trans-18:1 isomers in the rumen is 

important because the ruminal outflow affects the availability of these bioactive fatty acid 

isomers for incorporation and de novo biosynthesis in different ruminant adipose tissues 

(Chilliard, et al., 2007; Shen, Dannenberger, Nuernberg, Nuernberg, & Zhao, 2011; 

Shingfield, et al., 2013). The main CLA isomer in ruminant muscle is cis-9,trans-11 CLA 

which accounts for more than 80% of the total CLA whiletrans-10,cis-12 CLA comprises 3-

5% of the total CLA.  However the occurrence of these bioactive fatty acid isomers is also 

diet dependent (Dannenberger, et al., 2005; Mapiye, et al., 2013). To date, animal and human 

studies have indicated that two CLA isomers, cis-9,trans-11 CLA and trans-10,cis-12 CLA, 

show biological activity including prevention of different types of cancer, cardiovascular 

health, decreasing body fat, and improved immune response(Dilzer & Park, 2012; Mitchell, 

Karakach, Currie, & McLeod, 2012). These effects were predominantly observed in animal 

models, but were inconsistent in human studies (Dilzer & Park, 2012; Mitchell, et al., 2012). 

There is much evidence that the physiological properties of CLA are isomer specific. Interest 

in the potential of CLAs to reduce chronic diseases is still in the early phase, and there are 
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more questions than ever to be answered, particularly regarding mechanisms and safety 

concerns (Dilzer & Park, 2012). 
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Table 2. Effect of diet on selected CLA isomers composition of beef muscle. 

    CLA isomers     

Breed Sex Diet Unit tr-11,tr-13 tr-9,tr-11 tr-11,c-13 tr-10,c-12 c-9,tr-11 tr-7,c-9 References 

British x Continental Steers Barley-based, Vitamin E 340 IU % FAME * * 0.01 0.012 0.25 0.084 (Mapiye, et al., 

2012) 

British x Continental Steers Barley-based, Vitamin E 690 IU   % FAME * * 0.01 0.013 0.25 0.093  

British x Continental Steers Barley-based, Vitamin E 1040 IU   % FAME * * 0.009 0.011 0.25 0.089  

British x Continental Steers Barley-based, Vitamin E 1740 IU   % FAME * * 0.009 0.012 0.27 0.081  

 

British x Continental 
 
Steers 

 
Red clover silage 

 
  % FAME 

 

0.02 

 

0.06 

 

0.03 

 

0.002 

 

0.32 

 

0.03 
 

(Mapiye, et al., 

2013) 

British x Continental Steers Red clover silage with flaxseed   % FAME 0.10 0.22 0.33 0.002 1.41 0.08  
           
Limousin x Charolais Bulls Pasture-based, late spring % FAME 0.030 0.024 0.038 0.007 0.361 0.013 (Pestana, Costa, 

Martins, et al., 

2012) 

Limousin x Charolais Bulls Pasture-based, early autumn % FAME 0.020 0.019 0.029 0.011 0.332 0.026  
           
Mirandesa purebred Calves Barley-based, spring % CLA 2.24 4.50 2.16 1.67 74.4 6.42 (Pestana, Costa, 

Alves, et al., 

2012) 

Mirandesa purebred Calves Barley-based, autumn % CLA 1.83 4.02 1.77 1.80 74.5 7.54  
           
German Holstein Bulls Maize silage, n-6 concentrate mg/100g 0.10 0.13 0.16 0.25 4.0 0.95 (Dannenberger, 

et al., 2013) 

German Holstein Bulls Grass silage,  n-3 concentrate mg/100g 0.35 0.15 0.58 0.17 4.2 0.80  
           
Asturiana Bulls Pasture % FAME 0.026 0.009 0.037 0.002 0.306 0.018 (Aldai, et al., 

2011) 

Asturiana Bulls Pasture, 1 month concentrate % FAME 0.023 0.010 0.016 0.028 0.249 0.029  
Asturiana Bulls Pasture, 2 month concentrate % FAME 0.017 0.010 0.022 0.019 0.302 0.038  
           

Asturiana Bulls AV mh/mh % FAME 0.007 0.019 0.003 0.035 0.097 0.065 (Aldai, Dugan, 

Juarez, Martinez, 

& Osoro, 2010) 

Asturiana Bulls AV mh/+ % FAME 0.007 0.011 0.005 0.034 0.178 0.079  
Asturiana Bulls AV +/+ % FAME 0.008 0.017 0.004 0.036 0.125 0.078  
           

Alentejano Bulls Feedlot % CLA 1.19 2.54 1.76 0.22 81.3 8.37 (Alfaia, et al., 

2009) 
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*Not reported 

 

Alentejano Bulls Pasture, finishing 4 month % CLA 5.57 2.82 4.13 0.15 76.4 5.47  

Alentejano Bulls Pasture, finishing 2 month % CLA 8.94 3.12 6.28 0.16 68.3 6.22  

Alentejano Bulls Pasture % CLA 15.8 3.31 7.37 0.04 61.9 2.79  

           

Angus Bulls Natural grazing % CLA 3.70 1.95 8.27 1.07 74.3 4.27 (Kraft, Kramer, 

Schoene, 

Chambers, & 

Jahreis, 2008) 

Scottish Highland Bulls Natural grazing % CLA 4.03 2.72 6.95 1.36 76.0 4.51  
Limousin Bulls Intensive production indoor % CLA 2.38 2.40 3.67 1.94 72.8 9.93  
Simmental Bulls Intensive production indoor % CLA 1.72 2.17 1.74 2.86 70.8 11.38  
           
German Holstein Bulls Maize silage, n-6 concentrate mg/100g 0.1 0.2 0.2 0.2 11.7 1.4 (Dannenberger, 

et al., 2005) 

German Holstein Bulls Pasture, 160 d, n-3 concentrate mg/100g 0.8 0.4 2.9 0.4 14.4 1.6  
German Simmental Bulls Maize silage, n-6 concentrate mg/100g 0.1 0.1 0.1 0.1 6.5 0.7  
German Simmental Bulls Pasture, 160 d, n-3 concentrate mg/100g 0.2 0.1 1.0 0.2 8.0 0.5  
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The CLA isomer and trans-18:1 fatty acid concentration in beef adipose and muscle 

tissues may be affected by factors such as diet, species, fatness, age/weight, fat depot site, 

gender, breed, and season (Tables 2 and 3). Research on mechanisms of ruminal 

biohydrogenation of linoleic acid or linolenic acid haves focused largely on milk fat synthesis 

in dairy cows (Harvatine, Boisclair, & Bauman, 2009; Shingfield, et al., 2013).  

Investigations of the mechanisms of CLAand trans-18:1 fatty acid isomer formation and 

deposition in other adipose tissues have been only sparsely described. Strategies to increase 

the main CLA isomer, cis-9,trans-11 CLA, in beef adipose tissues include pasture- and grass 

silage-based diets with or without dietary supplements of linseed/linseed oil, rapeseed 

oil/cakes containing elevated levels of 18:3n-3, fish oil or marine algae (Table 2). CLA 

isomer patterns in beef muscle are affected by both diet and, if used, the type of supplement. 

Pasture-based diets (rich in 18:3n-3) with/without supplements containing linseed/rapeseed 

cake or oil result in higher muscle concentrations of trans,trans CLA isomers (mainly trans-

11,trans-13; trans-12,trans-14;trans-9,trans-11) and trans-11,cis-13 CLA (Alfaia, et al., 

2009; Dannenberger, et al., 2005). In contrast, n-6 PUFA-based diets (lipids rich in 18:2n-6 

like grains, maize silage) led to higher muscle concentrations of trans-10,cis-12 CLA;trans-

7,cis-9 CLA, trans-8,cis-10 CLA (Table 2;(Shingfield, et al., 2013)). In most dietary studies, 

the main CLA isomer cis-9,trans-11 CLA concentration/proportion was not affected or was 

slightly decreased by pasture feeding with/without supplements (i.e. diets rich in 18:3n-3). 

The highest reported cis-9,trans-11CLA (including trans-7,cis-9 CLA) concentration of 134 

mg/100g muscle was measured in muscle of Wagyu steers fed a high barley diet 

supplemented with sunflower oil (6% of dry matter) (Mir, et al., 2002). 

Dietary trans–monoenoic fatty acids (trans-fat, TFA) have been given increasing 

attention over the last 10 years. Recent research on rTFA has revealed a protective effect 

against the development of coronary heart diseases, which is in contrast to the detrimental 
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effects from iTFA (Gebauer, et al., 2011; Salter, 2013; Wang, et al., 2012). However, the 

duration and daily amount of dietary rTFA consumption required to cause significant effects 

on human health are still unclear (Wang, et al., 2012). Ruminant trans-18:1 fatty acid isomers 

are quantitatively the most important TFA in beef muscle. However, comparable to the CLA 

isomer pattern in beef, the rTFA pattern is highly dependent upon the feeding system used 

(Table3). It seems that there are isomer-specific effects of trans-18:1 fatty acid isomers for 

human health(Salter, 2013; Wang, et al., 2012).Elucidation of these effects require 

considerable analytical effort for the determination and quantification of all single trans-18:1 

fatty acid isomers in beef. Vaccenic acid (VA, 18:1trans-11) is the most abundant trans-18:1 

fatty acid isomers in beef of pasture-based fed cattle; however barley-based diets of British x 

Continentalcrossbred steers results in higher concentrations of 18:1trans-10 compared to VA 

and replaced VA as the major isomer in beef muscle (Mapiye, et al., 2012). Also the muscle 

from feedlot-fed bulls, intensive indoor-fed Limousin bulls and Normand cull cows had 

higher 18:1trans-10 compared to VA contents (Alfaia, et al., 2009; Bauchart, et al., 2010; 

Kraft, et al., 2008). Current knowledge suggests, 18:1trans-10 is one of ‘potentially negative 

TFA isomers’ with regard to human health (Wang, et al., 2012). Feeding forages 

supplemented with linseed- or sunflower oil and algae result in elevated VA level, but also 

higher 18:1trans-9 and 18:1trans-10 isomer contents in muscle of German Holstein cows 

(Angulo, et al., 2012). Pasture- and grass silage-based diets alter the trans-18:1 fatty acid 

isomer pattern and concentrations and results in a specific decrease of 18:1trans-6/7/8, 

18:1trans-9 and 18:1trans-10, and a specific enrichment of 18:1trans-13/14 and 18:1trans-16 

compared to maize silage based diets (Aldai, et al., 2011; Dannenberger, et al., 2004). 

However, the mechanisms of changes in trans-18:1 fatty acid isomer pattern and regulation 

of isomer distribution in beef muscle and other adipose tissues remain unclear.
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Table 3.  Effect of diet on selected trans18:1 fatty acid isomers composition of beef muscle  

                                            trans18:1 isomers    

Breed Sex Diet Unit     tr-6/7/8    tr-9      tr-10      tr-11 tr-13/14    tr-16 References 

British x Continental Steers Barley-based, Vitamin E 340 IU % FAME 0.136 0.215 1.42 0.386 0.208 0.068 (Mapiye, et al., 2012) 

British x Continental Steers Barley-based, Vitamin E 690 IU     % FAME 0.147 0.215 1.44 0.420 0.205 0.065  

British x Continental Steers Barley-based, Vitamin E 1040 IU     % FAME 0.139 0.204 1.30 0.368 0.198 0.070  

British x Continental Steers Barley-based, Vitamin E 1740 IU     % FAME 0.116 0.200 1.32 0.369 0.202 0.070  

 

British x Continental 
 
Steers 

 
Red clover silage 

 
    % FAME 

 

0.10 

 

0.19 

 

0.20 

 

1.11 

 

0.37 

 

0.18 
 

(Mapiye, et al., 2013) 

British x Continental Steers Red clover silage with flaxseed     % FAME 0.36 0.40 0.51 6.37 1.40 0.50  
           
Limousin x Charolais Bulls Pasture-based, late spring % FAME 0.11 0.10 0.089 1.64 * 0.20a (Pestana, Costa, Martins, et al., 2012) 

Limousin x Charolais Bulls Pasture-based, early autumn % FAME 0.10 0.15 0.58 1.79 * 0.18a  
           
Mirandesa purebred Calves Barley-based, spring % FAME 0.11 0.16 0.14 0.65 * * (Pestana, Costa, Alves, et al., 2012) 

Mirandesa purebred Calves Barley-based, autumn % FAME 0.08 0.18 0.18 0.80 * *  
           
German Holstein Cows Forage, protected saturated fat % FAME 0.07 0.15 0.20 0.60 * * (Angulo, et al., 2012) 

German Holstein Cows Forage, linseed oil + algae % FAME 0.09 0.20 0.30 1.10 * *  
German Holstein Cows Forage, sunflower oil + algae     % FAME 0.05 0.20 0.40 1.90 * *  
           

German Holstein Bulls Maize silage, n-6 concentrate % all isomers 3.55 7.97 19.3 37.3 15.4 5.92 (Dannenberger, et al., 2013) 

German Holstein Bulls Grass silage,  n-3 concentrate % all isomers 2.80 4.50 21.8 33.9 17.1 8.46  
           
Asturiana Bulls Pasture % FAME 0.075 0.148 0.291 2.410 0.360 0.133 (Aldai, et al., 2011) 

Asturiana Bulls Pasture, 1 month concentrate % FAME 0.146 0.208 2.824 1.756 0.436 0.123  
Asturiana Bulls Pasture, 2 month concentrate % FAME 0.172 0.275 2.280 1.841 0.352 0.094  
           
Asturiana Bulls AV mh/mh % FAME 0.350 0.357 7.311 0.508 0.535 0.055 (Aldai, et al., 2010) 

Asturiana Bulls AV mh/+ % FAME 0.423 0.427 5.805 0.884 0.564 0.096  
Asturiana Bulls AV +/+ % FAME 0.384 0.380 7.007 0.554 0.545 0.066  
           

Galician Blond Calves Not weaned % all isomers 3.70 6.36 9.93 45.0 17.0 5.47 (Bispo, et al., 2010) 

Galician Blond Calves Weaned, when 5.5 month old % all isomers 4.83 6.94 18.9 34.4 17.0 5.08  

Galician Blond Calves Weaned, when 2 month old % all isomers 6.38 6.93 40.2 19.3 13.7 3.55  

           
Normand cull Cow Basal diet % all isomers 3.70 8.50 33.7 36.1 7.40 2.90 (Bauchart, et al., 2010) 

Normand cull Cow With extruded linseed % all isomers 2.60 5.01 15.6 33.2 17.8 8.90  

Normand cull Cow With extruded flax- and rapeseed % all isomers 3.40 6.40 41.1 25.0 11.3 3.10  
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*Not reported, a – including 18:1c-14 

 

           

Alentejano Bulls Feedlot % FAME 0.19 0.26 1.21 0.92 * 0.19a (Alfaia, et al., 2009) 

Alentejano Bulls Pasture, finishing 4 month % FAME 0.16 0.26 0.81 1.10 * 0.23a  

Alentejano Bulls Pasture, finishing 2 month % FAME 0.17 0.26 0.98 1.15 * 0.29a  

Alentejano Bulls Pasture % FAME 0.12 0.15 0.20 1.35 * 0.35a  

           

Angus Bulls Natural grazing % all isomers 5.27 9.12 6.52 52.6 11.6 5.49 (Kraft, et al., 2008) 

Scottish Highland Bulls Natural grazing % all isomers 12.5 11.5 8.85 28.1 20.2 4.99  
Limousin Bulls Intensive production indoor % all isomers 7.99 10.8 23.7 15.7 22.0 5.32  
Simmental Bulls Intensive production indoor % all isomers 9.51 15.9 13.3 23.8 16.7 6.79  

           
German Holstein Bulls Maize silage, n-6 concentrate % all isomers 1.77 4.76 14.0 41.6 12.4 5.16 (Dannenberger, et al., 2004) 

German Holstein Bulls Pasture, 160 d, n-3 concentrate % all isomers 1.03 3.02 3.76 49.3 17.8 7.59  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 
 

6. Effect of diet on colour and lipid stability  

When ruminants graze pasture, their muscles are more oxidative which results from a 

combination of two effects: i) an increase mobility at pasture and ii) a grass (vs. maize 

silage)-based diet (Jurie, Ortigues-Marty, Picard, Micol, & Hocquette, 2006). This orientation 

towards a more oxidative metabolism associated with a higher capillarity and a lower 

proportion of type IIB muscle fibres explains why grazed ruminants can have darker meat 

with a higher pigmentation (Vestergaard, Oksbjerg, & Henckel, 2000). 

In addition they accumulate more n-3 PUFA and these PUFA are more susceptible to 

oxidation(Mahecha, et al., 2010). Oxidation is considered the major cause of meat quality 

deterioration affecting colour, flavour, and nutritional value(Li & Liu, 2012). Much interest 

has been focused on the protection of n-3 PUFA by antioxidants such as vitamin E which 

protects cells against attacks from reactive oxygen species(Yang, Lanari, Brewster, & Tume, 

2002). Vitamin E is a fat-soluble vitamin existing in eight different isoforms with various 

antioxidant activities; the most active one is α-tocopherol (Daley, et al., 2010; Descalzo & 

Sancho, 2008), and is the most abundant fat soluble vitamin in beef adipose tissues (Table 4). 

So whilst pasture-fed cattle have increased n-3 PUFA, they also have increased α-tocopherol, 

carotenoid, and sometimes flavanoid, concentrations in their muscle compared to grain-fed 

cattle (Table 4). These stabilize the meat, extending colour shelf life and reducing fat 

oxidation during the time of retail display (Descalzo & Sancho, 2008; Gatellier, Mercier, 

Juin, & Renerre, 2005; Moloney, Mooney, Kerry, & Troy, 2001; Realini, Duckett, Brito, 

Dalla Rizza, & De Mattos, 2004). The γ-tocopherol and δ-tocopherol concentrations in beef 

muscle are only rarely reported and are present at much lower concentrations than α-

tocopherol, ranging from 0.03 to 0.08 mg/kg muscle and from 0.01 to 0.04 mg/kg muscle 

respectively, depending on the feeding system used (Mahecha, et al., 2010; Mahecha, et al., 

2009). 
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Table 4. Effect of diet on fat-soluble vitamin concentration of beef muscle (mg/kg fresh muscle) 

                                            Fat soluble vitamins    

Breed Sex Diet α-tocopherol γ-tocopherol δ-tocopherol Retinol (A) ß-Carotene References 

         

Limousin x Charolais Bulls Pasture-based, late spring        5.28 * * * 0.10 (Pestana, Costa, Martins, et al., 

2012) 

Limousin x Charolais Bulls Pasture-based, early autumn        5.45 * * * 0.09  

         

Mirandesa purebred Calves Barley-based, spring 4.27 * * * 0.06 (Pestana, Costa, Alves, et al., 

2012) 

Mirandesa purebred Calves Barley-based, autumn 4.58 * * * 0.05  
         
Continental crossbred Heifers Grass silage 5.81 * * * * (Dunne, et al., 2011) 

Continental crossbred Heifers Grass silage, RP n-3 PUFA 69g 6.95 * * * *  
Continental crossbred Heifers Grass silage, RP n-3 PUFA 138g 5.94 *     
Continental crossbred Heifers Grass silage, RP n-3 PUFA 275g 7.15 * * * *  

         
Charolais x Limousin Heifers Pasture 2.63 * * * * (Rohrle, et al., 2011) 

Charolais x Limousin Heifers Pasture, grass silage 2.43 * * * *  
Charolais x Limousin Heifers Pasture, grass silage, restricted 1.77 * * * *  
Charolais x Limousin Heifers Concentrate 1.14 * * * *  

         

German Holstein Bulls Maize silage, n-6 concentrate 1.20 0.08 0.01 0.13 1.10 (Mahecha, et al., 2010) 

German Holstein Bulls Grass silage,  n-3 concentrate 0.93 0.04 0.01 0.10 2.00  
         

German Simmental Bulls Maize/grass silage 0.94 0.04 0.02 0.03 0.17 (Mahecha, et al., 2009) 

German Simmental Bulls Grass silage,  n-3 concentrate 1.04 0.06 0.04 0.03 0.18  
German Simmental Bulls Grass silage,  n-3 concentrate, 

restricted 
0.93 0.03 0.03 0.03 0.16  

         

Friesian Bulls Intensive concentrate 0.75 * * * * (De la Fuente, et al., 2009) 

Crossbred Steers Pasture 2.36 * * * *  

German Simmental Bulls Pasture, finishing concentrate 0.72 * * * *  

Hereford Steers Pasture, 2 years old 3.75 * * * *  

Hereford Steers Pasture, 3 years old 4.07 * * * *  

         
British x Indicus Steers Pasture 2.06 * * * 0.74 (Insani, et al., 2008) 

British x Indicus Steers Pasture, grain finished 0.79 * * * 0.17  
         

Crossbred Steers Pasture 3.08 * * * 0.45 (Descalzo, et al., 2005) 
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*Not reported 

 

Crossbred Steers Pasture, 500 IU vitamin E 3.91 * * * 0.63  
Crossbred Steers Grain-based 1.50 * * * 0.06  
Crossbred Steers Grain-based, 500 IU vitamin E 1.76 * * * 0.05  
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Li and Liu (Li & Liu, 2012)have reviewed the effect of diet and supplementation of 

on-farm rations with α-tocopheryl acetate on reducing the lipid and colour oxidation of 

ruminant meats. They point out that whilst there are many instances where colour and lipid 

stability appear to be linked and in particular lipid oxidation catalysing discolouration, this is 

not always the case. Whilst vitamin E concentration could account for up to 79% of the 

variation in lipid oxidation, it was only linked to 66% of the variation incolour stability (Liu, 

Scheller, Arp, Schaefer, & Williams, 1996). However, a muscle concentration of 3.0 – 3.5 

mg.kg
-1

 tissue is sufficient for optimum colour and lipid stability in loin muscle, but this 

varies between muscles (Liu, Lanari, & Schaefer, 1995; Liu, et al., 1996).  We have observed 

many times that, when changing from a low oxygen packaging system (overwrapped in air, 

20% oxygen) to a high oxygen (80% oxygen modified atmosphere pack), the colour shelf life 

and hence colour stability improves, but the rate of lipid oxidation is increased, as seen by 

others (O'Sullivan, et al., 2002). 

Feeding grass-silage, compared to feeding concentrates increased colour stability and 

reduced lipid oxidation in meat from beef steers (Warren, et al., 2008), but produced few 

differences in flavours as tested by a trained sensory panel. Similar animals grazing grass had 

more of the flavour usually associated with beef meatthan the grain-fed cattle(Richardson, 

Nute, Wood, Scollan, & Warren, 2004). In the studies of Tansawat et al.(Tansawat, 

Maughan, Ward, Martini, & Cornforth, 2013), pasture feeding produced more “barney, 

greasy and gamey” flavour then grain-fed beef.  

Meat from animals fed diets with inadequate concentrations of vitamin E for optimum 

colour stability can be improved by supplementing the animal diet with α-tocopherol acetate, 

as previously stated. Hence, Nassu et al.(Nassu, et al., 2011)fed feedlot steers on a barley-

based ration with 0, 350, 700 and 1400 I.U. α-tocopherol acetate /animal/ day for 120days. 

The moderate to high levels of vitamin E improved retail shelf life.  Interestingly, this was 
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seen for 21 day aged steak meat and for minced beef but not for 6 day aged steaks.  However, 

it should be noted that freshmeat (i.e. not aged) has a much longer retail colour shelf life than 

aged meat and measurements need to be continued for many more days to be able to see 

differences between treatments(Ledward, 1985; Nortjé & Shaw, 1989; O'keeffe & Hood, 

1981; Vitale, Perez-Juan, Lloret, Arnau, & Realini, 2014). 

Even when feeding forages, the concentration of vitamin E in the meat may be 

inadequate for maximum shelf life, even though the concentration in the diet is high. Hence, 

feeding cull cows either grass silage or red clover silage, produced meat with a lower 

concentration of vitamin E in the meat of the red clover silage-fed animals and a poorer 

colour shelf life and increased lipid oxidation compared to the grass silage-fed animals (Lee, 

et al., 2009). The increased oxidative challenge from the increased unsaturated fatty acids 

incorporated into the meat from the red clover silage is one explanation.  In other studies, 

feeding beef steers increasing amounts of red clover silage in the ration produced increasing 

amounts of PUFA in the meat, but reduced lipid and colour stability(Scollan, Costa, et al., 

2006).  Supplementing a further group of animals on the 100% red clover diet with α-

tocopherol acetate increased the concentration of vitamin E in their meat and hence colour 

and lipid stability was similar to that in the meat of the 100% ryegrass silage-fed animals 

(Scollan, Costa, et al., 2006).  Turning cattle out to finish on grazed grass for around 100 days 

after a winter on red clover silage retained the increased red clover–derived n-3 PUFA 

concentration in the meat, but also built up the stocks of grass-derived vitamin E, resulting in 

colour and lipid stable meat (Scollan, Gibson, Ball, & Richardson, 2008). 

Increasing the n-3 PUFA intake of beef animals through feeding oilseeds can improve 

the concentration and proportions of n-3PUFA in the meat (see above) but this also produces 

an oxidative challenge during digestion, absorption and during retail display affecting colour 

shelf life. This has been rectified by feeding supplementary α-tocopherol acetate with 
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concentrate diets (Daly, Moloney, & Monahan, 2007; Juarez, et al., 2012; Richardson, Wood, 

Ball, Nute, & Scollan, 2007)and when protected fish oils were fed to grazing animals (Dunne, 

et al., 2011). 

A dried lucerne extract rich in protein and xanthophylls, calledPX, fed as a 

supplement to finishing beef steers improved both the n-3 and n-6 PUFA content of their 

meat (Kim, Scollan, Richardson, Gibson, & Coulmier, 2009). The PX fed alongside grass 

silage or concentrates also increased PUFA concentrations but also led to increased lipid 

oxidation in the meat during extended retail display (measured after 10 days in MAP) except 

in the meat from a group of animals fed the concentrate diet supplemented with PX and 

additional α -tocopherol acetate(Kim, et al., 2010). 

Attention has moved to looking for alternative antioxidant sources to vitamin E. 

Gobert et al.(Gobert, et al., 2010) have reported the use of a polyphenol-rich extract for 

stabilising meat.  A combined extract of rosemary, grape residues, citrus waste and marigold, 

a plant extract rich in polyphenols (PERP) was fed to cull cows on a basal ration of 

concentrates and straw supplemented with extruded linseed and rapeseed. A control group 

was compared with one fed vitamin E and one fed vitamin E and PERP. The combination of 

PERP and vitamin E gave more lipid stable meat than the vitamin E alone, although at 

155mg/kg diet the α-tocopherol acetate was not at the optimal concentration to give the most 

stable meat. Colour shelf life was not measured. 

Feeding different diets to beef animals, supplementing them with oilseeds or protected 

unsaturated lipids can both improve fatty acid composition and place an oxidative stress on 

the meat produced.  The judicious use of antioxidants can overcome these problems. 
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7. Conclusions 

Nutritional quality is an increasingly important factor contributing to meat product 

quality. Increasing the content of n-3 PUFA and CLA (in particular cis-9, trans-11 CLA) and 

reducing SFA are important targets, along with increased understanding of the role of 

ruminant trans-fatty acids in the human diet.  Nutrition is the major factor influencing the 

fatty acid composition of beef while both nutrition and genetics influence level of fat.  

Feeding n-3 rich diets such as grass and concentrates containing linseed/linseed oil, fish oil or 

marine algae results in beneficial responses in the content of n-3 PUFA, SFA andCLA (cis-9, 

trans-11 CLA)in beef lipids.  Processes of lipolysis and biohydrogenation of dietary lipid in 

the rumen play a large role in our ability to further enhance beneficial fatty acids in beef and 

in this regard strategies to control or protect dietary lipids from biohydrogenation are 

required. 

A number of countries including European Union now have guidelines on the levels 

of long chain PUFA that a product must contain in order for it to be labelled as ‘a source of’ 

or ‘high in’ n-3 PUFA.  The European Food Safety Authority recently published the 

concentration of long chain PUFA that a product must contain in order for it to be labelled as 

‘a source of’ or ‘high in’ n-3 PUFA(European Food Safety Authority, 2009).  They advised a 

daily requirement for 250mg of EPA plus DHA or 2g of 18:3n-3; therefore would require a 

food product to contain 40 or 80mg EPA plus DHA per 100g to be labelled as ‘a source of’ or 

‘high in’ n-3 PUFA respectively (European Food Safety Authority, 2009).  Based on the 

studies presented in Table 1 and using 100 g/day as an appropriate figure for daily beef 

consumption (Scollan, Hocquette, et al., 2006)then the beef from the forage-based studies 

summarised in Table 1 may provide up to 17 mg/d EPA and 3.3 mg/d DHA. Some studies 

summarised by Scollan et al. (Scollan, Hocquette, et al., 2006)did report higher values but 

still less than required 40 mg/100 mg. For comparison, Dunne et al.(Dunne, et al., 2011)when 
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feeding heifers ruminally protected fish oil supplement compared to a control achieved levels 

of 52.3 v. 13.0 and 15.4 v. 3.4, for EPA and DHA, respectively. Hence, the maximal levels of 

EPA + DHA delivered in beef from the studies reported would be ~ 67 mg/100 g muscle 

(Dunne, et al., 2011).  This is also higher than the ~ 15% of the daily recommended intake for 

long chain PUFA and as such this beef may be noted as a “source” of long chain 

PUFA.Similarly, all the treatments fall below the level of 2g 18:3n-3 per 100 g product.  

These aspects present considerable challenges to approach levels of PUFA for which claims 

may be made. 

The relationships between the fatty acid composition of meat and other chemical 

components including amino acids and carbohydrates and the colour shelf life and sensory 

properties of beef are well developed. Increasing the content of long chain n-3 PUFA reduces 

colour shelf life and results in sensory attributes such as fishy and greasy scoring higher.  

Antioxidants and in particular vitamin E, which is high in pasture fed beef, help to ameliorate 

the negative effects of long chain PUFA on meat quality.  However, alternative sources of 

antioxidants are required, in addition, to vitamin E, to improve colour shelf life. 

This field of research has advanced much in the last 10 years and further knowledge 

will augment strategies for industry to take forward resulting in improvements to the 

nutritional properties of beef. 
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