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APPENDIX A: An approximate linear Bayes estimator 

Some of the mathematical details in the calculation of a linear Bayes estimator 

using a distribution-free non-iterative method of moments discussed in section 

4.7.3 of Volume I were omitted. These are presented here. 

Assume that Z, = 
0' 

, area is observed rate ratio (SMR) has unknown conditional 
r 

mean E[Zi I Oi]=6i and known conditional variance, say Var[Zi IO i]= 0; 2. Then, if the 

O i's, the true unknown area rate ratios, are assumed to be random effects with 

means E[0j]=pi and variances Var[O ]=z; 2, it can be shown that the best estimator ©1B 

for Oi is of the form: 

61 ° =Wilt +(i-w)zº 
612 

where W, =T2 
,+ .i2 are a set of weights. 

Now assume constant but unknown i and i2 for all areas i, that can be then 

estimate from the data. It can be shown that the Zi s are marginally normally 

distributed as N(}i, z2+ c; 2): 

with unconditional mean of Z;: E[Z, ] = EB[E[Z, er]] = Ee[E[ZI 1011] =1t 

and unconditional variance of Z;: Var[Z, J= Vare {E[Z, 10, ]}+ EB {Var[Z, 1©, 1) 

= Pare[©, ]+E0[a, ] 

=T2 +a 

The global weighted mean: 

ZI E, 0i 
`=' can be used as an unbiased estimator of p. 2: E, J: Ej 

i1 
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To estimate t2, consider the moment of the weighted sample variance: 

lE; (Z, -U')2 
s2 = 2: E; 

I 

Thus, 

EZ(s2)=E=[EIEI(Z, _, u, )Z 

j; E, 

__ 

E; EIE=[(Z, -fß')2] 
Z, Er 

TErE: [(Z1p1)2] 

>: Er 

r 

Z E, VarrZ, 
ignoring the error in using the estimate }z' Z E, 

r 

, 
E, (r2 +c'i ) 

ZEI 

ZE, (z2+Ju ) 

_, 
E, 

ZE1 
1 

= z2 +p 
ZEJ 

I 

So, r'2 = s2 
I 

or ri2 =0 if this estimate is negative. 
j 

i 

The estimator then becomes: 

61' = Wip' + (1- W )Zi where 

wi = 

JU 
I 

Ei 

Z E, Ei 
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APPENDIX B: Calculation of population potential - an indicator of 

geographical remoteness 

To calculate the population potential for the index ward (shaded in Figure B. 1 

below): 

Let Al, A2, A3, A4, 
... 

Ai be all the other wards in Britain (including Scotland) 

Ward Al has population PA1 and its centre is dAl km away from the centre of index 

ward. 

Ward A2 has population PA2and its centre is dA2 km away from the centre of the 

index ward 

... and 

Ward Ai has population Ppi and its centre is dAi km away from the centre of the 

index ward. 

Then, 

Population Potential of index ward = Ei (P; / d; ) for i: all other wards in Britain. 

The unit of population potential is people / metre. 

To put it in words, the population of each ward and the distance from its centre to 

the centre of the index ward is calculated. Then, each ward's population is divided 

by the distance of that population to the index ward. The sum of these is the 

population potential of the index ward. This is repeated for each ward in the 

country. In effect this is a measure of remoteness since if ward A, for example, is 

only 1 km away from a ward with population 10 000 people, this ward would add 

10 000 people /1 km =10 people/metre to A's population potential. However, if 

A were 100 km away from this ward, it would only contribute 10 000 / 100 km = 

0.1 people /metre to A's population potential. 
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rigure j3-l: mmpiinea iiiustration or the calculation of population 

A2 

Al 

The Index Ward 
dA2 

A3 

dA4 

A4 

dA3 
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APPENDIX C: Mathematical formulas and distributional properties 

of distance-based spatial autocorrelation statistics 

A. D-rank statistic 

For n the number of areas in the study region and i and j any two of these areas, 

let: 

R, the rank of area i (from 1 the highest to n the lowest) according to the levels of 

the attribute of interest, for example rates or SMRs 

W, j a measurement of the spatial relationship between areas i and j (the adjacency 

matrix), for example, a matrix of symmetric binary weights taking the value 1 if 

areas i and j share a common boundary and 0 otherwise. 

Then: 

D 
E, EjWIjJR, -RAI 

= 
FIIY, Jwij 

In the case of summetric binary weights, D is the average absolute difference over 

all pairs of adjacent areas. It can be shown that under the null hypothesis of 

randomness, the D statistic asymptotically follows a Normal distribution with 

mean and variance: 

E(D) = 
n+1 1 

3 

and 

Var(D) = 
n(n -1) - 2A 

18A 

Where A is the number of unique pairs of neighbours in the study region. For 

example, (i, j) is the same pair as (j, i) and should be counted only once. 
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B. Moran's I and Geary's c 

For n the number of areas in the study region and i and j any two of these areas, 

let: 

Z, the value of the attribute of interest (e. g. SMR or rank of SMR) for area i 

C; J a measurement of the similarity of areas' i and j attributes 

W, ý a measurement of the spatial relationship between areas i and j. 

Then, Moran's I index of spatial autocorrelation is: 

_ 

ZZ, 
wJ cu 

1 
s2ZEwl 

If 

where 

Cy = (Z, - Z)(Zj -Z) , the attribute similarity measure and Z is the mean of the 

attribute variable, 

(Z- Z) 2 

s2 =' is the sample variance of the z attributes and 
n 

Wý is the adjacency matrix, for example, a matrix of symmetric binary weights as 

in the case of this thesis, taking the value 1 if areas i and j share a common 

boundary and 0 otherwise. 

Equivalently, Geary's c index of spatial autocorrelation is: 

C= 

2j: ZW, az ii 

where 

Zj)2 , the attribute similarity measure 

UNNERSITY 
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DZ` 
-Z)2 

Q2 = is the variance of the z attributes and 
n-I 

W. is, as above, the adjacency matrix taking, in the most simple case, the value 1 if 

areas i and j share a common boundary and 0 otherwise. 

The Resampling Normal Null hypothesis assumes that each value is drawn 

independently from a normally distributed population (and therefore by 

definition have no spatial autocorrelation) and calculates the probability that such 

a sample would exhibit a spatial autocorrelation as extreme as the one observed. 

The Randomisation Null hypothesis assumes that the sample is one randomly 

chosen possibility from among the n! possible arrangements of the observed 

attributes among the n objects and calculates the probability that such an 

arrangement would exhibit a spatial autocorrelation as extreme as the one 

observed. 

It can be shown that the expected value of Geary's c index is 1 while the expected 

value of Moran's I index is -1 under both of these hypotheses. Each 
n-1 

hypothesis leads to a different for the variance. The mathematical formulas for the 

variances of each index under each of the hypotheses are given in full in 

Goodchild (1986). i 

For both indices, under any of the two null hypotheses, the test statistic: 

T= 
(spatialautocorrelation - expectedvalue) is assumed to be normally distributed 

4 variance 

with zero mean and unit standard deviation. Significance is therefore calculated 

on the standard normal probability curve. 

' Goodchild MF. Spatial autocorrelation. Concepts and techniques in modem geography. Norwich: 
Geobooks, 1986. 
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APPENDIX D: winBUGS codes for models and diagnostics 

The next 6 sections give the codes in the BUGS language for all models and 

diagnostic statistics calculated in this thesis by MCMC in winBUGS 1.3, namely: 

A. Poisson - Gamma 

B. Poisson - logNormal 

C. Poisson - CAR 

D. Poisson - Convolution (combination of logNormal and CAR) 

E. Multivariable covariate logNormal and/or CAR 

F. Diagnostic statistics 

Note that in the BUGS language stochastic quantities are represented by a given 

name followed by a twiddles symbol - followed by the distribution name as 

defined by winBUGS such as: 

dpois for a Poisson, 

dgamma for a Gamma and 

dnorm for a Normal distribution. 

Equality in logical expressions (i. e. deterministic functions of other variables) as 

well as data transformations are represented by <- (not to be confused with "less 

than" followed by a minus sign). 

OF GRAIM 

AUTC4 
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A. Poisson-Gamma 

model ( Across all areas i from 1 to N, the model assumes the 

for (i in 1: N) ( observed number of deaths follow a Poisson 

O[i] - dpois(mu[i]) distribution with mean mu. 

log(mu[i]) <- log(E[i]) + const + log(theta[i]) 

theta[i] - dgamma(a, a) The log-link function includes a random effect 0, 

which is given a prior Gamma distribution with both 

shape and scale parameters a. The mean of the 

gamma distribution is simply 1 since the global mean 

is estimated separately. 

RR[i] <- exp(const + 1og(theta[il)) 

prob[i] <- step(RR[il -1 + eps) 

} 

For each area, the rate ratio is calculated by taking 

the exponential of the log-link function along with its 

statistical significance as indicated by the posterior 

probability or proportion of values in the posterior 

sample of RR[i] which are higher than 1. 

eps <-10. E-6 

a- dexp(O. 1) 

const - dnorm(0.0,1.0E-5) 

mean<- exp(const) 

var<-a/pow(a, 2) 

} 

eps represents a very small number used in the 

calculation to avoid probabilities of zero. 

a, the parameter of the Gamma distribution is 

assigned an exponential hyperprior and the constant 

some vague normal distribution. 

The node mean estimates the distribution of the 

global mean and var, the distribution of the variance 

of the random effects i. e. the heterogeneity estimate. 
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B. Poisson-logNormal 

model { 

for (i in l: N) ( 

O[i] - dpois(mu[i]) 

log(mu[i]) <- log(E[i]) + const + H[i] 

H[i] - dnorm(O, v. inv) 

RR[i] <- exp(const + H[i]) 

prob[i] <- step(RR[i] -1 + eps) 

} 

eps <-10. E-6 

v. inv - dgamma(0.001,0.001) 

const - dnorm(0.0,1.0E-5) 

mean<- exp(const) 

var<- 1/ v. inv 

} 

As previously, across all areas i from 1 to N, the 

model assumes the observed number of deaths 

follow a Poisson distribution with mean gnu. 

The log-link function includes a spatially 

unstructured random effect H for the logarithm of 

the true variability 0, which is given a prior Normal 

distribution with mean 0 and precision (the inverse 

of the variance) v. inv. In this case, the mean of the 

Normal distribution is 0 since the log-distribution of 

the random effects is defined. 

For each area, the rate ratio is calculated as described 

above along with the posterior probability that this is 

higher than 1. 

As previously, eps is a very small number used in the 

calculation to avoid probabilities of zero. 

v. inv, the precision of the Normal distribution is 

assigned some vague Gamma hyperprior and, as 

before, the constant some vague normal distribution. 

The node mean estimates the distribution of the 

global mean and var, the distribution of the variance 

of the random effects i. e. the heterogeneity estimate 

(i. e. then inverse of the posterior estimate of the 

precision). 
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C. Poisson-CAR 

model { 

for (i in1: N){ 

O[i] - dpois(mu[i]) 

As previously, across all areas i from 1 to N, the 

model assumes the observed number of deaths 

follow a Poisson distribution with mean mu. 

log(mu[i]) <- Iog(E[i]) + const + S[i] The log-link function includes a random effect S for 

the logarithim of the true variability 0. In this case, 

the random effects are assumed to be spatially 

structured with conditional mean the local mean and 

conditional variance inversely proportional to the 

number of neighbours implemented using the 

car. normal distribution (defined below) 

RR[i] <- exp(const + S[i]) For each area, the rate ratio is calculated as before 

prob[i] <- step(RR[i] -1 + eps) along with the posterior probability that this is 

} higher than 1. 

S[1: N] - car. normal(adj[], weights[], neigh[], vstar. inv) 

To define car. normal distribution data is required on: 

adj[], a list of vectors matrix specifying for each area 

its neighbouring areas, weights[]), a list of vectors 

specifying the relative contribution of each 

neighbouring area to the mean and variance of the 

distribution and num[], a vector specifying the 

number of neighbours for each area. Finally, 

vstar. inv[] is the precision (inverse of the variance) of 

the distribution of structured random effects to be 

estimated. 

eps <-10. E-6 As previously, eps is a very small number used in the 

calculation to avoid probabilities of zero. 

vstar. inv - dgamma(0.001,0.001) vstar. inv, the precision of the CAR distribution is 

assigned some vague Gamma hyperprior. 

const - dflat() Unlike the previous models, the constant (i. e. global 

mean) is given a location invariant prior distribution, 

for example Uniform(-oo, oo), defined as Mato since in 

the conditional formulation only the local mean is 

defined. 
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mean<- exp(const) 

var. star<- 1/ vstar. inv 

sdemp. star<-sd(S[]) 

varemp. star<-pow(sdemp. star, 2) 

The node niearz estimates the distribution of the 

global mean and var, the distribution of the variance 

of the random effects i. e. the spatially structured 

variance (i. e. the inverse of the posterior estimate of 

the precision) 

Due to the conditional formulation of the model 

upon neighbouring areas, the structured variance 

estimate varstar. inv is proportional to the inverse 

number of each area's neighbours. sdemp. star and 

varemp. star approximate the marginal distribution of 

the variability by empirically calculating the 

standard deviation and variance respectively of the 

structured random effects as estimated in the model. 
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D. Poisson-Convolution 

model t 

for (i in 1: N) ( 

O[i] - dpois(mu[i]) 

log(mu[i]) <- log(E[i]) + const + H[i] + S[i] 

H[i] - dnorm(O, v. inv) 

RR[i] <- exp(const + H[i] + S[i]) 

prob[i] <- step(RR[i] -1 + eps) 

} 

As previously, across all areas i from 1 to N, 

the model assumes the observed number of 

deaths follow a Poisson distribution with 

mean mu. 

The log-link function includes two 

components of variation: a spatially 

unstructured random effect H (as in the 

lognormal model) and a structured random 

effect S (as in the CAR model. The 

unstructured component is given a prior 

Normal distribution with mean 0 and 

precision (the inverse of the variance) v. inv. 

For each area, the rate ratio is calculated as 

before along with the posterior probability that 

this is higher than 1. 

S[1: N] - car. normal(adj[], weights[], neigh[], vstar. inv) 

eps <-10. E-6 

v. inv - dgamma(0.01,0.01) 

vstar. inv - dgamma(0.01,0.01) 

const - dflat() 

The spatially structured component is defined 

as before using the car. normal distribution 

with vstar. inv[] the precision (inverse of the 

variance) of the conditional distribution of the 

structured variability to be estimated. 

As previously, eps is a very small number used 

in the calculation to avoid probabilities of zero. 

v. inv and vstar. inv, the precisions of the 

unstructured and structured random effects 

respectively are given each some vague 

Gamma hyperprior. Due to slower 

convergence in convolution models, a 

distribution with smaller variance was 

assigned to each. 

Since the model contains a spatially structured 

component, the constant (i. e. global mean) is 

given a flat Uniform(-co, oo) distribution. 

mean<- exp(const) As previously, mean estimates the distribution 
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var<- 1/ v. inv 

var. star<- 1/ vstar. inv 

sdemp. star<-sd(S[j) 

varemp. star<-pow(sdemp. star, 2) 

sdemp<-sd(H[]) 

varemp<- pow(sdemp, 2) 

ratio<-varemp. star/ (varemp+varemp. star) 

} 

of the global mean. var, the distribution of the 

variance of the unstructured random effects 

and var. star the distribution of the conditional 

variance of the structured random effects. 

Similarly to the CAR model, sdeinp. star and 

varemp. star approximate the marginal 

distribution of the variability by empirically 

calculating the standard deviation and 

variance respectively of the structured random 

effects as estimated in the model. Equivalently, 

sdemp and varemp empirically calculate the 

standard deviation and variance respectively 

of the unstructured random effects as 

estimated in the model and thus ratio estimates 

the relative contribution of each of the two 

components of variation. 
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E. Multivariable covariate models 

model ( 

for (i in1: N){ 

O[i] - dpois(mu[i]) 

Models were defined as before, only now the log-link 

function also estimates regression coefficients for 

area characteristics X1, X2, X3 and so on (for example 

proportion of single-person households etc). All 

covariates were centred around their mean) to 

improve convergence. 

log(mu[i]) <_ log(E[i]) + const + betalXl[il + beta2X2iIJ + beta3X3[i] + ... +H[i] and/or S[i] 

H[i] - dnorm(O, v. inv) The spatially unstructured random effect H is given a 

prior Normal distribution with precision v. inv. 

RR[i] <- exp(const + beta1X1[i] + beta2X2iI] + beta3X3[i] + ... +H[i] and/or S[i]) 

resid[i] <- exp(const + H[i] and/or S[i]) For each area, the rate ratio is calculated as before. In 

multivariable models, resid[i], the residual rate ratio 

prob[i] <- step(R[i] -1 + eps) was also calculated - the amount of unexplained 

residprob[i] <- step(residR[i]-1+eps) variability after controlling for (i. e. removing the 

} effect of) area characteristics. For both, the model also 

calculates the posterior probabilities that these are 

higher than 1. 

v. inv - dgamma(0.01,0.01) v. inv and vstar. inv, the precisions of the unstructured 

vstar. inv - dgamma(0.01,0.01) and structured random effects are both given some 

Gamma hyperprior. 

const - dnorm(0.0,1.0E-5) or dflat() The constant is given either a vague Normal 

distribution or a flat Uniform(-r, co) distribution if the 

model contains a spatially structured component. 

betal - dnorm(0.0,1.0E-5) All coeffiecient parameters to be estimated betat, 

beta2 - dnorm(0.0,1.0E-5) beta2, beta3 and so on were given vague Normal prior 

beta3 - dnorm(0.0,1.0E-5) and so on distributions with mean zero and small precision. 

mean<- exp(const) As previously, mean estimates the distribution of the 

var<- 1/ v. inv global mean. var, the distribution of the variance of 

var. star<- 1/ vstar. inv the unstructured random effects and var. star the 

distribution of the conditional variance of the 

structured random effects. 

effectl<- exp(betal) The exponentiated posterior estimates of the 

effect2<_ exp(beta2) coefficients calculate the effect of each area 

effect3<_ exp(beta3) and so on characteristic on the rate ratios. 

456 



F. Diagnostics calculated in all models 

for (i in 1: N) { 

llike[i] <- O[i]*log(mu[iJ) - mu[i] 

likdev[i]<- (2*(llikesat[iJ-llike[i])) 

p. inv[i] <-1/exp(Ilike[i]-llikesat[i]) 

} 

D <- 2*(sum(llikesat[]) - sum(llike[])) 

In all models, hike calculates the contribution 

of each area to the log-likelihood of the 

Poisson model and likdev calculates the 

contribution of each area to the deviance when 

the log-likelihood in each model is compared 

to the log-likelihood in the saturated model 

that fits a separate mean to each area. llikesat[iJ, 

each area's saturated log-likelihood was 

empirically calculated and fed as data in the 

model since this could not be calculated within 

winBUGS when zero cases where observed. 

p. inv monitors the contribution of each area to 

the inverse of the likelihood (or the 

exponential of the log-likelihood) used to 

calculate the negative cross-validatory 

criterion. 

D estimates the sum of the contribution to the 

deviance statistic over all areas the mean of 

which was used to calculate the DIC statistic. 
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APPENDIX E: Table of 5th and 95th percentiles (and their ratios) of a 

Gamma distribution with mean 1 and variance-[2 

Variance t2 5th % 95th % Ratio Variance iz 5th % 95th % Ratio 

0 1 1 1 

0.002 0.93 1.07 1.15 

0.004 0.9 1.11 1.23 

0.006 0.88 1.13 1.28 

0.008 0.86 1.15 1.34 

0.010 0.84 1.17 1.39 

0.015 0.81 1.21 1.49 

0.020 0.78 1.24 1.59 

0.025 0.75 1.27 1.69 

0.030 0.73 1.3 1.78 

0.035 0.71 1.33 1.87 

0.040 0.7 1.35 1.93 

0.045 0.68 1.37 2.01 

0.050 0.66 1.39 2.11 

0.055 0.65 1.41 2.17 

0.060 0.63 1.43 2.27 

0.080 0.58 1.51 2.60 

0.085 0.57 1.52 2.67 

0.090 0.56 1.54 2.75 

0.095 0.55 1.55 2.82 

0.100 0.54 1.57 2.91 

0.110 0.52 1.6 3.08 

0.120 0.51 1.63 3.20 

0.130 0.49 1.66 3.39 

0.140 0.47 1.68 3.57 

0.150 0.46 1.71 3.72 

0.160 0.44 1.74 3.95 

0.170 0.43 1.76 4.09 

0.180 0.42 1.78 4.24 

0.190 0.41 1.81 4.41 

0.200 0.39 1.83 4.69 

0.400 0.23 2.21 9.61 

0.065 0.62 1.45 2.34 0.600 0.13 2.51 19.31 

0.070 0.61 1.47 2.41 0.800 0.08 2.77 34.63 

0.075 0.60 1.49 2.48 1.000 0.05 3 60.00 

Note: Estimates of the Gamma variance iz that signify approximately 1.5-, 2-, 3- and 4-fold 

differences in the 90% range of true rate ratios are highlighted in bold. 
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APPENDIX F: Typical winBUGS graphical output from the 

constituency and ward level analyses in males aged 15-44 

The next sections show typical graphical winBUGS output used to summarise and 

map the spatial variability of suicide in this thesis. Only selected output from the 3 

main models at constituency and ward level analyses in males aged 15-44 is 

presented, namely: 

A. Constituency level analyses 

1. logNormal model 

B. Ward level analyses 

2. CAR model 

3. Convolution model 

1. logNormal model 

2. CAR model 

3. Convolution model 

In each case, output presented includes: 

(a) Plots of the iteration history of the chains for the inverse of the variance and 

the global mean in the initial burn-in period. 

(b) Plots of the R-statistic for assessment of convergence for the inverse of the 

variance and the global mean at the end of the burn-in period. Plots show the 

central 80% width of the pooled chains, the average 80% width of each individual 

chain and their ratio - the R-statistic). 

(c) Plots of the iteration history of the chains for the inverse of the variance and 

the global mean after convergence (monitored sample). 

(d) Plots of the R-statistic for the entire simulation (burn-in + monitored sample) 

(e) Plots of the running posterior mean (and 95% C. I. ) and autocorrelation in each 

of the chains for the inverse of the variance and the global mean after convergence. 

(f) Density plots of the posterior distributions of the variance and global mean. In 

convolution models, plots of the posterior distributions of the empirical marginal 

structured variance and its ratio to the total variance are also presented. 

(g) Plots of the posterior distribution, running posterior mean (and 95% C. I. ), 

autocorrelation and R-statistic for a sample of 6 rate ratios R[i]. 

459 



Al. logNormal model, constituency level analyses 

Gamma(0.001,0.001) hyperprior for the inverse of the unstructured variance, 4 

chains initialised at 1,15,30,100 each with a burn-in period of 2 500 and a 

monitored sample of an additional 10 000 iterations (total pooled sample of 40 000) 

(a) Iteration history of the 4 chains (in pairs) for the inverse of the unstructured variance 

(v). iny) and the logarithm of the global mean (coast) in the burn-in period 

v. inv chains 1: 2 

50.0- 

40.0- 

30.0 

20.0 

10.0- 

0.0- 

1 

v. inv chains 3: 4 

80.0- 

60.0- 

40.0- 

20.0- 

0.0- 

1 

1000 
iteration 

2000 

IVVV 

iteration 

2000 

const chains 1: 2 

0.04- 

0.02- 

6.93889E- 18 

-0.02 
41i 

-0.04 

-0.06 

1 

const chains 3: 4 

0.025- 

6.93889E- 18 

-0.025- 

-0.05- 

-0.075- 

1000 2000 
iteration 

T- 

1000 2000 
iteration 
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