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ABSTRACT 

Boron delta-doped diamond structures have been synthesized using microwave plasma chemical vapor 

deposition, and fabricated into FET and gated Hall bar devices for assessment of the electrical 

characteristics. A detailed study of variable temperature Hall, conductivity and field-effect mobility 

measurements was completed. This was supported by Schrödinger-Poisson and relaxation time 

calculations based upon application of Fermi’s golden rule. A two carrier-type model was developed with 

an activation energy of ~0.2 eV between the delta layer lowest subband with mobility ~1 cm
2
/Vs and the 

bulk valence band with high mobility. This new understanding of the transport of holes in such boron 

delta-doped structures has shown that although Hall mobility as high as 900 cm
2
/Vs was measured at 

room temperature, this dramatically overstates the actual useful performance of the device.  
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 Corresponding author e-mail: richard.balmer@e6.com 
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I. INTRODUCTION 

Single crystal diamond synthesized by chemical vapor deposition (CVD) has a number of important 

electrical properties which are attractive for semiconductor devices. The key differentiating properties of 

single crystal CVD diamond are its wide bandgap of 5.4 eV, its unrivalled room temperature thermal 

conductivity up to 22 W cm
-1 

K
-1

 [1], its maximum breakdown field strength predicted to be between 10 

and 20 MV cm
-1

 [2], [3] and its high intrinsic mobility [4]. Hence, CVD diamond has been researched in 

depth for device applications aiming to leverage these extreme properties towards higher electrical 

performance, particularly where physical robustness and tolerance to harsh environmental conditions are 

required.  

 

An area of intense research is diamond high frequency field effect transistors (FET) for microwave solid 

state power amplifiers. Although GaN materials and devices are significantly more advanced in their 

development compared to diamond, diamond may offer performance benefits, however the key is to 

establish and fabricate suitable device designs which can utilize diamond’s extreme properties. As an 

intrinsic material diamond has exceptional electronic properties, however its close-packed atomic 

structure and low dielectric constant of 5.7 result in an absence of donors or acceptors that are thermally 

ionized at room temperature thus placing considerable constraints on possible device configurations. The 

comparatively high activation energy of dopant impurities precludes a conventional MESFET 

architecture; hence alternative designs have been explored. One such design is the surface FET which 

employs a conductive p-channel formed by charge transfer at a surface terminated with hydrogen [5], [6]. 

This design has achieved highly encouraging RF performance of fT of 45 GHz, and fMAX of 120 GHz [7], 

and useful RF power density of 2.1 W/mm [8], [9] although these values are some way short of the GaN 

competition which has demonstrated fT and fMAX >300 GHz and output power densities >40 W/mm [10], 

[11]. There is also concern over the stability of hydrogen terminated surface FETs at the high junction 

temperatures and drain voltages required for high output power. As such there is also interest in devices 
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using the more stable oxygen-terminated surface, despite its high interface state density which impacts 

device performance [12].  

 

Here, we discuss the development of another such approach, namely boron delta-doping. The delta-doped 

FET design aims to achieve a degree of separation between the charge carriers and ionized impurities by 

incorporating an ultra-thin ‘delta’ doped layer, a technique pioneered in silicon devices and commonly 

used in III-V devices [13]. In diamond, the delta layer is a very thin (ideally a few monolayers) highly 

boron doped region on the surface of, or buried within ‘undoped’ intrinsic diamond. The room 

temperature activation energy of holes for low boron acceptor density in diamond is unacceptably high at 

0.37 eV, thus the boron doping density has to be greater than 3 – 4.5×10
20

 cm
-3

  [14], [15] so that it forms 

a metallic impurity band which overlaps the valence band maximum and the activation energy tends to 

zero [16]. On the other hand, the total sheet charge density in the delta layer must be low enough that the 

delta layer can be fully depleted (pinched off) without breakdown by an applied gate field in a FET 

structure. A practical target for the sheet density giving a combination of high current and gate control is 

1–1.5×10
13

 cm
-2

. Applying these boundary conditions, one can determine that the required delta layer 

profile with Bpeak comparable to the metal-insulator transition has thickness <1 nm [17]. It is expected that 

a percentage of the holes confined in the ground state of the delta layer where the mobility is low due to 

ionized impurity scattering [16], are either thermally excited into higher energy subbands in the potential 

well, or ideally into bulk states with very little wavefunction overlap with the doped layer [18]. The 

expectation is that there will be a direct device benefit from an enhancement in mobility for nanometer 

thickness delta-layers.  

 

The diamond delta-FET approach has been demonstrated by the University of Ulm [19] with small signal 

measurements reported of 1 GHz and 3 GHz for fT and fMAX respectively [20]. However, the current 

density was limited due to significant parasitic series resistances associated with the access regions, and 

the low measured mobility of 20-30 cm
2
/Vs.  



Balmer et al 

4 

 

4 

 

This paper describes the characterization of boron delta-doped structures grown by CVD. A detailed 

study using variable temperature I-V and Hall measurements of delta doped devices is presented.  

Furthermore, an analytical carrier transport model and a physical model employing 1D Schrödinger-

Poisson simulations and 2D scattering calculations have been developed to describe the experimental 

observations. These have led to a new understanding of the transport properties of these structures. We 

find that the Hall mobility is an inappropriate measure of the performance of these diamond devices and 

dramatically overstates the potential device performance.   

 

II. MEASURING THE CONDUCTIVITY OF BORON DELTA-DOPED DIAMOND STRUCTURES 

The synthesis of boron delta doped layer structures was carried out using microwave plasma CVD with 

H2, CH4 and B2H6 feed gases. Details of the CVD synthesis of delta-doped layers have been reported 

previously [21]. Synthesis recipes have been developed using both (100) orientated type Ib HPHT single 

crystal diamond substrates and (100) orientated high purity single crystal CVD diamond substrates. For 

the Ib substrate, a 0.5 µm intrinsic buffer layer was grown prior to the delta doped layer. For the high 

purity CVD substrate, the delta-doped layer was deposited directly. A computer-controlled rapid gas 

switching manifold was used to deposit the delta-doped layers with a thickness of just a few atomic 

spacing. The delta-doped samples presented in this work were all grown on high purity CVD substrates 

for which the concentration of background boron and substitutional nitrogen impurities was <0.5 ppb 

(<10
14 

cm
-3

) and <5 ppb (<10
15 

cm
-3

) respectively [22]. Since the delta-layer growth takes place in a 

different (boron free) reactor from the buffer, we can expect essentially no boron tail on the lower side of 

the delta layer.  Secondary ion mass spectrometry (SIMS) is a powerful analysis tool for assessing delta-

doped layers [21] with a dynamic range of 4 – 5 decades giving good sensitivity to impurities such as 

boron. However, when the delta-doped layer thickness is less than 2.5 nm, the depth resolution of SIMS is 

compromised by intrinsic broadening due to forward recoil of sputtered ions. In this case we have used 
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the complementary technique of elastic recoil detection analysis (ERDA) [23] which has reduced 

dynamic range compared to SIMS but can resolve delta-doped layers with thickness of approximately 1 

nm as shown for example in Fig. 1. 

 

The electrical behavior of the delta layers is the most important driver to optimizing the synthesis. As a 

rapid turnaround tool for guiding synthesis, sheet resistance measurements were employed using the Van 

der Pauw method with Ag paste contacts applied to the sample corners. For all samples measured 

electrically, we have opted for a surface delta design rather than a buried delta design with an undoped 

cap. This avoids the difficulties with achieving Ohmic contacts highlighted previously [20] but increases 

the effect of interface defects.  

 

Using this technique, the sheet resistance was measured for all samples (i) immediately following CVD 

which is carried out in a highly reducing atmosphere and therefore it is assumed that the surface is 

hydrogen terminated, and then (ii) following treatment in a highly oxidizing solution of concentrated 

H2SO4 and KNO3 at >200°C after which the surface is expected to be oxygen terminated. To support 

these assumptions, we have carried out contact angle measurements using a Krüss DSA 100 Drop Shape 

Analyzer and 1 microliter droplets of de-ionized H2O. We found that the mean contact angle changes 

from 98° after CVD to 38° following acid treatment corresponding to hydrophobic and hydrophilic 

behavior associated with hydrogen and oxygen termination of surface dangling bonds respectively.  

 

For decreasing growth time, we observe both a decreasing delta layer thickness and a decreasing peak 

boron concentration. Fig. 2 shows sheet resistance measurements for a series of delta-doped samples 

plotted as a function of sheet boron concentration as measured by SIMS. As expected, as the sheet boron 

concentration decreases (growth time decreases), the sheet resistance increases commensurate with fewer 

carriers available for conduction. However, for H termination the sheet resistance is inversely 

proportional to B density whereas it increases much faster for O terminated surfaces. For a sheet boron 



Balmer et al 

6 

 

6 

concentration of 4.1×10
13

 cm
-2

, the sheet resistance for H terminated was 91 k/square and when O 

terminated it increased to 854 k/square. It is understood that this difference is due to interface states 

which can pin the Fermi level for an O terminated surface 1.7 eV above the valence band maximum [12]. 

The delta layer is effectively partially compensated and for even thinner delta layers can be completely 

pinched off. Assuming full activation of the boron and the mobility is unaffected by the surface 

termination, we have used the sheet resistance and sheet boron concentration to estimate the mobility for 

the samples in Fig. 2, giving 2–3 cm
2
/Vs in all cases. Then using a simple parallel network analysis, this 

allows a crude estimate of the interface state density associated with the oxygen terminated surface to be 

made. The estimated interface state density varies from 3.7 to 16×10
13

 cm
-2

 with increasing sheet boron 

concentration.  

 

In the case of a 1 nm delta layer with boron density of 5×10
20

 cm
-3

 above the metal-insulator transition, 

the boron atom spacing is comparable to the delta layer thickness, so that lower doped non-metallic 

samples might involve transport via a 2D rather than a 3D hopping process [24]. However for the lowest 

sheet density in Fig. 2, and assuming that the delta layer thickness is ~1 nm consistent with Fig. 1, we 

infer a boron density of 4×10
20

 cm
-3

 suggesting that all these layers have a peak density comparable to, or 

exceeding, the 3D metal-insulator-transition. This applies even to the oxygen terminated samples despite 

their lower sheet hole density, since it is the boron concentration which defines the metal-insulator 

transition density.  Hence one might expect the impurity band to be merged into the valence band and 

metallic behavior to apply to all these samples.     

 

Whilst sheet resistance measurement is a convenient metric to assist growth experiments, in order to 

detect and measure any enhancement in mobility due to the doped layer being a delta layer, a more 

sophisticated electrical assessment technique was required such as variable temperature Hall effect.  
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III. VARIABLE TEMPERATURE HALL MEASUREMENTS 

The enhancement in the conductivity of carriers which is expected as a direct result of boron delta doping 

in diamond compared to conduction through bulk doped material has been predicted from theory to 

increase the mobility from 1–10 cm
2
/Vs to approximately 190 cm

2
/Vs [25]. Room temperature Hall 

measurements on delta-doped structures have previously been reported with Hall mobility values in the 

range 13–30 cm
2
/Vs [17], [26].  

 

Samples from a similar growth series to those plotted in Fig. 2 were fabricated into gated and ungated 

Hall bars using optical lithography, mesa isolation, and TiPtAu Ohmic contacts. The gate dielectric was 

Al2O3 deposited by atomic layer deposition with thickness between 30 and 64nm, and the gate metal was 

Al. Mesa-mesa isolation measurements indicated an immeasurably low conductivity of the underlying 

diamond layer. SIMS measurements were not carried out on these specific samples, however the boron 

density will be within the range shown in Fig. 2.  Variable temperature Hall effect measurements were 

made between 100 K and 450 K using two systems. First, a polarity-switched DC magnetic field of 5 T at 

Lake Shore Cryotronics Inc, and secondly a new AC Hall system using a 0.5 T magnet recently 

developed at the University of Uppsala, were used giving consistent results.  

 

Variable temperature Hall measurements on boron delta-doped diamond have been reported previously 

[19], but Hall mobility and sheet carrier density was not presented. Fig. 3 shows variable temperature Hall 

measurements from four representative boron delta-doped samples. Sample 366 had a 20 nm thick 

heavily boron doped layer and shows comparatively weak temperature dependence. This is in contrast to 

recent Hall measurements of heavily doped bulk diamond which found strong temperature dependent 

behavior [27]. It appears that our bulk material shows true metallic behavior. However, our thin delta 

layer samples exhibit a number of important but common temperature dependent features which have 

allowed us to gain a new understanding of transport in delta-doped structures. For instance at low 
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temperature, the measured Hall mobility is very low (~1 cm
2
/Vs), then increases with increasing 

temperature, then plateaus and even begins to drop again at the highest temperature range. These 

observations at first sight are surprising as generally the mobility of carriers in a semiconductor crystal 

decreases with increasing temperature due to an increase in the phonon scattering rates. The highest 

measured Hall mobility was 900 cm
2
/Vs at room temperature.  

 

Gated Hall measurements were performed on sample 506 which had sufficiently low carrier density that it 

could be pinched-off with a gate voltage of 30V across the 63nm thick Al2O3 dielectric. Hall 

measurements were taken as a function of applied gate voltage up to 30 V and between 200K and 350K 

and are shown in Fig. 4. Fig. 4(a) shows the sheet hole density and sheet conductivity dependence with 

gate voltage. As the gate voltage is increased, the conductivity decreases as the delta layer is depleted. 

The hole density can only be pinched off at low temperatures with a very soft turn-off observed. Fig. 4(b) 

is a plot of measured Hall mobility as a function of gate voltage. Interestingly at each temperature, as the 

delta layer is depleted and the sheet conductivity falls dramatically, we observe that the Hall mobility 

remains relatively constant. At each fixed gate voltage, a similar temperature dependent behavior to that 

seen in Fig. 3 is observed, but within the same sample. 

 

IV. MULTI-CARRIER MODEL 

To help us interpret the temperature dependencies shown in Figs. 3 and 4, we have developed a model of 

conduction in delta-doped structures which considers carriers with different mobility and number density. 

We note that conduction in parallel channels in delta layers was first invoked to explain impedance 

spectroscopy results [18].  

 

We propose a model which describes thermal activation of holes from the delta-doped layer into bulk 

states within the intrinsic buffer where there is reduced scattering from ionized boron acceptors [25]. An 
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alternative interpretation is that there is excitation of holes from the ground state subband of the delta-

function potential well into higher subbands in the valence band with higher mobility [28]. However, it is 

apparent that there is no simple division between states localized in the delta layer and those forming the 

bulk of the diamond. Hence in order to correctly describe the measured Hall mobility, a multi-carrier 

model rather than a simple homogeneous single layer transport approach is required. Here conduction 

occurs in N adjacent layers, or alternatively N subbands co-located within the same region. The first 

(classical) interpretation holds if carriers can be considered to be strongly localized within specific layers. 

The latter interpretation is valid in a 2D quantum well assuming that interband scattering rates are much 

smaller than intraband scattering rates.  The Hall mobility in the multi carrier model is given by [29]:  





N

i

isi

N

i

isiH pp
11

2 /                     (1) 

 

To have as simple as possible a model that can reasonably well describe the data and limit the number of 

fitting parameters, we have used a two carrier-type model (we will relax this assumption in section VI). In 

this case, the Hall mobility represented in (1) simplifies to:  

   2211

2

22

2

11 /  ssssH pppp                  (2) 

 

The measured Hall mobility for a two carrier-type model is a function of the mobility and sheet number 

density of each individual layer (or subband) (2). Furthermore, the apparent sheet carrier density is given 

by the expression [29]:  

   2

22

2

11

2

2211, /  ssssapps ppppp                 (3) 

 

The interpretation that agrees with experimental data is that holes in the lowest energy state have sheet 

density ps1 and mobility µ1, and as the temperature increases, holes with density ps2 and mobility µ2 are 

excited into either bulk states in the buffer layer or higher energy confined subbands. The number of 
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carriers thermally excited can be calculated from the integral over all energy E of the 3D density of states 

which has an E
1/2

 dependence, multiplied by the probability that these states are occupied (i.e. the Fermi-

Dirac probability distribution function). This gives:  

 TkEETp BVF

Bulk

sheet /)(exp~ 2/3                    (4) 

 

Equation (4) predicts a T
3/2

 and a exp(E/kT) dependence. We have implemented this two-carrier type 

model using (4) combined with expressions describing the temperature dependent mobility. In a doped 

semiconductor, a T
3/2

 dependence normally applies to impurity scattering in extended states. However, 

from our own observations (Fig. 4(b)), and the work from other groups [27], it is clear that predicting the 

temperature dependence for heavily boron doped diamond is non-trivial. Therefore, in the heavily doped 

type 1 region we have described the mobility using an empirical function (5) containing a T
2/3

 dependence 

where µ1,0 is a free fitting parameter.  

  3/2

0,11 300/)( KTT                       (5) 

 

For the lightly doped type 2 region, the mobility from interaction with acoustic and optical phonons is 

described by an empirical function containing a T
-3/2

 dependence where µ2,0 is a free fitting parameter (6), 

and an empirical relationship (7) resulting from a fit to time of flight measurements of hole mobility  for 

bulk high purity CVD diamond [30] respectively, which are combined by applying the Matthiessen rule 

(8).  

  2/3

0,2,2 300/)(


 KTTac                     (6) 

 TTop

25

,2 1013.1exp10786.1)(                  (7) 

     1

,2,22 /1/1)(


 opacT                     (8) 

 

The resulting two-carrier type model has been manually fitted to experimental Hall data, for example as 

shown for sample 459 in Fig. 5. This two-carrier type model reproduces successfully the observed 
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behavior of the sheet hole concentration, Fig. 5(a) and the Hall mobility, Fig. 5(b). The apparent drop in 

sheet hole density with increasing temperature is due to the thermal re-distribution of carriers between the 

two types, and the actual total number density of holes remains constant throughout the temperature 

range. In the case of sample 459, the total carrier density was determined to be 1.9×10
13

 cm
-2

. The model 

predicts that at room temperature the concentration of carrier type 1 is >99.9%, as indicated in Fig. 5(b) 

inset i.e. less than 0.1% of carriers have been thermally promoted to the higher mobility carrier type 2. 

For samples 348 and 459, the values of activation energy (EF-EV) determined by the model were 0.25 eV 

and 0.21 eV respectively. For sample 506, the activation energy did not vary strongly with gate bias and 

showed energies of 0.18 eV, 0.18 eV, and 0.17 eV at 0 V, 15 V, and 30 V respectively.  We will return to 

the physical interpretation of this energy in section VI.    

V. CONDUCTIVITY MOBILITY 

We need to reconcile the apparently high room temperature Hall mobility (440 cm
2
/Vs for sample 459) 

with the very high sheet resistance (126 k/square for sample 459) which implies a mobility of 2-3 

cm
2
/Vs. This difference arises because the conductivity results from a linear combination of the mobility 

in the two regions as in (9) below, rather than from the combination of squares that applies to the Hall 

effect (2).  

   212211 / sssstyconductivi pppp                 (9) 

 

In an example plot of mobility calculated using (2) and (9) as a function of carrier type 2 occupation as 

shown in Fig. 6, we observe that when μ2 >> μ1 this results in a much higher value for μH than µconductivity 

even when carrier type 2 occupation is small. Indeed μH is always greater than µconductivity. In the context of 

the two carrier-type model, it can be seen that μH increases very rapidly as carriers are transferred from 

the low to high mobility region, while the conductivity mobility only increases linearly. 
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Using the two carrier-type model, the conductivity mobility was calculated as a function of temperature 

for each sample. As shown in Fig. 5 for Sample 459, the conductivity mobility (~1.0 cm
2
/Vs ) is 

significantly lower than the measured Hall mobility (440 cm
2
/Vs) at room temperature because the 

percentage of thermally promoted carriers is small (0.1%). The room temperature conductivity mobility 

determined for all samples was in the range 1 – 4 cm
2
/Vs. Hence one can conclude that for delta-doped 

structures, simple Hall mobility measurements give an over-estimate of the conductivity of the sample, 

and do not give an appropriate representation of the material performance. This fully explains the 

observation of high sheet resistance on samples with high measured Hall mobility. Using the two-carrier 

model, one can demonstrate that between 20% and 30% of carriers thermally promoted to the higher 

mobility type are required to achieve a value of conductivity mobility significantly above 100 cm
2
/Vs, 

whereas experimentally we observe a typical room temperature value closer to 0.1%.  

 

In support of this interpretation, we have collected 3-terminal I-V data from fabricated long channel FETs 

and gated Hall bars. Specifically, the gate transfer characteristics were analyzed and the field-effect 

mobility was extracted from the transconductance and gate capacitance using (10), where Lg and Wg are 

the gate length and width, Cox is the Al2O3 capacitance, gm is the peak transconductance, and VDS is the 

voltage drop under the gate [29].  

 
DSoxgmgFE VCWgL /                   (10) 

 

For sample 459, a figure for the field-effect mobility of 1.9 cm
2
/Vs was measured. For all samples, the 

room temperature field-effect mobility varied between 0.2 – 2 cm
2
/Vs, in reasonable agreement with the 

conductivity mobility extracted from the two carrier-type model analysis. This observation suggests that 

the charge in the delta layer is directly modulated by the gate and the delta layer charge is not screened 

from the gate by the interface state charge i.e. the occupation of the interface states is not changed by the 

gate bias. The consistency between the conductivity mobility extracted by analysis of the Hall data and 
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the field-effect mobility suggests strongly that all the carriers in the low energy state act as a 2D hole gas 

and are equally affected by the gate bias. Hence any MESFET-like interpretation within the delta layer in 

terms of a gate voltage dependent depletion layer thickness must be incorrect. 

  

VI. DISCUSSION AND PHYSICAL MODEL 

The two-level model presented in section IV is somewhat phenomenological in nature, so here we attempt 

to provide a more physical basis for the observations. It seems highly likely that the high mobility channel 

corresponds to hole transport in extended valence band states and we will make this assumption. However 

the physical origin of the low mobility channel is less clear. The observations are that (i) the low mobility 

channel shows a mobility which is temperature dependent and appears to decrease as the hole density 

falls, (ii) the boron volumetric density in the delta layer is comparable to the metal-insulator-transition 

density with a sheet boron density exceeding 10
13

cm
-2

 in all cases, (iii) the hole sheet density can be as 

much as a factor of 10
4
 lower than the boron sheet density as a result of oxygen termination, (iv) the two 

carrier-type model suggests an activation energy between the channels of around 0.2eV.  

 

Here are some possibilities for the origin of the delta layer related low mobility channel observed at low 

temperature, with activation to extended states in the valence band being responsible for the high mobility 

channel:  

1. Hopping occurs between oxygen related interface states ~1.7eV above the valence band. 

2. The boron density in the delta layer is below the metal-insulator-transition density and hopping 

occurs within a separate boron impurity band. 

3. The boron density in the delta layer is above the metal-insulator-transition density, but hopping 

occurs within band tail states within the delta layer.  

4. Metallic conduction occurs in the valence band within the delta layer.   
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The temperature dependence does appear to suggest that the transport is occurring by a mechanism such 

as hopping [31] and is not simply metallic conduction within the delta layer. We can reject hopping 

between interface states since these are energetically much too high above the valence band.  Impurity 

band hopping conduction could explain the activation energy and the temperature dependent conduction, 

but the observation of 99.99% compensation of the boron by the interface states would require another 

mechanism to achieve this precise charge balance. However, this apparent precise charge compensation 

could be explained if most of the holes were localized in disorder induced band tail states [32] either 

within the tails of an impurity band or the valence band edge. The high concentration of boron would 

induce disorder, with the occupation probability of the acceptors being reduced by compensation by 

interface states. Only a small proportion of those remaining holes would be available for conduction since 

most would be localized. There has been considerable discussion of the effect of heavy boron doping on 

the band structure [33], but the consensus appears to be that the boron impurity band merges with the 

valence band, and contrary to [27], our measurements of bulk material shown in Fig. 3 appear to be 

consistent with that picture. Our delta layers all have a density comparable to the 3D metal-insulator 

transition so we believe the most likely explanation is that the hopping occurs in band tail states, but an 

impurity band is still quite possible.  

 

To see how the delta-layer subband structure would affect the transport in such a model, and neglecting 

any localization induced band-tailing, we have undertaken a  1D Schrödinger-Poisson simulation of the 

device structure using Silvaco ATLAS software. This calculates the energies for the heavy, light and 

split-off hole subbands assuming that the boron is fully activated (i.e. the impurity band is located within 

the valence band). Fig. 7(a) shows the subband energies for an example structure. The delta-well is a 

narrow well inside a confining triangular potential well which results from the depletion field from 

ionized residual deep donors. Note that a confining potential is essential for FET device operation since it 

prevents buffer leakage and suppresses short-channel effects [34].   As can be seen from Fig 7(b), the 2D 

subbands form a finer and finer comb the higher the hole energy, eventually merging into a 3D band.  
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Let us first consider the expected mobility for the ground state which, as we can see from Fig. 7(c), is 

where most holes will be found. We have developed a best-case simple model for the mobility based upon 

relaxation time theory and an application of Fermi’s golden rule. The standard expression for the mobility 

of a hole in a semiconductor is [35]: 

*/ me                       (11) 

 

where e is the charge of the hole, m* is the effective mass and <> is the average hole lifetime between 

scattering events. To simplify the model, we have assumed for the delta-doped structure, that carrier 

scattering is dominated by ionized impurities (boron). The contribution from neutral impurities, phonon 

interactions, surface roughness and carrier-carrier collisions are treated as a constant value and are 

calculated using the value for the mobility of holes in bulk diamond. The ground state hole wavefunction 

is described using the Fang-Howard wavefunction [36]. This describes the hole as a non-local entity and 

has a probabilistic distribution across the doped and undoped regions. We apply the standard model for 

calculating the mobility of hole bands in a delta layer [37] which takes into account screening effects. 

Thus the expression for the relaxation rate of holes scattering from ionized impurities in the delta layer is 

given as: 

              

 
q

qkkzqFqqezdzNh  cos1,/2/4
2221          (12) 

 

where h is Planck’s constant, N(z) is the doping profile, q is the 2D wave vector of the hole,  (q) is the 

static dielectric screening function, F(q,z)
2
 is the hole overlap integral (dependent on the hole location),  

is the angle between the incident and the scattered hole, and k is the energy of the hole with wave vector 

k.  From (12), and applying Matthiessen’s rule to include the bulk scattering rate, we calculate the total 

relaxation rate at room temperature and hence the total mobility for the holes in the subband. 
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Calculations for typical delta doped structures (i.e. Bpeak =1×10
20

 cm
-3

 and thickness 1 nm) and where all 

holes are confined to the delta layer, give a lower limit to the value of total mobility of 2.9 cm
2
/Vs. 

Estimating an upper limit can be done by taking an extreme case where the wavefunction is expanded 

such that less than 10% of the holes are located within the delta layer resulting in <40 cm
2
/Vs. In our 

study, we have used oxygen terminated samples and surface delta layers so we can expect that charge 

depletion by interface states and surface roughness will reduce mobility somewhat below these theoretical 

predictions. Nevertheless there does seem to be reasonable agreement with the measured mobility of 

around 2 cm
2
/Vs. We note that for a 1 nm delta layer, the upper limit of mobility in the ground state is 

significantly smaller than the mobility enhancement of up to 190 cm
2
/Vs originally predicted in [25].  

 

Let us now estimate the Hall and conductivity mobility which would result from summing over all 

available subbands using the Schrödinger-Poisson simulation. We make the assumption that the 

intersubband scattering rate is much longer than the intrasubband rate, and we simplify Matthiessen rule 

such that the scattering rate is given by: 










0

2

0

2
)(

1
)(

11
dzzdzz

B

d

iavg




                 (13) 

where ψ(z) is the wave function associated with each sub-band and d is the delta layer thickness.  This 

empirical relationship represents the appropriate weighting for transport mechanisms from the bulk and 

the delta layer for each mode taking influence from Eq. (12).  As such, the first term is a simplified form 

of Eq. (12) and the second term represents the bulk diamond scattering mechanisms.  To be consistent 

with our treatment of the mobility temperature dependence in section IV, in Fig. 7 we have assumed that 

i=14.5×(T/300)
2/3

 ps and B=5×(T/300)
-3/2

 ns. This gives a heavy-hole mobility of 2.9 cm
2
/Vs at 300 K 

for an electron confined inside the delta layer and a heavy-hole mobility of 1000 cm
2
/Vs at 300 K when 

the delta layer is not present. This process results in a mobility in each subband which is plotted in Fig. 

7(d) and indicates that the hole mobility rapidly increases as the energy drops below the valence band 
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maximum.  This approach is consistent with previous studies on delta layers [36] and lends support to a 

metallic conduction.   

 

We can now use the subband occupancy to integrate (1) and the multi-band version of (9) to evaluate Hall 

and conductivity mobility. These integrals weight each subband by either the subband mobility, or the 

mobility squared, and result in the energy dependent contributions to mobility shown in Figs. 7(d) and (e). 

It is very instructive to note that the conductivity mobility is clearly weighted towards the low mobility 

ground state, whereas the Hall mobility is weighted towards states located about 0.2 eV below the valence 

band edge with much higher mobility.       

 

Fig. 8 shows how the calculated Hall parameters (mobility and number density) vary as a function of 

temperature. It can be seen that the key trends shown in Figs. 3 and 4 have been accurately captured by 

this model. Activation from the low mobility states in the delta layer potential-well to more extended 

states results in a rapid increase in Hall mobility with increasing temperature and a much slower increase 

in conductivity mobility. This detailed Schrödinger-Poisson based model is consistent with the two-

carrier type model of section IV. If we use the two-carrier type model to fit the data of Fig. 8, we find an 

activation energy between the two levels of 0.17 eV in good agreement with experiment. Varying the 

thickness of the delta layer between 1 and 3 nm and the boron concentration between 10
20

 and 5×10
20

 

cm
-3

 all gave similar activation energy consistent with the experimental observations shown in Fig. 3. 

VII. CONCLUSION 

In this paper, we have described the development of boron delta-doped CVD diamond structures. We 

have demonstrated surface delta layers with thicknesses of order 1 nm which are substantially 

compensated by an oxygen terminated surface. Sheet resistance measurements failed to detect the 

conductivity enhancement expected for delta layers of this thickness. However detailed variable 

temperature Hall effect measurements obtained values of Hall mobility up to 900 cm
2
/Vs. A key finding 



Balmer et al 

18 

 

18 

and new understanding from this work is that the standard treatment of Hall measurements using a single 

homogeneously doped layer results in a dramatic over-estimate of the performance of the delta layer.  

Indeed, we have shown that despite the high values of Hall mobility, the room temperature conductivity 

mobility is actually in the range 1 – 4 cm
2
/Vs for all samples measured, and it is the conductivity mobility 

which is important for most device applications. Measurements of the field-effect mobility extracted from 

the gate characteristics of FET devices were in close agreement with the conductivity mobility. 

 

We have shown that a physical model based on activation from states largely residing within localized 

states within a highly doped delta layer to more extended states in the bulk of the diamond can fully 

explain the observed temperature dependence of the Hall and conductivity mobility.  This has shown that 

the vast majority of carriers remain confined within the delta layer where ionized impurity scattering 

results in low mobility.  A simple two-carrier version of the model allows rapid analysis of the data, and 

has shown that even a small fraction of carriers thermally promoted to a higher mobility carrier type has a 

dramatic effect on the measured Hall mobility but without impacting the conductivity mobility. Finally, 

we have developed a scattering model which predicts that the mobility of holes in the ground state, where 

most holes reside, will yield a room temperature mobility of <40 cm
2
/Vs even for the most optimistic 

scenario.  

 

A very recent letter published while this paper was in review also reports temperature dependent Hall 

mobility in delta doped boron diamond which they also explain as a two channel conduction process [38].  

It is argued that the high mobility channel is associated with conduction in the buffer associated with 

residual boron. In our case, we can be quite certain that the high mobility conduction process is not 

associated with the bulk of the buffer since we observe no conduction in mesa isolation structures.     

 

The results and conclusions presented here apply specifically to surface delta layers. It is expected that a 

degree of improvement of the mobility of carriers in a buried delta layer will be achieved due to the 
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greater opportunity for carrier transport in undoped regions, and a reduced compensation by oxygen 

related interface states, however this improvement will be limited when the top cap layer is depleted by 

the gate field during transistor operation.  

 

The evidence from this work strongly indicates that to achieve a high conductivity mobility in a boron 

delta-doped CVD diamond structure and therefore achieve the high frequency and high current carrying 

performance that is required from a practical diamond transistor, a high degree of carrier excitation is 

required from the lowest subband into 3D bulk states.  The challenge is to achieve this at room 

temperature.  
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Fig. 1. A plot of the boron profile of an example delta layer measured by ERDA showing a full width at 

half maximum of 1 nm. Solid line represents a Gaussian fit to the measured data, the boron from depth < 

0 nm is a measurement artifact.  
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Fig. 2. Sheet resistance as a function of sheet boron concentration for delta-doped layers with hydrogen 

and oxygen terminated surfaces from a systematic study. 
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Fig. 3. Variable temperature Hall Effect measurements using a Hall bar configuration for 4 samples with 

different delta thicknesses: (a) sheet hole density, and (b) Hall mobility.   
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Fig. 4. Gated Hall measurements from sample 506. (a) Sheet hole density and sheet conductivity and (b) 

Hall mobility as a function of gate voltage.  
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Fig. 5. Temperature dependent measurements of sample 459. Note that the data shown here is a repeat 

measurement on a different Hall bar structure to that shown in Fig. 3 demonstrating reproducibility.  (a) 

measured sheet hole density and sheet resistance, and simulated sheet hole density using two-carrier type 

model. (b) measured Hall mobility and simulated Hall mobility using two-carrier type model. Also 

plotted is the conductivity mobility extracted using the two-carrier type model. Inset is a plot of 

percentage carrier occupancy in the lowest subband and bulk states.  
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Fig. 6. Hall mobility and conductivity mobility as a function of carrier type 2 occupation for a typical set 

of parameters: μ1 = 4 cm
2
/Vs, μ2 = 200 cm

2
/Vs and ps1 + ps2 = 10

13
 cm

-2
. 
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Fig. 7. A room temperature simulation using Silvaco ATLAS of a delta layer structure with 60 nm Al2O3, 

1 nm delta layer with boron density 10
20

 cm
-3

, and bulk nitrogen density 10
14

 cm
-3

. The boundary 

conditions are: equal potential at a contact on the Al2O3 surface (not shown in the figure) and on the 

diamond back surface. Wavefunctions are assumed to vanish outside the diamond. (a) Potential well and 

maximum energy for the first 60 heavy, light and split-off hole subbands. The x-axis denotes distance in 

nanometers into the diamond with the origin at the Al2O3-diamond interface. The origin of the y-axis is at 

the Fermi level which is 2.70 eV below the surface contact potential. (b) Density of states, (c) hole 

occupation, (d) drift mobility, (e) weighted conductivity mobility, (f) weighted Hall mobility, in each 

subband i. For (c-f) circles, squares and triangles mark heavy, light and split-off hole subbands, 

respectively.    
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Fig. 8. Temperature dependence of the simulated Hall mobility and number density using the same 

structure as in Fig. 7. 


