
Peer reviewed version

Link to published version (if available): 10.1080/00207179.2012.733888

Link to publication record in Explore Bristol Research
PDF-document

This is an Accepted Manuscript of an article published by Taylor & Francis Group in International Journal of Control on 30/10/2012, available online: http://www.tandfonline.com/10.1080/00207179.2012.733888.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
RESEARCH ARTICLE

Power-constrained Intermittent Control

Peter Gawthrop¹, David Wagg², Simon Neild² and Liuping Wang³

¹ School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
e-mail: Peter.Gawthrop@glasgow.ac.uk

² Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR.
e-mail: David.Wagg, Simon.Neild@bristol.ac.uk

³ Discipline of Electrical Energy and Control Systems, School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
e-mail: Liuping.Wang@rmit.edu.au

(Received 00 Month 200X; final version received 00 Month 200X)

In this paper input power, as opposed to the usual input amplitude, constraints are introduced in the context of intermittent control. They are shown to result in a combination of quadratic optimisation and quadratic constraints. The main motivation for considering input power constraints is its similarity with semi-active control. Such methods are commonly used to provide damping in mechanical systems and structures. It is shown that semi-active control can be re-expressed and generalised as control with power constraints and can thus be implemented as power-constrained intermittent control. The method is illustrated using simulations of resonant mechanical systems and the constrained nature of the power flow is represented using power-phase-plane plots. We believe the approach we present will be useful for control design of both semi-active and low-power vibration suppression systems.

Keywords Intermittent control; hybrid control; vibration control; semi-active damping; power phase-plane.
1 Introduction

Model-based predictive control (MPC) (Maciejowski 2002, Wang 2009) combines a quadratic cost function with linear constraints to provide optimal control subject to (hard) constraints on both state and control signal; this combination of quadratic cost and linear constraints can be solved using quadratic programming (QP) (Fletcher 1987, Boyd and Vandenberghe 2004). The intermittent approach to MPC was introduced (Ronco et al. 1999) to reduce on-line computational demand whilst retaining continuous-time like behaviour (Gawthrop and Wang 2007, 2009, Gawthrop et al. 2011). This paper considers intermittent control with (hard) constraints on input power flow. This combination of quadratic cost and quadratic constraints can be solved using quadratically-constrained quadratic programming (QCQP) (Boyd and Vandenberghe 2004).

Our motivation for this extension of intermittent control in particular, and MPC in general, is application of intermittent control to semi-active control of vibration.

Semi-active control is an increasingly important control method which is used in a wide range of structural and automotive control applications (Hrovat 1997, Fialho and Balas 2000, Kitching et al. 2000, Hong et al. 2002, Preumont 2002, Jalili 2002, Sammier et al. 2003, Spencer and Nagarajaiah 2003, Verros et al. 2005, Shen et al. 2006, Giorgetti et al. 2006). The method was introduced by Karnopp et al. (1974) and involves replacing a conventional actuator by a modulated semi-active element, typically a damper of some type. Such devices are designed to dissipate unwanted vibration energy without adding any additional energy to the system. One of the most popular methods for implementing semi-active control is to use magneto-rheological (MR) dampers (Jansen and Dyke 2000, Yang et al. 2004). As a result semi-active devices typically possess the mathematical property of passivity, as defined, for example, by Anderson and Vongpanitlerd (2006). As discussed by Willems (1972), passive systems are a subset of dissipative systems. Because of this passivity constraint, the modulated damper cannot produce any desired force but only those forces which, together with the corresponding power co-variable (relative velocity) satisfy the passivity constraint. Thus, for example, a switching strategy could be used so that the damping coefficient is set to zero when the passivity constraint is violated; this leads to methods such as clipped optimal (Preumont 2002) and hybrid approaches based on intermittent control (Gawthrop et al. 2012).

In this paper we will exploit knowledge of existing active controllers to enhance the performance of semi-active controllers. In particular, MPC is a standard design method with well established theoretical properties (Mayne et al. 2000). It has been applied to a number of application areas including process control (Qin and Badgwell 2003) and mechanical systems (Giorgetti et al. 2006, Cairano et al. 2007). Although much implementation and analysis of MPC is conducted
in discrete-time, continuous-time approaches are also possible (Wang 2001, 2009). As mentioned previously, intermittent control provides an alternative approach which combines both continuous and discrete-time aspects; again, some theoretical results are available (Gawthrop 2009, Gawthrop and Wang 2011) and there are applications to mechanical systems (Gawthrop and Wang 2006, 2009, Gawthrop et al. 2012) and physiological systems (Gawthrop et al. 2011).

Another factor for semi-active control design is the current strong interest in low-energy control. For example, recent results are given by Cassidy et al. (2011) and Wang and Inman (2011). This is closely related to the concept of energy harvesting to supply some or all of the semi-active control system power requirements (Nakano et al. 2003, Scruggs et al. 2007a, b). The concept of “energy harvesting” is closely related to that of “regeneration” (Seth and Flowers 1990, Tucker and Fite 2010).

In contrast to conventional MPC which uses linear constraints to satisfy amplitude bounds on control and state amplitude; this paper presents an approach to both semi-active damping and low-energy control by re-expressing the power constraints associated with control signal as quadratic optimisation constraints. Together with an intermittent implementation of MPC, this leads to intermittent control with quadratic constraints. Quadratic optimisation with quadratic constraints leads to the QCQP formulation mentioned previously; such problems can be solved using second-order cone programming (Lobo et al. 1998).

Bemporad and Morari (1999) show that robust model-predictive control with invariant ellipsoidal terminal sets leads to a QCQP problem. Cannon et al. (2001) have shown that the triple-mode model-based predictive control leads to a QCQP problem which can be solved using an active-set method. Soliman et al. (2011) show that certain problems in wind-turbine control lead to a QCQP based MPC solution which can be approximated by QP with a polytopic constraint approximation. Quadratic constraints in the context of linear-quadratic optimisation have been considered by Yakubovich (1992) in the infinite horizon case and by Matveev and Yakubovich (1997) in the finite horizon case. However, unlike this paper, they consider constraints based on the integral of quadratic functions over time. Quadratic optimisation with quadratic constraints is considered in the context of power flow optimisation by Lavei et al. (2011) and in the context of distributed control of positive systems by Rantzer (2011).

The contribution of this paper is to show that designing semi-active control systems using the quadratic constraints approach allows the power flow into and out of the controlled systems to be directly addressed. In addition, we make use of the power-phase-plane (PPP) of Seth and Flowers (1990) which gives an immediate qualitative method for assessing the performance of the semi-active controller.
2 Unconstrained Intermittent Control

This section contains the background material needed for the rest of the paper; more details and alternative algorithms are presented elsewhere (Gawthrop and Wang 2007, 2009, 2010). As discussed by Gawthrop and Wang (2009), the simple version used here is similar to the “control signal generator” of Aström (2008) and the “model” of Montestruque and Antsaklis (2003).

This paper considers single-input, single-output (SISO) systems given in state space form as:

\[
\begin{array}{l}
\frac{d}{dt} x(t) = Ax(t) + Bu(t) + B_d d(t) \\
y(t) = Cx(t) \\
x(0) = x_0
\end{array}
\]

(1)

\(A\) is an \(n \times n\) matrix, \(B\) and \(B_d\) are \(n \times 1\) column vectors and \(C\) is a \(1 \times n\) row vector. The \(n \times 1\) column vector \(x\) is the system state. The output, control signal and disturbance, \(y\), \(u\) and \(d\) respectively are scalar functions of time and \(x_0\) is the system initial condition. In common with other work relating to semi-active control, it is assumed that the state \(x\) is available.

It is also assumed that there are two power covariables \(u\) and \(v\) associated with the control system actuator. For example, in mechanical systems, \(u\) could be the actuator force and \(v\) the corresponding relative velocity and in electrical systems \(u\) could be an applied voltage and \(v\) the corresponding current. It is assumed that these quantities are linear combinations of the state variables contained in \(x\) and the control signal \(u\) and so may be written as:

\[
\begin{align*}
u &= C_u x + D_u u \\
v &= C_v x + D_v u
\end{align*}
\]

(2)

(3)

Specific examples of (2) and (3) appear in Section 4. The linearity assumption of Equations (2) and (3) imposes a restriction on the applicability of the approach of this paper. In the non-linear case, Equations (2) and (3) would represent a linear approximation.

We now consider how the control signal is determined. The underlying design method of intermittent control is the conventional continuous-time state-feedback controller with gain \(k\) given by:

\[u(t) = -kx(t)\]

(4)

However, as seen later, for intermittent control the state vector used is a modified generalised hold vector – see (13). The control signal is generated by considering the undisturbed closed-loop
system:

\[
\begin{align*}
\frac{dx_c}{dt}(t) &= A_c x_c(t) \\
y(t) &= C x_c(t) \\
x_c(0) &= x_0
\end{align*}
\]

where \(A_c = A - Bk \)

(6)

There are many ways to choose \(k \). One is linear-quadratic regulator (LQR) design (Kwakernaak and Sivan 1972, Goodwin et al. 2001) which chooses the control \(u \) to minimise the infinite-horizon linear-quadratic cost function:

\[
J_{LQR} = \int_0^\infty (x(t)^T Q x(t) + u(t)^T R u(t)) \, dt
\]

(7)

The solution to this optimisation is of the form of (4) where:

\[
k = k_{LQR} = R^{-1} B^T P
\]

(8)

and \(P \) is the positive-definite solution of the algebraic Riccati equation (ARE):

\[
A^T P + PA - PBR^{-1} B^T P + Q = 0
\]

(9)

Intermittent control makes use of three time frames:

1. **continuous-time**, over which the controlled system (1) evolves, which is denoted by \(t \).
2. **discrete-time** points at which feedback occurs indexed by \(i \). Thus, for example, the discrete-time time instants are denoted \(t_i \) and the corresponding system state \(x_i \) is defined as

\[
x_i = x(t_i)
\]

(10)

The \(i \)th intermittent interval is defined as

\[
\Delta_i = t_{i+1} - t_i
\]

(11)

\(\Delta_i \) will be assumed to have a constant value of \(\Delta_{ol} \) for the rest of this paper.

3. **intermittent-time** is a continuous-time variable, denoted by \(\tau \), restarting at each intermittent interval. Thus, within the \(i \)th intermittent interval, \(\tau = t - t_i \)

As discussed by Gawthrop and Wang (2009), in this simple, unconstrained formulation, the
intermittent control signal U_i is defined at each discrete-time point t_i by:

$$U_i = x_i = x(t_i)$$ (12)

where $x(t_i)$ is the value of $x(t)$ sampled at time $t = t_i$ corresponding to time $\tau = 0$. Equation (12) does not hold in the constrained case considered below. This particular formulation where the hold is initialised to the system state at time t_i is related to both the “control signal generator” of Åström (2008) and the “model” of Montestruque and Antsaklis (2003).

The vector U_i defines the trajectory generating the inter-sample control signal $u(t)$. In particular, the control signal applied to the system (1), $u(t)$, is generated using the generalised hold given by

$$\frac{d}{d\tau}x_h(\tau) = A_h x_h(\tau)$$
$$x_h(0) = U_i$$
$$u(t_i + \tau) = -k x_h(\tau)$$ (13)

where x_h is the n dimensional state of the generalised hold and $A_h = A_c$ given by 6. The hold state x_h is initialised to U_i. An important aim of this paper is to replace the linear intermittent feedback controller (12) by an on-line optimisation procedure so that both state and input hard constraints can be obeyed by the control law. This is considered in Section 3.

3 Power-Constrained Intermittent Control

In contrast to the unconstrained case represented by Equation (12), in the constrained case now considers $U_i \neq x(t_i)$. It is therefore useful to construct a set of equations describing the evolution of the system state x and the generalised hold state x_h that does not rely on equation (12). Following the approach of Gawthrop and Wang (2009), combining (1) and (13) gives such a set of equations:

$$\frac{d}{d\tau}X(\tau) = A_{xu}X(\tau)$$
$$X(0) = X_i$$ (14)

where

$$X = \begin{pmatrix} x \\ x_h \end{pmatrix}, \quad A_{xu} = \begin{pmatrix} A & -Bk \\ 0_{n \times n} & A_h \end{pmatrix}, \quad X_i = \begin{pmatrix} x_i \\ U_i \end{pmatrix}$$ (15)
The differential equation (14) has the explicit solution

\[X(\tau) = E(\tau)X_i \]

where \(E(\tau) = e^{A_{\text{ext}}\tau} \)

where \(\tau \) is the intermittent continuous-time variable based on \(t_i \). Power constraints are based on the system input \(u \) and the corresponding power covariable \(v \). To generate the constraints, \(u \) and \(v \) must be expressed in terms of the composite state at time \(t_i \), \(X_i \). Using equations (2), (3) and (13), it follows that:

\[u(\tau) = \gamma_u E(\tau)X_i \]

\[v(\tau) = \gamma_v E(\tau)X_i \]

where \(\gamma_u = \left[C_u - D_u k \right] \)

and \(\gamma_v = \left[C_v - D_v k \right] \)

\subsection{Power Constraints}

The vector \(X \), defined in (15), contains the system state and the state of the generalised hold; equation (16) explicitly gives \(X(\tau) \) in terms of the initial value \(X_i \) at time \(t_i \).

Hence a constraint on the input power at time \(\tau \) can be expressed as:

\[p(\tau) = u^T(\tau)v(\tau) = X_i^T \Gamma_u(\tau) \Gamma_v(\tau)X_i \leq p_{\text{max}} \]

where \(\Gamma_u = \gamma_u E(\tau) \)

and \(\Gamma_v = \gamma_v E(\tau) \)

Following standard MPC practice, constraints beyond the intermittent interval can be included by assuming that the control strategy will be open-loop in the future; this constraint time horizon is denoted \(\tau_c \).

\subsection{Optimisation}

Following, for example, Chen and Gawthrop (2006), a modified version of the infinite-horizon LQR cost (7) is used to give a finite horizon expression of the form

\[J_{ic} = x(\tau_1)^T P x(\tau_1) + \int_{0}^{\tau_1} (x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau)) \, d\tau \]

\[p(\tau) = u^T(\tau)v(\tau) = X_i^T \Gamma_u(\tau) \Gamma_v(\tau)X_i \leq p_{\text{max}} \]

where \(\Gamma_u = \gamma_u E(\tau) \)

and \(\Gamma_v = \gamma_v E(\tau) \)

Following standard MPC practice, constraints beyond the intermittent interval can be included by assuming that the control strategy will be open-loop in the future; this constraint time horizon is denoted \(\tau_c \).

\[J_{ic} = x(\tau_1)^T P x(\tau_1) + \int_{0}^{\tau_1} (x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau)) \, d\tau \]
where the weighting matrices \(Q \) and \(R \) are as used in (7) and \(P \) is the positive-definite solution of the ARE (9). More discussion of this cost function is given by Gawthrop and Wang (2009).

We now prove the following Lemma.

Lemma 3.1 Power-constrained optimisation: The minimisation of the cost function \(J_{ic} \) of Equation 25 subject to the constraints (22) is equivalent to the solution of the following quadratically-constrained quadratic program (QCQP):

\[
\min_{U_i} \left\{ U_i^T J_{UU} U_i + 2x_i^T J_{UX} U_i + x_i^T J_{xx} x_i \right\}
\]

subject to \(\max X_i^T \Gamma_u(\tau) \Gamma_u^T(\tau) X_i \leq p_{max} \) for all \(0 \leq \tau \leq \tau_c \).

Proof Using \(X \) from (16), (25) can be rewritten as:

\[
J_{ic} = X(\tau_1)^T P_{xx} X(\tau_1) + \int_0^{\tau_1} X(\tau)^T Q_{xx} X(\tau) d\tau
\]

where \(Q_{xx} = \begin{pmatrix} Q & 0_{n \times n} \\ 0_{n \times n} & k^T R k \end{pmatrix} \)

and \(P_{xx} = \begin{pmatrix} P & 0_{n \times n} \\ 0_{n \times n} & 0_{n \times n} \end{pmatrix} \).

Using (16), equation (27) can be rewritten as:

\[
J_{ic} = X_i^T J_{XX} X_i
\]

where \(J_{XX} = J_1 + e^{A_{xx} \tau_1} P_{xx} e^{A_{xx} \tau_1} \)

and \(J_1 = \int_0^{\tau_1} e^{A_{xx} \tau} Q_{xx} e^{A_{xx} \tau} d\tau \).

Following Gawthrop and Wang (2009), the \(2n \times 2n \) matrix \(J_{XX} \) can be partitioned into four \(n \times n \) matrices as:

\[
J_{XX} = \begin{pmatrix} J_{xx} & J_{xU} \\ J_{UX} & J_{UU} \end{pmatrix}
\]

Using the equation (22), combining equations (25) – (33) and noting that \(J_{XX} \) is symmetrical gives expression (26). □

Remark 1: The constraint depends on the current value \(X_i \) of the composite state; from equation (15) it follows that the constraint inequality depends on the current state \(x_i \) as well as the optimised vector \(U_i \).
Remark 2: In practice, a finite number, N_c, of values of τ are chosen in the range $0 \leq \tau \leq \tau_c$. These N_c values $\tau_1, \tau_2, \ldots, \tau_{N_c}$ are then used to precompute N_c vectors $\Gamma_u = \Gamma_u(\tau_i)$ and N_c vectors $\Gamma_v = \Gamma_v(\tau_i)$.

Remark 3: From equation (12), the unconstrained value of U_i is x_i. It saves computation if the constraints are checked before optimisation to see if $U_i = x_i$ actually satisfies the constraints.

4 Examples

The properties of power-constrained intermittent control are illustrated using two examples. The first (Section 4.1) is a simple undamped oscillator which can be taken to represent a unit mass-spring system. The control force u and disturbance force d are collocated. The basic properties are illustrated by the transient response of the system from a non-zero initial condition when the disturbance is zero and by the steady-state response to a sinusoidal disturbance with zero initial conditions. The second (Section 4.2) is a more realistic example of a quarter-car model previously used by Preumont (2002) to compare and contrast vibration control algorithms. Actuator dynamics are also included to illustrate the behaviour when the control signal is not a power covariable. Following Preumont (2002), the behaviour is illustrated by responses to sinusoidal disturbances at various frequencies. The power phase-plane approach of Seth and Flowers (1990) is used to display the results where the power covariables u (2) and v (3) are plotted against each other thus allowing the effect of power constraints to be easily visualised.

The examples were simulated within GNU octave (Eaton 2002) using the NLopt optimisation algorithms (Johnson 2012). In particular, the COBYLA (Constrained Optimisation by Linear Approximations) algorithm for derivative-free optimisation with nonlinear inequality and equality constraints (Powell 1998) was used. The use of such a general purpose algorithm was justified by the experimental nature of the investigation.

4.1 Simple oscillator

This example considers the simple harmonic oscillator:

$$\ddot{y}(t) + y(t) = u(t) + d(t)$$

(34)

where y is the displacement, $u(t)$ the force control signal and $d(t)$ a disturbance force. This differential equation may be rewritten in the state-space form of (1) where

$$x = \begin{bmatrix} v \\ y \end{bmatrix}, \quad A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = B_d = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

(35)
and the velocity \(v = \dot{y} \). An ideal actuator is assumed and the power covariables are \(u = u \) and \(v = v \). It follows that

\[
C_u = \begin{bmatrix} 0 & 0 \end{bmatrix}, \quad D_u = 1, \quad C_v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad D_v = 0
\] (36)

An unconstrained intermittent controller was designed as in Section 2, equation (7), with the following parameters:

\[
Q = \begin{bmatrix} 0 & 0 \\ 0 & 100 \end{bmatrix}, \quad R = 1
\] (37)

Together with the system parameters of (35), these parameters give:

\[
k = \begin{bmatrix} 4.25 \\ 9.05 \end{bmatrix}, \quad A_h = A_c = \begin{bmatrix} -4.25 & -10.05 \\ 1 & 0 \end{bmatrix}
\] (38)

This gives closed-loop poles at: \(s = -2.13 \pm j2.35 \). The open-loop intermittent interval (11) was chosen as \(\Delta_i = \Delta_{ol} = 0.01s \).

The power-constrained intermittent control was designed as in Section 3.2 and the effect of the two parameters of Lemma 3.1: \(p_{\text{max}} \) equation (22) and \(\tau_c \) was examined.

Figures 1 and 2 correspond to the transient response of the closed-loop system to an initial condition \(x(0) \)

\[
x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\] (39)

From equation (38), it follows that the initial state in the power phase-plane is:

\[
\mathbf{r} = \begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} x_1(0) \\ -kx(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -4.25 \end{bmatrix}
\] (40)

In each case, the black line corresponds to the power-constrained intermittent control, the light grey line to the unconstrained intermittent control and the dark grey curves to the power constraints.

Figure 1 corresponds to \(p_{\text{max}} = 0 \); the input power flow must be negative, such that the controller is semi-active, and the constraint boundaries are the axes of the power phase-plane. Figure 1(a)&(b) correspond to a zero constraint horizon \(\tau_c = 0 \). The unconstrained and power-constrained trajectories are identical until the constraint boundary is reached; from this point, the power-constrained trajectory follows the boundary until the origin is reached when it becomes
Figure 1. Simple oscillator: transient response with initial condition $v = 1, y = 0$ (39), $u = -4.25$ (40) and $p_{max} = 0$.

(a) With a zero constraint horizon $\tau_c = 0$, the constrained, active control, trajectory (black) closely follows the unconstrained trajectory (grey) or constraint boundary $p_{max} = 0$ as appropriate. (b) The corresponding control signal u has a corresponding “corner” not exhibited in the unconstrained control. (c) With a non-zero constraint horizon $\tau_c = 200$ms, the constrained trajectory (black) leaves the unconstrained trajectory before the constraint is reached thus anticipating the constraint. (d) The corresponding control signal u is smoother than that of (a).

unconstrained again. The power covariable $u = u$ has a discontinuity when the boundary is reached.

To investigate the effect of a non-zero constraint horizon Figure 1(c) & (d) show the effect of a 200ms constraint horizon $\tau_c = 0.2$. The unconstrained and power-constrained trajectories are identical until the constraint boundary is approached; from this point, the power-constrained trajectory diverges from the unconstrained trajectory and gives a smoother approach to the constraint boundary than corresponding to $\tau_c = 0$. The power covariable $u = u$ no longer has a discontinuity.

Figure 2 is similar to Figure 1 except that the power constraint is relaxed by setting $p_{max} = 0.01$. The constraint boundaries are now the rectangular hyperbolae shown in Figure 2(a)–(d) but otherwise the behaviour is similar to that described by Figure 1. However, the smoother boundaries do lead to smoother control action as shown by comparing Figures 2(b) & (d) with
Figure 2. Simple oscillator: transient response with initial condition \(v = 1, y = 0 \) \((39) \), \(u = -4.25 \) \((40) \) and \(p_{max} = 0.01 \). In contrast to Figure 1, the non-zero maximum power leads to the hyperbolic constraints leaving the axes around the origin.

(a) Again, the constrained trajectory (black) closely follows the unconstrained trajectory (grey) or constraint boundary.
(b) The smoother constraint leads to a smoother control signal than that of Figure 1(b). (c) and (d), as in Figure 1, the non-zero constraint horizon \(\tau_c = 200 \text{ms} \) gives smoother control.

Figures 1(b)&(d).

Figures 3&4 correspond to Figures 1&2 except that the initial condition is zero and the disturbance \(d \) is a sinusoidal disturbance at the resonant frequency \(d = \sin \omega_0 t \) where \(\omega_0 = 1 \text{ rad s}^{-1} \). The figures display two periods after a steady-state has been reached.

Figures 3(a)&(b) show that a zero constraint horizon \(\tau_c = 0 \) and a zero power constraint \(p_{max} = 0 \) once again lead to a discontinuous control signal and, once again, this disappears when \(\tau_c = 0.2 \). Figures 3(a)&(c) also show the increase in the amplitude of the system velocity \(v = \dot{v} \) due to the imposition of the power constraints. Figure 4 shows the effect of relaxing the power constraint \((p_{max} = 0.01) \) in the sinusoidal disturbance case. The smoother hyperbolic constraint boundaries give a smoother shape to the trajectories and no discontinuities are observed in the control signals shown in Figures 4(b)&(d). Moreover, Figures 4(a)&(c) show that the relaxed constraint reduces the amplitude of the system velocity \(v = \dot{v} \) compared to that in Figures
Figure 3. Simple oscillator: steady-state sinusoidal response: \(p_{\text{max}} = 0 \). This figure corresponds to Figure 1 but with a sinusoidal disturbance at the resonant frequency \(d = \sin 2\pi f_0 t \). (a) With a zero constraint horizon \(\tau_c = 0 \), the constrained trajectory (black) lies within the negative power quadrants. (b) The corresponding control signal \(u \) exhibits a rapid switching, or chattering, phenomenon not exhibited in the unconstrained control. (c) With a non-zero constraint horizon \(\tau_c = 200 \text{ms} \), the constrained trajectory (black) anticipates the constraint. (d) The corresponding control signal \(u \) is smoother than that of (a) and does not exhibit chattering. In both cases, the control signal has a small high-frequency component which we attribute to deficiencies in the numerical optimisation.

Each point on the power phase-plane trajectories of Figures 3(a), 3(c), 4(a) and 4(c) corresponds to the instantaneous power \(p = uv \) associated with the control signal \(u \) and extracted from the system. The corresponding power injected into the system by the disturbance \(d \) is \(p_0 = dv \) and is thus, though \(v \), dependent on the control strategy as well as \(d \) itself; this injected power can itself be represented on the power phase-plane. The net power into the system \(\bar{p} \), and the corresponding accumulated energy \(\bar{e} \) are given by

\[
\bar{p}(t) = p(t) + p_0(t) = v(t)[u(t) + d(t)]
\]

\[
\bar{e}(t) = \int_0^t \bar{p}(t')dt'
\]
In this particular example, the system does not, by itself, dissipate energy as there is no damping term in Equation (34). Therefore, in the steady state, the net energy loss in the system over one period must be zero. Figure 5 examines these ideas with reference to the particular example of Figures 3(c) and 3(d) \(p_{\text{max}} = 0, \tau_c = 200\text{ms} \). Figure 5(a) gives the power phase-plane corresponding to \(d \) thus the disturbance power \(p_0 \); it corresponds to Figure 3(c) which shows the control power \(p \); as \(p_0 \) depends on velocity \(v \) (Figure 5(b)) it depends on the control strategy as well as the disturbance \(d \). Figure 5(c) shows the net power \(\bar{p} \) (41) as a function of time \(t \) and Figure 5(d) shows the corresponding accumulated energy \(\bar{e} \). As predicted, the accumulated energy is zero at the end of each period of the disturbance \(d \). Compared to the example in Figures 3(a) and 3(b) (where \(\tau_c = 0 \)), the velocities are larger and so the power injected by the disturbance and extracted by the controller are larger. Similar results are obtained for the other example conditions of this section.
Figure 5. Power and energy: $p_{\text{max}} = 0$, $\tau_c = 200\text{ms}$. This Figure corresponds to Figures 3(c) and 3(d); as before, black corresponds to constrained and grey to unconstrained control. (a) shows the power phase-plane corresponding to the disturbance d; this lies within the first and third quadrants indicating power inflow. (b) shows the corresponding velocity. (c) Shows the net power flow $\bar{p} = v(u + d)$ into the system when $\tau_c = 0$ corresponding to (d) shows the corresponding accumulated energy $\bar{e} = \int_0^t \bar{p}(t')dt'$. Note that the accumulated energy returns to zero at the end of each period,

4.2 Quarter car model

The quarter-car model of Figure 6 is used by Preumont (2002) as an example for illustrating passive, active and semi-active vibration control. The same example is used by Gawthrop et al. (2012) to illustrate semi-active control based on switched intermittent control.

To make the problem more realistic, and to illustrate the case where the power covariable $u \neq u$, the actuator is modelled by the low-pass filter with transfer function $G(s)$ given by

$$G(s) = \frac{1}{1 + 0.01s} \tag{43}$$

The state-space equations are of the form of Equation (1) where z_3 is the filter state and:

$$x = \begin{bmatrix} v_2 & z_2 & v_1 & z_1 & z_3 \end{bmatrix}^T \tag{44}$$
The matrices A, B, B_d and C are then given by:

$$A = \begin{bmatrix} -\frac{c}{m} & -\frac{k}{m} & \frac{c}{m} & 0 & \frac{1}{m} \\ 1 & 0 & -1 & 0 & 0 \\ \frac{c}{m} & \frac{k}{m} & -\frac{c}{m} & -\frac{K}{m} & -\frac{1}{m} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -100 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 100 \end{bmatrix}, \quad B_d = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}^T$$

(45)

In this case, the power covariables are the actuator force $u = \zeta$ and velocity $v = v_2 - v_1$ hence:

$$C_u = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}, \quad D_u = 0, \quad C_v = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}, \quad D_v = 0$$

(46)

An unconstrained intermittent controller was designed as in Section 2, equation (7), with the following parameters:

$$Q = \begin{bmatrix} CC^T \end{bmatrix}, \quad R = 1$$

(47)

Together with the system parameters of (45), these parameters give:

$$k = \begin{bmatrix} 0.43 & -0.26 & 0.0059 & -1.9 & 0.016 \end{bmatrix}$$

(48)

This gives closed-loop poles at: $s = -2.57 \pm j7.42$, $s = -13.92 \pm j67.84$ and $s = -99.91$. The open-loop intermittent interval (11) was chosen as $\Delta_i = \Delta_d = 0.01s$.

The power-constrained intermittent control was designed as in Section 3.2. Figure 7 gives the steady-state response of the system to the disturbance $d = \sin \omega t$ where $\omega = \frac{1}{2} \omega_0$, ω_0, $2\omega_0$, and $5\omega_0$ and $w_0 = 7.7801 \text{ rads}^{-1}$ is the lower resonant frequency. Figure
Figure 7. Quarter-car model: steady-state sinusoidal response. (a)–(d) give the power-phase plane sinusoidal response at 4 frequencies including the two resonant frequencies. In each case, the constrained trajectory (black) lies within the constraint boundaries (grey hyperbolae) whereas the unconstrained trajectory lies outside the constraints in three of the four cases. The use of a non-zero constraint horizon ($\tau_c = 10\text{ms}$) avoids the rapid switching, or chattering, phenomenon associated with zero horizon ($\tau_c = 0\text{ms}$) but means that the trajectory does not necessarily follow the constraints closely. The maximum power p_{max} was set to zero.

7(a)–(d) shows the power phase-plane at each of the four frequencies for four periods when the simulation has reached a steady-state. In each case, the power-constrained intermittent controller follows the unconstrained controller when away from constraints and closely follows the constraints when the unconstrained controller violates the constraints. As discussed in Section 4.1, the use of a non-zero constraint horizon of 10ms ($\tau_c = 0.01$) avoids discontinuous control.

There are, however, two discrepancies to be explained. Firstly, the constraints are violated at certain times; this is due to the combination of the disturbance and non-zero intermittent interval Δ_{ol}. The constraint prediction equation (22) assumes $d = 0$ and so the predicted constraint is in error; this effect increases with Δ_{ol}. The effect could be reduced by using a disturbance model within, for example, a disturbance observer. Secondly, the four displayed periods are not identical. This is because the disturbance period is not an integer multiple of the intermittent interval Δ_{ol} and so the periodic disturbance d does not give a periodic system state x and so
the phase-plane state \mathbf{x} is not periodic.

Figure 8 corresponds to Figure 7 except that the system has been multiplied by a gain of 1.2 (i.e. a 20% increase) without modifying the controller to take account of this change. The control system is robust to this perturbation insofar as the response is not greatly changed by this unmodelled gain.

5 Conclusion

It has been shown that constraining the power flow into a dynamic system can be implemented using quadratic constraints within a finite-horizon optimisation scheme to give power-constrained intermittent control. Although using a zero-length constraint horizon and a strictly passive limit on the power flow gives clipped-optimal like behaviour, a non-zero constraint horizon gives a smoother anticipatory action. Moreover, relaxing the power limit to allow a small positive power flow similarly gives a smoother control signal. We anticipate that the approach will be useful in both semi-active vibration control and low-power control using energy harvesting or regeneration.
A general purpose non-linear optimisation algorithm was used in this work and, although
suitable for demonstrating the concepts using simulations, it is neither efficient nor suitable for
real-time use. It would be of interest to take advantage of the specific quadratically-constrained
quadratic programming (QCQP) form of the optimisation and use the corresponding efficient
algorithms (Boyd and Vandenberghe 2004, Lobo et al. 1998). The high-frequency component
of the control signal visible in Figures 3 and 4 is also believed to be due to deficiencies in the
optimisation algorithm. It would therefore be of interest to investigate the exact source of this
phenomenon. The example of Section 4.2 illustrated that the method is robust to a quite large
change in system gain. Future work will provide a theoretical analysis of robustness to system
variation.

As illustrated in Section 4, there are a number of design parameters to be chosen including
the constraint horizon \(\tau_c \) and the maximum power \(p_{\text{max}} \). In this paper, these two parameters are
chosen in an \textit{ad hoc} manner; future work will formulate design rules for such parameters.

Because the controller constrains the power injected into the system, the resulting constrained
controller has passivity properties even if the underlying unconstrained design does not. This is
a generalisation of the argument behind semi-active control and will be investigated to give new
generalisations of semi-active control.

Constrained control leads to considerations of \textit{feasibility}. This topic has been investigated in the
context of model-based predictive control with linear constraints using quadratic programming
(Scokaert et al. 1999, Mayne et al. 2000) and needs to be applied to the QCQP based algorithms
discussed here.

The algorithm presented here has a fixed interval \(\Delta_i = \Delta_{\text{ol}} \). However, as discussed by Gawthrop
and Wang (2009a), event-driven versions may be derived. This “control on demand” approach
may also have implications for low-energy control and will be further investigated.

The power phase-plane approach of Seth and Flowers (1990) has been shown in Section 4 to
provide a useful way of presenting the properties of the method. Future work will consider the
power phase-plane approach in more detail including the relation between the power phase-plane
of the control signal and that of the disturbance and the relative shapes of the constrained and
unconstrained cases.

Although this work was largely motivated by semi-active damping and its implementation
using modulated dampers, implementation issues are not discussed in this paper. In particular,
when the power constraint (22) is relaxed so that \(p_{\text{max}} > 0 \), the resultant controller can no longer
be implemented by a modulated damper. However, future work will investigate whether such a
controller could be implemented when the modulated passive controller has energy storage as,
for example, discussed by Potter et al. (2011).
This paper has been orientated towards the mechanical engineering application of semi-active vibration control. However, it is applicable to any physical domain, or multiple physical domains, where energy considerations are important.

Acknowledgements

Peter Gawthrop is a Visiting Research Fellow at the University of Bristol. He is also partially supported by the linked EPSRC Grants EP/F068514/1, EP/F069022/1 and EP/F06974X/1 “Intermittent control of man and machine” and gratefully acknowledges the many discussions about intermittent control with Henrik Gollee, Ian Loram and Martin Lakie. The authors wish to thank Irina Lazar, University of Bristol, for her constructive comments on the draft of this paper.

The authors gratefully acknowledge the many insightful comments of the referees which have lead to an improved paper.
References

REFERENCES

233–238.