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ABSTRACT 

Finite Element (FE) model updating was introduced to minimise the differences 
between experiment and analysis by correcting the inaccurate/incorrect 
parameters in the analytical model. The updated model. therefore. should 
contain all the physical changes from the initial assumptions rather than just 
matching the natural frequencies and modeshapes. 

This thesis is concerned with updating analytical models for isotropic and 
composite materials. It has focused on model updating induced by structural 
modifications which occur during manufacturing and have been demonstrated 
through testing of structures. 

The experiments in this thesis have shown that removal of residual stresses for 

plate structures introduced during the manufacturing process converts the 
structure to its original curved state, and alters the dynamic behaviour. 

Variability is introduced during testing of a simple single structure due to the 

changes in its environment circumstances. Low variability is required to reduce 
time and cost for testing a structure and to provide a robust basis for the updating 
process. Measured results with low variance are essential to achieve a validated, 
reliable model. 

With respect to composite materials, this thesis has shown that the updating 
process can be applied to an actual test specimen with the inclusion of new 

updating parameters. Any modifications occurring during manufacturing and 
testing were implemented in the analytical model. The sensitivity method was 

applied to adjust angle of layer orientation. The regularisation method was 
introduced to improve the condition of the update, which made adjustment of its 

individual layers possible. 

Any modification in structural behaviour, results in great changes in dynamic 

performance both in isotropic and composite materials. It has been shown that 

an important aspect of structural dynamic modelling is to include any 

modifications at the design stage of structures, rather than to assume the 'normal' 

unloaded conditions that are commonly adopted in the laboratory or during 

initial analysis. 
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NOMENCLATURE 

Where possible notation has been defined in the text of this thesis. The 

definitions that follow are only a list of the most frequently used notation. 

ABBREVIATIONS 

COMAC Co-ordinate Modal Assurance Criterion 

DoF(s) Degree(s) of Freedom 

EXP Experiment 

FE Finite Element 

FEM Finite Element Model 

FRF Frequency Response Function 

MAC Modal Assurance Criterion 

MSF Modal Scale Factor 

RFM Response Function Method 

SVD Singular Value Decomposition 

SYMBOLS 

Magnitude 

II IL Euclidean norm 

Matrix 

{} Vector 

{ }ý Complex Conjugate 

V 



]T Transpose of Matrix 

11+ Pseudo-Inverse of a Matrix 

I\ýI 
Diagonal Matrix 

OZ Laplacian Operator 

O(p") Terms of Order of p" 

Roman Letters 

H Identity Matrix 

[K], [AK] Global Stiffness Matrix and Corresponding Error Matrix 

[KA ], [K(, ] Analytical and Updated Stiffness Matrix 

[Ky, ] Elemental Stiffness Matrix 

[M], [AM] Global Mass Matrix and Corresponding Error Matrix 

[MAI 
, 
[Mr, ] Analytical and Updated Mass Matrix 

[Me, I Elemental Mass Matrix 

IT] Transformation Matrix 

[U] [v] Matrices formed from left and right Singular Vectors, respectively 

N Total Number of DoFs 

NL, Number of Elements 

S Sensitivity 

x Displacement 

C Velocity 

x Acceleration 

i, j, k Indices 

, y, z Co-ordinates 

P 

J 

1' 

III 

Updating parameter 

Frequency, Hz 

Possion's Ratio 

Radial frequency, rads/sec 
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Greek Letters 

[a] Receptance Matrix 

{a } Receptance Disparity 

[CD] Mass-normalised Modeshape Matrix 

[(D 
x 

[CDA] Mass-normalised Experiment and Analytical Modeshape Matrix 

{q5} Mas-normalised Modeshape Vector 

9 Angle 

Eigenvalue 

Singular Value 

ýEý Rectangular Matrix of Singular Values 
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Chapter 1- Introduction 

Chapter 1 

Introduction 

1.1 Introduction 

The dynamic analysis of structures is necessarily becoming more complex and 

complicated, in order to meet the requirements of product certification and 

reliability. Interest in structural vibration is increasingly being focused towards 

reducing noise levels and increasing the life cycle of structures. Engineering 

industry requires the prediction of structural dynamic behaviour accurately under a 

variety of circumstances loads and environment. Accurate predictions of dynamic 

response lead to a company making more efficient and reliable designs which can 

give it an edge over its competitors. 

The study of the dynamic analysis can be classed into two categories: analytical 

modelling and vibration testing. The Finite Element Method (FEM) is a technique 

used to predict dynamic behaviour of a structure analytically without the expense of 

undertaking structural testing. It is desirable to predict dynamic response accurately 

compared to actual structural response in order to reduce the time and cost 

associated with dynamic response testing. Vibration testing is the experimental 

approach to determine the dynamic behaviour of a structure. However. testing, 

requires time and human effort, and errors may occur during the testing. Due to the 

limitations and assumptions made in each method, the methods have different 

advantages and disadvantages. Model updating is able to overcome the 

disadvantages and limitations of analytical modelling through incorporation of 
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vibration testing results. The details of this approach will be described in the next 

section. 

Thin beams and plate elements are widely used in engineering fields and their 

dynamic behaviour needs to be predicted correctly before performing model 

updating for a complex structure. This thesis will discuss the structural dynamic 

analysis of isotropic and non-isotropic (composite) beams. The drive for 

considering composite materials is their increased use in engineering structures due 

to high strength and stiffness to weight ratios. 

1.2 Analytical Modelling - FE Analysis 

There are very well known `equations of motion' which can be used to predict 

dynamic behaviour theoretically where the structure has simple geometry and its 

material properties are uniform throughout. The dynamic behaviour for a simple 

structure such as a beam, shell or plate can be solved by its `equations of motion'. 

However, the equations for more complicated structures are necessarily more 

involved to enable the prediction of dynamic behaviour. Finite Element analysis 

was introduced to model large and complicated structures and to predict dynamic 

behaviour in order to reduce the time and cost. Consequently, prediction of dynamic 

properties using FE is becoming more and more popular. Whenever there is any 

modification in a new design, the structural dynamic behaviour that is achieved 

should be checked against the specification of the requirements before launching the 

product. Indeed this approach is now becoming a certification requirement in the 

aerospace industry. 

The FE method also can be used to predict the structural dynamic behaviour .\ here 

an experimental test is difficult to perform. However. this prediction depends on the 

accuracy of the FE against the actual structural dynamic behaviour. FE can 

sometimes be inaccurate due to: 

2 
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0 incorrect modelling ; 

" over simplified geometric input (e. g. assuming a flat plate where curvature 

exists, uniform thickness along the plate etc. ) ; 

" uncertainties in finite element input data such as material properties ; 

" incorrect choice of element types; and 

" difficulty in modelling complex structures such as joints and boundary 

conditions. 

Initial assumptions made in the analytical model geometry often differ from the 

actual testing specimen. Often, experimental data are assumed to be more accurate 

than an analytical model, therefore the dynamic behaviour obtained from FE should 

be validated and updated to give more accuracy. 

1.3 Dynamic Testing 

Due to the lack of accuracy in analytical analysis, experimental tests should be 

performed on a structure to verify or to update the analytical analysis. More 

accurate experimental results are required to minimise the time and cost in model 

updating process. 

Experimental testing can be subdivided into two groups, which are: data acquisition 

and data analysis. More recently, driven by the demand for more reliable and 

accurate data from experiments, computer controlled measurement equipment for 

data acquisition and PC based software have been introduced and developed to 

analyse vibration response data. 

Experimental results are often assumed to be more accurate than those obtained 

from analytical analysis. However, experimental results have some limitations 

alongside possible shortcomings in the FE method: 

" difficult to measure some degrees-of-freedom such as rotational modes: 
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" limited number of coordinates can be measured; 

" limited range of frequency to measure; 

" the clamped boundary condition may not be achieved ideally - some rotation 

and displacement could exist; 

" measured data could contain noise; and 

" contains fewer degrees of freedom than the analytical model. 

A structure may contain residual stresses during the manufacturing process. When 

purchasing plate material, sections are unrolled and flattened causing work 

hardening. Also, it is inevitable that work hardening will occur in structures over 

time - due to static and dynamic load - leading to geometric deformation. The 

effects of geometric variability arising through manufacturing processes and 

subsequent long term load induced deformation raises an important issue. 

One of the problems that an analyst should be prepared to account for during the 

experiment is variability in experimental results. When performing different tests on 

a single structure, there is always a certain amount of variability between the results. 

Balmes [8] identifies the sources of the variability affecting dynamic behaviour: 

0 the structure changes in time because of ageing, temperature effects, loading 

conditions, etc; 

0 the same model can be used to represent a number of structures that should 

be identical, but are not. Thus manufacturing tolerances, residual stresses, 

changes in welding point positions, etc. are known to modify the properties 

of cars significantly coming from a single assembly line; 

0 material and geometrical properties are not measurable at all points so 

random distributions of these properties must be assumed; and 

" cost considerations often lead to the representation of complex mechanical 

parts by simple assemblies of beams, plate/shells and solids which need to 

have equivalent properties. These assumptions lead to a similar global 

behaviour of the model rather than being readily related to local 

material/geometry properties. 

4 
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1.4 Model Updating 

Model updating is used to improve the accuracy of the finite element model so that 

the updated analytical model can predict the dynamic behaviour as closely as 

possible to that obtained during an experiment. 

Due to the limitations and different assumptions applied in experiment and 

analytical approaches, the FE and actual testing have different characteristics, 

advantages and disadvantages. The FE model is capable of evaluating large 

numbers of coordinates which provides useful information of a structure in detail. 

Also, the FE could be used to predict the structural dynamic behaviour for a wide 

range of frequencies. However, due to the assumptions made during the analytical 

analysis such as, ideally manufactured structure - no modification in dimension, 

curvature and thickness, FE is often assumed to be inaccurate or incorrect compared 

to the real structural dynamic behaviour. In contrast, the experimental results are 

assumed to be more accurate and correct than analytical analysis because the 

experiment deals with an actual test specimen containing all physical meanings. 

However, due to the limitation in coordinate measurement and frequency range, the 

experimental results contain less information than its FE counterpart. The 

advantages and disadvantages of both models can be overcome by combining the 

results and updating the analytical model to contain physical changes. 

Updating methods can be broadly categorised as direct and iterative methods. The 

direct updating methods update the analytical model by numerically optimising 

global mass and stiffness matrices to match with experimental results. Unlike direct 

updating methods, iterative methods update the analytical model by means of 

perturbations to the geometry and material properties for each element or 

substructure. The method uses the sensitivity matrix. which can be evaluated by, 

using elemental stiffness and mass matrices to minimise the residual (the difference 

bet\\ ten the measured and predicted dynamic properties). One of the main 

advantages of the sensitivity updating method is that the process does not require 
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full experimental modeshapes, hence this updating method is well suited to updating 

large and complex structures. 

1.5 Objective of the Thesis 

The objective of this research is to develop an analytical model to be a more reliable 

and realistic estimation of dynamic behaviour than its original representation (i. e. 

before updating). Thus, the aim is that the updated model contains all physical 

modifications. This thesis will review the existing model updating techniques to 

reveal their advantages and disadvantages. This research focuses on the structural 

modification that occurred during the manufacturing process in isotropic and 

composite materials, and the errors raised during the experimental testing. The work 

has attempted to find out the accurate experimental data required for successful 

model updating process. The work shows that the initial assumptions made at the 

design stage to predict structural dynamic behaviour should be modified according 

to the actual test specimen. 

With respect to the composite material model updating process, a new concept was 

introduced to update with respect to the angle of ply-layer orientation based on the 

sensitivity method. A regularisation method was applied to improve the condition 

of the update which made adjustment of its individual layers possible. 

1.6 Overview of the Thesis 

Chapter 2 reviews the methods that are currently used to compare and correlate 

experimental and analytical models. A survey of model updating techniques 

including direct and iterative model updating techniques is addressed. Also, 

advantages and disadvantages of these methods are described. Finally 
, the 

6 
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expansion and reduction techniques to reconcile model coordinate in compatibility 

are also addressed. 

Chapter 3 reviews the theoretical approach to predicting structural dynamics 

behaviour under various loading conditions using finite element methods. The 

advantages and limitations due to assumptions made during the FE process are 

discussed. It is necessary to obtain elemental stiffness and mass matrices for the 

iterative model updating process as the matrices alter with loading condition. The 

theoretical approach to derive the matrices with various loading conditions is 

described. Thermal load can have a significant effect on structure, and this should 

be taken into account to predict more accurate structural dynamic behavior. 

Chapter 4 reviews a series of experimental tests - and their resulting properties - for 

beam and plate elements under various boundary conditions and temperature 

settings. This chapter presents the effects due to residual stresses introduced to the 

material through standard manufacturing processes. By the use of annealing the 

influences of the local stresses are identified. Variability occurred during the 

testing, and suggestions for the reduction of testing variability are discussed. 

Chapter 5 describes the iterative model updating process in detail for the beam 

structure discussed in Chapter 4. The direct and iterative updating processes were 

performed for the beam at the `normal' condition - no loading applied. A structural 

investigation follows in order to establish whether any modifications have occurred 

during and after testing the structure. The model updating process for various 

temperature cases is discussed. The chapter suggests how to achieve a more reliable 

and realistic updated analytical model. 

Chapter 6 reviews the model updating process for a composite material. Composite 

structures are more complicated than isotropic materials. More time and care needs 

to be taken for the model updating process. Modifications that occurred during the 

7 
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manufacturing and the testing process will be discussed, and the significant effects 

on the structural dynamic behaviour due to the modification will also be discussed. 

Chapter 7 concludes the discussions of the previous chapters and makes 

recommendations for further work. 

8 
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Chapter 2 

Literature Review 

2.1 Introduction 

In the engineering process, it is common - although unwise - to predict dynamic 

behaviour based on analytical models without carrying out physical measurements. 

It is desirable to predict the dynamic response accurately by analytical methods to 

reduce unnecessary cost. However, often there exist discrepancies between the 

analytical model and the real test structure due to various errors associated both in 

experimental and analytical process. 

Finite element model updating is the way to reduce the discrepancies between these 

two results, the goal being to make more reliable and realistic models after the 

updating process. Over the last 20 years many researchers have developed and 

improved numerous methods for accurate model updating. The basic model 

updating techniques can be divided into two groups which are: 

1) Direct Methods : update global system matrices to correlate an analytical 

model with experimental results 

2) Iterative Methods : updating parameters not only to minimise the differences 

between the experiment and analysis but also to contain physical meaning. 

This chapter Nvil1 describe correlation methods between analytical and experimental 

results which should be performed prior to the model updating process. Later. this 
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chapter will describe basic techniques for model updating and other associated 

methods for model updating (e. g. modeshape expansion and structural matrix 

condensation). 

2.2 Correlation Methods 

Before proceeding to model updating, it is necessary to compare the experimental 

and analytical mode shapes and natural frequencies. The most obvious and common 

comparison method for experiment and analytical modes is by consideration of 

natural frequencies. After a natural frequency comparison, the modeshapes must be 

compared to ensure that the experimental and analytical modes are correctly aligned. 

The most commonly used technique to compare analytical-to-experimental modes is 

called the Modal Assurance Criterion (MAC) proposed by Allemang and Brown [2]. 

The MAC is a dot product, which is used to determine the amount of similarity or 

dissimilarity between two modal vectors. As different analytical modelling 

techniques are investigated, the resulting modal vectors are compared to the baseline 

model. The MAC uses a pair of modeshape vectors to compare and evaluate a 

number called the MAC value. The MAC value ranges from zero to one, and a 

value close to one indicates good correlation between two data sets. The MAC value 

between the ith analytical mode shape 0, and jth experimental mode shape 0, is 

defined as, 

ýjTýj 
2 

M4 C 
(0j, 

4,0 jr 

) 

Y ui 

(2.1) 

The Coordinate Modal Assurance Criterion (COMAC) was proposed by Lieven and 

Ewins [48]. This method is similar to the MAC but uses the correlation of a selected 

degrees of freedom of a structure rather than using mode numbers. In this case i 

refers to the degree of freedom and rr corresponds to the correlated mode pair. 
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coMAc(i) _ 

L 
(`A )it (0 )rl2 

r=1 
(2.2) LL 

2 (OA )ir 2j(0, )r 

r=1 r=1 

In the comparison, various problems arise because of the incompatibility in 

modeshapes. Often, all of the modes cannot be measured by experimentally or too 

many modes are produced analytically. The problems can be solved either by 

reducing the size of the analytical model or expanding the size of the experimental 

model to make the model size is same. Later in this chapter, the techniques of 

model reduction and expansion are described. 

2.3 Direct Methods using Modal Data 

2.3.1 Introduction 

As the name implies, the direct methods do not require iteration to derive the eigen 

properties of the system, but produce updated global mass and stiffness matrices 

directly by updating the original global matrices. The main advantages of these 

methods are that they can possibly reduce the CPU time required by the iteration 

methods, and produce the measured data exactly. 

However, Friswell and Mottershead [25] described some disadvantages: 

" either measured data must be expanded to the size of the finite element model or 

the finite element model must be reduced to the size of the measured data; 

" the methods usually destroy the connectivity inherent in the original structure, 

and the updated matrices have little physical meaning; and 

" generation of spurious modes in the frequency range of interest may occur. 
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The updated analytical model by direct methods will correlate with the experimental 

results by means of natural frequencies and mode shapes. but the updated model 

would not contain the physical structural properties. The direct updating methods 

only update the global matrices and ignore the actual structural changes. 

2.3.2 Lagrange Multiplier Methods 

One of the earliest attempts to update FE models by these methods was proposed by 

Baruch [10]. He assumed that the mass matrix was correct and updated the stiffness 

matrix by minimising: 

_ 
[MA ]2 f Krr ]- [KA B[MA 12 (2.3) 

subject to the following constraints 

[Ku Jux ]= [M11 J (D x 
l[w, ' ] (2.4) 

and 

(2.5) 

Then the updated stiffness matrix can be obtained as: 

[KI, ]- [KA]-[KA ][) 
X 

][O 
x 

]' [MA ]- [MA ][0 
X 

][(, ) X 
IT [KA ]+ 

it, I(I)X]T[ ]' [M. a + [MA ][('), I[ ll. ý ] 

(2.6) 

Berman [11] used the same approach and updated the mass matrix by minimising: 

12 
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[MA ] 2[[Mu]-[MAJIMA1 2 (2.7) 

subject to following constraints: 

[(DX ]T [Kl1 ][(D 
x]= 

tw2] 
(2.8) 

The updated mass matrix can be obtained as: 

[MA 

J+ 

[MA F' 

X 

#(1) 

X 

]T [MA 

JLq) X J)-1 

(['1 

_[X 
]T [MA F' 

X 

]AO 

X J' 

[MA ][('), 

V 

]) 1[ 

. 
\' JT 

[MA 

J 

(2.9) 

After the computation of [M,, ] 
, the stiffness matrix can be calculated by the 

minimising: 

E= 
II [Mu ]2 [[K(, ]- [KA }][MI, ]2I (2.10) 

subject to the following constraints: 

[Kci I(D 
x]= 

[M(, 1(1). 
ý, 

][ 
wX2] 

[(D 
, 

]7 [K1, ][(D. 
k = 

[N 2J (2.1 1) 

[K,, ]= [' ]" 

which enforces the stiffness symmetry, the orthogonality condition and the equation 

of motion. The updated stiffness matrix is defined as: 

ý+ [AK] + [AK]" (2.12) 

13 
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where 

[ox]=1[sý�ºm, Mln,, 1'[x. IDýrI+ýýý'TIý. I'[+r�] [K. Iýn, I<, XPI�] 
(2.13) 

The updated matrices above are without physical meaning of the structure due to 

modification of the zero matrix coefficients. In order to improve the problem. 

Ceasar [19] uses the same approach as Berman by not only applying the same three 

constraints, but also includes the preservation of the system's total mass and the 

interface forces. A more detailed formulation of the problem is considered at the 

expense of increased computational effort and applicability to small and banded 

matrices only. 

Wei [77] extended the model reference basis technique to allow the simultaneous 

updating of the analytical stiffness and mass matrices. This is achieved by 

minimising: 

[MA ]2 Qxtr ]- [K, 
ý 
lI MA 2+ [MA ]-2 QMu ]- [MA IM 

A]' 
(2.14) 

He used the usual constraints of mass orthogonality, the equation of motion and the 

symmetry of the updated matrices. The updated mass and stiffness matrices that 

satisfy the above requirements are: 

[M(/]-[MA]-[Mo]+([I]-[P][(I)x]` Is][Y]+[Y]' [S]' ([I]-[(D. 
Y][p]' 

) 

[x" ]_ [Ko ]+ [P]([T 
.,, 
]' [K. 4 ][(D X]+ 

[ir' ]pJT - [U][cD ][P]' - [P][ D. ]' [U]' 
(2.15) 

where 

[, If J= [A I, ][(D.,, IQY ([! 21- lild -1 I(D, 
v 
1 7. ýM, 

41 

[po]=[K. ]-[K. aY(l)., ][P]' -[P][S., l' [x. I+ [L r]' +[ý] 

14 
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fv]= [MAIXIQ]1 
[Q] 

_ 
[(Dx II'[Mn I(Dx I (2.16) 

[S] = [KA ][(DX X[Q]+[wZ tQ][w2 D 
[U] 

= 
[P][ w2 IQI[w2 

Asa 

[Y] 
= 

[w2Ix]T[MA] 

These methods have been largely discarded in recent years because the updated 

spatial properties bear little resemblance to those of the original model. This is to be 

expected when, in practice, the measured modal matrix is highly rectangular due to 

modal truncation [72]. 

2.3.3. Error Matrix Method 

The error matrix method proposed by Sidhu and Ewins [68], is expressed as follows. 

The stiffness error matrix is defined as: 

[AK] 
= 

[K, 
\] - 

[KA I (2.17a) 

and rearranging the equation : 

[Kx]=[K. 
j]+[AK] 

(2.17b) 

Due to the incompleteness of the experimental data, the error matrix cannot be 

obtained directly. The equation of (2.17b) inverted and uses the binomial matrix 

expansion under the assumption that the stiffness error matrix 
[AK] is a small 

matrix such as 

lZ, 
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1im[AK]" = 
[0] : 17 -)% 

[Kx 1= [K, 
4]-'- 

[KA 1-1 [i K][KA 1-1 + [x 
AZ 

[zK]2 [KA ]-' 
- ........ 

(2.18) 

The stiffness error matrix can then be retained by considering the first-order term 

only and rearranging gives: 

[AK] =[KA](KA1 1 
-[Kx]-'[KAI (2.19) 

As [Ks] is unknown, both the experimental and analytical flexibility matrices are 

expressed using correlated modes to generate pseudo-flexibility matrices, and hence: 

[AK] [KA ]([A ][wAZr1[(1)A] 
-[i 

][wX2r1L(D 

X] 

IKA 
1 (2.20) 

Similarly for the mass error matrix [AM] : 

[AM] 
= 

[MA ]([(, 
) 

A 

][(, 
)A 

]'" 
- 

[(I) 

X 

][('). 

Y 

]', IMA 1 (2.21) 

And finally, updated mass and stiffness matrices can be written as: 

[K1, ] 
=[KA]+[AK] 

[Mc1HMA]+[ ] (2.22) 

This method aims to locate major modelling errors in a reduced analytical model 

rather than attempting to correct the whole analytical model. 

This methods has some advantages: 

16 
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" [MA] does not need to be correct for locating stiffness modelling errors. and 

conversely [KAI does not need to be correct for locating mass modelling errors. 

" This method locates stiffness modelling errors using flexibility data where lo\\ er 

modes dominate. Note that only lower modes are available in practice. 

Despite these advantages, Sidhu et al. [68] stated that the Error Matrix Method has 

some disadvantages. If the number of measured modes is insufficient, this method 

does not succeed in locating mismodelled regions. When [AK] or [AM] is large, 

this method cannot be correct because equation (2.18) and (2.19) are based on the 

assumption that second and higher order terms in an expansion of [K]-' and [M]-' 

can be ignored. Finally, this method requires mode expansion methods to match the 

analytical and experimental data sets if a full analytical model is used for the 

correlation. 

2.4. Iterative Methods 

2.4.1. Introductoin 

The basic concept of iterative methods is very different from the direct updating 

methods where the methods focus on global system matrices. A Finite Element 

model consists of individual elemental finite models and each element model is 

defined by design parameters such as the geometry of the structure and its material 

properties. The principle of these methods is to improve the correlation between the 

measured data and the analytical model by means of updating actual structural 

discrepancies such as geometries and material properties of each element or 

substructure. As the name implies, the solution requires the problem to be linearised 

and optimised iteratively. 

Iterative methods have both advantages and major problems [25]. 

17 



Chapter 2- Literature Review 

The advantages are: 

1. these methods allow a wide choice of parameters to be updated such as sub- 

matrices, elements of stiffness and mass matrices, density or geometric 

parameters. Also, different parameters that have similar effects on dynamic 

behaviour would be grouped as a single parameter; and 

2. both the measured data and the initial analytical parameter estimates may be 

weighted. 

The three major problems are: 

1. the natural frequencies and mode shapes in the experimental and theoretical data 

must be paired correctly, and all the experimental modes may not be measured 

correctly. Although the modal assurance criteria (MAC) is a useful tool, there is 

no guarantee that all modes will be matched. Any modes that do not pair with 

sufficient confidence are simply not used in the updating algorithm; 

2. mass distribution of the finite element model and the actual structure may be 

different, and the mode shapes may not be scaled correctly. This problem can be 

resolved by using modal scale factor (MSF); and 

3. if damping is not present in the finite element model, then a real mode shape 

should be estimated from measured complex FRF data. 

2.4.2. Penalty Function Methods 

The Penalty Function methods generally use a Taylor series expansion of the modal 

data as the unknown updating parameters. 

s; ]{(5B} 

where 

(2.23) 

18 
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M=0-9, is the perturbation in the parameters 

&= zx - ZA is the error between measured and analytical output 

S, is the sensitivity matrix. 

There are two ways to consider the penalty function methods. First is obtaining the 

updated parameter value by minimising some penalty function. The other is 

concerned with the weighting matrix. In practice, mode shape data are less accurate 

than natural frequencies, therefore less emphasis should be placed on this less 

accurate data [25]. 

Let us consider the first case. If the number of measurements is more than the 

number of parameters, then the equation (2.23) can be solved in a least squares sense 

by minimising the penalty function: 

J(5e)= {s -s60}" {&-s89} (2.24) 

Minimising J given by equation (2.24) with respect to 8B involves differentiating J 

with respect to each element of ö8 and setting the result equal to zero, then the 

equation can be rearranged as follows: 

90 = 
{s"s]-, S"& (2.25) 

and the updated estimate of the design parameter vector is obtained by: 

e; 
+, = 01 + 80 (2.26) 

Let us consider the second case by introducing weighting matrix WEE into equation 

(?. 24). 

19 
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J(60)= {&-sse}fWE{&-s60} (2.27) 

The positive definite weighting matrix WEE is usually diagonal with the elements 

reflecting the degree of accuracy or confidence in the measured data. Formally 

solving the equation (2.27) gives the updated parameters as: 

89 = 
[STWEES]-'sr. 

w 
66 

& (2.28a) 

or in full, 

. i+l = 9i + 
[Si WEESi ]-' S. 

i 
WEE (Z. 

l - ZA) (2.28b) 

Natke [60] developed the methods by adding an extra term to minimise the change 

of the design parameters. The extended equation of (2.27) is as follows: 

J((58) {Sz 
- Sý8}T WE {ýz 

- S(59}+ (50' WBg9 (2.29) 

where WB is a positive definite weighting matrix which is used to penalise the 

deviation of the updated terms from their corresponding initial estimation. The 

resulting solution of 50 is given by: 

(59 = 
[STWS 

+ w9] 1 STWWEäz (2.30) 

If there are more unknown parameters than the number of measurements, the 

problem is said to be underdetermined. It should then be considered which unknown 

parameters are to be changed. The solution which is usually sought is a set of 

parameters with smallest changes in the other parameters. This can be achieved by 

Singular Value Decomposition (SVD) which is considered in section (2.8). 

20 
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2.4.3. Minimum Variance Methods 

These methods can be regarded as penalty function methods where the weighting 

matrices are related to the parameter and measurement variances at each iteration. 

They are also based on the assumption that both the measured data and the initial 

model have errors which can be expressed in terms of variance matrices. 

The early paper concerned with these methods was proposed by Collins et al. [20] 

who assumed that the measured data and the initial model are statically independent. 

This is true just for the first iteration as the errors in the measurements are unlikely 

to depend on the errors in the estimates of the finite element model. In subsequent 

iterations, the measured data have been used to update the parameters and hence the 

two are correlated. 

Friswell [24] calculated the correlation matrix between the measurements and the 

updated data at every iteration. This matrix was then used to calculate the next 

estimate of the unknown parameters, thus addressing the above shortcoming. 

2.4.4. Frequency Response Function (FRF) Sensitivity Methods 

The frequency response sensitivity method was proposed first by Lin and Ewins 

[50] and then developed by Fritzen [26]. This methods use the measured FRF 

results directly and optimizes a penalty function where discrepancies exist between 

the initial and the target value. Imregun [39,40] stated some advantages in using the 

Frequency Response Function (FRF) data directly. 

0 no modal analysis is required and identification errors are thus avoided; 

0 the technique is applicable to structures with non-modal behaviour such as 

occurs in cases of high damping and/or modal density. In these cases, the 

21 
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accurate determination of a reference modal model is probably at least as 
difficult as updating the finite element model; and 

0 it is possible to check a given solution by generating another one since the 

problem is over-determined due to the availability of FRF data at numerous 

excitation frequencies or frequency points. It is therefore possible to use 

statistical techniques to determine confidence parameters and/or to interpret the 

results obtained. 

Applying a single force to both in the experimental and analytical systems yields 

[-w'[M]+[K]]jax(w)}= {f}= [_W2[M, 
4]+[K, g]]{aA(w)}; (2.31) 

where {f} is unity at the excitation (j `h) degree of freedom and zero elsewhere. 

The system matrices can be expressed in terms of the errors in the FE model as 

follows: 

[M] 
= 

[M, 
a 
]+ [AM] [K] 

= 
[KA ]+ [OK] (2.32) 

Substituting for [M] and [K] in equation (2.3 1) and rearranging gives: 

[- 
tir2 

[AM] + [AK]JIa. 
v 

('i, )} 
= L- w2 

[MA I+ [KA IJllaA (1V)I; 
- lax 

(w)I} (2.33) 

Now: 

{a'Aýwý}= [_ 
11ý2[MAI+[KAI]-1 (2.34) 

so assuming that the analytical dynamic stiffness matrix, 
[_i2[Mj+{KAJj, is non- 

singular (off-resonance), the equation (2.33) can be rearranged to: 

-y) 
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{aA (w)}[ w2 [AM] + [AK]J{aX (w)} 
_ 

{Da(w)} (2.35) 

where 

{Da(w)} = {aA (w)}; 
- 

{ax (w)} (2.36) 

Equation (2.35) is exact irrespective of the size or nature of the errors. To proceed 

towards a solution for the system matrices we must assume a form of the errors. 

This is achieved by selecting a set of NP design parameters to vary, {P}, to account 

for the discrepancy in response between experiment and analysis. These updating 

parameters can be local quantities such as elemental mass and stiffness matrices, or 

global parameters such as material properties and thicknesses. 

It is convenient to non-dimensionalise the updating parameters as follows: 

p FE FE 

Pf= pi i 

)/ 
p (2.37) 

where { P, "-`-' } are the parameter values for the original FE model. The non- 

dimensionalised updating parameters - or p-values - represent the fractional 

changes in the design variables. 

The updated system matrices are a function of {p} and can be expressed as a Taylor 

expansion about the original FE model as follows: 

[Mrl [MA+[AM] 
_ 

[M, 
9]+ 

a[M] 
pi +O(p2) (2.38) 

I 
3P; 

KriJ= [K. 
aý+[AK] = 

[K, 
aý+ 

D[K]P, 
+O(1ý, 

) (2.39) 
3P1 

ýý 
_ý 
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where O(p? ) represents terms of order p? and higher. 

Retaining only first order terms, 

[AM]= a[M]p, 

ap; 
and [OK] 

= 
D[K] 

ap; 
(2.40) 

Substituting these error matrices in (2.35) gives: 

2 a[M] a[K] {aA(W) 
-w + {ax(w)} 

ap, alp, Z a[M]a[K] A 
w+ {ax (w)} 

apNp apNP [PNPJ 

= {Aa(w)} 

(2.41) 

The sensitivity matrix can be written as: 

[S(w)]1PI 
= 

JA a(w)l 

where 

(2.42) 

[s(ý, )] = 
{aA (W) - w2 

a[M] 

+ a[K] {a, (iýý){ ; ... - w2 a[M] + a[K] {ax (w)} aPý aP, ÖPNP 8J2\ 

(2.43) 

[S] is the sensitivity matrix which can be viewed as the changes in receptance due to 

unit changes in each updating parameter. The sensitivity of the receptance at the i'" 

degrees of freedom to the j'`' updating parameter p, at a given frequency point can 

be shown to be: 
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1JaIÄ w2 
a 

ap] 
ýMý+ a [K] {a}x 

ap 
i 

(2.44) 

The equation (2.42) produces N equations for NP unknowns at a single excitation 

frequency w. Given Nr measured frequency points, Nf sets of equations can be 

stacked as follows: 

[S(w, )] {Aa(w, )} 

[S(w2 )] {A 
a (w2 )} 

LS`WNf IJ 
JA 

a(WNf I) 

(2.45) 

to form an over-determined problem with Nr xN equations for NP unknowns. 

2.4.5 Eignevalue and Eigenvector Sensitivities 

The basic concept of finite element model updating is the minimisation of 

differences between the experimental and the analytical model. The system matrices 

(mass and stiffness) are modified with respect to the experimental data for model 

updating. The most popular method for model updating is eigensensitivity method. 

One of the advantages using eigensensitivity for model updating is mode expansion 

and reduction are not required. However, the method needs large amount of 

computational effort due to repeated calculation of the sensitivity matrix. 

The rate of change of eigenvalues with respect to structural parameters. p,, can be 

derived as follows [79]. 

Consider the eigendynamic equation: 

,ý 
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ýKA (WA 
r[MAIýOA}, =0 (2.46) 

pre-multiplying it by {cbA IT 

1'YAJrýKAJ-\WAIr[MA1J' A1r =0 (2.47) 

Differentiating (2.47) with respect to. p; : 

a1OA 
1r 1- l2 rl ýj T 

a[[KA 
J- 

(wA )r [MA ]1 
ýKA(wAIr[MA]ý 

Allr+ 
9A Jr ýo Ir 

ap; ap, 

+ 9A Ir 
ýKA 

- 
(WA )r ýMA ]] a{0A }r 

-0 
(2.48) 

ap, 

Due to (2.46), the first and the third terms of (2.48) are zero and thus, 

7, aýKa (WA 
r 
[MA 

/ýj =0 
(2.49) {OA }r 

ap 

, 

{q"A}r 

U 

the term in the middle gives: 

af KA 1- (WA )r [MA 1ý= a[KA 1_ a(wa )r 
M 

l- (ýv lZ a[M`' I 
(2.50) 

Vap, 
a an OP 

[ 

AJ \ a/r öh; 

, 

the orthogonality conditions: 

[of [, ll ][o] 
= 

[I] and [0]T [K][O] = "'r ,] 
(2.51) 

Because of equation (2.51). expression (2.49) becomes: 
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1'VA Ir 

a[KA 
J j`VA 

I r- 

a( 
A Jr 

-(WA 
2 f, /, 1T 

a[MA 
J_2.52 

ap 
lt 

ap 

ýr1YýAIr 

ayý 
{OA 1 

Ir ap 
i 

and finally, 

a(WA), 
_ {ýA}r 

aýKA1 
_ ý' 2 a[MAI 

, 2.53 aa(A 

)r 

a 

{YEA }, () 

1pß P, P, 

The eigenvector derivatives are assumed to be linear combinations of the 

eigenvectors, i. e. 

__ 

Ir 

_n 
Ia, 

j 
{YEA 

(2.54) 
8P1 ; =1 

which is exactly true only if all eigenvectors are used (n = N). 

Substituting equation (2.54) in equation (2.4) and premultiplying by {OA }% gives: 

a[LKA 
J- 

(wA ), [MA ]] 
l 

fr 
l Zr 

Nl 
ýOA)r 

+fKA1-(WA)r[MA 
Iarj{ýA)j 

= 
{o} 

(2.55) 
ap 

; j=1 

Due to the orthogonality properties: 

11 
, 

l A} j 

[KA ]JO, 1r 
=Ar 

o, 

=r 

jar 

{` 

A 

}T [MA PA }r 
= 

I, J=Y 

p, jýY 
(2.56) 

so equation (2.55) becomes: 

2ý 
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(i) l2 )2)=: lT AJ 
aýK-lwAIrLMAJ] 

l 
u 

«WAlj 

- 
(WAr 

- 
{OA 

)j ap 
1 

{OA 

r 
(2.57) 

When j#r, the coefficient of the eigenvalue derivative is zero, and equation (2.57) 

can be rearranged to give: 

aU) -1 

ý`VA 
aýKA 

- 
(WA )r 2 

a_MA 
J {'YA 

)r r' (WA )r- (WA ); 'p 
Up; 

jr (2.58) 

When r, a(') can be obtained b differentiating 17 IM 
A} =1, it follows j 

ri 
by g 

{OA 

rAAr 

that: 

IT 
L 

210,4 T [MA 
OA Ir 

- -{oA 
}r 

ALMA I 
{OA) 

r 
(2.59) 

ap; ap; 

Substituting for 
alýA Ir from equation (2.54) into equation (2.59) leads to: 

ap; 

2 
IOA Ir 

ap; 
(2.60) 

Substituting for a('from equations (2.58) and (2.60) into equation (2.54) gives 

aWA Ir 

-N 

{0 L {ý Ii 

22 

[a[KA]-(1t'A)r A[MA] 
{`A }r 

ap, 
i=1:. i#r 

(h 

A 

)r 
- 

("'. 

4 
api apt 

aý ýI 
Aý 

2 

10A }r 
1 

IY 

A 

Ir IY 

A 

Ir 

ap, 
(2.61) 
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2.4.6. Selection of Updating Parameters 

The choice of updating parameters is a very important stage in model updating. The 

issues include how many parameters and which parameters should be selected. The 

selected parameters should be uncertain in the model. Otherwise, the blindly 

updated structural components may lose their physical properties and produce 

meaningless results in the updated model [13]. The updating parameters can be 

elemental stiffness and mass matrices or material properties including Young's 

modulus, Poisson's ratio and mass density or structural dimensions. 

The number of updating parameters should be kept small to avoid possible ill- 

conditioning problems, and such parameters should be chosen with the aim of 

correcting recognised uncertainty in the model, and the data should be sensitive to 

them. One of the best methods to find suitable parameters is using the sensitivity 

analysis that computes sensitivity coefficient with respect to the rate changes 

between structural response and parameters. 

The updated elemental mass and stiffness matrices can be rewritten as Taylor 

expansions as follows: 

M=+ OM]_ [MA I+ 
l aýMý 

pý (2.62) 
crý 

[MA ýýý 

J 
ap 

.i 

and 
a[K] 

pi (2.63) K=K+ OK] = 
[KA 1+! Y-j 

UNIVERSITY 2q 
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2.6 Model Reduction 

2.6.1 Introduction 

Model reduction is needed to compare the results between experimental data and 

analytical data. In practice, the number of DOFs in the finite element model is much 

larger than the number of coordinates obtained by experiment, and some of the 

experimental data cannot be obtained because it is too difficult or physically 

inaccessible. The most popular technique for model reduction was proposed by 

Guyan [33] and improved by O'Callahan [65]. 

Visser [73,74] noted some significant disadvantages of reduction: 

1. the measurement points often are not the best points to chose as masters as they 

are always on the surface of the structure while for dynamic condensation it is 

vital to select masters corresponding to large inertia properties; 

2. there may not be enough measurement coordinates to be used as masters; 

3. all reduction techniques yield system matrices where the connectivity of the 

original model is lost and thus the physical representation of the original model 

disappears; and 

4. the reduction introduces extra inaccuracies since it is only an approximation of 

the full model. 

2.6.2 Guyan Reduction 

Guyan Reduction [33] is the most popular and commonly used method for reducing 

analytical models. 

Starting from the equation 

{F} 
= 

[: 11 k}+ [K]{x} (2.64) 

n o 
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The stiffness matrix, response and force are partitioned into master and slave 

components. 

Fl [Mmm 
F2 LMsrn 

mm" xl 
+ rKrn, n 

Kms 
X1 

MSS. I2 K. 
sm 

K. 
rc x2 

(2.65) 

where the subscripts m and s denotes to the master degree of freedom, the forces F2 

are to be zero. Neglecting the inertia terms, the forces F, are given by 

( ýx F, = Kn, 
ý, - 

K,,, K. ' 
t, t 

K (2.66) 
. sn, 

The reduced stiffness matrix is given by 

K, = K, 
n, ll - 

Kn,. 
V 
K. 

S. Q. 
' K. 

V»7 
(2.67) 

The coordinate transformation equations are 

x=Tx, or 
x, 

= 
1{x} 

(2.68) 
x2 - K. 

s. ý 
K. 

ý, » 

Similarly, the reduced mass matrix is given by 

M=M -M 
(K, -, 'K 

. -(K. 
1K17, )7 (Mc,,, 

-M -(2.69) 
mm nzý ým cc cc cm 

If the structure's kinetic and strain energy are written as 

E=MM and V=1 x7 Kx (2.70) 
22 
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and the transformation is employed, then the energies become 

EI z; TT MTz, and V= 
i 

x; TT KTx, (2.71) 
22 

The reduced mass and stiffness matrices can be written as 

MR=Ts MT KR= Ts KT (2.72) 

In the case of the reduced stiffness matrix, all elements of the original stiffness 

matrix contribute, so none of the structural complexity is lost. In the reduced mass 

matrix combinations of mass and stiffness elements appear. Therefore, the 

eigenvalue-eigenvector problem is closely but not exactly preserved. 

2.6.3 Improved Reduced System (IRS) 

O'Callahan [65] introduced an Improved Reduction System (IRS) that is developed 

from Guyan's technique. This method is to compensate for the mass 

misappropriation of the Guyan reduction process especially when the selection of 

measured DOF is not optimum. It improves the accuracy over the static 

compensation technique. 

The new transformation matrix is generated by 

T, =T, +SMT. MRKR (2.73) 

where 

S_00, (2.74) 
0 K,,. 
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The reduced mass and stiffness matrices in the IRS method are then 

MARS- T1 MTJRýs 
, 

KJR = Tins KT11 

2.7 Expansion of Measured Modal Data 

(2.75) 

One of the main problems in model updating is that the experimental data set is not 

compatible with analytical data set. It is because 

1) the experimental data set has limited number of modes available; 

2) the experimental coordinates are fewer than the number of analytical 

coordinates; and 

3) the experimental modeshapes have limited degrees of freedom where 

analytical data contains all degrees of freedom for all nodes. 

It is impossible to measure all modes, all coordinates and all modeshapes due to 

limitations in experimental rig, experimental instrument and software. The other 

route to match the experimental data with the analytical model is by expanding 

measured modes. Expanding measured data involves finite element stiffness and 

mass matrices to fill in missing data. 

Figure 2.1 shows the dimension differences between the experiment and the 

analytical modeshapes. It is assumed that the all corresponding modeshapes 

between the experiment and FE are checked by MAC and arranged before expansion 

methods applied. The target to achieve by expansion method is 2, in figure 2.1. 
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Modes 

Ix 

DOF's 

2X 

Existing and correlating modal data 

Not measurable, Target for expansion 

1f 
Measured, but not corresponding 

fr'`f Calculated, but not corresponding ýf ýf: 

El 
Not measurable 

Figure 2.1 - Dimension differences between experiment and FE modeshapes 

2.7.1 Eigenvector-Mixing Method 

The easiest way to expand measured data is achieved by filling the mode shape 

vector from the finite element model for missing data, when both mode shape 

vectors scaled in the same way. This method may cause discontinuities in the 

resulting mode shape vector. The missing eigenvectors can be replaced by: 

[ý], : 40121.1. 

Modes 

DOF's 

34 

(2.76) 



Chapter 2- Literature Review 

2.7.2 Kidder's Method 

The most commonly used method for expansion was introduced by Kidder [45]. 

This method is derived from an inverse Guyan reduction. Starting from the 

partitioned eigenvalue problem: 

[Kmm 

] 

[Km. 

c 
- Wr 

[Morin 

I 

[K.,, ] [Kc r [[M, ] 
n 

LMm. c 

0m 
l0 ) 

[M. 

es J Y's r 

{o} (2.77) 

where 

r denotes the r "" mode 

m for master degrees of freedom 

s for slave degrees of freedom 

It can be shown that by substituting the measured eigenvalues and modeshapes, the 

expanded slave degrees of freedom are given by: 

w. c 
[Mc. 

c 

]]-' [[Kcm 1- 
1Vr 

[ 

. cm 

]]f 

x 
01,1 }r (2.78) 

This method has the advantage that by using the partitioned unreduced analytical 

Master and Slave degrees of freedom matrices, the physical connectivity properties 

are imposed directly. The implication of this is that the expansion depends on the 

validity of the original analytical model. 

2.7.3 Expansion using Analytical Modes 

This method was given by Lipkins and Vandeurzen [51] and uses the complete 

eigensolution from the analytical model to expand the measured modes. Thus 
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[01 JX = [01 l', x {u} (2.79) 

This equation shows that the experimental matrix is considered as a linear 

combination of the corresponding analytical matrix. The unknown coefficients can 

be found using the pseudo inverse as: 

{U 1::::::: [01 ]+ 
FE X 

[Y ]X 

(2.80) 

This transformation matrix is used to calculate the missing experimental DOF's: 

[02 ]X = [02IFE X {0 1 (2.81) 

This transformation matrix may also used to smooth the original experimental mode 

shapes as has been shown by Lipkens [51 ]. Thus 

L0l JXs,,,,,,,, n d Lot 
]FE 

X 
{U1 

2.7.4 MAC expansion 

(2.82) 

Lieven [49] introduced a MAC expansion method to find missing experimental 

DOFs using the MAC criterion: 

[02 fýj l 

. 
1'l Jn, xm 

[2 

Fl Jil, xm 
X`C 

. 
\'. FE 

'mxni 
(2.83) 

This method can also be used to smooth the experimental modeshapes by replacing 

[01, 
V 

101 ALA 
nitni HF_ »ixm x -ýý"1'C 

]11'IXIII (2.84) 
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2.8 The Singular Value Decomposition (SVD) 

The Singular Value Decomposition (SVD) is one of the most useful tools in 

numerical analysis and model updating and is very convenient for handling 

imprecise and inexact data. The method is described in [30] and its use in 

optimization in dynamical systems is comprehensively set out by Maia [52]. 

The SVD may be used to solve an equation of the form 

[A] {x} = {b} (2.85) 
MxN Nxl Mxl 

The SVD of an MxNreal matrix [A] is given by 

[A] 

- 

[{u} 

l 1u}2... 

{u)M 

J[] 

[tV}I {V}2... {V)N IT 
= 

[u] [Z] [v]' (2.86) 

(MxN) (A1xA/) (MxN) (NxN) (MxM)(MxN) NxN) 

Where [U] and [V] are orthogonal matrices, so 

[u]7 
= 

[UY, IVY 
= 

IV]-' (2.87) 

The columns of [U] and [V] are called the left and right singular vectors, 

respectively and [E] is a rectangular matrix of singular values of the form 

61 

[Y-1 =ý 

0000 

0 
UZ 

N 

6V 

I 
M-N 

N 

(2.88) 
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where a, are called the singular values, which will be assumed to be arranged in 

decreasing order 

Q1 >62 >.... >6N >O 

From the equation (2.87), equation (2.86) can be rearranged as follows: 

[U]" [A][V ]= [E] 

(2.89) 

(2.90) 

Engineers need to solve least-squares problems very often to find optimal solutions 

when more information is produced than is needed. The optimal solution is to 

minimise the norm II[A]Ix}- {b}] 2 
which leads to the following equation derived from 

equation (2.85); 

{x{= [A]+ {b{ 
Nxl NxM Nxl 

where [A] += ([A]T [A]y' [A]' 
NxM NxN NxM 

is the pseudo-inverse of [A] 

(2.91) 

When [A] is ill-conditioned, the SVD will be used to solve the problem. Equation 

(2.90) can be rearranged as: 

[, il +_ ([vl")+ [Y, ] + lul + (2.92) 
VXAI N X\' , 

Vx\r Af Xn1 

and 

[A] +_In [Y-I+ [uJT (2.93) 
\'X: \I V\. \ .\\. \I \/XA/ 

since 
[U] and 

[I ] are orthogonal and full rank matrices. Also 
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1/6,0 0 

[ý]+ 
_1/ 

62 0 

0 

0 1/6N 0 

N 
M-N 

N (2.94) 

Pre-multiplying equation (2.85) by [A]+ gives the following equation for the least- 

squares problem: 

{x}= [A]+{b}= [VIE]+[U]' {b} (2.95) 

In ill-conditioned problems, two commonly occurring characteristics of the singular 

values have been observed by Hansen [36]. 

(1) The singular values a, ,I=1,2,....., m decay steadily to zero with no particular 

gap in the spectrum. 

(2) The left and right singular vectors u; 
(U 

= 
[{u}1 {u}2. 

.. 
{u}ti, j) and 

Vi 
(V 

= 
{{v}1 Iv}2... Iv}N Dtend 

to have more sign changes in their elements as the 

index i increases 

Thus, when : -1 is close to being rank deficient (with near-zero singular values) its 

null-space is spanned by vectors with many sign changes. From manipulation of the 

SVD, 

in 

. 18=>6, u, (v'o) 
=1 

(2.96) 

9 j 



Chapter 2- Literature Review 

which shows that the high frequency components have only a small contribution to 

A0 because of the small 6, s. However, the inverse problem of computing 0 from, 

m 

e=Yv; (2.97) 
i=1 6; 

f, = UT b (2.98) 

shows that the noise effects will be amplified when a, < f, . 
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Chapter 3 

Modelling of a Loaded Structure 

3.1 Introduction 

Structural components made of beam and plate elements often find applications in 

the construction of aerospace and mechanical structures. There are some situations 

in which structures are subjected to static load. Vibration response of a structure can 

be critically dependent on the level of static load present in the system, and 

application of loading to an element can have a significant effect on its modal 

behaviour. The static load applied to a structure alters the magnitude of internal 

stresses and causes deflections, therefore changing the dynamic behaviour of a 

structure. Knowledge relating to the changing dynamic behaviour of such plate and 

beam structure is essential for the assessment of the structural failures and optimal 

design. 

Design and development decisions are often based on the predicted and/or measured 

values of the frequencies of the vibration modes of a structure. The physical 

behaviour of a structure is generally represented by Finite Element Models (FEM). 

The dynamic behaviour of a flat beam under various boundary conditions can be 

easily found by using the finite element model. However. achieving an ideal flat 

beam or plate in practice is quite uncommon due to real-world limitations. Dynamic 

analysis gives a close prediction of the measurement for a simple beam using finite 

clement models. However, there could be discrepancies bet\\een analytical and 

experimental results. Achieving a perfect boundary condition means no 
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displacements or rotations but small perturbations in boundary area change the 

dynamic behaviour under testing hence giving rise to differences between 

experimental and analytical results. Therefore, the results obtained from a FE model 

often differ from the experimental results obtained from a vibration test. In this 

chapter, the dynamic behaviour changes arising from a static load and its theoretical 

approach to predict the behaviour will be considered. 

The other concern in this chapter will be static load due to temperature changes. 

There are many engineering applications where different temperatures cause in- 

plane loads. The in-plane thermal loads generally reduce the stiffness of the 

structures, and hence change their dynamic behaviour. Small changes in 

temperature would change the structural dynamics of a structure, but often the 

simplified assumption of a fixed temperature would result in discrepancies between 

experimental and analytical analysis. 

3.2 Theoretical Approach 

3.2.1 Natural Frequencies of Uniform Beam under Axial Force 

The basic equation of motion and its solution can be found from Warbuton [75]. In 

deriving the equation governing free undamped vibrations in flexure of beams it is 

assumed that vibration occurs in one of the principal planes of the beam. The 

effects of rotatory inertia and of transverse shear deformation are neglected. 

In Figure 3.1 BC represents the centre line of the beam during vibration; the 

displacement at any section x at time t is denoted by v. Gravity forces will be 

neglected by measuring the displacement from the position of static equilibrium of 

the beam. The forces and moments on an element of length dx are also sho« n in 

Figure 3.1.; 
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x dx 

---------------- ---- --- --------------------------- 

BC 

Y 

m 
dx 

pA dx 
az2 

at 

X 

am ax 
ax 

S+ 
as 

dx 
(3x 

Figure 3.1 - Element of beam in flexture and coordinate axes 

Taking moments about the centre line of the element, and resolving for forces in the 

Y-direction. 

S(5x+M- 11+aM(5x 
ax 

where 

S is shear force 

11 is bending moment 

(3.1) 
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This leads to: 

am 
ax 

(3.2) 

and 

as 
= 

ö2v 
ax 

PA 
ate 

(3.3) 

From the relation between bending moment and curvature and the approximate 

curvature-displacement relation, it can be written as: 

M=-EI 
a2z 

at 

Where 

E= modulus of elasticity; and 

I= area moment of inertia of beam about neutral axis 

(3.4) 

Combining (3.2), (3.3) and (3.4) leads to the popular partial differential equation 

describing the dynamic behaviour of a straight two dimensional beam without 

external loading. 

a2, 
EI 

a2v 
= pAa2v (3.5) 

aX 2 aX ý at - 

This can be reduced to: 

äßv 
A 

acv 
EI , 

öx' 
+ 

a, 2=0 
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This can be solved for various boundary conditions. Substituting v(x, t) as the 

product of shape V(x) and harmonic component sin (wt + a) gives: 

v(x, t) = V(x)sin (wt +a) (3.7) 

Substituting equation (3.7) in (3.6) leads to: 

da pAw2 
4-V=0 

(3.8) 
dx EI 

A solution of equation (3.8) of the form: 

V=B eA"' (3.9) 

is satisfactory, if 

24 _ 
pAw2 (3.10) 

° EI 

which has four roots /10 = ±2 and /10 = ±i2 

where 

EI 

So the general equation of motion is: 

V=B, sin 2L + B, cos + B, sinh Ax + B4 cosh l ix (3.12) 
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The four constants, B, 
,,, 

B4 
, are determined from the boundary condition 

constraints. 

Equation (3.2) can be modified relatively simply to take account of the effect of a 

time invariant axial load N. This assumes that the transverse deflections during 

vibration are small enough that no time varying axial load needs to be considered: 

S=-Näv+am 
ax ax 

(3.13) 

Using this modified version of shear force we obtain a new partial differential 

equation describing the motion of a bar experiencing an axial load: 

EI 
a, v +Na2v 
a4 axe 

z 
+ pA 

ata, 
=0 (3.14) 

Considering a beam with pinned ends, a solution which satisfies the end conditions 

is: 

v=B sin 
ný 

sin(w�t + a) (3.15) 

This satisfies the equation (3.14), provided that: 

az 

EI n /-r 
-N 

n7C 
-pA ßi,,, 2 0 (3.16) 

1L 

Thus the natural frequencies are liven by: 

i 

11 /7 EI 
, 

"N�, 
L2 

L pA n' Zz EI 
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where EI is the flexural stiffness of the beam, v is the transverse displacement, p is 

the density, A is the cross-sectional area and L is the length of the beam. 

Considering the fundamental mode, n=1, 

11 

w_ 
;z2 EI 2N2 

L pA NEL, 
ier 

(3.18) 

Where Np, 
ier 

(Euler bucking load) is: 

n2; T2EI NEuler 
- 

L2 
for pinned-pinned (3.19) 

If the load applied to the beam is zero, the equation (3.18) can be written as: 

2 nir 
4 EI 

w= 
L pA 

(3.20) 

The natural frequency changes due to axial load applied to a beam can be simplified 

to: 

tit _ ý>> I-N (3 
"? 

1) 
n, N n, 0 

NEuler. n 

Note that the load applied N on the equation is a compressive force. ýý h_idrr, n 
is the 

nth critical buckling load of the structure at which the buckling mode is the same as 

the nth natural mode of vibration. As the compressive load approaches the lowest 

critical buckling load the fundamental natural frequency approaches zero. If the 

axial loads are caused by restraints to thermal expansion. they are proportional to the 
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temperature T which causes this expansion. The equation (3.21) can be expressed as 

Mead [55]. 

22T 
W, 

,o= 
WnN 1- 

TEuler 
(3.22) 

Tjziier. 
n 

is now the nth critical buckling temperature which causes buckling in the 

same nth mode. The equation is still true if the load or temperature becomes 

negative. 

3.2.2 Natural Frequencies of Beam with Bending Moment 

From the equation (3.12) for a uniform beam vibrating at frequency w in flexure is: 

V (x) = B, sin Ax + BZ cos A. ac + B3 sinh Ax + B4 cosh Ax (3.23) 

where 
2 

ý, _pAw EI 
(3.24) 

The coefficient B, can be found in terms of the end displacements and slopes by 

solving the equations: 

IA=B, +B4 

OA = 
2B, + 2B3 

V8 =B, sinAl+B, cosAl+B3sinhAl+B4cosh Al 

o _AB, cosAl-AB, sinAl+ß, B3coshAl+AB, sinhAl 
il 

(3.25) 
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to give: 

fib} = [D1 ][v] (3.26) 

where 

ýbýT =[Bl, B2, B3, B4] (3.27) 

and 

Iv) = LVA, Vß, OA, OB) (3.28) 

The element of Matrix [D, ] depends on Al. The applied end forces and moments 

are given in terms of displacement by: 

d2V 
MA = -EI dXZ , 

x=0 

d2V 
MB = E11 

x=! 

(3.29) 

d' VF= 
EI 

AV 
Fß = -EI 

dV 

dX3 
Jx=ý 

dx 
. r-/ 

Substituting for V from equation (3.23), equations (3.29) can be written: 

[D2 ][b] (3.30) 

where 

[1]T = [F,. FB, 1IIA. MBI (3.31) 

From equations (3.26) and (3.30): 
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w= [J][v} (3.32) 

where 

Ja ih Jc Jar 

[= [D2 )LD1] = 
Jh ja -Jd -Jc 

l 
(3.33) 

Jc _ 
id je 

�. % 

_id 
-icJ. J Je 

ju=- K23 (cos 
/il sinh 21 + sin 2l cosh 21) 

jh = K23 (sin 2l + Binh 2l) 

je =- K22 sin Al sink Al (3.34a) 

id = K22 (cos Al - cosh Al) 

je = KA cos Al sinh Al - sin Al cosh Al 

jf = KA sinAl-Binh2l) 

and 

K= 
EI 

(3.34b) 
(cos Al cosh Al -1) 

3.2.3 Natural Frequency changes with Thermal Load 

In most cases, aircraft material performance can be significantly altered due to high 

temperature variations. Since thermal load can cause the failure of the aircraft. it is 

very important to know the structural behaviour at different temperatures and to find 

the buckling temperature. However, only pre-buckled regions will be discussed in 

this thesis. 
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In this section, dynamic behaviour changes of the beam at the unbuckled condition 

and theoretical analysis to find thermal buckling temperature will be described. 

3.2.3.1 Natural frequency changes due to Material Property changes 

The theoretical approach for clamped beams can be found in Blevins [12] 

natural frequency equation of a beam is as follows: 

Tj 
2 [El 2 

27r L2 m 
i= 1,2,... n 

Where 

The 

(3.35) 

LI' =a dimensionless parameter which is a function of the boundary conditions 

applied to the beam 

L= length of a plate 

i= number of half-waves in mode shape along horizontal axis 

in = mass per unit length of beam 

Area moment of inertia can be found as: 

I_hx 
h3 (3.36) 

12 

where h is the width of plate and h is the thickness. 

Mass for I unit length of beam can be found as: 

in=p,. xAxI=p,, xhxhx1 
(13 7) 
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where p, is mass density per unit volume. 

Based on this equation, natural frequencies can be found for various boundary 

conditions and dimensions. 

The material properties can be found as functions of temperature based on their 

apparent rates of change around a standard room temperature of 20'C. 

E(T)=Eo+aE(T-To)=Eo+ßO =E(9) öT 
(3.38) 

where Eo is the standard room temperature, 8 is the linear change in Young's 

modulus with respect to temperature and 0 is the temperature changes. The beam 

dimension with respect to the temperature can be written as: 

L(T) = Lo(l +a9) 

b(T) = bo(l +a8) (3.39) 

h(T) = ho(l +aO) 

where a is the mean coefficient of linear thermal expansion. 

Area moment of inertia with respect to the temperature can rewritten as: 

10= 
b(O)h(e); 

_ 
bo (1 + a8)ho3 (1 + aO)' (3.40) () 

12 12 

Due to thermal expansion, the mass of the beam per unit length is dependent on the 

temperature. 

Assuming that the total mass of the beam remains the same \\ ith changing 

temperature then the mass equation can be written as: 
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mass= povxVo=p, (T)xV(T) (3.41) 

Therefore: 

PV(T) = 
PovVo 

_ 
Po, Loboho 

(3.42) V(T) L(T)b(T)h(T) 

where p0, is the mass density (per unit volume) of the material at the standard room 

temperature. Combining the equation (3.40) and (3.42), the mass density of the 

plate can be expressed as: 

PvýT) _ 
Po, Lo bo ho Po" 

(1 +aO)3 Lobo ho(I +aO)3 

m(®) = 
Po bo (1 + aO)ho (l + aO) 

(l +aO)3 
(3.43) 

The equation (3.34) can be rewritten as combining (3.35-3.42) as follows: 

J ür 

(e) 
- 

IPI' E(0)I(O) 12 

zL(8)2 on (e) j 

T [(Eo+ßo)h(1+ao)1 s' 
(31.44) 

2/7Lä(1 +aO)` 12po,. 

The beam considered in this chapter is shown in Figure 3.2 and is made of mild 

steel. The dimension of the beam was 850* 100mm with 5mm thickness. The red 

sections in figure 3.2 indicates the clamped area for the two sides clamped case, 

making the reduced structure dimension as 650* 100mm ww ith same thickness. 
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850 

100 

Figure 3.2 - The dimension of the beam 

The material properties of this mild steel was E= 212 GPa and p= 7850 kg/m 3 at 

room temperature. Some material properties change with temperature changes. 

Jones [43] gives E= 192 GPa at 300" C linearly reduced from the room temperature. 

For instance, E at 100 "C was evaluated as 206.2857 GPa. The thermal expansion 

coefficient was set as 6* 10 -6 m/ °C. 

(°c) First 

Frequency 

(I; ) 

% 

change 

(Jl ) 

E change 

(, f 

% change 

due to E 

a change 

(ft) 

% change 

due to a 

20 59.43 ------ ----- ----- --- --- 

40 59.21 -0.36 59.22 -0.34 59.41 -0.02 

60 59 -0.73 59.02 -0.68 59.40 -0.05 

80 58.78 -1.10 58.82 -1.03 59.38 -0.07 

100 58.56 -1.47 56.62 -1.38 59.37 -0.1 

Table 3.1 - Theoretical natural frequency changes due to temperature 
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Table 3.1 shows that the natural frequency of the beam decreases as the temperature 

increases. When the temperature increases there are compression stresses on the 

beam causing natural frequency decreases. On the other hand, as the temperature 

decreases, the natural frequency increases due to tensile stresses on the beam. 

Equation (3.443) shows that the natural frequency depends on the Young's Modulus 

and thermal expansion coefficient. Table 3.1 shows the effect of the Young's 

modulus and thermal expansion coefficient due to the temperature changes. The 

effects of Young's modulus changes are determined as by setting the thermal 

expansion coefficient equal to zero. Similarly, the thermal expansion coefficient 

effects are determined by setting Young's modulus equal to zero. Figure 3.3 shows 

that the natural frequency changes when the temperature changes. These 

perturbations are mainly affected by the alteration in Young's modulus. The other 

material properties are assumed not to be affected by temperature changes. 

63.4 

63.2 

N 

63 

u 
c 
d 

62.8 

ca 
62.6 

62.4 

62.2 

ý- Thermal 
Expansion 
Effects 
Only 

Young's 
Modulus 
Effects 
Only 

Thermal 
Expansion 

and 
Young's 
Modulus 
Effects 

0 20 40 60 80 100 120 

Temperature (Degrees C) 

Figure 3.3 Natural frequency changes due to material properties change 
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