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An analysis of 45 large-scale wastewater sites in
England to estimate SARS-CoV-2 community
prevalence
Mario Morvan 1,2,14, Anna Lo Jacomo1,3,14, Celia Souque1,4, Matthew J. Wade 1,5, Till Hoffmann 1,6,
Koen Pouwels 7,8, Chris Lilley1, Andrew C. Singer 9, Jonathan Porter 10, Nicholas P. Evens10,
David I. Walker11, Joshua T. Bunce1,5,12, Andrew Engeli1, Jasmine Grimsley1, Kathleen M. O’Reilly 1,13,14� &
Leon Danon1,3,14

Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of
cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias.
Quanti�cation of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence,
but uncertainty in sensitivity and considerable variability has meant that accurate mea-
surement remains elusive. Here, we use data from 45 sewage sites in England, covering 31%
of the population, and estimate SARS-CoV-2 prevalence to within 1.1% of estimates from
representative prevalence surveys (with 95% con�dence). Using machine learning and
phenomenological models, we show that differences between sampled sites, particularly the
wastewater �ow rate, in�uence prevalence estimation and require careful interpretation. We
�nd that SARS-CoV-2 signals in wastewater appear 4–5 days earlier in comparison to clinical
testing data but are coincident with prevalence surveys suggesting that wastewater sur-
veillance can be a leading indicator for symptomatic viral infections. Surveillance for viruses in
wastewater complements and strengthens clinical surveillance, with signi�cant implications
for public health.
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Estimates of SARS-CoV-2 infection prevalence are essential
to understand COVID-19 disease burden and the impact of
public health interventions1–3. The sensitivity of surveil-

lance for COVID-19 varies for several epidemiological, admin-
istrative, political and� nancial reasons, meaning that reported
cases are likely to be an underestimate of actual cases4–7. Further,
only a proportion of infections result in symptomatic disease;
estimates range considerably across studies but in a recent meta-
analysis that aimed to account for potential biases in reporting an
average of 64.9% (95% CI 60.1–69.3%) was estimated8, so there is
a disconnect between infections that result in transmission and
reported cases via clinical surveillance. To monitor the trajectory
of the COVID-19 pandemic and reduce the impact of bias due to
any single source of information, it is essential to have multiple
measures of prevalence with well-understood sources of bias and
uncertainty.

Based on its proven success applied to other infectious diseases
and markers of human health and behaviour9,10, wastewater
(WW) surveillance for SARS-CoV-2 has been established in
many countries, including England, since the start of the
pandemic11,12. Early studies indicated that fragments of RNA
corresponding to the SARS-CoV-2 viral genome were detectible
in WW13, and in quantities that some quantitative measure could
be established. However, laboratory protocols required re� ne-
ment to establish a method that provides consistent measures of
RNA with suf� cient sensitivity and to be used at scale. Quanti-
tative reverse-transcriptase PCR (RT-qPCR) of target genes of the
virus genome is now routinely performed on concentrated sam-
ples from wastewater.

A challenge inherent to WW surveillance is the potential
impact of environmental and biochemical attributes on the
detection and quanti� cation of the virus concentration. In Eng-
land and other countries that utilise combined sewer networks to
transport sewage, the wastewater in� owing at the sewage treat-
ment works (STWs) typically comprises a combination of raw
sewage, household ef� uent (e.g. from washing and cleaning),
agricultural run-off, rainwater/snow melt, and trade waste from
industry14. The percentage volume of human-derived excreta
likely to contain virus RNA (i.e., urine, faeces, nasal discharge,
sputum, blood)15 in the collected wastewater sample is likely to
vary because of additional in� ow detailed above, which will dilute
and may degrade the target analyte concentration, reducing the
sensitivity of lab assays16. In order to overcome these challenges
and infer an estimate of prevalence from WW samples, additional
data and statistical models can be used, and validation of model
outputs using reliable estimates of prevalence is critical. However,
the associated biases in clinical surveillance and the impact of
uncertainties associated with environmental monitoring of viru-
ses in sewer networks present signi� cant challenges when con-
sidering prevalence estimation using WW measurements.

Back-calculating or estimating the quantity of chemical com-
pounds (e.g., licit and illicit pharmaceuticals) or stressors (e.g.,
pathogens) by targeting indicative analytes present in WW is a
common feature of wastewater-based epidemiology (WBE). For
example, WBE has been applied successfully in estimating illegal
drug consumption9, the degree of antibiotic resistance in a
population17, among other applications. While most studies have
used WW to track disease trends (i.e. increase/decrease), a
number of studies have attempted to directly quantify prevalence
from SARS-CoV-2 measurements, along with biological and
hydrological parameters7,18,19. Broadly, studies using back-
calculation for SARS-CoV-2 generally consider that disease pre-
valence is equal to the load of RNA in the sample, divided by the
load of RNA produced by one infected person19. The underlying
assumptions are that viral RNA is released proportionally to
wastewater and perfectly mixed in the sewers, and that there are

no signi� cant losses of virus RNA in the network that lead to a
decrease in measurement representativeness. Variations of this
hypothesis have been suggested to account for additional‘signal
loss’ factors, for example decay,� ow dilution, and temporal
shedding patterns in the population19.

The Of� ce for National Statistics (ONS) Covid-19 Infection
Survey (CIS) was established in the UK early in the pandemic to
assess the prevalence of individuals in the community testing
positive for SARS-CoV-2 (otherwise known as“positivity”)
through nasopharyngeal sampling of individuals living in ran-
domly selected private households from the UK3. This survey has
been essential to understand the dynamics of SARS-CoV-2 by
estimating community positivity rates, and further to estimate
these rates at regional and sub-regional scales. The wide avail-
ability of WW samples from July 2020 in England and sub-
regional positivity estimates from the CIS provides a unique
dataset to investigate and validate WW as a reliable estimate of
prevalence to support public health actions. In this study, we
estimate the prevalence of SARS-CoV-2 infection in the com-
munity and establish what additional data and analyses are
required to have accurate and robust estimates of prevalence
from WW.

Results
We analysed data collected between July 2020 and March 2021
from 45 sewage treatment works (STWs) across England (Fig.1)
covering an estimated 31% of the population. For each site, an
average of four samples were collected per week, by either grab
(46%) or composite (54%) sampling. Additional metadata were
collected on inorganics and other wastewater characteristics (see
Supplementary Table S1 for further details).

Translation of raw WW data to prevalence estimates are illu-
strated using a phenomenological model that considers infection
prevalence, shedding and stool generation, and the volume of
water in the sewage column (see the“Methods” section). The
assumptions of the model results in a linear relationship between
prevalence and RNA concentrations. Sensitivity analysis illu-
strated that viral concentration in stool is the largest source of
uncertainty in this approach (Fig. S2). Using average values of the
shedding rate from clinical studies20 gives a relatively good� t
with observations from wastewater and CIS data in terms of
average magnitude, but with high variability across individual
samples (Fig.2A). However, that variability is commensurate
with the uncertainty in the appropriate hydrological and biolo-
gical values used for the calculation. Comparing these model
estimates to data indicates that for more than half of the CIS sub-
regions in the study (60%) the model assumptions illustrate a
valid relationship with the data (more than 60% of sample points
fall within the 50% con� dence interval of the model). Sites
showing a poorer� t, have either relatively low (28%) or relatively
high (12%) concentrations per positivity rate (Fig.2B and C).
Lower than expected concentrations could be caused by unusually
high per capita� ow rates (such as groundwater in� ltration), or
degradation of RNA during transit due to physical or chemical
characteristics of the network (such as numerous pumping sta-
tions, or consistently atypical pH). The method of sample col-
lection, together with limited homogenisation of the‘sewage
parcel’, could also lead to unrepresentative (either low or high)
concentrations, or indeed unaccounted sewage discharge could
also affect measurement21. Including an additional factor to
account for degradation might provide a better model assumption
for sites showing relatively low concentrations (e.g. Sub-region B
in Fig. 2A). In some sub-regions, the relationship between con-
centrations and prevalence is not well explained by the (static)
linear model. A possible reason may be interactions between
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disease dynamics and shedding where infection in a growing
epidemic appears to have increased viral load22; inclusion of this
in the model would require a non-linear model.

Combining WW data, site-level and sample-level variables
within a statistical modelling framework (exempli� ed using a
gradient boosted regression tree (GBRT) model, see the“Meth-
ods” section) to estimate prevalence of SARS-CoV-2 provides
reliable metrics across regions and throughout the evolving epi-
demiology of the COVID-19 pandemic in England. Using this
model, SARS-CoV-2 prevalence was tracked within 1.1% (with
95% con� dence) from the CIS (Fig.1B). When the GBRT model
with covariates was aggregated to regional level, an average mean
absolute error (MAE) was obtained, with the West Mid-
lands performing above average and the North East performing
below average (MAE of 0.12 and 0.19, respectively) (Fig.3B). We
focus the results of the modelling to a regional level here, but have
carried out the analysis at a sub-regional level to inform the
public health response at these smaller levels of aggregation
(Fig. S6).

The GBRT model was found to be the best of the candidate
models that were developed to interrogate the data and identify
what variables, in addition to the raw RNA concentrations, would
provide accurate estimates of prevalence. Different candidate
models (linear, linear with random effects and GBRT), were
evaluated and compared using the MAE between predictions and
median positivity rates estimates from CIS. The addition of
temporally varying data such as ammonia concentration, the
fraction of samples below the limit of detection and quanti� cation
and site-speci� c data such as population coverage greatly
improved the overall� t where GBRT the average MAE per CIS
subregion reduced in value when compared with a model trained
on SARS-COV-2 concentrations alone (Fig.3A and B). Further
collation of additional site-level characteristics through con-
sultation with water companies and characterisation of the
catchment area showed an additional reduction in bias in the
model residuals distribution against these characteristics (Fig. S7)
highlighting the robustness of our� nal model to wastewater
network differences. While the GBRT model will be applied to
estimate prevalence in England, the relative contributions of each
variable and partial dependency plots (Fig. S8) are used to illus-
trate the direction of their effects and provide guidance for use

outside of this application. However, exploration of the site-
speci� c random effects (within the random effects model) illu-
strated that there was considerable variability in MAE within sites
that had yet to be fully accounted for. These WW data were
collected in England across a time period where the prevalence of
infection has varied considerably as a result of epidemic emer-
gence and suppression through non-pharmaceutical interven-
tions. The statistical modelling presented here illustrates that
prevalence estimates are accurate and precise across a wide range
of prevalence values (Fig.4). The prevalence is tracked within
1.1% (with 95% con� dence) for the GBRT model and is more
precise at higher values of prevalence. Comparison between the
random effects and GBRT model illustrates reduced precision and
over estimation of prevalence at lower values of prevalence for the
random effects model.

A lead and lag analysis was performed using the regression
models on CIS estimates. Sampling dates for WW were shifted
between� 10 and 20 days with daily increments, while training a
model at each step to predict the CIS positivity rates in outputs,
whose dates had been� xed. At each step, the models were
evaluated using the bootstrapped MAE, producing a curve of
prediction errors as a function of the wastewater lag (Fig.5).
Results show a minimum value of the smoothed error curve
between 0 and 2 shifted days, indicating no clear advantage to
predict CIS backward or forward in time from WW data. For
comparison, this analysis was replicated on Pillar 1&2 data from
Test and Trace. In this case the regression outputs were the case
rates reported by Test and Trace until May 17, 2021, smoothed
with a 7-day centred window to remove weekly periodicity and
preserve consistency of reporting dates. In addition, the WW
dataset was stripped to contain samples only up to 20 days before
May 17, 2021 to ensure the stability of dataset sizes during the
analysis. In this case the MAE is minimal between+ 3 and
+ 5 days shift, suggesting an approximate 4-day lead of WW
surveillance date over reported Test and Trace cases (Fig.5B).

Discussion
We have shown that concentrations of SARS-CoV-2 RNA collected
from wastewater in 45 sites in England, combined with essential
related variables can provide reliable estimates of prevalence of SARS-
CoV-2 infection within a population. Site-speci� c characteristics

A B

Fig. 1 Geographical summary of the data used to estimate SARS-CoV-2 from wastewater. A Map of Coronavirus Infection Survey (CIS) regions (outlined
in blue) and the locations of wastewater (WW) catchments used in this study (in red). B Regional 7-day rolling averages (median) of CIS prevalence
estimates (black) with 95% credible intervals using Bayesian modelling (grey regions), with corresponding predictions of prevalence from WW data only
(blue) with 95% con�dence interval from bootstrapping (blue vertical lines), and raw SARS-CoV-2 concentrations (yellow, right axis). The WW prevalence
estimates are provided at a sub-regional level and combined to produce regional estimates for comparison.
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