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Forecasting sudden changes in complex systems is a critical but
challenging task, with previously developed methods varying
widely in their reliability. Here we develop a novel detection
method, using simple theoretical models to train a deep neural
network to detect critical transitions—the Early Warning
Signal Network (EWSNet). We then demonstrate that this
network, trained on simulated data, can reliably predict
observed real-world transitions in systems ranging from rapid
climatic change to the collapse of ecological populations.
Importantly, our model appears to capture latent properties in
time series missed by previous warning signals approaches,
allowing us to not only detect if a transition is approaching,
but critically whether the collapse will be catastrophic or non-
catastrophic. These novel properties mean EWSNet has the
potential to serve as an indicator of transitions across a broad
spectrum of complex systems, without requiring information
on the structure of the system being monitored. Our work
highlights the practicality of deep learning for addressing
further questions pertaining to ecosystem collapse and has
much broader management implications.
1. Introduction
Transitions from one steady state to another occur in many
complex systems, such as financial markets [1], human societies
[2–4], climate systems [5–7], systems biology [8] and ecosystems
[9–11]. Such transitions can be catastrophic (i.e. sudden, large
and often irreversible changes in the state of a system), or non-
catastrophic (i.e. smooth and reversible, and characterized by
quantitatively similar dynamics prior to and post transition),
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and can occur due to gradual external forcing or random fluctuations in the system. In such scenarios, on
crossing a threshold (known as a tipping or bifurcation point), structural changes occur in the underlying
system. This is often termed a critical transition, prior to which the system’s return to an equilibrium
slows down—a phenomenon known as critical slowing down (CSD) [3]. The phenomenon of CSD is
related to the fact that the real part of the dominant eigenvalue of the system goes to zero at the
bifurcation point [12,13]. In all such cases, where the dominant eigenvalue approaches zero close to
the tipping point irrespective of catastrophic or non-catastrophic transitions, the phenomenon of CSD
persists, and there exist statistical indicators that forewarn the vicinity of a tipping point [14].
Understanding the causes of sudden transitions and forecasting them using statistical indicators have
recently emerged as an important area of research due to the management implications of preventing
catastrophes in natural systems [12,15,16].

The traditional approach of forecasting a critical transition relies on summary statistics such as variance,
autocorrelation and skewness showing an increasing trend before a transition. These traditional CSD-based
earlywarning signals (EWSs) are generic to any phenomenawhere the dominant eigenvalue of the system’s
Jacobian matrix tends to zero. This means that such EWSs are applicable to a vast array of systems, but their
robustness in forecasting critical transitions remains debatable [17–20]. The uncertainties in generic EWSs
can be attributed to factors including imperfect data sampling, lack of quantitative and objective
measures, short time series, and sensitivity to bandwidth and window sizes. However, despite these
challenges, significant work has sought to increase the statistical power of the EWSs in the hope they can
be used as predictive management tools. This includes recent work showing that incorporating
additional measures of the health of a system (such as the mean body size of biological populations) can
increase the efficiency in predicting a tipping point [21–23]. While such approaches are promising, they
require more data than traditional generic EWSs (two or more simultaneous time series), limiting their
applicability to many systems [21]. Consequently, there remains a critical need to develop a robust toolkit
to identify tipping points using widely available time-series data. Were this to be achieved, it could have
significant implications for the management of a host of systems, from financial markets to species at risk
of extinction [8,10,11].

One potentially powerful tool to achieve this is machine learning (ML). ML models are able to
automatically capture statistical characteristics by identifying and learning patterns in data [24],
making them ideally suited to detecting warning signals (see electronic supplementary material,
appendix, section S1). While a caveat of ML models is their applicability to data following similar
distribution as that of training data (i.e. if the model is trained on cyclical data then the test data
should also be cyclical), they are now widely used in a number of disciplines including atmospheric
science (weather forecast) [25], economics (finance) [26], biological sciences (medical diagnosis) [27],
physical (quantum systems) [28] and mathematical sciences (nonlinear dynamics) [24]. Indeed, in
fields relating to critical transitions, ML has been used to classify phases of matter, study phase
behaviour, detect phase transitions, and predict chaotic dynamics [24,29–32], while supervised
learning algorithms such as artificial neural networks have been used to study the second-order phase
transitions, especially the Ising model [33–36]. However, thus far ML tools have not been used to
classify the most common transitions seen in ecological, financial and climatic systems—catastrophic
(i.e. first order or discontinuous) and non-catastrophic (i.e. second order or continuous) transitions [37].

In this study, we propose an Early Warning Signal Network (EWSNet) framework for predicting
transitions. EWSNet is a parametrized function deploying long short-term memory (LSTM) and fully
convoluted network (FCN) sub-modules. The LSTM sub-module is capable of processing sequential
data (such as text, audio, video, etc.) and captures long-term dependencies in the time series [38]. The
FCN sub-module extracts complex nonlinear patterns from the data [39]. The sub-modules together
learn the characteristics indicative of an impending transition. EWSNet is trained on time-series data
simulated from nine different dynamical models, including biological, ecological and climate models
displaying catastrophic, non-catastrophic and no transitions (see electronic supplementary material,
appendix, section S2 and table S1), and then validated on time series from the above models. We
show that EWSNet provides robust identification of approaching tipping points in simulated data,
and that it outperforms the four classical ML models (logistic regression, support vector machine
(SVM), random forest and multilayer perceptron (MLP) [40–42]) which are trained to classify time
series based on trends in their statistical properties such as autocorrelation—the basis for generic early
warning signals [15]. Furthermore, we then show that, even though EWSNet is trained on simulated
time-series data, it can classify approaching transitions in real-world and experimental datasets
[5,21,22,43] with high prediction probability suggesting further investigation of the data. Our results
suggest that EWSNet can reliably predict the future state of a range of complex systems even when
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time series are imperfectly sampled [19]. The approach of the EWSNet as an early warning indicator
makes an assumption about the underlying state of the system: that the test data should follow a
distribution similar to the training data. It requires no data pre-processing, and is invariant to
sequence length, and thus offers a novel predictive management tool.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211475
2. Models and methods
2.1. Simulated training data
We have generated stochastic time series from nine different models ranging from ecological to
palaeoclimatic systems that cover a wide range of nonlinearities (see electronic supplementary
material, appendix, section S2). The considered models are of the form:

dX
dt

¼ f ðXÞ þ gðXÞjðtÞ, ð2:1Þ

where X is the state variable, f (X ) is the deterministic skeleton of the model, g(X ) is an arbitrary function
and ξ(t) is a random variable depicting coloured noise. The effect of coloured noise was incorporated in
the deterministic skeleton by the equation

jðT þ 1Þ ¼ kjðTÞ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p fðTÞ þ bwðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p , ð2:2Þ

where b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� jrjÞ=jrjp
, ρ is the species response correlation, T represents the time points (1,…, 400), k

is the autocorrelation coefficient, and σ is the noise intensity. ϕ(T ) and w(T ) are normal random
components, where w(T ) differs across species unlike ϕ(T ) [44,45]. The stochastic models were
simulated using the Euler–Maruyama method with k∈ [− 0.8, 0.8]. We majorly trained our deep
neural network using a large number of simulated time-series data perturbed with white noise
(i.e. k = 0). For testing our model potency in anticipating transitions in time series for systems
perturbed with multiplicative noise, we trained EWSNet with an additional number of time series
which have been perturbed with coloured noise. This is done in order to let the EWSNet be familiar
with the fast-changing dynamics and short-scale fluctuations [20] that occur due to the presence of
multiplicative noise, and also to test the skills of EWSNet in testing datasets which may not fall in the
known regimes of training data.
2.2. Deep learning model: EWSNet structure
The EWSNet (figure 1) can be viewed as a large composition of complex nonlinear functions that learn
hierarchical representations of the data. The input to the EWSNet is a univariate time series signal. The
EWSNet comprises FCN and LSTM blocks (electronic supplementary material, appendix, section S1),
followed by fully connected layers [46]. The FCN consists of three stacked convolutional blocks, each
composed of convolution [47], batch normalization (BN) [48] and rectified linear unit (ReLU) [49]
activation layers. The convolution operation is performed using a filter W [ R1�k over an input tensor
X [ R1�T , where T is the length of the time series. These filters are learnable and often characterize
various local patterns present in the input tensor. The convolution operation is followed by batch
normalization to remove the covariate shift in the output across different training batches. The ReLU
activation function is applied to the batch-normalized output. The resulting output at the end of one
convolution block can be represented as

Z ¼ ReLU(BN(W �X)), ð2:3Þ
where ∗ represents the convolution operation. Each of the three convolution blocks of EWSNet processes
the output of the previous block in a similar fashion. The output of the third convolutional block,
containing D filters, is a set of D vectors, each of length T. To make EWSNet invariant to the sequence
length T, we apply a global average pooling operation (over T) to obtain a D-dimensional vector.
Choice of hyperparameters; such as number of filters in convolution blocks and hidden state units in
LSTM block are obtained after fine-tuning the deep learning model (electronic supplementary
material, appendix, section S1, figure S1).

More details about EWSNet and a user’s guide can be found in the website: https://ewsnet.github.io/.

https://ewsnet.github.io/
https://ewsnet.github.io/
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Figure 1. Schematic of the EWSNet: The EWSNet consists of three convolution blocks and an LSTM block. The fully convoluted
network and the LSTM block process the input sequence independently. The concatenated output of the two blocks is passed
through two fully connected layers to obtain the final prediction. Xt represents the input at time step t. C0 and H0 represent
the initial cell and hidden states of the LSTM block, respectively. The cell state allows the passage of stored information, and
the hidden state acts as the working memory to the LSTM block of the EWSNet. The global average pooling layer at the end
of the convolutional block makes the EWSNet invariant to sequence length.
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2.3. Machine learning models trained on generic EWSs
We use classical ML models, namely logistic regression, random forest, SVM, MLP, to classify time series
based on the extracted EWSs passed as input to these models. Generic EWSs are calculated using time
series for a combination of bandwidths ({20, 30, 40}) and window sizes ({40, 50, 60}). This is done with the
idea that the EWSs for a particular window size and bandwidth capture certain characteristic features
that aid in classifying the time series and assigning the appropriate label (see electronic
supplementary material, appendix, section S3). Accordingly, if the individual EWSs for the
combinations are concatenated and passed as input to these models, they act as an additional filter to
the generic EWSs and are supposed to improve them. A brief description of the model along with the
tuned hyperparameters for the respective models are discussed in electronic supplementary material,
appendix, section S3, table S2.
3. Results
Our deep learningmodel—EWSNet has been trained to infer approaching transitions from features present
in time-series data. The EWSNet (figure 1) consists of two blocks (two independent branches); the LSTM
block composed of 128 LSTM (hidden state) units that captures the latent temporal properties and the
fully convolutional block that views the time series as spatial data. The hyper-parameters of the model
(such as the number of convolution blocks, LSTM hidden units, learning rate, etc.) were carefully fine-
tuned using the training and the validation sets (see Models and methods). Two experimental regimes
derived from nine different models pertaining to biological, ecological and palaeoclimatic dynamics
[5,16,50–52] (see electronic supplementary material, appendix, table S1) perturbed with white noise
(Dataset-W) and coloured noise (Dataset-C) are used to train and test the performance of EWSNet. The
time series exhibit catastrophic and non-catastrophic transitions with CSD (spanning over four different
bifurcations; viz, saddle-node (fold), transcritical, pitchfork and supercritical Hopf bifurcations) and no
transitions. We have also included in the study time series with coloured noise where the generic EWSs
typically show weak trends [51,53,54]. To estimate the robustness of the models and to rule out results
due to chance, we report the performance of the models averaged over 25 trials.

3.1. Detecting and characterizing transitions using EWSNet
Two different EWSNet models were each trained independently on Dataset-W and Dataset-C, respectively,
using 80% of the generated dataset. The remaining 20%was used for testing the performance of the trained
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model. Further, the test set of Dataset-C contained time series with highly correlated noise, while the training
set contained time series with weakly correlated noise. The training and validation accuracies for both the
models as a function of the number of training epochs averaged over 25 different trials are presented in
figure 2. We observe the convergence of the model after 25 epochs, as well as transients in the training
epochs that are symptomatic of training deep neural network models. The mean test accuracy of the
EWSNet models for Dataset-W is 99.46% and for Dataset-C is 95.93%. As can be observed from figure 3,
the EWSNet models show high accuracy for all the three labels (catastrophic (C.T.), non-catastrophic/
smooth (S.T.) and no transition (N.T.)) on both the datasets. While non-transition series are always
correctly classified by both the models, there exists some misclassifications for the other two classes.
Moreover, the efficacy of EWSNet for time series of varying lengths and at varying distances from the
tipping point (if present) are discussed in the supplementary material (see electronic supplementary
material, appendix, section S2, figure S2). The generic EWSs are sensitive to the length of pre-transition
time series used, whereas the EWSNet models are marginally affected by reduced time series length.

Detection of EWSs using classical trends in statistics such as autocorrelation can be highly sensitive to
non-uniform sampling of data [18,19], with sporadic sampling increasing the probability of misidentifying
catastrophic and non-catastrophic transitions, or failing to detect a transition at all. We investigated the
robustness of the trained EWSNet models towards imperfectly sampled time series by re-sampling
the time series. As expected, this imperfect sampling reduced the efficiency of generic EWSs. However,
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Table 1. Leave one model out cross validation experiment results: The EWSNet is trained and tested on each of the eight sets
individually and the corresponding accuracies averaged over 25 trials are presented below (Note: we suspect the zero accuracy for
sets 3 and 4 due to the low densities of the only lower state model used for training along with other saddle-node models
with higher densities (shift from upper to lower state). However, originally when trained with both models, as in training with
Dataset-W or Dataset-C, resolves this issue.)

Sl. No. training data test data test accuracy over 25 trials

(1) Model [2]–[9] Model [1] 0.76 ± 0.05

(2) Model [1], [3]–[9] Model [2] 1.0 ± 0.0

(3) Model [1]–[2], [4]–[9] Model [3] 0.0 ± 0.0

(4) Model [1]–[3],[5]–[9] Model [4] 0.0 ± 0.0

(5) Model [1]–[4], [6]–[9] Model [5] 0.96 ± 0.04

(6) Model [1]–[5], [7]–[9] Model [6] 0.64 ± 0.12

(7) Model [1]–[6], [8]–[9] Model [7] 1.0 ± 0.0

(8) Model [1]–[7],[9] Model [8] 0.88 ± 0.09
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EWSNetmodels continued to provide robust predictions of approaching transitions; evenwhen re-sampling
retained only 40% of the original simulated data, the mean accuracy remained above 80% (figure 4).

3.2. Leave one model out cross validation
We performed a leave one model out cross validation experiment to analyse the extent of generalizability of
the EWSNet. The EWSNet is trained using data from eight models each time and tested on the data from the
left-out model. This results in a settingwhere the EWSNet is tested on data from amodel exhibiting different
nonlinearity comparedwith the trainingmodels. Six out of eight trained variants of EWSNet reliably predict
the transitions in the test instances that are generated from a model of different origin (table 1). While the
results indicate that EWSNet is reliable as an early warning indicator of time series with similar
underlying traits as that of training data, there is further scope for improving the generalizability of the
EWSNet through fine-tuning and training over other models and larger parameter ranges.

3.3. Performance of ML models trained using generic EWSs
While EWSNet is trained on the raw simulated time-series data, it is also possible to trainMLmodels on the
trends in generic EWSs calculated from these simulations and thus use ML in an attempt to detect similar
trends in statistics such as autocorrelation in the validation datasets. To compare the efficacy of this
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C (lower panel). Among the best performing indicators are s.d., AR1 and s.d. + AR1. The s.d. + AR1 model improves the performance
over the individual s.d. and AR1 models. The labels on the x-axis represent the generic EWSs, where ACF-1 represents autoregressive
coefficient of AR-1 model, s.d. denotes standard deviation, CV represents coefficient of variation, RR is the return rate, DR denotes
density ratio, AR-1 represents lag-1 autocorrelation and s.d. + AR1 represents composite EWS indicator consisting of s.d. and AR1.
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approach to the EWSNet approach, we used four standard ML models [34,41,42] (logistic regression (LR),
support vector machine (SVM), multilayer perceptron (MLP) and random forests (RF)) to characterize
trends in generic EWSs in simulated time series. The input to the ML model is the concatenation of the
generic EWSs captured for different combinations of bandwidths and window sizes (for details see
electronic supplementary material, appendix, section S3). The results presented in figure 5 show that
AR-1 and s.d. are the top two performing generic EWSs across both the datasets and across all the ML
models, in accordance with prior literature [55]. Thus, we further trained ML models using a
combination of AR-1 and s.d. which resulted in performance greater than the models trained on the
individual EWSs (figure 5) and other pairwise combinations of EWSs (see electronic supplementary
material, appendix, section S3, figures S3–S5).

Table 2 compares the accuracies of the generic EWSs-based ML models against the EWSNet for both
Dataset-W and Dataset-C. EWSNet performs significantly better in distinguishing transitions and
classifying time series for both the datasets: the p-value for the t-statistics is negligible, indicating that the
null hypothesis of obtaining similar mean accuracy using classical ML method trained on generic EWSs
as that of EWSNet should be rejected. Interestingly, irrespective of the ML model chosen—tipping points
are more accurately identified in Dataset-W than Dataset-C. This can be explained by the short-scale
fluctuations introduced by coloured noise, in Dataset-C, which can dampen the trend in the time series.

Populations experiencing red noise are relatively more threatened and found to encounter long periods
of no-survival conditions [45,56] and their transitions need to be anticipated. Therefore, we compared the
EWSNet against the ML models on Dataset-C (the test set contains time series with high correlated
noise). The metrics accuracy, area under the curve (AUC), true positive rate (TPR), precision and F-score
for each of the models are presented in electronic supplementary material, appendix, section S3, figure
S6), again EWSNet outperforms other methods for these red noise time series.
3.4. Applicability and robustness of EWSNet to real-world and experimental data
The noisy nature of non-simulated data means that the effectiveness of EWSs is often variable [57]. To test
the reliability of EWSNet when predicting real-world data, we tested it on 17 published palaeoclimatic [5]



Table 2. Comparison of mean accuracy for various models: on comparing the mean accuracy, EWSNet appears to be the best
performing model in classifying a critical transitional time series consistently for both the Dataset-W and Dataset-C. On passing
the EWSs as input to the other ML models, the results are comparably close to the EWSNet for Dataset-W, but the accuracy
declines for Dataset-C. The mean accuracy for the four classical ML models is comparable. The random forest is the best among
them, with standard deviation and a combination of standard deviation and autocorrelation at lag-1 as features. The numeric
value in ± denotes 95% confidence interval.

ML methods EWSs Dataset-W Dataset-C

s.d. 97.47 ± 0.09 66.69 ± 0.00

support vector machine AR1 89.55 ± 0.17 55.95 ± 0.00

s.d. + AR1 97.27 ± 0.14 76.70 ± 0.00

s.d. 96.40 ± 0.14 60.27 ± 0.01

logistic regression AR1 87.88 ± 0.22 70.08 ± 0.02

s.d. + AR1 97.35 ± 0.11 78.74 ± 0.02

s.d. 97.69 ± 0.12 81.93 ± 0.22

random forest AR1 88.76 ± 0.20 61.94 ± 0.30

s.d. + AR1 97.77 ± 0.16 89.79 ± 0.82

s.d. 97.02 ± 0.69 66.94 ± 1.55

multilayer perceptron AR1 89.58 ± 0.45 75.10 ± 0.82

s.d. + AR1 97.47 ± 0.16 82.56 ± 2.10

EWSNet 99.46 ± 0.01 95.93 ± 0.02
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and ecological datasets [21,22,43] (see electronic supplementary material, appendix, section S4, figures S7
and S8). We used EWSNet trained with simulated data to ascertain whether the critical transitions
exhibited by these time series were predictable. Using a classical ML model approach in such real-world
time series (which vary in length) is challenging and requires steps to make their lengths equal to those
of the training data. These additional steps will either pad, interpolate or truncate the sequences,
potentially leading to information loss and erroneous results. By contrast, EWSNet can classify time
series of varying lengths due to the global average pooling post-convolution layers, making the model
dynamic. We present the prediction probabilities for the EWSNet, and Kendall’s-τ correlation coefficient
for the generic EWS (AR-1) (see electronic supplementary material, appendix, table S3). The EWSNet
classifies transitions in 9 out of 13 real-world time series (for which the ground truth label is known
a priori) over 25 trials (figure 6). EWSNet results in the average prediction probability greater than or
equal to 95% for all the correctly classified series except Didinium nasutum (slow) for which the
prediction probability continues to remain close to 50% even up until the tipping. The ground truth
labels corresponding to the real-time series depicted in figure 6a–d are unknown, though EWSNet
classifies them as catastrophic transitions. This result represents the first application of real-world time
series analysed using deep learning models trained only on simulated time series.
4. Discussion
Previously developed EWSs [12,21,23] have had mixed success in predicting approaching transitions,
particularly in noisy real-world data. Here, we take an entirely new approach to predicting transitions in
complex systems by developing a deep learning model (EWSNet) framework that can forecast not only an
approaching tipping point but also discern whether it is catastrophic or not. The key characteristic of our
model is its non-dependence on a priori statistical features such as increasing autocorrelation in a time series.

Key to the applicability of warning signals approaches to real-world conservation issues is their
ability to make predictions in the face of incomplete and noisy time series [19,58]. EWSNet is likely to
provide reliable predictions on test time series following critical behaviour similar to that of the
training set. Having prior knowledge (correlated or uncorrelated noise, cyclicity or non-cyclicity)
about the property of the time series will definitely help in training an appropriate ML model.
However, in the absence of this knowledge, a feasible solution would be to train EWSNet on data
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Figure 6. (Caption overleaf.)
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Figure 6. (Overleaf.) Performance on real-world and experimental time series: time series data of: (a–d ) number of whales caught per
year, (e–h) abundance of Didinium nasutum populations that were exposed to four different experimental treatments and (i–p) climate
systems. In (a–p), the red curve is the time series trend. Histograms showing performance of (q) AR-1 using Kendall’s-τ, and (r) the
EWSNet using prediction probability, respectively, for the time-series data (a–p). In (r), the red dashed line denotes prediction
probability due to chance (the confidence with which the EWSNet classifies the transition in time series, for a three-class
classification problem this stands at 33.33%). The results in (q–r) are presented for data considered up till tipping as shown by
the grey solid line (see electronic supplementary material, appendix, figures S7 and S8). The results for dryland ecosystem are
presented in electronic supplementary material, appendix, table S3 and figure S9. Colour peach (purple) denotes the detected type
of transition by EWSNet—catastrophic (non-catastrophic).
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from ‘all possible’ scenarios of coloured and white noise. Our work follows the second direction—train
EWSNet using data from all the well-studied critical behaviour models. EWSNet performs reasonably
well when presented with only 5% of randomly sampled data while performance improves steadily
with the availability of more information on the time series (figure 4). While imperfect sampling can
add uncertainty in the value of each point in a time series (and has been shown to have detrimental
affects to CSD-based warning signals [19]), time-series data can also be limited temporally.
Consequently, understanding what section of a time series provides the most predictive features for
EWSNet is important for it to be applied to real-world data. Our results suggest that EWSNet
performs significantly better when presented with time-series data closer to the tipping point, rather
than from further away (see electronic supplementary material, appendix, figure S2), a pattern also
observed in CSD and trait-based warning signals [22]. We speculate EWSNet classifies transitions
learning from the higher-order nonlinearities present in the time series apart from system’s resilience.
Nevertheless, understanding the learning strategy of the EWSNet can be engrossing yet a highly
challenging problem, as is explaining the behaviour of any deep neural network model.

However, data quality remains a key issue determining the reliability of predictive tools, a point
exemplified by the whaling data analysed within this paper (figure 6a–d ). EWSNet predicts that
whale populations exhibit a catastrophic bifurcation, probably driven by the rapid change in the
number of whales caught each year alongside signals embedded within the time-series data (figure 6).
The number of whales harvested each year is, however, a function not only of the size of the whale
population but also the harvesting effort and so, while EWSNet correctly predicts the collapse of
whale populations previously identified [22], whether the classification of a catastrophic tipping
generated by EWSNet is correct remains unknown, as thus far no work has explicitly classified the
tipping points observed in these data. Thus, EWSNet appears to robustly predict tipping points in the
face of such noisy real-world data, data quality will determine both how far in advance such
predictions are reliably made, and whether the classifications generated are correct.

EWSNet’s ability to discriminate between catastrophic andnon-catastrophic transitions sets it apart in the
field of earlywarning indicators,where existing techniques have only been able to ascertainwhether a system
is close to a transition, but not the type of transition [14,51]. This has significant implications for the
management of complex systems, as some transitions (particularly catastrophic transitions which are
typified by sudden changes in the state of a system) are hard to reverse and can lead to loss of function.
Examples such as the shift to algal-dominated states in fresh waters, where cyanobacteria often proliferate
[59], highlight this need to predict such rapid nonlinear shifts, as reversing them can be difficult [10].
Consequently, the ability to infer whether a system may exhibit an abrupt (hard to reverse) or smooth
(easier to reverse) transitionwould allow rapid prioritization ofwhich systems to target for further study [60].

Although our research takes a novel approach to the detection of early warning indicators, in its
current form EWSNet does not constitute a universal indicator of tipping points. However, one of the
key advantages of a deep neural network approach is that—unlike the approach of classical CSD-
based warning signal—it can be trained in an unbiased way making few a priori assumptions about
the dynamics of the system in the region of a tipping point. For example, although, we have analysed
eight real-world atmospheric empirical datasets, the EWSNet is trained using only one atmospheric
model (electronic supplementary material, appendix, Model [5] in table S1). EWSNet when tested on
climate data collected from different sources, as in Dakos et al. [5], classifies six out of these eight
climate time-series data correctly with high prediction probability, suggesting that this approach has
considerable merit. Alternative approaches—such as fitting the various models to the empirical data
and assessing which best describes the observed dynamics or machine learning techniques applied to
CSD-based indicators—offer other potential avenues of study. However, model fitting approaches
make more assumptions about the underlying structure of the system (i.e. that the dynamics of the
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system are well represented by one of the models). EWSNet avoids these assumptions by leveraging
against the predictions of theory which suggest that, in the vicinity of a critical point, any nonlinear
model exhibiting a particular bifurcation (say a saddle-node bifurcation) is representative of all saddle-
node bifurcations [61]—the same rationale for the detection of classical CSD-based indicators.
Moreover, EWSNet outperforms ML approaches fitted to CSD-based indicators (table 2).

In conclusion, EWSNet serves as a framework which has the potential to reliably predict transitions in a
broad suite of simulated and empirical systems. We believe that the EWSNet captures features indicative of
approaching transitions and characteristics, the generic CSD-based EWSs do not capture. Moreover,
classical approaches using generic EWSs require a careful selection of suitable bandwidth, and
window size [18,62], both of which EWSNet is robust to. A recent study by Bury et al. [63] take a step
forward by classifying bifurcations using deep learning models. Future work could include retraining
EWSNet to classify bifurcations and develop machine learning models to further predict not just if, but
when a critical transition will occur. Moreover, when trained using data across a large array of critical
behaviours (e.g. global and higher co-dimension bifurcations, bifurcation without critical slowing down,
and sharp transition without bifurcation, etc.), will open up the possibility of real-time monitoring of
many real-world systems such as global climate, ecosystems and cell dynamics with a negligible
computational cost. EWSNet is not designed to replace the in-depth study and understanding of a
system. Rather, EWSNet offers a first-pass tool to prioritize at-risk systems for further study, but which
can be expended upon with further model training to provide an increasingly robust and widely
applicable framework into the future. Nevertheless, there is always further scope for increasing
generality and robustness of EWSNet through fine-tuning and training over different labels (different
types of transitions) using different mathematical models with larger parameter ranges.
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