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Abstract 

Aims: Mature podocytes are terminally differentiated and their turnover is very low under 

physiological conditions. This suggests that they are maintained by an endogenous survival 

signal. Vascular endothelial growth factor (VEGF) is known to promote survival in 

endothelial cells via activation of the P13-Kinase/AKT survival pathway. VEGF is highly 

expressed by podocytes, which are known to express a co-receptor for VEGF-receptor 2. The 

aim of this thesis was to investigate if VEGF could promote survival in cultured podocytes. 

Results and conclusions: Exogenous and endogenous VEGF significantly reduced 

cytotoxicity in cultured podocytes in an autocrine manner via a reduction in apoptosis. The 

reduction in cytotoxicity was dependent on VEGF-RI (and possibly VEGF-R3) and P13- 

Kinase activation. VEGF165 also induced the phosphorylation of nephrin, a cell adhesion 

molecule associated with the slit diaphragm of podocytes and linked to survival signalling in 

podocytes. The reduction in apoptosis induced by VEGF in podocytes was also shown to be 

dependent on normal nephrin expression. This was demonstrated with the use of two 

podocyte cell lines, one with a mutation in the extracellular domain of nephrin, the other 

which was nephrin deficient. VEGF-C, expressed by podocytes, also significantly reduced 

cytotoxicity in cultured podocytes and was shown to induce the phosphorylation of VEGF- 

receptor 3 and nephrin. VEGF165b, a novel VEGF isoform shown to be anti-angiogenic by its 

action on endothelial cells, dose dependently reduced cytotoxicity in cultured podocytes, but 

in the presence of VEGF dose dependently increased cytotoxicity. In conclusion members of 

the VEGF family are expressed in podocytes and play a role in promoting their survival, yet 

they may also antagonise each other under pathological conditions. 
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Introduction 

1.1 Renal Disease 

Renal disease is relatively uncommon in the general population (Feest et al., 1990). Despite its 

relative rarity however, it is a very significant health care problem. Approximately 30% of all 

cases of glomerular disease progress to end stage renal failure and renal replacement therapy 

(long term dialysis or renal transplantation). Renal replacement therapy is associated with 

significant increased mortality -a5 year survival rate of 50% (2001). This equates to the 

survival figures for grade II stomach cancer. In addition, renal replacement therapy costs the 

NHS approximately 13 0,000 per patient/per year (200 1) and most centres have in the region of 

400 such patients. 

A greater understanding of glornerular function in health and disease is therefore warranted 

since any potential therapeutic interventions that result would have profound clinical and 

financial implications. 

1.2 Podocytes 

The glomerulus is a unique ultra filtration unit (Berrie and Levy, 1992). It is a network of 

capillaries supplied by the afferent arteriole and drained by the efferent arteriole. These 

capillaries are covered by a basement membrane, which in turn is covered by epithelial cells or 

podocytes (Beme and Levy, 1992) (figurel. 1). Mesangial cells sit between the capillaries and 

provide them with structural support, secrete extracellular matrix, and exhibit phagocytic 

activity (Beme and Levy, 1992). Three clearly defined barriers are believed to determine 

permeability in the glomerulus; the basement membrane, endothelial and epithelial cells. 

These are highly permeable to water, small solutes and small proteins, however large proteins 
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are generally retained. These layers are collectively known as the glomerular filtration barrier 

(Berne and Levy, 1992) (figure 1.1). 

Permeability is partly determined by the presence of 700 A fenestrations in the endotheliurn 

(EC) of the capillary (Pavenstadt, 2000), which selects for molecular size. 

Podocyte cell 
body 

Podocyte foot 

processes 

Slit diaphragms 

Glomerular basement 

membrane 

Fenestrated 

enclothelial cells 

Capillary lumen 

Figure I. I. A transmission electron micrograph of the glomerular fillration harrier. 

The glomerular filtration barrier consists (if fenestrated endothelial cells (FEC) which lack diaphragms, a 

glomerular basement membrane (GBM) and podocYtes, with interdigitating foot processes, i% hich together 

regulate permeabilitil (Berne and Levil, 1992). 

The (jBM is a heteropolymetric network, cornposed of type IV collagen, larninin and 

libronectin (Ilavenstadt, 2000). This network creates a negative charge of matrix proteins 

(Deen et al., 2001), which act to repel positively charged molecules. It is the podocytes 

(figurel 
. 
1), however that account for 40% of hydraulic resistance of the filtration barrier 

(Deen et al., 200 1 ). They differ from normal vascular epithelial cells (pericytes) because they 

cease to proliferate and diffierentlate to form foot processes when they reach maturity. The 

foot processes are separated by slit diaphragms that contain pores ot'dimensions 40 x 140A 

(Berne and Levy, 1992). The foot processes interdigitate around the GBM surrounding the 

capillaries (Berne and Levy, 1992) as shown in figure 1.2. Together the basement membrane 
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and the podocytes effectively retain molecules over 36A through size selectivity, and even 

smaller anionic molecules through charge selectivity (Berne and Levy, 1992). 

Secondary foot 
processes 

Tertiary toot 

processes 

Figure 1.2. Scanning electron micrograph of podocytes surrounding glomerular capillaries. 

Primary podocyte foot process extend from the podocyte cell body, branch into secondary foot processes 

and finally into tertiary foot processes (enlarged area). The tertiary foot processes interdigitate with 

tertiary foot processes of the same cell or of neighbouring podocytes (Berne and IRvy, 1992). 

Podocytes are the last line of defence against macromolecular leakage, and therefore 

disruption of podocytes for example through disease, would have profound consequences on 

filtration control. Many types of glomerular disease are characterised by podocyte injury 

(Gassler et al., 2001), but humans do not usually present until glomerular disease is well 

established. The pathological characteristics of glomerular disease with time are unknown, 

therefore the following sequence for progressive renal disease was attempted using a fa/fa 

Zucker rat model, originally a rat model for non-Insulin-dependent diabetes mellitus. The 

authors described the sequence of podocyte injury (Gassler et al., 2001). Firstly, there is foot 

process effacement defined as retraction of foot processes and loss of foot process and slit 
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diaphragm organisation, a process that can be reversed if the cause of injury is acute rather 

than chronic (Schwartz, 2000). Secondly, lipid droplets and lysosomal elements accumulate 

in the podocyte cytoplasm presumably from podocyte endocytosis of GBM macromolecules. 

Thirdly, podocytes are lost, which has a direct correlation with glomerulosclerosis (Kim et al., 

2001) resulting in denuded areas of the GBM. Fourthly, tuft adhesions form at denuded areas 

of GBM to the Bowman's capsule (Gassler et al., 2001), which leads to loss of glomerular 

filtration capacity (Schwartz, 2000). Excessive leakage of plasma proteins into the proximal 

tubule follows and the proximal tubules reabsorb these proteins until they reach saturation 

levels. In response to this mediators are released from the tubules towards the interstitium, 

giving rise to interstitial proliferation and matrix deposition (as discussed in (Gassler et al., 

2001)). This leads to the sclerosis of the entire nephron unit, which is often situated in close 

proximity to healthy nephrons, or those that have already gone through this process 

independently (Gassler et al., 2001). Such a sequence of putative events in humans would be 

one "planation of primary podocyte injury progressing to end stage renal disease. A greater 

understanding of the factors that influence podocyte maintenance and survival may provide 

novel therapeutic avenues designed to enhance podocyte survival and minimise subsequent 

nephron loss and reduction of GFR. The terminally differentiated, growth arrested phenotype, 

of the podocyte may provide a clue to the susceptibility of podocytes to injury. 

I. ZI Podocyte differentiation 

Cell cycle completion (cytokinesis) is controlled by cyclin activation of partner cyclin 

dependent kinases (CDKs). Cell cycle arrest is controlled by cycle dependent kinase 

inhibitors (CDKIs) (Barisoni et al., 2000), which bind to specific cyclin complexes 

(Petermann et al., 2002) (figure 1.3). During human glomerulogenesis immature podocytes 

are proliferative, but from the capillary loop stage of glomerulogenesis expression of cyclins 

26 



change from that of cyclin A to cyclin D and there is upregulation of CDKIs p57 and p27. 

The podocytes then exit the cell cycle, become terminally differentiated and quiescent 

(Barisoni et al., 2000). 

Cyclin A 
Cyclin E CDK2 

Cyclin D 
CDK4 &6 

p27 p57 

B 
)Kl) 

Figure 1.3. The cell cycle. 

Each phase of the cell cycle is controlled by specific cyclin/CDK complexes. Upregulation of the CDK 

inhibitors, p27 and p57, prevent cyclin activation by CDKs at the GI phase of the cell cycle. This is the 

stage of the cell cycle in which podocytes are held at differentiation (Nagata et al., 1998). 

A natural response of cells to injury is to proliferate and recover but this is rarely the case with 

podocytes (Shankland et al., 2000). In fact it is thought that this may underlie the 

development of glomeruloscicrosis (Griffin et al., 2003). It is widely accepted that the 

expression of p27 and p57 ensures that the podocyte does not re-enter the mitotic phase of the 

cell cycle (Barisom et al., 2000), However Bailey et al (Bailey et al., 1998) demonstrated that 

human podocytes can enter S-phase using in situ hybridisation for histone mRNA, (a reliable 

marker of S phase of the cell cycle). This leads to podocytes undergoing DNA synthesis, but 

not cytokinesis and therefore it is not uncommon to find podocytes with polyploid nuclei. One 

of the few times podocyte proliferation is evident is in collapsing glomerulosclerosis, where it 
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is an early feature of the disease: Podocytes become hypertrophic and hyperplastic due to a 

loss of CDKIs and cyclin A is re-expressed (Barisoni et al., 2000). For the most part, however, 

if podocytes are lost then the neighbouring podocytes have a limited capacity to cover the area 

of denuded basement membrane (Nagata et al., 2003a) and it has been suggested, as discussed 

earlier, that this exposed area of GBM commonly leads to proteinuria. Therefore, to ensure 

the integrity of the glomerular filtration barrier it is vital that terminally differentiated 

podocytes are maintained in the mature glomerulus. Other cell types provide clues as to how 

this may be achieved in podocytes. For example, myoblasts are similar to podocytes in that 

they tenninally and irreversibly differentiate into myotubes and some also have polyploid 

nuclei. This phenotype is resistant to apoptosis. It is thought that withdrawal from the cell 

cycle facilitates the induction of a cell signalling pathway, which involves AKT 

phosphorylation, and promotes survival (Fujio et al., 1999). It has also been considered that 

Insulin-like growth factors may activate AKT phosphorylation through activation of 

phosphatidylinositol 3-kinase (P13 Kinase) in an autocrine manner (Fujio et al., 1999). In 

vitro assays using sense oligonucleotides to p2l CDKI mRNA showed that endogenous AKT 

induction is p2l dependent. Human podocytes do not express p2l (Griffin et al., 2003), 

however this same paper has shown that forced expression of p27 (expressed in podocytes) 

can compensate for p2l. The link in this cell type between mitotic activity and apoptosis 

provides a clue to prolonged survival of podocytes. It may be possible that growth factors, 

expressed by podocytes, also play a role in maintenance of differentiated podocytes. One 

paradox of podocyte biology is that podocytes appear to express a high level of vascular 

endothelial growth factor (VEGF) mRNA and protein. 
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1.3 VEGF in endothelial cells 

VEGF is a powerful endothelial cell migration, vasodilator, mitogen, angiogenic and 

permeability factor and has permeability properties more potent than histamine (Aiello and 

Wong, 2000). The importance of this molecule was outlined by Ferrara et at, who 

demonstrated that a loss ofjust one VEGF allele is embryonically lethal in mice (Ferrara et al., 

1996). The VEGF gene has eight exons from which alternate splicing can form a number of 

different active disulphide linked homodimer isoforms (Ferrara, 2001, Neufeld et al., 1999). 

The isoforms are named according to their length of amino acids; they all have different 

properties encoded for by different exons (Neufeld et al., 1999). The most common isoforms 

are VEGF189, VEGF165and VEGF121, all of which have different binding affinities for heparin- 

sulphate proteoglycans. The longer isoforin is cell associated due to its high affinity for 

proteoglycans and may be activated by protease activation and cleavage (Ferrara, 2001), while 

the two shorter isoforms are secreted. VEGF165 binds heparin and therefore can bind to the 

cell surface or the extracellular matrix, but VEGF121 has no heparin binding ability and 

therefore is freely diffusible (Ferrara, 2001, Simon et al., 1995). Due to its widespread 

expression VEGF165 is the most studied of the VEGF isoforms. VEGF-C, which will be 

discussed later in detail, is a member of the VEGF family of growth factors and has an N 

terminal and a C-terminal extension flanking a VEGF homology domain (Joukov et al., 1997). 

It is a ligand for both VEGF-R2 (with a lower binding affinity than VEGF) and VEGF-R3 (see 

figure 1.4), is pre-dominantly expressed in the lymphatic system and is thought to function in 

lymphangiogenesis (Joukov et al., 1997) as oppose to VEGF in angiogenesis. 

The VEGFs act through three class III tyrosine kinase receptors: VEGF receptor I (VEGF- 

RI), VEGF receptor 2 (VEGF-R2) and VEGF receptor 3 (VEGF-R3) all of which have seven 

extracellular immunoglobulin-like domains (Neufeld et al., 1999), a single transmembrane 
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domain and an intracellular tyrosine kinase domain (figure 1.4). VEGF binds to both VEGF- 

RI and VEGF-R2 causing dimerization and auto-phosphorylation. There is, however, no 

evidence to suggest that it can directly bind to VEGF-R3: a receptor expressed on lymphatic 

endothelial cells, which is known to bind VEGF-C (Jussila and Alitalo, 2002). VEGF-RI 

binds VEGF165 with a greater affinity than VEGF-R2, although it has been suggested that it 

acts mainly as a decoy receptor by competitively binding VEGF (Neufeld et al., 1999). 

Various studies have suggested it is likely that VEGF-R2 is the sole mediator of VEGF- 

induced migration, anglogenesis and permeability in endothelial cells (Gille et al., 2001). 

VEGFI, 
VEG VEGF145 
VEGFlt)5 VEGFI, 
PIG- I VEGF-C, 

VEGF145 
VEGF,, 5 

VEGF-C VE(; Flg, 
) 

Senia-111 
Scma-E 
Sema-IV 
VEGF11,5 

Sema-E 
Sema-IV 
VEGF,,, 

VEGF-R I VEGF-R2 VEGF-R3 Heparin-sulphate Neuropilin-I Neuropilin-2 
Proteoglycaii 

Figure 1.4. Growth factors and receptors of the VEGF family. 

The three signalling class III tyrosine-kinase receptors of the VEGF family (VEGF-RI, VEGF-R2 and 

VEGF-R3), the accessory isofrom specific receptors neuropilin-I and neuropilin-2, and VEGF binding 

heparin-sulphate proteoglycans are displayed with general structural features. VEGFI&,; is able to bind to 

every receptor except VEGF-R3 (adapted from ligyurc 1, (Neufeld et al., 1999)). 
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VEGF activates a diverse range of signalling pathways in endothelial cells via VEGF-R2. For 

example auto-phosphorylation of VEGF-R2 by VEGF activates phospholipase CY (PLC), 

which leads to diacylglycerol (DAG) generation and consequently an increase in [C21i, 

probably due to an external influx via transient receptor potential (TRP) channels in the 

plasma membrane, resulting in an increase in vessel permeability (Bates and Curry, 1997) 

(Pocock et al., 2000). An increase in [Ca2+]i also leads to nitric oxide activation by nitric 

oxide synthase, resulting in vessel vasodilatation (as reviewed in (Bates et al., 1999)). VEGF- 

R2 auto-phosphorylation also activates a PLCy, PKC, Raf, mitogen activated protein kinase 

kinase (MEK), p42/44 mitogen activated protein kinase (MAPK), dependent signalling 

cascade, which results in endothelial proliferation and migration (Wu et al., 2000) (Ilan et al., 

1998). Activation of P13-Kinase, by VEGF-R2, induces AKT phosphorylation and promotes 

survival, as discussed below (Gerber et al., 1998b). An increase in permeability, cell 

proliferation and migration are all part of the VEGF induced angiogenesis sequence in 

endothelial cells of capillaries. The aspect of VEGF signalling that is most applicable to 

potential VEGF signalling in podocytes, however is VEGF induced survival signalling. 

1.3.1 VEGF and survivalpathways 

To understand if VEGF can promote survival in podocytes, a basic understanding of VEGF 

survival signalling in endothelial cells is required. The actions of VEGF16s on VEGF-R2 have 

been well documented, mostly in vascular endothelial cells due to the original, but erroneous 

concept that VEGF was endothelial cell specific. VEGF has been shown to act as a survival 

factor in these cells via a pathway well recognised in a variety of cell types, which is 

independent of VEGF mediated vasodilatation, permeability and migration pathways. VEGF, 

via VEGF-R2, induces the phosphorylation of P13-Kinase by binding the SH2-domain of the 

P13-Kinase p85 regulatory subunit. This is probably via an adapter molecule, because the 
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motif to bind the SH2 domain is not present on VEGF-R2 (Gerber et al., 1998b). This 

increases intracellular levels of phosphatidylinositol-3,4,5 bisphosphate (PI(4,5)P2) and 

phosphatidylinositol-3,4,5 trisphosphate (Pl(3,4,5)P3). These positively regulate the serine- 

threonine protein kinase AKT by binding to its pleckstrin homology (PH) domain (Gerber et 

al., 1998b) (figure 1.5). The VEGF survival pathway is P13-kinase/AKT dependent (Gerber et 

al., 1998a, Gerber et al., 1998b) and has been associated with increased levels of two anti- 

apoptotic proteins: Bcl-2 and Al (Gerber et al., 1998a). The Bcl-2 family of proteins consists 

of both pro- and anti-apoptotic proteins. Examples of pro-apoptotic proteins are BAX, BAK 

and Bcl-Y, Examples of anti-apoptotic molecules are Bcl-2, Bcl-XL and Al (Oltvai et al., 

1993). These proteins have the ability to form homo- and heterodimers with each other and, 

depending on the ratio of proteins from each pro- and anti-apoptotic family, can compete with 

and neutralise the effects of the other (Gross et al., 1999). The phosphorylation of pro- 

apoptotic proteins by activated AKT proteins sequesters them to the cytosol where they cannot 

insert into the mitochondrial membrane to release cytochrome c (Gross et al., 1999), which 

would result in apoptosis (programmed cell death) (see figure 1.5). Surprisingly, VEGF can 

also stimulate a pathway that can induce apoptosis. As well as activating the P13-Kinase/AKT 

pathway VEGF also stimulates the activation of stress-activated serine/threonine protein 

kinase p38 mitogen activated protein kinase (MAPK) (Gratton et al., 2001). Using a cell 

culture model it was shown that the blockade of the P13-Kinase/AKT pathway attenuated 

VEGF stimulated MAPK kinase kinase 3 (MEKK3) phosphorylation thereby increasing Src 

dependent (McMullen et al., 2004) p38 signalling. 
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Figure 1.5. Schematic (of VEGF survival signalling in endothelial cells. 

Activation of VEGF-R2 by its ligand, VEGF, induces its autophosphorylation, which activates P13-Kinase. 

This converts PI(4, '9)2 to PI(3,4,5)P3, which induces the translocation of AKT to the plasma membrane 

where it is phosphorylated. Phospho-AKT induces the phosphorylation of members of the pro-apoptotic 

proteins, which inactivates them. If these proteins are not inactivated then they insert into the 

mitochondrial membrane and induce the release of cytochrome c, which forms an apoptosome with 

caspase 9 and Apaf I (apoptotic protease activating factor, a caspase recruitment domain). This cleaves 

and activates caspase 9, which cleaves and activates the effector caspases, 3 and 6. These cleave nucleases, 

which translocate to the nucleus and induce DNA fragmentation and death due to apoptosis. There is 

cross-talk between two VEGF signalling pathways, which balances pro- and anti-apoptotic signalling in 

endothelial cells. Activated related focal adhesion tyrosine kinase (RAFTK), by VEGF-R2, activates Src, 

which results in the phosphorylation of MEK (p-MEK), which then phosphorýylates p38 MAPIC This is 

linked to an increase in apoptosis, but can be inhibited by phosphorylated AKT. Thus, phosphorylated 

AKT is anti-apoptotic through two separate pathways. 
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This resulted in increased apoptosis in these cells. If this pathway was blocked then the P13- 

Kinase/AKT pathway was upregulated and apoptosis was reduced. This showed that the two 

pathways were physiologically linked to apoptosis and survival in endothelial cells (Gratton et 

al., 2001) (figure 1.5). The hypothesis that VEGF could induce survival signalling in 

podocytes was initiated due to the high expression of VEGF by podocytes. 

1.4 VEGF in the glomerulus 

In Situ hybridisation studies of human kidney tissue demonstrated the expression of VEGF 

mRNA by podocytes (see figure 1.6) and the expression of VEGF-R1 and VEGF-R2 on 

glomerular endothelial cells in both fetal and adult tissue (Simon et al., 1995). The potential 

for VEGF signalling in the glomerulus therefore originally lay with the endothelial cells. 

Vascularisation of the human kidney occurs during development, in the S-shaped body during 

the fifth gestational week. This coincides with the time VEGF is first expressed (Eremina et 

al., 2003), and also the time endothelial cells migrate into the developing glomerulus (Simon 

et al., 1995). It is thought that the VEGF expressing, de-differentiated podocytes situated next 

to the endothelial cells during the development of the vascular cleft provide the migratory cues 

to the endothelial cells to establish the glomerular vascular structure (Saxen and Sariola, 1987, 

Simon et al., 1995). VEGF therefore plays a specific paracrine role in angiogenesis during 

human kidney organogenesis (Simon et al., 1995). At maturity, it is thought that VEGF 

expression ensures the maintenance of the fenestrated endothelium (Simon et al., 1995) and 

also plays a role in maintaining the filtration barrier (Eremina et al., 2003). This was 

supported by Eremina et al using a Cre-loxP system, which allows switching on and off of 

specific genes, whereby the VEGF gene was switched off at various stages of murine 

development. It was shown that a reduction in VEGF at establishment of the vascular beds led 

to a loss of endothelial fenestrations (Eremina et al., 2003). Four isoforms of VEGF mRNA 
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are expressed in the cortex of the human kidney: VEGF121, VEGF165 VEGF189 (Simon et al., 

1995) and VEGF148 (Whittle et al., 1999), of which VEGF165 is predominantly expressed 

(Simon et al., 1995). 
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Figure 1.6. Non-isotopic, in situ hybridisation for VEGF mRNA in the glomerular tuft (Bailey et al., 1999). 

Human renal cortex sections were probed with labelled VEGF mRNA. This section demonstrates that, 

within the glomerulus, dark staining for labelled VEGF mRNA was detected in cells at the periphery of the 

glomerular tuft, which, because of their micro-anatomy are known to be podocytes. Hence podocytes are 

the site of VEGF production in the healthy, mature human glomerulus. (Bailey et al., 1999). 

The same pattern of isoform expression has been seen in the mouse kidney, although each of 

these lack one amino acid compared to the human isoforms (Kretzler et al., 1998). Mouse and 

rat glomerular endothelial cells express VEGF-RI and VEGF-R2 and have also been shown to 

express neuropilin-1 (Np-1) (Robert et al., 2000) (Villegas and Tufro, 2002). Np-I is a co- 

receptor for receptors of the plexin family (Neufeld et al., 2002). Together these bind the 

ligand Sema-3A, a member of the class III semaphorin subfamily (Neufeld et al., 2002), which 

stimulates collapse of neural growth curves and repels axons (Neufeld et al., 2002). Np-I is 

also a co-receptor for VEGF-R2 and binds VEGF 165 at the protein sequence encoded by exon 7 

(Soker et al., 1998). It was first described as VEGF165R (Soker et al., 1997) in relation to 
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VEGF signalling until Soker et al discovered that it was identical to Np-I (Soker et al., 1998). 

Over expression of Np-I can cause abnormalities in the development of both the vascular and 

nervous system (Neufeld et al., 2002) and Np-l knock out mice do not survive past embryonic 

day 12.5 (Takashima et al., 2002). Np-I enhances the binding of VEGF165 to VEGF-R2 4 to 6 

fold compared to VEGF-R2 expression alone, it also enhances chernotaxis of porcine aortic 

endothelial (PAE) cells expressing VEGF-R2 and Np-I to VEGF165 2.5 fold compared to 

VEGF-R2 expression alone (Soker et al., 1998). Np-l is also first expressed in mouse and rat 

glomerular endothelial cells at the S-shaped body of development (Villegas and Tufro, 2002). 

This indicates that co-expression of Np-I and VEGF-R2 on glomerular endothelial cells aids 

glomerular vascular development and enhances VEGF signalling in these cells. Np-2 is also 

expressed on glomerular endothelial cells at the same time point (Villegas and Tufro, 2002) 

and can bind both VEGF165 and VEGF145 (a rarer isoform) (Gluzman-Poltorak et al., 2001). 

Little is known about its function in the vascular system although it is thought to form 

complexes with Np-I and VEGF-RI (as reviewed in (Neufeld et al., 2002)). 

Recently, it has been shown that human podocytes express mRNA and protein for Np-I and 

mRNA for Np-2 (Harper et al., 2001), which gave rise to the potential for VEGF signalling in 

podocytes. Neuropilins lack a cytoplasmic signalling domain (Soker et al., 2001) (Harper et 

al., 2001) and were not thought to be able to signal independently, but by associating with 

tyrosine kinase receptors it is thought they could function as signalling complexes (Gluzman- 

Poltoraketal., 2001). It is therefore surprising that there is no evidence to date to suggest that 

podocytes express VEGF-RI or VEGF-R2. In mice heterozygous for VEGF there was a 

dramatic loss of podocytes by week nine of development following endotheliosis and 

proteinuria (Eremina et al., 2003). The authors have suggested endothelial cells signal back to 
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podocytes to maintain them. Another interpretation is that VEGF signals directly to the 

podocytes, epithelial in origin, to maintain their survival. 

1.5 VEGF signalling in non-endothelial cells 

Work in recent years has uncovered a role for VEGF in cell types other then endothelial cells, 

despite the fact that it was thought to be endothelial specific, and these studies provide clues to 

potential VEGF signalling pathways in podocytes. Haernatopoietic stem cells express VEGF, 

VEGF-R1 and VEGF-R2 (Gerber et al., 2002). Using a cre-loxP system in mice to knock 

down VEGF Gerber et al elucidated that VEGF regulated haernatopoiefic stem cell survival 

through an internal autocrine loop, not generally seen to operate in endothelial cells (Gerber et 

al., 2002). This was demonstrated by the lack of effect of external acting inhibitors, although 

VEGF-R2 still plays a role in internal VEGF signalling. A similar mechanism was seen in 

VEGF expressing leukaemia cell lines. Although they express and signal through VEGF-R2 

there appear to be two independent autocrine VEGF signalling pathways: an external and an 

internal (Rosa Santos and Dias, 2004). Interestingly it appears that the internal autocrine 

pathway has a greater effect on cell survival. They suggest that VEGF-R2 is not exclusively 

membrane bound although it is still constitutively activated. This provides an interesting 

insight to the expanding signalling potential of VEGF. Taking this novel concept a step 

further Bachelder et al demonstrated, using anti-sense VEGF oligonucleotides in metastatic 

breast carcinoma cell lines, that VEGF promotes survival in a P13-kinase/AKT dependent 

manner (Bachelder et al., 2001). Not only are these cells not endothelial but they do not 

express VEGF-Rl or VEGF-R2. They do however express Np-1, as do podocytes, and the 

authors have shown that Np-1 is associated with elevated levels of survival. It is not known 

how VEGF can signal independently through Np-1, but this is not an isolated case. Miao et al 

have shown that overexpression of Np-I in rat prostate carcinoma AT2.1 cells, which express 
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VEGF but not VEGF-RI and VEGF-R2, led to an increase in tumour angiogenesis and 

reduced apoptosis (Mao et al., 2000). These authors have also postulated that VEGF165 may 

stimulate cells directly via Np-I binding, which would have relevance to VEGF signalling in 

podocytes independently of other VEGF receptors. This contradicts previous workers, who 

postulated that the intracellular domain of Np-I does not contain a signalling domain. Recent 

work by Wang et al, however, indicates that Np-I may be able to signal independently. They 

created a chimeric receptor by fusing the extracellular domain of epidermal growth factor 

receptor (EGFR) to the transmembrane and intracellular domains of Np-I (Wang et al., 2003). 

This was then transduced into human umbilical vein endothelial cells (EIUVECs) using a 

retroviral expression vector. It was shown that epidermal growth factor (EGF) stimulated Np- 

I dependent migration of HUVECs via a P13-kinase dependent pathway (Wang et al., 2003). 

From this they deduced that Np-I alone could mediate VEGF induced endothelial cell 

migration via activation of the intracellular domain of Np-l. This research encourages the 

theory that VEGF may signal in podocytes, despite VEGF receptor expression limited to Np- 

1, although conclusions drawn from the work done by Wang et al may be premature. 

HUVECs express VEGF-RI, VEGF-R2 and Np-1, so the signalling pathway studied may not 

have been isolated to the chimeric receptor. Also, the 3-dimensional conformation of EGF 

bound to its extracellular domain would probably be completely different to that of VEGF 

binding to the extracellular domain of Np-l. This may affect the conformational change of the 

intracellular domain of Np-I and therefore its auto-phosphorylation sites. Therefore, it seems 

that the intracellular domain of Np-l may be capable of signalling independently, but not 

necessarily in response to VEGF in a non-artificial system. The literature on the effects of 

VEGF on non-endothelial cells is growing fast however, and apart from podocytes examples 

of cell lines expressing VEGF and Np-1, but not VEGF-Rl and VEGF-R2 seems limited to 

carcinoma cell lines. The function of isolated Np-I expression may be to sequester VEGF165, 
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or to enhance actions of VEGF through some unknown mechanism (Soker et al., 1998). This 

could potentially allow VEGF signalling in podocytes to promote survival, but in order to 

understand the potential of VEGF survival signalling in podocytes, current understanding of 

survival signalling in podocytes should be examined. 

1.6 Podocyte maintenance 

1.6.1 Extern alfactors 

Despite the obvious importance of differentiated podocyte survival and maintenance, the 

literature on it is very limited. There is a lot of information in the literature on the causes of 

pathological apoptosis, and effacement of podocytes, but an understanding of what makes 

podocytes so robust in vivo and in vitro is warranted. Many types of cells receive external 

survival stimuli from various growth factors or cytokines. Work by Fornoni et al has shown 

that cultured podocytes are protected from cyclosporin A induced apoptosis by hepatocyte 

growth factor. This was dependent on Bcl-XL regulation and is postulated to be P13-kinase 

dependent (Fornoni et al., 2001). Despite the similarities seen between this pathway and the 

apoptosis pathway described earlier these authors believe that the same growth factors may 

stimulate different apoptosis pathways in podocytes. Indeed, they show that DNA 

fragmentation is an early event in podocytes (Fornoni et al., 2001), detectable before a 

decrease in cell number. Apart from this piece of work there is little to link other growth 

factors with survival in podocytes. 

L 6.2 Internalfactors 

Much of the evidence for podocyte survival in the literature is based on intracellular 
I 

observations. There is growing evidence linking podocyte survival with its actin cytoskeleton, 

found in the podocyte foot processes (figure 1.7). Reorganisation of the podocyte actin 
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cytoskeleton leads to retraction and effacement of foot processes (Reiser et al., 2000b), which 

invariably leads to proteinuria; the hallmark of many glomerular diseases (Huh et al., 2002). 

The link between podocyte survival and its cytoskeleton has been outlined by work done by 

Smoyer et al. Heat shock protein 27 (hsp27), a low molecular weight, rapidly phosphorylated 

protein that is upregulated in response to exposure to toxicants and oxidative stress Qia et al., 

2001), has been associated with increased cell survival and recovery Qia et al., 2001). Hsp27 

was shown to inhibit actin polymerisation in podocytes (Smoyer and Ransom, 2002); 

transfection of an immortalised mouse podocyte cell line with hsp27 sense DNA caused cell 

retraction, detachment and death (Smoyer and Ransom, 2002). Podocyte hsp27 levels also 

correlated with resistance to puromycin aminonucleoside (PAN) induced cell death (Smoyer 

and Ransom, 2002). This indicates that podocyte survival is maintained if the actin 

cytoskeleton is not disrupted. Therefore, an understanding of the podocyte cytoskeleton is 

critical to the elucidation of how the cytoskeletal structure affects podocyte survival. 

1.6 ZI Organisation ofpodocyte cytoske leton 

The podocyte is composed of three compartments, consisting of the cell body, the major 

processes and the foot processes (Ichimura et al., 2003) (figure 1.2). Both the cell body and 

the major processes contain cytoplasmic microtubules and intermediate filaments (vimentin 

and tubulin), but the foot processes only contain microfilaments (Vasmant et al., 1984), 

namely actin and cc actinin (Drenckhahn and Franke, 1988) (figure 1.7). These proteins 

generate the contractile force that resists the high intraluminal hydrostatic pressure from the 

capillaries, and it has been speculated that they actively modify their surface area for filtration 

(Drenckhahn and Franke, 1988). The podocyte actin cytoskeleton appears to be associated 

with the plasma membrane, and can communicate externally via numerous contact proteins, 
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associated with transmembrane proteins of the slit diaphragm, GBM and apical membrane 

(figure 1.7). 
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Figure 1.7. A schematic representation of actin filament organisation in the podocyte foot process. 

There are two distinct sub populations of actin filaments in the foot processes; the actin bundle, 

concentrated in the apical region of the foot processes, which includes proteins such as (xactinin and 

synaptopodin and the cortical actin network spread throughout the cytoplasm, which contains proteins 

such as cortactin and ZO-1. Adapted from (Ichimura et al., 2003). GBM= glomerular basement 

membrane, FEC = fenestrated endothelial cells. 

1.6 3 Potlocalyxin 

Podocalyxin is a sialylated transmembrane protein found in the podocyte cell body and in the 

apical plasma membrane of the foot processes. It carries a highly negative charge and is 

thought to prevent normal cell-cell aggregation in culture by charge repulsion (Takeda et aL, 

2000). Similarly, when podocyte tight junctions transform into slit diaphragms during the S- 

shaped body stage of glomerulogenesis it is thought to be due to the charge repulsion of 

proteins such as podocalyxin. This maintains the open slits between neighbouring foot 

processes (Takeda et al., 2000). Podocalyxin has been shown to form complexes with ezrin 

(Orlando et al., 2001) (figure 1.8). This is a phospho-tyrosine protein locallsed to the apical 

membrane region of the cytosol (Kurihara et al., 1995), which is known to bind to the actin 

cytoskeleton (Tsukita and Yonemura, 1997). Any stimuli that modify podocalyxin expression 
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may therefore influence its intracellular interactions with cytosolic proteins (Orlando et al., 

2001) and are likely to affect the morphology of the foot processes. 
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Figure 1.8. A schematic representation of the anatomy of the actin cytoskeleton in the podocyte. 

The morphology of the podocyte is maintained via communications between the plasma membrane and 

actin cytoskeleton. Communicative proteins, such as nephrin, podocalyxin and dystroglycan provide a 

link from the outside of the cell to the actin cytoskeleton via actin binding proteins, such as (x actinin 4, 

utrophin and ezrin. In some instances a large complex is formed, such as at the slit diaphragm, which 

provides an indirect link between the communicative proteins and the actin binding proteins. 

1.6.3.1 Dystroglycans 

The podocytes govern the topography of the GBM matrix proteins using actin-guided 

dystroglycan (DG) complexes (Regele et al., 2000) (figure 1.8). Dystroglycan ot and P are 

expressed in the basal cell membranes of the podocyte foot processes (Regele et al., 2000), It 

has been postulated that they provide a link with the cytoskeleton of the podocytes (via 

utrophin, an intracellular binding partner of DGs (Regele et al., 2000)) and the GBM to help to 
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